Replication Initiator Protein NS1 of the Parvovirus Minute Virus of Mice Binds to Modular Divergent Sites Distributed throughout Duplex Viral DNA

Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 81; no. 23; pp. 13015 - 13027
Main Authors Cotmore, Susan F., Gottlieb, Robert L., Tattersall, Peter
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.12.2007
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than ∼170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced ∼10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5′-TGGT-3′ motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than similar to 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced similar to 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.
Author Peter Tattersall
Robert L. Gottlieb
Susan F. Cotmore
AuthorAffiliation Departments of Laboratory Medicine, 1 Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510 2
AuthorAffiliation_xml – name: Departments of Laboratory Medicine, 1 Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510 2
Author_xml – sequence: 1
  givenname: Susan F.
  surname: Cotmore
  fullname: Cotmore, Susan F.
  organization: Departments of Laboratory Medicine
– sequence: 2
  givenname: Robert L.
  surname: Gottlieb
  fullname: Gottlieb, Robert L.
  organization: Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510
– sequence: 3
  givenname: Peter
  surname: Tattersall
  fullname: Tattersall, Peter
  organization: Departments of Laboratory Medicine, Genetics, Yale University Medical School, 333 Cedar Street, New Haven, Connecticut 06510
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19689981$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17898054$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCjTOyhODEFo-9H_alUmn4CGpKRaHiZnm93sTVZh1s7wI_g3-MmwQKSIiTNZpnXr3jeQ_QXu96g9BDIEcAlD9_ezU7IlARlpHqDpoAETwrCsj30IQQSrOC8U_76CCEa0Igz8v8HtqHigtOinyCvr83685qFa3r8ay30aroPL7wLhrb4_NLwK7FcWnwhfKjG60fAp7bfogGX22K1J5bbfAL2zcBR4fnrhk65fHUjsYvTB_xpY0mpDpEb-s02SRB74bF0g0RT4d1Z77eiKkOT89P7qO7reqCebB7D9HHVy8_nL7Jzt69np2enGU6ryBmSrGc64YyU5oCFAcoVc0Z08LUVd6UtOFl1RYNLVpBgUNT11rXADVpK0GKgh2i463ueqhXptHJaHIg196ulP8mnbLyz05vl3LhRkmhFOmXk8DTnYB3nwcTolzZoE3Xqd64IciS56Ki6TD_AylhVS6gTOCj3y398vLzXAl4sgNU0Kprveq1DbecKLkQHBL3bMtp70Lwpr1FiLxJjUypkZvUSFIlnP6Faxs3kUiL2-5fQ4-3Q0u7WH6x3kgVVvJ6tJKDpEwCI1CwHyFW0ps
CitedBy_id crossref_primary_10_1016_j_virol_2013_09_019
crossref_primary_10_1007_s11262_022_01944_2
crossref_primary_10_1128_JVI_02221_09
crossref_primary_10_1038_srep35759
crossref_primary_10_1128_JVI_01393_13
crossref_primary_10_3390_v9110323
crossref_primary_10_1128_JVI_01770_13
crossref_primary_10_3390_v15061243
crossref_primary_10_1021_acs_biochem_6b00534
crossref_primary_10_1371_journal_pone_0019457
crossref_primary_10_1016_j_vetmic_2016_12_002
crossref_primary_10_1128_JVI_03160_15
crossref_primary_10_3390_v13071306
crossref_primary_10_1128_jvi_00461_23
crossref_primary_10_1007_s10549_009_0451_9
crossref_primary_10_1097_MRM_0000000000000010
crossref_primary_10_1016_j_virol_2013_11_031
crossref_primary_10_1016_j_virol_2014_11_022
crossref_primary_10_1128_JVI_01678_13
crossref_primary_10_3390_v9100286
crossref_primary_10_1128_JVI_02215_10
crossref_primary_10_1146_annurev_virology_031413_085444
crossref_primary_10_1128_jvi_00093_24
Cites_doi 10.1128/jvi.68.5.2840-2848.1994
10.1006/viro.1998.9375
10.1128/jvi.68.12.7974-7985.1994
10.1128/jvi.66.1.420-431.1992
10.1128/jvi.74.10.4807-4815.2000
10.1128/JVI.75.20.9991-9994.2001
10.1099/0022-1317-69-10-2563
10.1128/jvi.62.5.1713-1722.1988
10.1016/j.dnarep.2007.02.015
10.1016/j.dnarep.2007.02.018
10.1006/viro.1997.8545
10.1073/pnas.080079397
10.1128/JVI.75.15.7009-7017.2001
10.1006/viro.1996.0535
10.1128/MCB.19.11.7741
10.1016/S0969-2126(03)00152-7
10.1021/bi602412r
10.1128/MCB.15.1.524
10.1016/0378-1119(85)90170-2
10.1128/jvi.68.8.4988-4997.1994
10.1128/jvi.71.10.7393-7403.1997
10.1128/jvi.70.2.834-842.1996
10.1128/jvi.71.12.9087-9095.1997
10.1128/jvi.71.6.4461-4471.1997
10.1128/jvi.69.9.5422-5430.1995
10.1128/JVI.78.1.389-398.2004
10.1016/S1097-2765(04)00023-1
10.1128/jvi.58.3.817-824.1986
10.1128/JVI.76.8.3892-3904.2002
10.1016/S0076-6879(80)65059-9
10.1128/jvi.55.3.886-889.1985
10.1006/viro.1993.1190
10.1128/jvi.70.3.1542-1553.1996
10.1006/viro.1995.1236
10.1007/BF00315260
10.1089/10430349950017626
10.1073/pnas.87.6.2211
10.1073/pnas.84.23.8267
10.1128/jvi.69.3.1652-1660.1995
10.1038/nature01691
10.1128/JVI.75.9.4394-4398.2001
10.1016/0042-6822(92)90202-Z
10.1006/viro.1997.8940
10.1128/JVI.75.13.5730-5739.2001
10.1128/JVI.74.3.1332-1341.2000
10.1128/jvi.69.4.2038-2046.1995
10.1128/jvi.61.12.3649-3654.1987
10.1073/pnas.82.17.5710
10.1006/jmbi.2000.5198
10.1099/vir.0.80564-0
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright © 2007, American Society for Microbiology
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright © 2007, American Society for Microbiology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7U9
H94
7X8
5PM
DOI 10.1128/JVI.01703-07
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 13027
ExternalDocumentID PMC2169109
17898054
19689981
10_1128_JVI_01703_07
jvi_81_23_13015
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R37 AI026109
– fundername: NIAID NIH HHS
  grantid: R01 AI026109
– fundername: NIAID NIH HHS
  grantid: AI26109
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7U9
H94
7X8
5PM
ID FETCH-LOGICAL-c471t-aa348cd23e6e51a8116ab833c9eb74d62d867f5d25f92181dbbccb11b0f790553
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:29:56 EDT 2025
Fri Jul 11 12:09:09 EDT 2025
Fri Jul 11 14:59:22 EDT 2025
Mon Jul 21 06:04:55 EDT 2025
Mon Jul 21 09:17:54 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
Tue Jul 01 00:57:18 EDT 2025
Wed May 18 15:25:36 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Virus
Parvovirus
Parvoviridae
Replication
Protein
Parvovirinae
Virology
Mouse minute virus
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-aa348cd23e6e51a8116ab833c9eb74d62d867f5d25f92181dbbccb11b0f790553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Internal Medicine, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242.
Corresponding author. Mailing address: Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510. Phone: (203) 785-4586. Fax: (203) 688-7340. E-mail: peter.tattersall@yale.edu
OpenAccessLink http://doi.org/10.1128/JVI.01703-07
PMID 17898054
PQID 20374916
PQPubID 23462
PageCount 13
ParticipantIDs crossref_primary_10_1128_JVI_01703_07
proquest_miscellaneous_20374916
pubmed_primary_17898054
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169109
crossref_citationtrail_10_1128_JVI_01703_07
highwire_asm_jvi_81_23_13015
proquest_miscellaneous_68497270
pascalfrancis_primary_19689981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-01
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2007
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
(e_1_3_2_17_2) 2006
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
(e_1_3_2_52_2) 2005
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
(e_1_3_2_16_2) 2006
10627544 - J Virol. 2000 Feb;74(3):1332-41
2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5
14671120 - J Virol. 2004 Jan;78(1):389-98
7966588 - J Virol. 1994 Dec;68(12):7974-85
2824805 - J Virol. 1987 Dec;61(12):3649-54
11559833 - J Virol. 2001 Oct;75(20):9991-4
11907229 - J Virol. 2002 Apr;76(8):3892-904
10428207 - Hum Gene Ther. 1999 Jul 1;10(10):1619-32
7636987 - J Virol. 1995 Sep;69(9):5422-30
3896934 - Gene. 1985;35(1-2):179-85
9454706 - Virology. 1998 Jan 20;240(2):326-37
12906833 - Structure. 2003 Aug;11(8):1025-35
3084808 - J Virol. 1986 Jun;58(3):817-24
17531546 - DNA Repair (Amst). 2007 Jul 1;6(7):953-66
11743720 - J Mol Biol. 2001 Dec 14;314(5):1029-39
1530771 - J Virol. 1992 Jan;66(1):420-31
17382606 - DNA Repair (Amst). 2007 Jul 1;6(7):994-1003
10775619 - J Virol. 2000 May;74(10):4807-15
10758163 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4862-6
10523663 - Mol Cell Biol. 1999 Nov;19(11):7741-50
7853501 - J Virol. 1995 Mar;69(3):1652-60
8035498 - J Virol. 1994 Aug;68(8):4988-97
8551622 - J Virol. 1996 Feb;70(2):834-42
9311818 - J Virol. 1997 Oct;71(10):7393-403
7884849 - J Virol. 1995 Apr;69(4):2038-46
9371565 - J Virol. 1997 Dec;71(12):9087-95
2825183 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8267-71
2541561 - Virus Genes. 1989 Mar;2(2):167-82
8627673 - J Virol. 1996 Mar;70(3):1542-53
7747462 - Virology. 1995 May 10;209(1):122-35
9813208 - Virology. 1998 Nov 10;251(1):123-31
1413512 - Virology. 1992 Nov;191(1):406-16
3357208 - J Virol. 1988 May;62(5):1713-22
6246368 - Methods Enzymol. 1980;65(1):499-560
4020972 - J Virol. 1985 Sep;55(3):886-9
15784894 - J Gen Virol. 2005 Apr;86(Pt 4):1009-14
9151837 - J Virol. 1997 Jun;71(6):4461-71
17474716 - Biochemistry. 2007 May 29;46(21):6364-74
14967147 - Mol Cell. 2004 Feb 13;13(3):403-14
8862428 - Virology. 1996 Oct 1;224(1):320-5
3171551 - J Gen Virol. 1988 Oct;69 ( Pt 10):2563-73
9168889 - Virology. 1997 May 12;231(2):267-80
11390575 - J Virol. 2001 Jul;75(13):5730-9
2994044 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5710-4
8151755 - J Virol. 1994 May;68(5):2840-8
11287588 - J Virol. 2001 May;75(9):4394-8
11435581 - J Virol. 2001 Aug;75(15):7009-17
12774115 - Nature. 2003 May 29;423(6939):512-8
8460487 - Virology. 1993 Apr;193(2):812-24
7799962 - Mol Cell Biol. 1995 Jan;15(1):524-33
References_xml – ident: e_1_3_2_50_2
  doi: 10.1128/jvi.68.5.2840-2848.1994
– ident: e_1_3_2_39_2
  doi: 10.1006/viro.1998.9375
– ident: e_1_3_2_32_2
  doi: 10.1128/jvi.68.12.7974-7985.1994
– start-page: 353
  year: 2005
  ident: e_1_3_2_52_2
  publication-title: Virus taxonomy, VIIIth report of the ICTV
– ident: e_1_3_2_15_2
  doi: 10.1128/jvi.66.1.420-431.1992
– ident: e_1_3_2_18_2
  doi: 10.1128/jvi.74.10.4807-4815.2000
– start-page: 593
  year: 2006
  ident: e_1_3_2_16_2
  publication-title: DNA replication and human disease
– ident: e_1_3_2_40_2
  doi: 10.1128/JVI.75.20.9991-9994.2001
– ident: e_1_3_2_22_2
  doi: 10.1099/0022-1317-69-10-2563
– ident: e_1_3_2_26_2
  doi: 10.1128/jvi.62.5.1713-1722.1988
– ident: e_1_3_2_44_2
  doi: 10.1016/j.dnarep.2007.02.015
– ident: e_1_3_2_5_2
  doi: 10.1016/j.dnarep.2007.02.018
– ident: e_1_3_2_14_2
  doi: 10.1006/viro.1997.8545
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.080079397
– ident: e_1_3_2_8_2
  doi: 10.1128/JVI.75.15.7009-7017.2001
– ident: e_1_3_2_11_2
  doi: 10.1006/viro.1996.0535
– ident: e_1_3_2_10_2
  doi: 10.1128/MCB.19.11.7741
– ident: e_1_3_2_28_2
  doi: 10.1016/S0969-2126(03)00152-7
– ident: e_1_3_2_21_2
  doi: 10.1021/bi602412r
– ident: e_1_3_2_31_2
  doi: 10.1128/MCB.15.1.524
– ident: e_1_3_2_47_2
– ident: e_1_3_2_4_2
  doi: 10.1016/0378-1119(85)90170-2
– ident: e_1_3_2_37_2
  doi: 10.1128/jvi.68.8.4988-4997.1994
– ident: e_1_3_2_45_2
  doi: 10.1128/jvi.71.10.7393-7403.1997
– start-page: 171
  year: 2006
  ident: e_1_3_2_17_2
  publication-title: The parvoviruses
– ident: e_1_3_2_34_2
  doi: 10.1128/jvi.70.2.834-842.1996
– ident: e_1_3_2_6_2
  doi: 10.1128/jvi.71.12.9087-9095.1997
– ident: e_1_3_2_49_2
  doi: 10.1128/jvi.71.6.4461-4471.1997
– ident: e_1_3_2_9_2
  doi: 10.1128/jvi.69.9.5422-5430.1995
– ident: e_1_3_2_25_2
  doi: 10.1128/JVI.78.1.389-398.2004
– ident: e_1_3_2_27_2
  doi: 10.1016/S1097-2765(04)00023-1
– ident: e_1_3_2_23_2
  doi: 10.1128/jvi.58.3.817-824.1986
– ident: e_1_3_2_55_2
  doi: 10.1128/JVI.76.8.3892-3904.2002
– ident: e_1_3_2_36_2
  doi: 10.1016/S0076-6879(80)65059-9
– ident: e_1_3_2_46_2
  doi: 10.1128/jvi.55.3.886-889.1985
– ident: e_1_3_2_51_2
  doi: 10.1006/viro.1993.1190
– ident: e_1_3_2_38_2
– ident: e_1_3_2_48_2
  doi: 10.1128/jvi.70.3.1542-1553.1996
– ident: e_1_3_2_43_2
  doi: 10.1006/viro.1995.1236
– ident: e_1_3_2_3_2
  doi: 10.1007/BF00315260
– ident: e_1_3_2_29_2
  doi: 10.1089/10430349950017626
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.87.6.2211
– ident: e_1_3_2_19_2
  doi: 10.1073/pnas.84.23.8267
– ident: e_1_3_2_12_2
  doi: 10.1128/jvi.69.3.1652-1660.1995
– ident: e_1_3_2_33_2
  doi: 10.1038/nature01691
– ident: e_1_3_2_2_2
  doi: 10.1128/JVI.75.9.4394-4398.2001
– ident: e_1_3_2_42_2
  doi: 10.1016/0042-6822(92)90202-Z
– ident: e_1_3_2_35_2
  doi: 10.1006/viro.1997.8940
– ident: e_1_3_2_41_2
  doi: 10.1128/JVI.75.13.5730-5739.2001
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.74.3.1332-1341.2000
– ident: e_1_3_2_53_2
  doi: 10.1128/jvi.69.4.2038-2046.1995
– ident: e_1_3_2_20_2
  doi: 10.1128/jvi.61.12.3649-3654.1987
– ident: e_1_3_2_54_2
  doi: 10.1073/pnas.82.17.5710
– ident: e_1_3_2_7_2
  doi: 10.1006/jmbi.2000.5198
– ident: e_1_3_2_56_2
  doi: 10.1099/vir.0.80564-0
– reference: 9311818 - J Virol. 1997 Oct;71(10):7393-403
– reference: 9813208 - Virology. 1998 Nov 10;251(1):123-31
– reference: 4020972 - J Virol. 1985 Sep;55(3):886-9
– reference: 3171551 - J Gen Virol. 1988 Oct;69 ( Pt 10):2563-73
– reference: 2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5
– reference: 17382606 - DNA Repair (Amst). 2007 Jul 1;6(7):994-1003
– reference: 17474716 - Biochemistry. 2007 May 29;46(21):6364-74
– reference: 8035498 - J Virol. 1994 Aug;68(8):4988-97
– reference: 9151837 - J Virol. 1997 Jun;71(6):4461-71
– reference: 8460487 - Virology. 1993 Apr;193(2):812-24
– reference: 2994044 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5710-4
– reference: 17531546 - DNA Repair (Amst). 2007 Jul 1;6(7):953-66
– reference: 11287588 - J Virol. 2001 May;75(9):4394-8
– reference: 11435581 - J Virol. 2001 Aug;75(15):7009-17
– reference: 10428207 - Hum Gene Ther. 1999 Jul 1;10(10):1619-32
– reference: 14671120 - J Virol. 2004 Jan;78(1):389-98
– reference: 14967147 - Mol Cell. 2004 Feb 13;13(3):403-14
– reference: 9371565 - J Virol. 1997 Dec;71(12):9087-95
– reference: 10775619 - J Virol. 2000 May;74(10):4807-15
– reference: 8862428 - Virology. 1996 Oct 1;224(1):320-5
– reference: 3357208 - J Virol. 1988 May;62(5):1713-22
– reference: 2541561 - Virus Genes. 1989 Mar;2(2):167-82
– reference: 11743720 - J Mol Biol. 2001 Dec 14;314(5):1029-39
– reference: 9454706 - Virology. 1998 Jan 20;240(2):326-37
– reference: 10523663 - Mol Cell Biol. 1999 Nov;19(11):7741-50
– reference: 1530771 - J Virol. 1992 Jan;66(1):420-31
– reference: 11390575 - J Virol. 2001 Jul;75(13):5730-9
– reference: 8151755 - J Virol. 1994 May;68(5):2840-8
– reference: 10758163 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4862-6
– reference: 7966588 - J Virol. 1994 Dec;68(12):7974-85
– reference: 3084808 - J Virol. 1986 Jun;58(3):817-24
– reference: 11559833 - J Virol. 2001 Oct;75(20):9991-4
– reference: 7799962 - Mol Cell Biol. 1995 Jan;15(1):524-33
– reference: 10627544 - J Virol. 2000 Feb;74(3):1332-41
– reference: 2825183 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8267-71
– reference: 12774115 - Nature. 2003 May 29;423(6939):512-8
– reference: 2824805 - J Virol. 1987 Dec;61(12):3649-54
– reference: 15784894 - J Gen Virol. 2005 Apr;86(Pt 4):1009-14
– reference: 7747462 - Virology. 1995 May 10;209(1):122-35
– reference: 8627673 - J Virol. 1996 Mar;70(3):1542-53
– reference: 8551622 - J Virol. 1996 Feb;70(2):834-42
– reference: 11907229 - J Virol. 2002 Apr;76(8):3892-904
– reference: 12906833 - Structure. 2003 Aug;11(8):1025-35
– reference: 3896934 - Gene. 1985;35(1-2):179-85
– reference: 7853501 - J Virol. 1995 Mar;69(3):1652-60
– reference: 9168889 - Virology. 1997 May 12;231(2):267-80
– reference: 7636987 - J Virol. 1995 Sep;69(9):5422-30
– reference: 1413512 - Virology. 1992 Nov;191(1):406-16
– reference: 7884849 - J Virol. 1995 Apr;69(4):2038-46
– reference: 6246368 - Methods Enzymol. 1980;65(1):499-560
SSID ssj0014464
Score 2.0352812
Snippet Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13015
SubjectTerms Adenosine Triphosphate - metabolism
Animals
Binding Sites
Biological and medical sciences
DNA Footprinting
DNA, Viral - genetics
DNA, Viral - metabolism
Fundamental and applied biological sciences. Psychology
Genome and Regulation of Viral Gene Expression
Mice
Microbiology
Minute virus of mice
Minute Virus of Mice - physiology
Miscellaneous
Parvovirus
Protein Binding
Viral Nonstructural Proteins - metabolism
Virology
Title Replication Initiator Protein NS1 of the Parvovirus Minute Virus of Mice Binds to Modular Divergent Sites Distributed throughout Duplex Viral DNA
URI http://jvi.asm.org/content/81/23/13015.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17898054
https://www.proquest.com/docview/20374916
https://www.proquest.com/docview/68497270
https://pubmed.ncbi.nlm.nih.gov/PMC2169109
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiDeFZfEBTlGWxkkb57ha7bKslnKgRb1ZTmKLoG1StWnF41fwj5mx8yq04nGJmsRyW82XyYz9zTeEvNRhDLlOwtwg1b4bcKXd2POkG3Hp4eufS4k7uu_Go4tpcDkbznq9793qkjI-Tr7trCv5H6vCNbArVsn-g2WbSeECfAb7whEsDMe_sjFEz_Wam5MhCwgzaMdIL2S5M_7g1QyAhVxuik22XK-ceZYjNcCe4OY6eAoH0uPUSD3Mi9TwUlOka2DVlYO7yyvcx7GtsVRat_ZBQnO6XlyrLzgZes_xyZ5QF2vpuqv3p0VZ83sNK6ilF78pyhKi4rglfTvN6vTESoHKqutyQyyu1yzCDv_DullUMcVYzb6FdlyrfDP3OhhkfsfTwrvX1oH-_g5gWNdw-fHtMWoD-a7tqrsttT1-L86nV1dicjab3CA3GeQYfr3UU21BQZ5sKAn1z6qrJhh_3Z17O56pNaaRYitX8JRp2x5lV_7yKw23E9dM7pI7lZXoiUXXPdJT-X1yy7Yo_fqA_OhgjDYYoxXGKGCMFpoCxmiLMWoxRu0J3EaMUYMxWha0whhtMEYNxmgHY7TFGLUYowZjFDD2kEzPzyanF27VxsNNIPIpXSn9gCcp89VIDT3JwQfImPt-Eqk4DNIRS_ko1MOUDXWEAWcax0kCDiMeaFSPG_qPyEFe5OoJoSrVKtADHWjIWgImo0CGQ50EygshEI8GfeLUxhBJpXGPrVauhcl1GRdgOmFMJwZhn7xqRi-stsuecYe1XYVczcXnTSa4J5gvDAj75GjL1u1c0QhXM7w-eVEbX4Dzxh05mativRIM1Z8gQds_YsSDCFIM-GePLVja2UMecUi4-iTcglEzAIXjt-_k2ScjIM9QIWsQPf3jtz4jt9vH95AclMu1eg5BeBkfmYflJ83s5qY
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+initiator+protein+NS1+of+the+parvovirus+minute+virus+of+mice+binds+to+modular+divergent+sites+distributed+throughout+duplex+viral+DNA&rft.jtitle=Journal+of+virology&rft.au=Cotmore%2C+Susan+F&rft.au=Gottlieb%2C+Robert+L&rft.au=Tattersall%2C+Peter&rft.date=2007-12-01&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=81&rft.issue=23&rft.spage=13015&rft_id=info:doi/10.1128%2FJVI.01703-07&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon