Improved RRT-Connect Manipulator Path Planning in a Multi-Obstacle Narrow Environment
This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continu...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 8; p. 2364 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation. |
---|---|
AbstractList | This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation. This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation.This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A heuristic sampling strategy is adopted with the integration of the ellipsoidal subset sampling and goal-biased sampling strategies, which can continuously compress the sampling space to enhance the sampling efficiency. During the node expansion process, an adaptive step-size method is introduced to dynamically adjust the step size based on the obstacle information, while a node rejection strategy is used to accelerate the search process so as to generate a near-optimal collision-free path. A pruning optimization strategy is also proposed to eliminate the redundant nodes from the path. Furthermore, a cubic non-uniform B-spline interpolation algorithm is applied to smooth the generated path. Finally, simulation experiments of the IRRT*-Connect algorithm are conducted in Python and ROS, and physical experiments are performed on a UR5 robotic arm. By comparing with the existing algorithms, it is demonstrated that the proposed method can achieve shorter planning times and lower path costs of the manipulator operation. |
Audience | Academic |
Author | Zhou, Yimin Shang, Wanfeng He, Xueyi Liu, Haonan |
AuthorAffiliation | 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China 1 School of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China; 2120221180@glut.edu.cn (X.H.); 2120221198@glut.edu.cn (H.L.) 3 National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518000, China; wf.shang@siat.ac.cn |
AuthorAffiliation_xml | – name: 3 National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518000, China; wf.shang@siat.ac.cn – name: 1 School of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China; 2120221180@glut.edu.cn (X.H.); 2120221198@glut.edu.cn (H.L.) – name: 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
Author_xml | – sequence: 1 givenname: Xueyi surname: He fullname: He, Xueyi – sequence: 2 givenname: Yimin orcidid: 0000-0003-2337-776X surname: Zhou fullname: Zhou, Yimin – sequence: 3 givenname: Haonan surname: Liu fullname: Liu, Haonan – sequence: 4 givenname: Wanfeng orcidid: 0000-0002-3256-3268 surname: Shang fullname: Shang, Wanfeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285054$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URD_gwB9AkbiUQ4q_Y59QtSqwUkurqj1bE8fZepXYi50s4t_jsmXVIh88Gj9-Pe94jtFBiMEh9J7gM8Y0_pypwIoyyV-hI8IprxWl-OBZfIiOc15jTBlj6g065JgqgQU_QvfLcZPi1nXV7e1dvYghODtVVxD8Zh5giqm6gemhuhkgBB9WlQ8VVFfzMPn6us0T2MFVPyCl-Ku6CFufYhhdmN6i1z0M2b172k_Q_deLu8X3-vL623Jxfllb3pCpBqW11RqIcExo2VPbYSmEU7JpqaDcCkYtZZZa0QkOVum2V8x2TVeiVgE7QcudbhdhbTbJj5B-mwje_E3EtDKQJl-KNAJo0wlNKFDNqcYtOKJtR4RqetWQvmh92Wlt5nZ0nS02EgwvRF-eBP9gVnFrCMUMSymLwumTQoo_Z5cnM_ps3VB65-KcDSNaNKXvChf043_oOs4plF49UlxyLBUv1NmOWkFx4EMfy8O2rM6N3pYZ6H3JnyumpCJUNOXCh-ce9sX_--8CfNoBNsWck-v3CMHmcZbMfpbYH85TuRs |
Cites_doi | 10.1109/ACCESS.2019.2958876 10.1109/TMECH.2022.3231467 10.1016/j.apor.2021.102887 10.1007/s10514-022-10044-x 10.1016/j.compag.2024.108707 10.1109/TASE.2022.3215562 10.1016/j.jksuci.2023.101650 10.1109/ROBIO.2015.7419012 10.1007/s41315-023-00274-2 10.1109/ACCESS.2023.3312763 10.1109/JAS.2021.1004252 10.1109/TMECH.2022.3165845 10.3390/s25020328 10.3390/s22176581 10.1109/TRO.2018.2830331 10.1016/j.compag.2022.107593 10.1109/ICRA57147.2024.10611099 10.1016/j.biosystemseng.2024.10.008 10.1109/TMECH.2020.2973327 10.1109/TIE.2023.3269462 10.1109/ACCESS.2019.2928846 10.1177/0278364911406761 10.3390/s24237759 10.1109/IROS.2014.6942976 10.1016/j.anucene.2024.110776 10.1007/s10846-024-02144-w 10.1109/ICRA.2012.6225337 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25082364 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_5a27d5912a294290bae19cd1587f871f PMC12030666 A838681257 40285054 10_3390_s25082364 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program 506 of China grantid: 2023YFC3321603 – fundername: the Guangdong Basic and Applied Basic Research Foundation grantid: 2021B1515120038 – fundername: the Shenzhen Science and Technology Innovation Commission Project 508 Grant grantid: JCYJ20200109114839874;JCYJ20220818101206015;JCYJ20210324101215039;SGDX20220530111001006 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021B1515120038 – fundername: National Key Research and Development Program of China grantid: 2023YFC3321603 – fundername: Shenzhen Science and Technology Innovation Commission Project grantid: JCYJ20200109114839874; JCYJ20220818101206015; JCYJ20210324101215039; SGDX20220530111001006 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-a899c99a15e3596f2cd0655e867b2524c532c23c2c5d54ac89bf83cd7d89bb8a3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:55 EDT 2025 Thu Aug 21 18:26:48 EDT 2025 Fri Jul 11 18:31:38 EDT 2025 Fri Jul 25 20:42:44 EDT 2025 Tue Jun 10 20:53:34 EDT 2025 Mon Jul 21 05:46:11 EDT 2025 Tue Jul 01 05:07:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | heuristic sampling strategy node rejection strategy adaptive step size path planning RRT-Connect robotic arm |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-a899c99a15e3596f2cd0655e867b2524c532c23c2c5d54ac89bf83cd7d89bb8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2337-776X 0000-0002-3256-3268 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25082364 |
PMID | 40285054 |
PQID | 3194640684 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a27d5912a294290bae19cd1587f871f pubmedcentral_primary_oai_pubmedcentral_nih_gov_12030666 proquest_miscellaneous_3195785080 proquest_journals_3194640684 gale_infotracacademiconefile_A838681257 pubmed_primary_40285054 crossref_primary_10_3390_s25082364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-08 |
PublicationDateYYYYMMDD | 2025-04-08 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Meng (ref_8) 2022; 21 Wang (ref_11) 2023; 205 Jiang (ref_23) 2022; 27 Yuan (ref_20) 2019; 8 Li (ref_29) 2024; 110 Zhuang (ref_5) 2023; 11 ref_14 ref_13 Cheng (ref_24) 2023; 33 Shen (ref_26) 2023; 28 Zhang (ref_21) 2024; 248 ref_32 ref_31 Chen (ref_25) 2022; 15 ref_30 Gammell (ref_33) 2018; 34 ref_18 ref_17 ref_16 Zhou (ref_6) 2022; 35 Xinyu (ref_19) 2019; 7 Lee (ref_7) 2021; 117 Li (ref_28) 2021; 9 Tamizi (ref_4) 2023; 7 Zheng (ref_12) 2024; 208 Dai (ref_22) 2023; 71 Li (ref_1) 2020; 17 Karaman (ref_15) 2011; 30 Kang (ref_2) 2024; 218 ref_9 Gao (ref_10) 2023; 35 Wang (ref_27) 2022; 46 Wang (ref_3) 2020; 25 |
References_xml | – volume: 8 start-page: 900 year: 2019 ident: ref_20 article-title: A heuristic rapidly-exploring random trees method for manipulator motion planning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2958876 – volume: 28 start-page: 1742 year: 2023 ident: ref_26 article-title: Adaptive manipulability-based path planning strategy for industrial robot manipulators publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3231467 – volume: 35 start-page: 100716 year: 2022 ident: ref_6 article-title: Airport AGV path optimization model based on ant colony algorithm to optimize Dijkstra algorithm in urban systems publication-title: Sustain. Comput. Inf. Syst. – volume: 117 start-page: 102887 year: 2021 ident: ref_7 article-title: Visibility graph-based path-planning algorithm with quadtree representation publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102887 – volume: 46 start-page: 685 year: 2022 ident: ref_27 article-title: AEB-RRT*: An adaptive extension bidirectional RRT* algorithm publication-title: Auton. Robots. doi: 10.1007/s10514-022-10044-x – volume: 218 start-page: 108707 year: 2024 ident: ref_2 article-title: A RRT based path planning scheme for multi-DOF robots in unstructured environments publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108707 – ident: ref_14 – volume: 21 start-page: 135 year: 2022 ident: ref_8 article-title: NR-RRT: Neural risk-aware near-optimal path planning in uncertain nonconvex environments publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3215562 – volume: 35 start-page: 101650 year: 2023 ident: ref_10 article-title: Path planning algorithm of robot arm based on improved RRT* and BP neural network algorithm publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2023.101650 – ident: ref_32 doi: 10.1109/ROBIO.2015.7419012 – volume: 7 start-page: 253 year: 2023 ident: ref_4 article-title: A review of recent trend in motion planning of industrial robots publication-title: Int. J. Intell. Robot. Appl. doi: 10.1007/s41315-023-00274-2 – volume: 11 start-page: 100070 year: 2023 ident: ref_5 article-title: Obstacle Avoidance Path Planning for Apple Picking Robotic Arm Incorporating Artificial Potential Field and A* Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3312763 – volume: 9 start-page: 283 year: 2021 ident: ref_28 article-title: An adaptive rapidly-exploring random tree publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004252 – volume: 15 start-page: 177 year: 2022 ident: ref_25 article-title: Path planning of the fruit tree pruning manipulator based on improved RRT-Connect algorithm publication-title: Int. J. Agric. Biol. Eng. – volume: 27 start-page: 4774 year: 2022 ident: ref_23 article-title: Path planning for robotic manipulator in complex multi-obstacle environment based on improved_RRT publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3165845 – ident: ref_18 doi: 10.3390/s25020328 – ident: ref_31 – ident: ref_13 doi: 10.3390/s22176581 – volume: 33 start-page: 100436 year: 2023 ident: ref_24 article-title: An improved RRT-Connect path planning algorithm of robotic arm for automatic sampling of exhaust emission detection in Industry 4.0 publication-title: J. Ind. Inf. Integr. – volume: 34 start-page: 966 year: 2018 ident: ref_33 article-title: Informed sampling for asymptotically optimal path planning publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2018.2830331 – volume: 205 start-page: 107593 year: 2023 ident: ref_11 article-title: Coverage path planning for kiwifruit picking robots based on deep reinforcement learning publication-title: IEEE Trans. Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107593 – ident: ref_9 doi: 10.1109/ICRA57147.2024.10611099 – volume: 248 start-page: 177 year: 2024 ident: ref_21 article-title: Harvest motion planning for mango picking robot based on improved RRT-Connect publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2024.10.008 – volume: 17 start-page: 1455 year: 2020 ident: ref_1 article-title: Unfastening of hexagonal headed screws by a collaborative robot publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 25 start-page: 2376 year: 2020 ident: ref_3 article-title: Sampling-based optimal motion planning with smart exploration and exploitation publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2020.2973327 – volume: 71 start-page: 2737 year: 2023 ident: ref_22 article-title: Novel potential guided bidirectional RRT* with direct connection strategy for path planning of redundant robot manipulators in joint space publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2023.3269462 – volume: 7 start-page: 95046 year: 2019 ident: ref_19 article-title: Bidirectional potential guided RRT* for motion planning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928846 – volume: 30 start-page: 846 year: 2011 ident: ref_15 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911406761 – ident: ref_17 doi: 10.3390/s24237759 – ident: ref_16 doi: 10.1109/IROS.2014.6942976 – volume: 208 start-page: 110776 year: 2024 ident: ref_12 article-title: Path planning of PRM based on artificial potential field in radiation environments publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2024.110776 – volume: 110 start-page: 106 year: 2024 ident: ref_29 article-title: Dynamic Informed Bias RRT*-Connect: Improving Heuristic Guidance by Dynamic Informed Bias Using Hybrid Dual Trees Search publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-024-02144-w – ident: ref_30 doi: 10.1109/ICRA.2012.6225337 |
SSID | ssj0023338 |
Score | 2.450145 |
Snippet | This paper proposes an improved RRT*-Connect algorithm (IRRT*-Connect) for robotic arm path planning in narrow environments with multiple obstacles. A... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2364 |
SubjectTerms | adaptive step size Algorithms Bias Costs Deep learning Efficiency Expansion Heuristic heuristic sampling strategy Neural networks node rejection strategy Optimization path planning Planning Probability robotic arm Robotics RRT-Connect Trees |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiiuCpuM2r6VFFEcEH4oK3kFdxL11Z1__vTNpdt3jw4q00aUnnazLztZNvCDkb1KwGYsFzW1ogKJXmuXbS5cJrpbSQ0Qrc7_zwqO6G4v5Nvi2U-sKcsFYeuDXchbSsDLIqmGUVrJ0DZ2NR-VBIXdYQ7Ne4-oLPm5GpjmpxYF6tjhAHUn_xCY4eK3uLnvdJIv2_l-IFX9TPk1xwPLfrZK2LGOllO9INshSbTbK6oCO4RYbtp4EY6MvLa55yV_yUPthmlKpzjSf0GQI9OitQREcNtTRtvc2fHISHcF_6mNQY6c3PxrdtMry9eb2-y7t6CbkHFzPNLXAnX1W2kJHLStXMBwgwZNSqdEwy4SVnnnHPvAxSWK8rV2vuQxngyGnLd8hyM27iHqFgP1eCbxsgYN4VLpTaK-ECwKEKHzNyOrOj-WhlMQzQCTS2mRs7I1do4XkHVLJOJwBf0-Fr_sI3I-eIj8H5BiB4220bgHGicpW51FyjhposM3I4g9B0E_HTwAojFAQtGkZzMm-GKYT_RWwTx1-pD0r-QOyckd0W8fmYgV5Di4Srde9d6D1Uv6UZvSeZ7oIhH1Nq_z_McEBWGFYexpwhfUiWp5OveATh0NQdpzf_Gxy4B1M priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAaHkFSmUQEierG7_inFBB3VZILajqSr1ZfqXsJSm72__PjJNNN0LiFsXZyDtj-5vPGX9DyOdZwxsgFoK5ygFBqY1gxivPZDBaG6mSk3je-eJSny_kjxt1M2y4rYe0yu2amBfq2AXcIz-GoSI1oI-RX-_-MKwahV9XhxIaj8mTEpAGU7rM_GwkXAL4V68mJIDaH68B7rG-t5xgUJbq_3dB3kGkabbkDvzMX5DnQ9xIT3pH75NHqT0gz3bUBF-SRb9BkCK9urpmOYMlbOiFa5e5Rle3or8g3KPbMkV02VJH8wFc9tNDkAjvpZdZk5GePhx_e0UW89Pr7-dsqJrAAgDNhjlgUKGuXamSULVueIgQZqhkdOW54jIowQMXgQcVlXTB1L4xIsQqwpU3Trwme23XpreEgv18BQg3Q7cFX_pYmaClj8oB8QqpIJ-2drR3vTiGBVKBxrajsQvyDS08PoB61vlGt7q1w_Sw8MIqqrrkjteAkDPvUlmHWCpTNUDpmoJ8Qf9YnHXghOCGwwPQT9SvsidGGFRSU1VBDrcutMN0XNuHwVOQj2MzTCT8OuLa1N3nZ1D4ByLogrzpPT72GUg2tCj4tZmMhcmfmra0y99ZrLvkyMq0fvf_fr0nTzlWFsacIHNI9jar-_QBwp2NP8pj-i8f2_9k priority: 102 providerName: ProQuest |
Title | Improved RRT-Connect Manipulator Path Planning in a Multi-Obstacle Narrow Environment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40285054 https://www.proquest.com/docview/3194640684 https://www.proquest.com/docview/3195785080 https://pubmed.ncbi.nlm.nih.gov/PMC12030666 https://doaj.org/article/5a27d5912a294290bae19cd1587f871f |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7sBWR9EO9W1yGK4FN1mubWB5FdmXERZlyGHZi3kKSpDkhHZ2dB_70n6cUp-uRLKU1a0nNOcs6Xy3cAXo0rWiGwyFMjDQKUQuWpstymzCkhFOPesHDeeTYXF0v2acVXB9Dl2GwFeP1PaBfySS233978_PHrPXb4dwFxImR_e41uPOTtZodwjA5JhkQGM9YvJtAcYVhDKjSsfgK3ED0pjAHYwCtF8v6_h-g9HzXcP7nnkKZ34U4bSZKzRvX34MDX9-H2Hr_gA1g2Uwa-JIvFVRr3tLgdmZl6HbN2bbbkEgNA0iUuIuuaGBKP5KafLYaN-F0yjyyNZPLnQNxDWE4nVx8u0jaPQurQ9exSg5jKFYXJuM95ISrqSgw8uFdCWsopczynjuaOOl5yZpwqbKVyV8oS76wy-SM4qje1fwIERWkl-rxxUKSzmS2lcoLZkhuEYs4n8LKTo_7e0GVohBlB7rqXewLnQcJ9hcBwHR9stl9022E0flCWvMiooQX6zLE1PitcmXElKwR5VQKvg350sAxUgjPtcQJsZ2C00mcqV4FbjcsETjsV6s6-NI48TGAwo7A1L_pi7FphvcTUfnMT6wQqIIypE3jcaLxvc2c4CaiBLQx-alhSr79G-u6MBpwmxNP_f_UZnNCQhzjsIFKncLTb3vjnGBzt7AgO5UriVU0_juD4fDK_XIziRMModorfjScSqw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEG8MBRYE4mQ1Xu_a6wNCBRpS2gRUJVJv23255GKXJBXiT_EbmV0_mgiJW29R1l6t57HffPbODMCbQUlLJBZprHKFBKUQaSw01zEzIssE404xn-88nmSjGft6yk-34E-XC-OPVXZ7YtiobW38O_I9NBWWIfoI9uHiZ-y7Rvmvq10LjcYsjtzvX0jZlu8PP6N-31I6PJh-GsVtV4HY4Ea8ihUyDFMUKuEu5UVWUmMRhrkTWa4pp8zwlBqaGmq45UwZUehSpMbmFn9poVKc9wbcZCkiuc9MH37pCV6KfK-pXoSDg70lhhe-nzjbwLzQGuBfAFhDwM3TmWtwN7wLd9o4lew3hnUPtlx1H3bWqhc-gFnzQsJZcnIyjcOJGbMiY1XNQ0-wekG-Y3hJurZIZF4RRULCb_xNY1CK85JJqAFJDq7S7R7C7Frk-Qi2q7pyT4Cg_HSOiDrwZmJ0om0uTMa05QqJnnERvO7kKC-aYhwSSYwXtuyFHcFHL-H-Al8_O_xRL85l644SJ8wtLxKqaIGIPNDKJYWxCRd5iRSyjOCd14_0Xo5KMKpNVsB1-npZcl-kwldu43kEu50KZev-S3llrBG86ofRcf3XGFW5-jJc4wsNYcQeweNG4_2akdTjCMe7xYYtbDzU5kg1_xGKgyfUs8Ase_r_db2EW6Pp-FgeH06OnsFt6rsa-_NIYhe2V4tL9xxDrZV-EeybwNl1O9RfExM8WQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgQiJOVeNdrrw8ItTRRS2mIokbqbbsvQy52SVIh_hq_jlm_GguJW2-W116t57Ez33oeAO9GOc0RWLBQpQoBSiZYKDTXYWxEkoiYOxX7fOfTaXK0iL-c8_Md-NPmwviwynZPrDZqWxp_Rj5EUYkTtD4iHuZNWMTscPLp8mfoO0j5P61tO41aRE7c718I39Yfjw-R1-8pnYzPPh-FTYeB0OCmvAkVog2TZSrijvEsyamxaJK5E0mqKaex4Ywaygw13PJYGZHpXDBjU4tXWiiG896C3dSjogHsHoyns3kH9xiiv7qWEWPZaLhGZ8N3F497FrBqFPCvOdiyh_1YzS3jN7kP9xqvlezXYvYAdlzxEO5u1TJ8BIv6eMJZMp-fhVX8jNmQU1Usqw5h5YrM0NkkbZMksiyIIlX6b_hNo4uK85JpVRGSjK-T7x7D4kYo-gQGRVm4Z0CQfjpF-zryQmN0pG0qTBJryxXCPuMCeNvSUV7WpTkkQhpPbNkRO4ADT-HuAV9Nu7pRrr7LRjklTphankVU0Qzt80grF2XGRlykOQLKPIAPnj_S6zwywagmdQHX6atnyX3BhK_jxtMA9loWymYzWMtr0Q3gTTeMauz_zajClVfVM77sEPrvATytOd6tGSE-jnB8W_RkofdR_ZFi-aMqFR5RjwmT5Pn_1_UabqMyya_H05MXcIf6Fsc-OEnswWCzunIv0e_a6FeNgBO4uGmd-gv2IUHr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+RRT-Connect+Manipulator+Path+Planning+in+a+Multi-Obstacle+Narrow+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=He%2C+Xueyi&rft.au=Zhou%2C+Yimin&rft.au=Liu%2C+Haonan&rft.au=Shang%2C+Wanfeng&rft.date=2025-04-08&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fs25082364&rft_id=info%3Apmid%2F40285054&rft.externalDocID=PMC12030666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |