Improved RRT-Connect Manipulator Path Planning in a Multi-Obstacle Narrow Environment

This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continu...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 8; p. 2364
Main Authors He, Xueyi, Zhou, Yimin, Liu, Haonan, Shang, Wanfeng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation.
AbstractList This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation.
This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation.This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation.
Audience Academic
Author Zhou, Yimin
Shang, Wanfeng
He, Xueyi
Liu, Haonan
AuthorAffiliation 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
1 School of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China; 2120221180@glut.edu.cn (X.H.); 2120221198@glut.edu.cn (H.L.)
3 National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518000, China; wf.shang@siat.ac.cn
AuthorAffiliation_xml – name: 3 National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518000, China; wf.shang@siat.ac.cn
– name: 1 School of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China; 2120221180@glut.edu.cn (X.H.); 2120221198@glut.edu.cn (H.L.)
– name: 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Author_xml – sequence: 1
  givenname: Xueyi
  surname: He
  fullname: He, Xueyi
– sequence: 2
  givenname: Yimin
  orcidid: 0000-0003-2337-776X
  surname: Zhou
  fullname: Zhou, Yimin
– sequence: 3
  givenname: Haonan
  surname: Liu
  fullname: Liu, Haonan
– sequence: 4
  givenname: Wanfeng
  orcidid: 0000-0002-3256-3268
  surname: Shang
  fullname: Shang, Wanfeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285054$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AkbiUQ4q_Y59QtSqwUkurqj1bE8fZepXYi50s4t_jsmXVIh88Gj9-Pe94jtFBiMEh9J7gM8Y0_pypwIoyyV-hI8IprxWl-OBZfIiOc15jTBlj6g065JgqgQU_QvfLcZPi1nXV7e1dvYghODtVVxD8Zh5giqm6gemhuhkgBB9WlQ8VVFfzMPn6us0T2MFVPyCl-Ku6CFufYhhdmN6i1z0M2b172k_Q_deLu8X3-vL623Jxfllb3pCpBqW11RqIcExo2VPbYSmEU7JpqaDcCkYtZZZa0QkOVum2V8x2TVeiVgE7QcudbhdhbTbJj5B-mwje_E3EtDKQJl-KNAJo0wlNKFDNqcYtOKJtR4RqetWQvmh92Wlt5nZ0nS02EgwvRF-eBP9gVnFrCMUMSymLwumTQoo_Z5cnM_ps3VB65-KcDSNaNKXvChf043_oOs4plF49UlxyLBUv1NmOWkFx4EMfy8O2rM6N3pYZ6H3JnyumpCJUNOXCh-ce9sX_--8CfNoBNsWck-v3CMHmcZbMfpbYH85TuRs
Cites_doi 10.1109/ACCESS.2019.2958876
10.1109/TMECH.2022.3231467
10.1016/j.apor.2021.102887
10.1007/s10514-022-10044-x
10.1016/j.compag.2024.108707
10.1109/TASE.2022.3215562
10.1016/j.jksuci.2023.101650
10.1109/ROBIO.2015.7419012
10.1007/s41315-023-00274-2
10.1109/ACCESS.2023.3312763
10.1109/JAS.2021.1004252
10.1109/TMECH.2022.3165845
10.3390/s25020328
10.3390/s22176581
10.1109/TRO.2018.2830331
10.1016/j.compag.2022.107593
10.1109/ICRA57147.2024.10611099
10.1016/j.biosystemseng.2024.10.008
10.1109/TMECH.2020.2973327
10.1109/TIE.2023.3269462
10.1109/ACCESS.2019.2928846
10.1177/0278364911406761
10.3390/s24237759
10.1109/IROS.2014.6942976
10.1016/j.anucene.2024.110776
10.1007/s10846-024-02144-w
10.1109/ICRA.2012.6225337
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25082364
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5a27d5912a294290bae19cd1587f871f
PMC12030666
A838681257
40285054
10_3390_s25082364
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program 506 of China
  grantid: 2023YFC3321603
– fundername: the Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021B1515120038
– fundername: the Shenzhen Science and Technology Innovation Commission Project 508 Grant
  grantid: JCYJ20200109114839874;JCYJ20220818101206015;JCYJ20210324101215039;SGDX20220530111001006
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021B1515120038
– fundername: National Key Research and Development Program of China
  grantid: 2023YFC3321603
– fundername: Shenzhen Science and Technology Innovation Commission Project
  grantid: JCYJ20200109114839874; JCYJ20220818101206015; JCYJ20210324101215039; SGDX20220530111001006
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-a899c99a15e3596f2cd0655e867b2524c532c23c2c5d54ac89bf83cd7d89bb8a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:55 EDT 2025
Thu Aug 21 18:26:48 EDT 2025
Fri Jul 11 18:31:38 EDT 2025
Fri Jul 25 20:42:44 EDT 2025
Tue Jun 10 20:53:34 EDT 2025
Mon Jul 21 05:46:11 EDT 2025
Tue Jul 01 05:07:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords heuristic sampling strategy
node rejection strategy
adaptive step size
path planning
RRT-Connect
robotic arm
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-a899c99a15e3596f2cd0655e867b2524c532c23c2c5d54ac89bf83cd7d89bb8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2337-776X
0000-0002-3256-3268
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25082364
PMID 40285054
PQID 3194640684
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5a27d5912a294290bae19cd1587f871f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12030666
proquest_miscellaneous_3195785080
proquest_journals_3194640684
gale_infotracacademiconefile_A838681257
pubmed_primary_40285054
crossref_primary_10_3390_s25082364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-08
PublicationDateYYYYMMDD 2025-04-08
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Meng (ref_8) 2022; 21
Wang (ref_11) 2023; 205
Jiang (ref_23) 2022; 27
Yuan (ref_20) 2019; 8
Li (ref_29) 2024; 110
Zhuang (ref_5) 2023; 11
ref_14
ref_13
Cheng (ref_24) 2023; 33
Shen (ref_26) 2023; 28
Zhang (ref_21) 2024; 248
ref_32
ref_31
Chen (ref_25) 2022; 15
ref_30
Gammell (ref_33) 2018; 34
ref_18
ref_17
ref_16
Zhou (ref_6) 2022; 35
Xinyu (ref_19) 2019; 7
Lee (ref_7) 2021; 117
Li (ref_28) 2021; 9
Tamizi (ref_4) 2023; 7
Zheng (ref_12) 2024; 208
Dai (ref_22) 2023; 71
Li (ref_1) 2020; 17
Karaman (ref_15) 2011; 30
Kang (ref_2) 2024; 218
ref_9
Gao (ref_10) 2023; 35
Wang (ref_27) 2022; 46
Wang (ref_3) 2020; 25
References_xml – volume: 8
  start-page: 900
  year: 2019
  ident: ref_20
  article-title: A heuristic rapidly-exploring random trees method for manipulator motion planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958876
– volume: 28
  start-page: 1742
  year: 2023
  ident: ref_26
  article-title: Adaptive manipulability-based path planning strategy for industrial robot manipulators
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3231467
– volume: 35
  start-page: 100716
  year: 2022
  ident: ref_6
  article-title: Airport AGV path optimization model based on ant colony algorithm to optimize Dijkstra algorithm in urban systems
  publication-title: Sustain. Comput. Inf. Syst.
– volume: 117
  start-page: 102887
  year: 2021
  ident: ref_7
  article-title: Visibility graph-based path-planning algorithm with quadtree representation
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102887
– volume: 46
  start-page: 685
  year: 2022
  ident: ref_27
  article-title: AEB-RRT*: An adaptive extension bidirectional RRT* algorithm
  publication-title: Auton. Robots.
  doi: 10.1007/s10514-022-10044-x
– volume: 218
  start-page: 108707
  year: 2024
  ident: ref_2
  article-title: A RRT based path planning scheme for multi-DOF robots in unstructured environments
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108707
– ident: ref_14
– volume: 21
  start-page: 135
  year: 2022
  ident: ref_8
  article-title: NR-RRT: Neural risk-aware near-optimal path planning in uncertain nonconvex environments
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3215562
– volume: 35
  start-page: 101650
  year: 2023
  ident: ref_10
  article-title: Path planning algorithm of robot arm based on improved RRT* and BP neural network algorithm
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2023.101650
– ident: ref_32
  doi: 10.1109/ROBIO.2015.7419012
– volume: 7
  start-page: 253
  year: 2023
  ident: ref_4
  article-title: A review of recent trend in motion planning of industrial robots
  publication-title: Int. J. Intell. Robot. Appl.
  doi: 10.1007/s41315-023-00274-2
– volume: 11
  start-page: 100070
  year: 2023
  ident: ref_5
  article-title: Obstacle Avoidance Path Planning for Apple Picking Robotic Arm Incorporating Artificial Potential Field and A* Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3312763
– volume: 9
  start-page: 283
  year: 2021
  ident: ref_28
  article-title: An adaptive rapidly-exploring random tree
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004252
– volume: 15
  start-page: 177
  year: 2022
  ident: ref_25
  article-title: Path planning of the fruit tree pruning manipulator based on improved RRT-Connect algorithm
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 27
  start-page: 4774
  year: 2022
  ident: ref_23
  article-title: Path planning for robotic manipulator in complex multi-obstacle environment based on improved_RRT
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3165845
– ident: ref_18
  doi: 10.3390/s25020328
– ident: ref_31
– ident: ref_13
  doi: 10.3390/s22176581
– volume: 33
  start-page: 100436
  year: 2023
  ident: ref_24
  article-title: An improved RRT-Connect path planning algorithm of robotic arm for automatic sampling of exhaust emission detection in Industry 4.0
  publication-title: J. Ind. Inf. Integr.
– volume: 34
  start-page: 966
  year: 2018
  ident: ref_33
  article-title: Informed sampling for asymptotically optimal path planning
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2018.2830331
– volume: 205
  start-page: 107593
  year: 2023
  ident: ref_11
  article-title: Coverage path planning for kiwifruit picking robots based on deep reinforcement learning
  publication-title: IEEE Trans. Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107593
– ident: ref_9
  doi: 10.1109/ICRA57147.2024.10611099
– volume: 248
  start-page: 177
  year: 2024
  ident: ref_21
  article-title: Harvest motion planning for mango picking robot based on improved RRT-Connect
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2024.10.008
– volume: 17
  start-page: 1455
  year: 2020
  ident: ref_1
  article-title: Unfastening of hexagonal headed screws by a collaborative robot
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 25
  start-page: 2376
  year: 2020
  ident: ref_3
  article-title: Sampling-based optimal motion planning with smart exploration and exploitation
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2020.2973327
– volume: 71
  start-page: 2737
  year: 2023
  ident: ref_22
  article-title: Novel potential guided bidirectional RRT* with direct connection strategy for path planning of redundant robot manipulators in joint space
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2023.3269462
– volume: 7
  start-page: 95046
  year: 2019
  ident: ref_19
  article-title: Bidirectional potential guided RRT* for motion planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928846
– volume: 30
  start-page: 846
  year: 2011
  ident: ref_15
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911406761
– ident: ref_17
  doi: 10.3390/s24237759
– ident: ref_16
  doi: 10.1109/IROS.2014.6942976
– volume: 208
  start-page: 110776
  year: 2024
  ident: ref_12
  article-title: Path planning of PRM based on artificial potential field in radiation environments
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2024.110776
– volume: 110
  start-page: 106
  year: 2024
  ident: ref_29
  article-title: Dynamic Informed Bias RRT*-Connect: Improving Heuristic Guidance by Dynamic Informed Bias Using Hybrid Dual Trees Search
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-024-02144-w
– ident: ref_30
  doi: 10.1109/ICRA.2012.6225337
SSID ssj0023338
Score 2.450145
Snippet This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2364
SubjectTerms adaptive step size
Algorithms
Bias
Costs
Deep learning
Efficiency
Expansion
Heuristic
heuristic sampling strategy
Neural networks
node rejection strategy
Optimization
path planning
Planning
Probability
robotic arm
Robotics
RRT-Connect
Trees
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiiuCpuM2r6VFFEcEH4oK3kFdxL11Z1__vTNpdt3jw4q00aUnnazLztZNvCDkb1KwGYsFzW1ogKJXmuXbS5cJrpbSQ0Qrc7_zwqO6G4v5Nvi2U-sKcsFYeuDXchbSsDLIqmGUVrJ0DZ2NR-VBIXdYQ7Ne4-oLPm5GpjmpxYF6tjhAHUn_xCY4eK3uLnvdJIv2_l-IFX9TPk1xwPLfrZK2LGOllO9INshSbTbK6oCO4RYbtp4EY6MvLa55yV_yUPthmlKpzjSf0GQI9OitQREcNtTRtvc2fHISHcF_6mNQY6c3PxrdtMry9eb2-y7t6CbkHFzPNLXAnX1W2kJHLStXMBwgwZNSqdEwy4SVnnnHPvAxSWK8rV2vuQxngyGnLd8hyM27iHqFgP1eCbxsgYN4VLpTaK-ECwKEKHzNyOrOj-WhlMQzQCTS2mRs7I1do4XkHVLJOJwBf0-Fr_sI3I-eIj8H5BiB4220bgHGicpW51FyjhposM3I4g9B0E_HTwAojFAQtGkZzMm-GKYT_RWwTx1-pD0r-QOyckd0W8fmYgV5Di4Srde9d6D1Uv6UZvSeZ7oIhH1Nq_z_McEBWGFYexpwhfUiWp5OveATh0NQdpzf_Gxy4B1M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAaHkFSmUQEierG7_inFBB3VZILajqSr1ZfqXsJSm72__PjJNNN0LiFsXZyDtj-5vPGX9DyOdZwxsgFoK5ygFBqY1gxivPZDBaG6mSk3je-eJSny_kjxt1M2y4rYe0yu2amBfq2AXcIz-GoSI1oI-RX-_-MKwahV9XhxIaj8mTEpAGU7rM_GwkXAL4V68mJIDaH68B7rG-t5xgUJbq_3dB3kGkabbkDvzMX5DnQ9xIT3pH75NHqT0gz3bUBF-SRb9BkCK9urpmOYMlbOiFa5e5Rle3or8g3KPbMkV02VJH8wFc9tNDkAjvpZdZk5GePhx_e0UW89Pr7-dsqJrAAgDNhjlgUKGuXamSULVueIgQZqhkdOW54jIowQMXgQcVlXTB1L4xIsQqwpU3Trwme23XpreEgv18BQg3Q7cFX_pYmaClj8oB8QqpIJ-2drR3vTiGBVKBxrajsQvyDS08PoB61vlGt7q1w_Sw8MIqqrrkjteAkDPvUlmHWCpTNUDpmoJ8Qf9YnHXghOCGwwPQT9SvsidGGFRSU1VBDrcutMN0XNuHwVOQj2MzTCT8OuLa1N3nZ1D4ByLogrzpPT72GUg2tCj4tZmMhcmfmra0y99ZrLvkyMq0fvf_fr0nTzlWFsacIHNI9jar-_QBwp2NP8pj-i8f2_9k
  priority: 102
  providerName: ProQuest
Title Improved RRT-Connect Manipulator Path Planning in a Multi-Obstacle Narrow Environment
URI https://www.ncbi.nlm.nih.gov/pubmed/40285054
https://www.proquest.com/docview/3194640684
https://www.proquest.com/docview/3195785080
https://pubmed.ncbi.nlm.nih.gov/PMC12030666
https://doaj.org/article/5a27d5912a294290bae19cd1587f871f
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7sBWR9EO9W1yGK4FN1mubWB5FdmXERZlyGHZi3kKSpDkhHZ2dB_70n6cUp-uRLKU1a0nNOcs6Xy3cAXo0rWiGwyFMjDQKUQuWpstymzCkhFOPesHDeeTYXF0v2acVXB9Dl2GwFeP1PaBfySS233978_PHrPXb4dwFxImR_e41uPOTtZodwjA5JhkQGM9YvJtAcYVhDKjSsfgK3ED0pjAHYwCtF8v6_h-g9HzXcP7nnkKZ34U4bSZKzRvX34MDX9-H2Hr_gA1g2Uwa-JIvFVRr3tLgdmZl6HbN2bbbkEgNA0iUuIuuaGBKP5KafLYaN-F0yjyyNZPLnQNxDWE4nVx8u0jaPQurQ9exSg5jKFYXJuM95ISrqSgw8uFdCWsopczynjuaOOl5yZpwqbKVyV8oS76wy-SM4qje1fwIERWkl-rxxUKSzmS2lcoLZkhuEYs4n8LKTo_7e0GVohBlB7rqXewLnQcJ9hcBwHR9stl9022E0flCWvMiooQX6zLE1PitcmXElKwR5VQKvg350sAxUgjPtcQJsZ2C00mcqV4FbjcsETjsV6s6-NI48TGAwo7A1L_pi7FphvcTUfnMT6wQqIIypE3jcaLxvc2c4CaiBLQx-alhSr79G-u6MBpwmxNP_f_UZnNCQhzjsIFKncLTb3vjnGBzt7AgO5UriVU0_juD4fDK_XIziRMModorfjScSqw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEG8MBRYE4mQ1Xu_a6wNCBRpS2gRUJVJv23255GKXJBXiT_EbmV0_mgiJW29R1l6t57HffPbODMCbQUlLJBZprHKFBKUQaSw01zEzIssE404xn-88nmSjGft6yk-34E-XC-OPVXZ7YtiobW38O_I9NBWWIfoI9uHiZ-y7Rvmvq10LjcYsjtzvX0jZlu8PP6N-31I6PJh-GsVtV4HY4Ea8ihUyDFMUKuEu5UVWUmMRhrkTWa4pp8zwlBqaGmq45UwZUehSpMbmFn9poVKc9wbcZCkiuc9MH37pCV6KfK-pXoSDg70lhhe-nzjbwLzQGuBfAFhDwM3TmWtwN7wLd9o4lew3hnUPtlx1H3bWqhc-gFnzQsJZcnIyjcOJGbMiY1XNQ0-wekG-Y3hJurZIZF4RRULCb_xNY1CK85JJqAFJDq7S7R7C7Frk-Qi2q7pyT4Cg_HSOiDrwZmJ0om0uTMa05QqJnnERvO7kKC-aYhwSSYwXtuyFHcFHL-H-Al8_O_xRL85l644SJ8wtLxKqaIGIPNDKJYWxCRd5iRSyjOCd14_0Xo5KMKpNVsB1-npZcl-kwldu43kEu50KZev-S3llrBG86ofRcf3XGFW5-jJc4wsNYcQeweNG4_2akdTjCMe7xYYtbDzU5kg1_xGKgyfUs8Ase_r_db2EW6Pp-FgeH06OnsFt6rsa-_NIYhe2V4tL9xxDrZV-EeybwNl1O9RfExM8WQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgQiJOVeNdrrw8ItTRRS2mIokbqbbsvQy52SVIh_hq_jlm_GguJW2-W116t57Ez33oeAO9GOc0RWLBQpQoBSiZYKDTXYWxEkoiYOxX7fOfTaXK0iL-c8_Md-NPmwviwynZPrDZqWxp_Rj5EUYkTtD4iHuZNWMTscPLp8mfoO0j5P61tO41aRE7c718I39Yfjw-R1-8pnYzPPh-FTYeB0OCmvAkVog2TZSrijvEsyamxaJK5E0mqKaex4Ywaygw13PJYGZHpXDBjU4tXWiiG896C3dSjogHsHoyns3kH9xiiv7qWEWPZaLhGZ8N3F497FrBqFPCvOdiyh_1YzS3jN7kP9xqvlezXYvYAdlzxEO5u1TJ8BIv6eMJZMp-fhVX8jNmQU1Usqw5h5YrM0NkkbZMksiyIIlX6b_hNo4uK85JpVRGSjK-T7x7D4kYo-gQGRVm4Z0CQfjpF-zryQmN0pG0qTBJryxXCPuMCeNvSUV7WpTkkQhpPbNkRO4ADT-HuAV9Nu7pRrr7LRjklTphankVU0Qzt80grF2XGRlykOQLKPIAPnj_S6zwywagmdQHX6atnyX3BhK_jxtMA9loWymYzWMtr0Q3gTTeMauz_zajClVfVM77sEPrvATytOd6tGSE-jnB8W_RkofdR_ZFi-aMqFR5RjwmT5Pn_1_UabqMyya_H05MXcIf6Fsc-OEnswWCzunIv0e_a6FeNgBO4uGmd-gv2IUHr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+RRT-Connect+Manipulator+Path+Planning+in+a+Multi-Obstacle+Narrow+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=He%2C+Xueyi&rft.au=Zhou%2C+Yimin&rft.au=Liu%2C+Haonan&rft.au=Shang%2C+Wanfeng&rft.date=2025-04-08&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fs25082364&rft_id=info%3Apmid%2F40285054&rft.externalDocID=PMC12030666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon