Replication Initiator Protein NS1 of the Parvovirus Minute Virus of Mice Binds to Modular Divergent Sites Distributed throughout Duplex Viral DNA
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Journal of Virology Vol. 81; no. 23; pp. 13015 - 13027 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.12.2007
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than ∼170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced ∼10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5′-TGGT-3′ motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes. To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes. Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JVI .asm.org, visit: JVI To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes. To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than similar to 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced similar to 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes. |
Author | Peter Tattersall Robert L. Gottlieb Susan F. Cotmore |
AuthorAffiliation | Departments of Laboratory Medicine, 1 Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510 2 |
AuthorAffiliation_xml | – name: Departments of Laboratory Medicine, 1 Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510 2 |
Author_xml | – sequence: 1 givenname: Susan F. surname: Cotmore fullname: Cotmore, Susan F. organization: Departments of Laboratory Medicine – sequence: 2 givenname: Robert L. surname: Gottlieb fullname: Gottlieb, Robert L. organization: Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510 – sequence: 3 givenname: Peter surname: Tattersall fullname: Tattersall, Peter organization: Departments of Laboratory Medicine, Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19689981$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17898054$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCjTOyhODEFo-9H_alUmn4CGpKRaHiZnm93sTVZh1s7wI_g3-MmwQKSIiTNZpnXr3jeQ_QXu96g9BDIEcAlD9_ezU7IlARlpHqDpoAETwrCsj30IQQSrOC8U_76CCEa0Igz8v8HtqHigtOinyCvr83685qFa3r8ay30aroPL7wLhrb4_NLwK7FcWnwhfKjG60fAp7bfogGX22K1J5bbfAL2zcBR4fnrhk65fHUjsYvTB_xpY0mpDpEb-s02SRB74bF0g0RT4d1Z77eiKkOT89P7qO7reqCebB7D9HHVy8_nL7Jzt69np2enGU6ryBmSrGc64YyU5oCFAcoVc0Z08LUVd6UtOFl1RYNLVpBgUNT11rXADVpK0GKgh2i463ueqhXptHJaHIg196ulP8mnbLyz05vl3LhRkmhFOmXk8DTnYB3nwcTolzZoE3Xqd64IciS56Ki6TD_AylhVS6gTOCj3y398vLzXAl4sgNU0Kprveq1DbecKLkQHBL3bMtp70Lwpr1FiLxJjUypkZvUSFIlnP6Faxs3kUiL2-5fQ4-3Q0u7WH6x3kgVVvJ6tJKDpEwCI1CwHyFW0ps |
CitedBy_id | crossref_primary_10_1016_j_virol_2013_09_019 crossref_primary_10_1007_s11262_022_01944_2 crossref_primary_10_1128_JVI_02221_09 crossref_primary_10_1038_srep35759 crossref_primary_10_1128_JVI_01393_13 crossref_primary_10_3390_v9110323 crossref_primary_10_1128_JVI_01770_13 crossref_primary_10_3390_v15061243 crossref_primary_10_1021_acs_biochem_6b00534 crossref_primary_10_1371_journal_pone_0019457 crossref_primary_10_1016_j_vetmic_2016_12_002 crossref_primary_10_1128_JVI_03160_15 crossref_primary_10_3390_v13071306 crossref_primary_10_1128_jvi_00461_23 crossref_primary_10_1007_s10549_009_0451_9 crossref_primary_10_1097_MRM_0000000000000010 crossref_primary_10_1016_j_virol_2013_11_031 crossref_primary_10_1016_j_virol_2014_11_022 crossref_primary_10_1128_JVI_01678_13 crossref_primary_10_3390_v9100286 crossref_primary_10_1128_JVI_02215_10 crossref_primary_10_1146_annurev_virology_031413_085444 crossref_primary_10_1128_jvi_00093_24 |
Cites_doi | 10.1128/jvi.68.5.2840-2848.1994 10.1006/viro.1998.9375 10.1128/jvi.68.12.7974-7985.1994 10.1128/jvi.66.1.420-431.1992 10.1128/jvi.74.10.4807-4815.2000 10.1128/JVI.75.20.9991-9994.2001 10.1099/0022-1317-69-10-2563 10.1128/jvi.62.5.1713-1722.1988 10.1016/j.dnarep.2007.02.015 10.1016/j.dnarep.2007.02.018 10.1006/viro.1997.8545 10.1073/pnas.080079397 10.1128/JVI.75.15.7009-7017.2001 10.1006/viro.1996.0535 10.1128/MCB.19.11.7741 10.1016/S0969-2126(03)00152-7 10.1021/bi602412r 10.1128/MCB.15.1.524 10.1016/0378-1119(85)90170-2 10.1128/jvi.68.8.4988-4997.1994 10.1128/jvi.71.10.7393-7403.1997 10.1128/jvi.70.2.834-842.1996 10.1128/jvi.71.12.9087-9095.1997 10.1128/jvi.71.6.4461-4471.1997 10.1128/jvi.69.9.5422-5430.1995 10.1128/JVI.78.1.389-398.2004 10.1016/S1097-2765(04)00023-1 10.1128/jvi.58.3.817-824.1986 10.1128/JVI.76.8.3892-3904.2002 10.1016/S0076-6879(80)65059-9 10.1128/jvi.55.3.886-889.1985 10.1006/viro.1993.1190 10.1128/jvi.70.3.1542-1553.1996 10.1006/viro.1995.1236 10.1007/BF00315260 10.1089/10430349950017626 10.1073/pnas.87.6.2211 10.1073/pnas.84.23.8267 10.1128/jvi.69.3.1652-1660.1995 10.1038/nature01691 10.1128/JVI.75.9.4394-4398.2001 10.1016/0042-6822(92)90202-Z 10.1006/viro.1997.8940 10.1128/JVI.75.13.5730-5739.2001 10.1128/JVI.74.3.1332-1341.2000 10.1128/jvi.69.4.2038-2046.1995 10.1128/jvi.61.12.3649-3654.1987 10.1073/pnas.82.17.5710 10.1006/jmbi.2000.5198 10.1099/vir.0.80564-0 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS Copyright © 2007, American Society for Microbiology |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright © 2007, American Society for Microbiology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TM 7U9 H94 7X8 5PM |
DOI | 10.1128/JVI.01703-07 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 13027 |
ExternalDocumentID | PMC2169109 17898054 19689981 10_1128_JVI_01703_07 jvi_81_23_13015 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R37 AI026109 – fundername: NIAID NIH HHS grantid: R01 AI026109 – fundername: NIAID NIH HHS grantid: AI26109 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM IQODW CGR CUY CVF ECM EIF NPM 7TM 7U9 H94 7X8 5PM |
ID | FETCH-LOGICAL-c471t-aa348cd23e6e51a8116ab833c9eb74d62d867f5d25f92181dbbccb11b0f790553 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:29:56 EDT 2025 Fri Jul 11 12:09:09 EDT 2025 Fri Jul 11 14:59:22 EDT 2025 Mon Jul 21 06:04:55 EDT 2025 Mon Jul 21 09:17:54 EDT 2025 Thu Apr 24 22:56:36 EDT 2025 Tue Jul 01 00:57:18 EDT 2025 Wed May 18 15:25:36 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Virus Parvovirus Parvoviridae Replication Protein Parvovirinae Virology Mouse minute virus |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-aa348cd23e6e51a8116ab833c9eb74d62d867f5d25f92181dbbccb11b0f790553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Internal Medicine, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242. Corresponding author. Mailing address: Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510. Phone: (203) 785-4586. Fax: (203) 688-7340. E-mail: peter.tattersall@yale.edu |
OpenAccessLink | http://doi.org/10.1128/JVI.01703-07 |
PMID | 17898054 |
PQID | 20374916 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1128_JVI_01703_07 proquest_miscellaneous_20374916 pubmed_primary_17898054 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169109 crossref_citationtrail_10_1128_JVI_01703_07 highwire_asm_jvi_81_23_13015 proquest_miscellaneous_68497270 pascalfrancis_primary_19689981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-12-01 |
PublicationDateYYYYMMDD | 2007-12-01 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2007 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 (e_1_3_2_17_2) 2006 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 (e_1_3_2_52_2) 2005 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 (e_1_3_2_16_2) 2006 10627544 - J Virol. 2000 Feb;74(3):1332-41 2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5 14671120 - J Virol. 2004 Jan;78(1):389-98 7966588 - J Virol. 1994 Dec;68(12):7974-85 2824805 - J Virol. 1987 Dec;61(12):3649-54 11559833 - J Virol. 2001 Oct;75(20):9991-4 11907229 - J Virol. 2002 Apr;76(8):3892-904 10428207 - Hum Gene Ther. 1999 Jul 1;10(10):1619-32 7636987 - J Virol. 1995 Sep;69(9):5422-30 3896934 - Gene. 1985;35(1-2):179-85 9454706 - Virology. 1998 Jan 20;240(2):326-37 12906833 - Structure. 2003 Aug;11(8):1025-35 3084808 - J Virol. 1986 Jun;58(3):817-24 17531546 - DNA Repair (Amst). 2007 Jul 1;6(7):953-66 11743720 - J Mol Biol. 2001 Dec 14;314(5):1029-39 1530771 - J Virol. 1992 Jan;66(1):420-31 17382606 - DNA Repair (Amst). 2007 Jul 1;6(7):994-1003 10775619 - J Virol. 2000 May;74(10):4807-15 10758163 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4862-6 10523663 - Mol Cell Biol. 1999 Nov;19(11):7741-50 7853501 - J Virol. 1995 Mar;69(3):1652-60 8035498 - J Virol. 1994 Aug;68(8):4988-97 8551622 - J Virol. 1996 Feb;70(2):834-42 9311818 - J Virol. 1997 Oct;71(10):7393-403 7884849 - J Virol. 1995 Apr;69(4):2038-46 9371565 - J Virol. 1997 Dec;71(12):9087-95 2825183 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8267-71 2541561 - Virus Genes. 1989 Mar;2(2):167-82 8627673 - J Virol. 1996 Mar;70(3):1542-53 7747462 - Virology. 1995 May 10;209(1):122-35 9813208 - Virology. 1998 Nov 10;251(1):123-31 1413512 - Virology. 1992 Nov;191(1):406-16 3357208 - J Virol. 1988 May;62(5):1713-22 6246368 - Methods Enzymol. 1980;65(1):499-560 4020972 - J Virol. 1985 Sep;55(3):886-9 15784894 - J Gen Virol. 2005 Apr;86(Pt 4):1009-14 9151837 - J Virol. 1997 Jun;71(6):4461-71 17474716 - Biochemistry. 2007 May 29;46(21):6364-74 14967147 - Mol Cell. 2004 Feb 13;13(3):403-14 8862428 - Virology. 1996 Oct 1;224(1):320-5 3171551 - J Gen Virol. 1988 Oct;69 ( Pt 10):2563-73 9168889 - Virology. 1997 May 12;231(2):267-80 11390575 - J Virol. 2001 Jul;75(13):5730-9 2994044 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5710-4 8151755 - J Virol. 1994 May;68(5):2840-8 11287588 - J Virol. 2001 May;75(9):4394-8 11435581 - J Virol. 2001 Aug;75(15):7009-17 12774115 - Nature. 2003 May 29;423(6939):512-8 8460487 - Virology. 1993 Apr;193(2):812-24 7799962 - Mol Cell Biol. 1995 Jan;15(1):524-33 |
References_xml | – ident: e_1_3_2_50_2 doi: 10.1128/jvi.68.5.2840-2848.1994 – ident: e_1_3_2_39_2 doi: 10.1006/viro.1998.9375 – ident: e_1_3_2_32_2 doi: 10.1128/jvi.68.12.7974-7985.1994 – start-page: 353 year: 2005 ident: e_1_3_2_52_2 publication-title: Virus taxonomy, VIIIth report of the ICTV – ident: e_1_3_2_15_2 doi: 10.1128/jvi.66.1.420-431.1992 – ident: e_1_3_2_18_2 doi: 10.1128/jvi.74.10.4807-4815.2000 – start-page: 593 year: 2006 ident: e_1_3_2_16_2 publication-title: DNA replication and human disease – ident: e_1_3_2_40_2 doi: 10.1128/JVI.75.20.9991-9994.2001 – ident: e_1_3_2_22_2 doi: 10.1099/0022-1317-69-10-2563 – ident: e_1_3_2_26_2 doi: 10.1128/jvi.62.5.1713-1722.1988 – ident: e_1_3_2_44_2 doi: 10.1016/j.dnarep.2007.02.015 – ident: e_1_3_2_5_2 doi: 10.1016/j.dnarep.2007.02.018 – ident: e_1_3_2_14_2 doi: 10.1006/viro.1997.8545 – ident: e_1_3_2_24_2 doi: 10.1073/pnas.080079397 – ident: e_1_3_2_8_2 doi: 10.1128/JVI.75.15.7009-7017.2001 – ident: e_1_3_2_11_2 doi: 10.1006/viro.1996.0535 – ident: e_1_3_2_10_2 doi: 10.1128/MCB.19.11.7741 – ident: e_1_3_2_28_2 doi: 10.1016/S0969-2126(03)00152-7 – ident: e_1_3_2_21_2 doi: 10.1021/bi602412r – ident: e_1_3_2_31_2 doi: 10.1128/MCB.15.1.524 – ident: e_1_3_2_47_2 – ident: e_1_3_2_4_2 doi: 10.1016/0378-1119(85)90170-2 – ident: e_1_3_2_37_2 doi: 10.1128/jvi.68.8.4988-4997.1994 – ident: e_1_3_2_45_2 doi: 10.1128/jvi.71.10.7393-7403.1997 – start-page: 171 year: 2006 ident: e_1_3_2_17_2 publication-title: The parvoviruses – ident: e_1_3_2_34_2 doi: 10.1128/jvi.70.2.834-842.1996 – ident: e_1_3_2_6_2 doi: 10.1128/jvi.71.12.9087-9095.1997 – ident: e_1_3_2_49_2 doi: 10.1128/jvi.71.6.4461-4471.1997 – ident: e_1_3_2_9_2 doi: 10.1128/jvi.69.9.5422-5430.1995 – ident: e_1_3_2_25_2 doi: 10.1128/JVI.78.1.389-398.2004 – ident: e_1_3_2_27_2 doi: 10.1016/S1097-2765(04)00023-1 – ident: e_1_3_2_23_2 doi: 10.1128/jvi.58.3.817-824.1986 – ident: e_1_3_2_55_2 doi: 10.1128/JVI.76.8.3892-3904.2002 – ident: e_1_3_2_36_2 doi: 10.1016/S0076-6879(80)65059-9 – ident: e_1_3_2_46_2 doi: 10.1128/jvi.55.3.886-889.1985 – ident: e_1_3_2_51_2 doi: 10.1006/viro.1993.1190 – ident: e_1_3_2_38_2 – ident: e_1_3_2_48_2 doi: 10.1128/jvi.70.3.1542-1553.1996 – ident: e_1_3_2_43_2 doi: 10.1006/viro.1995.1236 – ident: e_1_3_2_3_2 doi: 10.1007/BF00315260 – ident: e_1_3_2_29_2 doi: 10.1089/10430349950017626 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.87.6.2211 – ident: e_1_3_2_19_2 doi: 10.1073/pnas.84.23.8267 – ident: e_1_3_2_12_2 doi: 10.1128/jvi.69.3.1652-1660.1995 – ident: e_1_3_2_33_2 doi: 10.1038/nature01691 – ident: e_1_3_2_2_2 doi: 10.1128/JVI.75.9.4394-4398.2001 – ident: e_1_3_2_42_2 doi: 10.1016/0042-6822(92)90202-Z – ident: e_1_3_2_35_2 doi: 10.1006/viro.1997.8940 – ident: e_1_3_2_41_2 doi: 10.1128/JVI.75.13.5730-5739.2001 – ident: e_1_3_2_13_2 doi: 10.1128/JVI.74.3.1332-1341.2000 – ident: e_1_3_2_53_2 doi: 10.1128/jvi.69.4.2038-2046.1995 – ident: e_1_3_2_20_2 doi: 10.1128/jvi.61.12.3649-3654.1987 – ident: e_1_3_2_54_2 doi: 10.1073/pnas.82.17.5710 – ident: e_1_3_2_7_2 doi: 10.1006/jmbi.2000.5198 – ident: e_1_3_2_56_2 doi: 10.1099/vir.0.80564-0 – reference: 9311818 - J Virol. 1997 Oct;71(10):7393-403 – reference: 9813208 - Virology. 1998 Nov 10;251(1):123-31 – reference: 4020972 - J Virol. 1985 Sep;55(3):886-9 – reference: 3171551 - J Gen Virol. 1988 Oct;69 ( Pt 10):2563-73 – reference: 2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5 – reference: 17382606 - DNA Repair (Amst). 2007 Jul 1;6(7):994-1003 – reference: 17474716 - Biochemistry. 2007 May 29;46(21):6364-74 – reference: 8035498 - J Virol. 1994 Aug;68(8):4988-97 – reference: 9151837 - J Virol. 1997 Jun;71(6):4461-71 – reference: 8460487 - Virology. 1993 Apr;193(2):812-24 – reference: 2994044 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5710-4 – reference: 17531546 - DNA Repair (Amst). 2007 Jul 1;6(7):953-66 – reference: 11287588 - J Virol. 2001 May;75(9):4394-8 – reference: 11435581 - J Virol. 2001 Aug;75(15):7009-17 – reference: 10428207 - Hum Gene Ther. 1999 Jul 1;10(10):1619-32 – reference: 14671120 - J Virol. 2004 Jan;78(1):389-98 – reference: 14967147 - Mol Cell. 2004 Feb 13;13(3):403-14 – reference: 9371565 - J Virol. 1997 Dec;71(12):9087-95 – reference: 10775619 - J Virol. 2000 May;74(10):4807-15 – reference: 8862428 - Virology. 1996 Oct 1;224(1):320-5 – reference: 3357208 - J Virol. 1988 May;62(5):1713-22 – reference: 2541561 - Virus Genes. 1989 Mar;2(2):167-82 – reference: 11743720 - J Mol Biol. 2001 Dec 14;314(5):1029-39 – reference: 9454706 - Virology. 1998 Jan 20;240(2):326-37 – reference: 10523663 - Mol Cell Biol. 1999 Nov;19(11):7741-50 – reference: 1530771 - J Virol. 1992 Jan;66(1):420-31 – reference: 11390575 - J Virol. 2001 Jul;75(13):5730-9 – reference: 8151755 - J Virol. 1994 May;68(5):2840-8 – reference: 10758163 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4862-6 – reference: 7966588 - J Virol. 1994 Dec;68(12):7974-85 – reference: 3084808 - J Virol. 1986 Jun;58(3):817-24 – reference: 11559833 - J Virol. 2001 Oct;75(20):9991-4 – reference: 7799962 - Mol Cell Biol. 1995 Jan;15(1):524-33 – reference: 10627544 - J Virol. 2000 Feb;74(3):1332-41 – reference: 2825183 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8267-71 – reference: 12774115 - Nature. 2003 May 29;423(6939):512-8 – reference: 2824805 - J Virol. 1987 Dec;61(12):3649-54 – reference: 15784894 - J Gen Virol. 2005 Apr;86(Pt 4):1009-14 – reference: 7747462 - Virology. 1995 May 10;209(1):122-35 – reference: 8627673 - J Virol. 1996 Mar;70(3):1542-53 – reference: 8551622 - J Virol. 1996 Feb;70(2):834-42 – reference: 11907229 - J Virol. 2002 Apr;76(8):3892-904 – reference: 12906833 - Structure. 2003 Aug;11(8):1025-35 – reference: 3896934 - Gene. 1985;35(1-2):179-85 – reference: 7853501 - J Virol. 1995 Mar;69(3):1652-60 – reference: 9168889 - Virology. 1997 May 12;231(2):267-80 – reference: 7636987 - J Virol. 1995 Sep;69(9):5422-30 – reference: 1413512 - Virology. 1992 Nov;191(1):406-16 – reference: 7884849 - J Virol. 1995 Apr;69(4):2038-46 – reference: 6246368 - Methods Enzymol. 1980;65(1):499-560 |
SSID | ssj0014464 |
Score | 2.0352812 |
Snippet | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13015 |
SubjectTerms | Adenosine Triphosphate - metabolism Animals Binding Sites Biological and medical sciences DNA Footprinting DNA, Viral - genetics DNA, Viral - metabolism Fundamental and applied biological sciences. Psychology Genome and Regulation of Viral Gene Expression Mice Microbiology Minute virus of mice Minute Virus of Mice - physiology Miscellaneous Parvovirus Protein Binding Viral Nonstructural Proteins - metabolism Virology |
Title | Replication Initiator Protein NS1 of the Parvovirus Minute Virus of Mice Binds to Modular Divergent Sites Distributed throughout Duplex Viral DNA |
URI | http://jvi.asm.org/content/81/23/13015.abstract https://www.ncbi.nlm.nih.gov/pubmed/17898054 https://www.proquest.com/docview/20374916 https://www.proquest.com/docview/68497270 https://pubmed.ncbi.nlm.nih.gov/PMC2169109 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiDeFZfEBTlGWxkkb57ha7bKslnKgRb1ZTmKLoG1StWnF41fwj5mx8yq04nGJmsRyW82XyYz9zTeEvNRhDLlOwtwg1b4bcKXd2POkG3Hp4eufS4k7uu_Go4tpcDkbznq9793qkjI-Tr7trCv5H6vCNbArVsn-g2WbSeECfAb7whEsDMe_sjFEz_Wam5MhCwgzaMdIL2S5M_7g1QyAhVxuik22XK-ceZYjNcCe4OY6eAoH0uPUSD3Mi9TwUlOka2DVlYO7yyvcx7GtsVRat_ZBQnO6XlyrLzgZes_xyZ5QF2vpuqv3p0VZ83sNK6ilF78pyhKi4rglfTvN6vTESoHKqutyQyyu1yzCDv_DullUMcVYzb6FdlyrfDP3OhhkfsfTwrvX1oH-_g5gWNdw-fHtMWoD-a7tqrsttT1-L86nV1dicjab3CA3GeQYfr3UU21BQZ5sKAn1z6qrJhh_3Z17O56pNaaRYitX8JRp2x5lV_7yKw23E9dM7pI7lZXoiUXXPdJT-X1yy7Yo_fqA_OhgjDYYoxXGKGCMFpoCxmiLMWoxRu0J3EaMUYMxWha0whhtMEYNxmgHY7TFGLUYowZjFDD2kEzPzyanF27VxsNNIPIpXSn9gCcp89VIDT3JwQfImPt-Eqk4DNIRS_ko1MOUDXWEAWcax0kCDiMeaFSPG_qPyEFe5OoJoSrVKtADHWjIWgImo0CGQ50EygshEI8GfeLUxhBJpXGPrVauhcl1GRdgOmFMJwZhn7xqRi-stsuecYe1XYVczcXnTSa4J5gvDAj75GjL1u1c0QhXM7w-eVEbX4Dzxh05mativRIM1Z8gQds_YsSDCFIM-GePLVja2UMecUi4-iTcglEzAIXjt-_k2ScjIM9QIWsQPf3jtz4jt9vH95AclMu1eg5BeBkfmYflJ83s5qY |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+initiator+protein+NS1+of+the+parvovirus+minute+virus+of+mice+binds+to+modular+divergent+sites+distributed+throughout+duplex+viral+DNA&rft.jtitle=Journal+of+virology&rft.au=Cotmore%2C+Susan+F&rft.au=Gottlieb%2C+Robert+L&rft.au=Tattersall%2C+Peter&rft.date=2007-12-01&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=81&rft.issue=23&rft.spage=13015&rft_id=info:doi/10.1128%2FJVI.01703-07&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |