Vitamin D deficiency associates with γ-tocopherol and quadriceps weakness but not inflammatory cytokines in subjects with knee osteoarthritis

Knee osteoarthritis (OA) is a degenerative joint condition and a leading cause of physical disability in the United States. Quadriceps weakness and inflammatory cytokines contribute to the pathogenesis of knee OA, and both of which, increase with vitamin D deficiency. Other micronutrients, such as v...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 2; no. C; pp. 466 - 474
Main Authors Barker, Tyler, Henriksen, Vanessa T., Rogers, Victoria E., Aguirre, Dale, Trawick, Roy H., Lynn Rasmussen, G., Momberger, Nathan G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Knee osteoarthritis (OA) is a degenerative joint condition and a leading cause of physical disability in the United States. Quadriceps weakness and inflammatory cytokines contribute to the pathogenesis of knee OA, and both of which, increase with vitamin D deficiency. Other micronutrients, such as vitamins C and E and β-carotene, modulate inflammatory cytokines and decrease during inflammation. The purpose of this study was to test the hypothesis that vitamin D deficiency associates with quadriceps weakness, an increase in serum cytokines, and a decrease in circulating micronutrients in subjects with knee OA. Subjects (age, 48±1 y; serum 25(OH)D, 25.8±1.1 ng/mL) with knee OA were categorized as vitamin D deficient (n=17; serum 25(OH)D≤20 ng/mL), insufficient (n=21; serum 25(OH)D 20-29 ng/mL), or sufficient (n=18; serum 25(OH)D≥30 ng/mL). Single-leg strength (concentric knee extension-flexion contraction cycles at 60 °/s) and blood cytokine, carotene (α and β), ascorbic acid, and tocopherol (α and γ) concentrations were measured. Quadriceps peak torque, average power, total work, and deceleration were significantly (all p<0.05) impaired with vitamin D deficiency. Serum γ-tocopherol concentrations were significantly (p<0.05) increased with vitamin D deficiency. In the vitamin D sufficient group, γ-tocopherol inversely correlated (r=-0.47, p<0.05) with TNF-α, suggesting a pro-inflammatory increase with a γ-tocopherol decrease despite a sufficient serum 25(OH)D concentration. We conclude that vitamin D deficiency is detrimental to quadriceps function, and in subjects with vitamin D sufficiency, γ-tocopherol could have an important anti-inflammatory role in a pathophysiological condition mediated by inflammation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2014.01.024