Spatially regularized machine learning for task and resting-state fMRI

•A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection process.•Support vector machines are used to implement a semi-supervised learning.•Spatial constraints are integrated into the support vector learnin...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 257; pp. 214 - 228
Main Authors Song, Xiaomu, Panych, Lawrence P., Chen, Nan-kuei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.01.2016
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2015.10.001

Cover

Loading…
Abstract •A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection process.•Support vector machines are used to implement a semi-supervised learning.•Spatial constraints are integrated into the support vector learning.•Salient features are identified for the brain mapping in task- and resting-state. Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.
AbstractList Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.
Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades.BACKGROUNDReliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades.A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space.NEW METHODA spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space.The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level.RESULTSThe method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level.A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level.COMPARISON WITH EXISTING METHODSA comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level.The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.CONCLUSIONSThe proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.
•A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection process.•Support vector machines are used to implement a semi-supervised learning.•Spatial constraints are integrated into the support vector learning.•Salient features are identified for the brain mapping in task- and resting-state. Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.
Author Song, Xiaomu
Panych, Lawrence P.
Chen, Nan-kuei
AuthorAffiliation 1 Department of Electrical Engineering, School of Engineering, Widener University, Kirkbride Hall, Room 369, One University Place, Chester, PA 19013
3 Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Hock Plaza, Durham, NC 27710
2 Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
AuthorAffiliation_xml – name: 3 Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Hock Plaza, Durham, NC 27710
– name: 1 Department of Electrical Engineering, School of Engineering, Widener University, Kirkbride Hall, Room 369, One University Place, Chester, PA 19013
– name: 2 Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
Author_xml – sequence: 1
  givenname: Xiaomu
  surname: Song
  fullname: Song, Xiaomu
  email: xmsong@widener.edu
  organization: Department of Electrical Engineering, School of Engineering, Widener University, Kirkbride Hall, Room 369, One University Place, Chester, PA 19013, United States
– sequence: 2
  givenname: Lawrence P.
  surname: Panych
  fullname: Panych, Lawrence P.
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
– sequence: 3
  givenname: Nan-kuei
  surname: Chen
  fullname: Chen, Nan-kuei
  organization: Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Hock Plaza, Durham, NC 27710, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26470627$$D View this record in MEDLINE/PubMed
BookMark eNqFUdFqFDEUDdJit9VfKPPoy2xvktkkCyJKsbbQUqgKvoVM5s5u1kxmTTKF-vVm2baoL30KnJxz7r3nHJODMAYk5JTCnAIVZ5v5JuA0YF7PGdBFAecA9BWZUSVZLaT6cUBmhbiogUk4IscpbQCgWYJ4TY6YaCQIJmfk4uvWZGe8f6giriZvovuNXTUYu3YBK48mBhdWVT_GKpv0szKhK8yUC1inbDJW_c3d1Rty2Buf8O3je0K-X3z-dn5ZX99-uTr_dF3bRtJcG6oaxrnoKC2bICoKqjFStW0PnaItaxlfYIvYy15xFNDyRdsv7ZJ3oIw1_IR82Ptup3bAzmLI0Xi9jW4w8UGPxul_f4Jb69V4rxshQTFRDN49GsTx11Tu0INLFr03AccpaSq5bKTgy6ZQT_-e9TzkKbxCEHuCjWNKEftnCgW9a0lv9FNLetfSDi8tFeH7_4TWlSjduNvZ-ZflH_dyLEnfO4w6WYfBYuci2qy70b1k8QfGdrQd
CitedBy_id crossref_primary_10_1016_j_neuroimage_2016_05_055
Cites_doi 10.1109/TMI.2004.824234
10.1002/hbm.20022
10.1109/TMI.2003.822821
10.3174/ajnr.A2894
10.1109/TKDE.2003.1209008
10.1214/09-STS282
10.1016/j.neuroimage.2003.12.030
10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F
10.1016/j.neuroimage.2009.03.054
10.1006/nimg.2002.1132
10.1080/00207450490512650
10.1002/hbm.460020402
10.1162/089976601750264965
10.1016/j.neuroimage.2005.01.048
10.1016/j.jneumeth.2010.07.028
10.1016/j.mri.2014.04.004
10.1126/science.1194144
10.1073/pnas.1121049109
10.1002/hbm.1024
10.1371/journal.pone.0014277
10.1016/S0730-725X(01)00444-1
10.1109/TPAMI.2012.142
10.1016/j.neuroimage.2012.07.046
10.1007/978-1-4612-2544-7_17
10.1016/j.neuroimage.2009.11.011
10.1523/JNEUROSCI.5622-07.2008
10.1002/mrm.22159
10.1371/journal.pbio.1000157
10.1111/j.2517-6161.1977.tb01600.x
10.1073/pnas.0135058100
10.1098/rstb.2005.1634
10.1006/nimg.2001.1037
10.1023/B:MACH.0000035475.85309.1b
10.1002/jmri.21716
10.1016/j.brainres.2011.05.054
10.1162/jocn_a_00077
10.1006/nimg.1998.0391
10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X
10.1016/j.neuroimage.2008.02.051
10.1016/j.neuroimage.2011.12.052
10.1385/NI:1:3:259
10.1016/S1053-8119(03)00049-1
10.1371/journal.pone.0021976
10.1007/3-540-44581-1_27
10.1016/j.neuroimage.2008.10.055
10.1016/j.neuroimage.2008.10.057
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1023/A:1009715923555
10.1073/pnas.0905267106
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jneumeth.2015.10.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 228
ExternalDocumentID PMC4670826
26470627
10_1016_j_jneumeth_2015_10_001
S0165027015003738
Genre Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01-NS074045
– fundername: NINDS NIH HHS
  grantid: R01 NS074045
– fundername: NINDS NIH HHS
  grantid: R01-NS037992
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c471t-a1842336d11490ee81084a78bbf0d81b2b235ebeef7f83e60b35bf9c93d08aca3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Thu Aug 21 18:18:00 EDT 2025
Wed Jul 30 10:35:55 EDT 2025
Mon Jul 21 05:55:05 EDT 2025
Thu Jul 03 08:27:05 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Fri Feb 23 02:33:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Outlier detection
Spatial regularization
Support vector machine
Quantitative fMRI
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-a1842336d11490ee81084a78bbf0d81b2b235ebeef7f83e60b35bf9c93d08aca3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink http://doi.org/10.1016/j.jneumeth.2015.10.001
PMID 26470627
PQID 1737476394
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4670826
proquest_miscellaneous_1737476394
pubmed_primary_26470627
crossref_primary_10_1016_j_jneumeth_2015_10_001
crossref_citationtrail_10_1016_j_jneumeth_2015_10_001
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_10_001
PublicationCentury 2000
PublicationDate 2016-01-15
PublicationDateYYYYMMDD 2016-01-15
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Stoeckel, Fung (bib0240) 2005
Shah, Yoon, Ousley, Hu, Peltier (bib0200) 2011; 19
Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens (bib0275) 2009; 45
Van de Ven, Formisano, Prvulovic, Roeder, Linden (bib0250) 2004; 22
Cuingnet, Glaunès, Chupin, Benali, Colliot (bib0055) 2013; 35
Nason, Silverman (bib0175) 1995; 103
Liang, Cherkassky, Rottenberg (bib0135) 2006
Shen, Meyer (bib0210) 2008; 41
Sindhwani, Niyogi, Belkin (bib0215) 2005
Gonzalez-Castillo, Saad, Handwerker, Inati, Brenowitz (bib0100) 2012; 109
Flamary, Rakotomamonjy (bib0085) 2013
Zhang, Tian, Yuan, Liu, Zhuo, Qin (bib0295) 2011; 1402
Song, Murphy, Wyrwicz (bib0225) 2006
Wu, Lin, Weng (bib0280) 2004; 5
Calhoun, Liu, Adali (bib0035) 2009; 45
LaConte, Strother, Cherkassky, Anderson, Hu (bib0125) 2005; 26
Vapnik (bib0255) 1998
Beckmann, DeLuca, Devlin, Smith (bib0015) 2005; 360
Greicius, Krasnow, Reiss, Menon (bib0110) 2003; 100
Craddock, Holtzheimer, Hu, Mayberg (bib0050) 2009; 62
Menon, Thomas, Gati (bib0170) 1997; 10
Dempster, Laird, Rubin (bib0060) 1977; 39
Lindquist (bib0140) 2008; 23
McKeown, Makeig, Brown, Jung, Kindermann, Bell (bib0150) 1998; 6
Supekar, Musen, Menon (bib0245) 2009; 7
Wang, Zuo, Gohel, Milham, Biswal, He (bib0265) 2011; 6
Evgeniou, Pontil, Papageorgiou, Poggio (bib0080) 2003; 15
Schőlkopf, Platt, Shawe-Taylor, Smola, Williamson (bib0195) 2001; 13
Schőlkopf, Herbrich, Smola (bib0190) 2001; 2111
Dosenbach, Nardos, Cohen, Fair, Power, Church (bib0070) 2010; 329
Schöpf, Kasess, Lanzenberger, Fischmeister, Windischberger, Moser (bib0185) 2010; 192
Song, Wyrwicz (bib0230) 2009; 47
Zang, Jiang, Lu, He, Tian (bib0290) 2004; 22
Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just (bib0165) 2004; 57
Deshpande, Li, Santhanam, Claire, Coles, Lynch (bib0065) 2010; 5
Laird, Fox, Eickhoff, Turner, Ray, McKay (bib0130) 2011; 12
Genovese, Lazar, Nichols (bib0095) 2002; 15
Chou, Panych, Dickey, Petrella, Chen (bib0040) 2012; 33
Meier, Desphande, Vergun, Nair, Song, Biswal (bib0155) 2012; 60
Jenkinson, Bannister, Brady, Smith (bib0120) 2002; 17
Song, Chen (bib0235) 2014; 32
Dundar, Theiler, Perkins (bib0075) 2006
Hartvig, Jensen (bib0115) 2000; 11
Belkin, Niyogi, Sindhwani (bib0020) 2006; 7
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bib0090) 1995; 2
Voyvodic, Petrella, Friedman (bib0260) 2009; 29
Cox, Savoy (bib0045) 2003; 19
Wink, Roerdink (bib0270) 2004; 23
Ngan, Auffermann, Sarkar, Hu (bib0180) 2001; 19
Beckmann, Smith (bib0010) 2004; 23
Burges (bib0025) 1998; 2
Calhoun, Adali, Pearlson, Pekar (bib0030) 2001; 13
Smith, Fox, Miller, Glahn, Fox, Mackay (bib0220) 2009; 106
Miller, Weiss, Song, Iordanescu, Disterhoft, Wyrwicz (bib0160) 2008; 28
Yoo, Dickey, Guttmann, Panych (bib0285) 2005; 115
Lu, Zang, Jiang (bib0145) 2003; 1
Shen, Wang, Liu, Hu (bib0205) 2010; 49
Goutte, Toft, Rostrup, Nielsen, Hansen (bib0105) 1999; 9
Baldassano, Iordan, Beck, Li (bib0005) 2012; 63
Jenkinson (10.1016/j.jneumeth.2015.10.001_bib0120) 2002; 17
Voyvodic (10.1016/j.jneumeth.2015.10.001_bib0260) 2009; 29
Dempster (10.1016/j.jneumeth.2015.10.001_bib0060) 1977; 39
Song (10.1016/j.jneumeth.2015.10.001_bib0225) 2006
Shen (10.1016/j.jneumeth.2015.10.001_bib0210) 2008; 41
Stoeckel (10.1016/j.jneumeth.2015.10.001_bib0240) 2005
Baldassano (10.1016/j.jneumeth.2015.10.001_bib0005) 2012; 63
Dosenbach (10.1016/j.jneumeth.2015.10.001_bib0070) 2010; 329
Goutte (10.1016/j.jneumeth.2015.10.001_bib0105) 1999; 9
Lindquist (10.1016/j.jneumeth.2015.10.001_bib0140) 2008; 23
Schőlkopf (10.1016/j.jneumeth.2015.10.001_bib0190) 2001; 2111
Zhang (10.1016/j.jneumeth.2015.10.001_bib0295) 2011; 1402
Wink (10.1016/j.jneumeth.2015.10.001_bib0270) 2004; 23
Shen (10.1016/j.jneumeth.2015.10.001_bib0205) 2010; 49
Flamary (10.1016/j.jneumeth.2015.10.001_bib0085) 2013
Dundar (10.1016/j.jneumeth.2015.10.001_bib0075) 2006
Song (10.1016/j.jneumeth.2015.10.001_bib0230) 2009; 47
Van de Ven (10.1016/j.jneumeth.2015.10.001_bib0250) 2004; 22
Smith (10.1016/j.jneumeth.2015.10.001_bib0220) 2009; 106
Miller (10.1016/j.jneumeth.2015.10.001_bib0160) 2008; 28
Menon (10.1016/j.jneumeth.2015.10.001_bib0170) 1997; 10
Chou (10.1016/j.jneumeth.2015.10.001_bib0040) 2012; 33
Wu (10.1016/j.jneumeth.2015.10.001_bib0280) 2004; 5
LaConte (10.1016/j.jneumeth.2015.10.001_bib0125) 2005; 26
Mitchell (10.1016/j.jneumeth.2015.10.001_bib0165) 2004; 57
Nason (10.1016/j.jneumeth.2015.10.001_bib0175) 1995; 103
Meier (10.1016/j.jneumeth.2015.10.001_bib0155) 2012; 60
Song (10.1016/j.jneumeth.2015.10.001_bib0235) 2014; 32
Cox (10.1016/j.jneumeth.2015.10.001_bib0045) 2003; 19
Ngan (10.1016/j.jneumeth.2015.10.001_bib0180) 2001; 19
Craddock (10.1016/j.jneumeth.2015.10.001_bib0050) 2009; 62
Burges (10.1016/j.jneumeth.2015.10.001_bib0025) 1998; 2
Deshpande (10.1016/j.jneumeth.2015.10.001_bib0065) 2010; 5
Yoo (10.1016/j.jneumeth.2015.10.001_bib0285) 2005; 115
Supekar (10.1016/j.jneumeth.2015.10.001_bib0245) 2009; 7
Wang (10.1016/j.jneumeth.2015.10.001_bib0265) 2011; 6
Calhoun (10.1016/j.jneumeth.2015.10.001_bib0030) 2001; 13
Belkin (10.1016/j.jneumeth.2015.10.001_bib0020) 2006; 7
Gonzalez-Castillo (10.1016/j.jneumeth.2015.10.001_bib0100) 2012; 109
Genovese (10.1016/j.jneumeth.2015.10.001_bib0095) 2002; 15
Liang (10.1016/j.jneumeth.2015.10.001_bib0135) 2006
Beckmann (10.1016/j.jneumeth.2015.10.001_bib0015) 2005; 360
Laird (10.1016/j.jneumeth.2015.10.001_bib0130) 2011; 12
Woolrich (10.1016/j.jneumeth.2015.10.001_bib0275) 2009; 45
Schöpf (10.1016/j.jneumeth.2015.10.001_bib0185) 2010; 192
Evgeniou (10.1016/j.jneumeth.2015.10.001_bib0080) 2003; 15
Vapnik (10.1016/j.jneumeth.2015.10.001_bib0255) 1998
McKeown (10.1016/j.jneumeth.2015.10.001_bib0150) 1998; 6
Sindhwani (10.1016/j.jneumeth.2015.10.001_bib0215) 2005
Hartvig (10.1016/j.jneumeth.2015.10.001_bib0115) 2000; 11
Greicius (10.1016/j.jneumeth.2015.10.001_bib0110) 2003; 100
Beckmann (10.1016/j.jneumeth.2015.10.001_bib0010) 2004; 23
Cuingnet (10.1016/j.jneumeth.2015.10.001_bib0055) 2013; 35
Calhoun (10.1016/j.jneumeth.2015.10.001_bib0035) 2009; 45
Shah (10.1016/j.jneumeth.2015.10.001_bib0200) 2011; 19
Friston (10.1016/j.jneumeth.2015.10.001_bib0090) 1995; 2
Lu (10.1016/j.jneumeth.2015.10.001_bib0145) 2003; 1
Zang (10.1016/j.jneumeth.2015.10.001_bib0290) 2004; 22
Schőlkopf (10.1016/j.jneumeth.2015.10.001_bib0195) 2001; 13
18450478 - Neuroimage. 2008 Jul 1;41(3):886-902
14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
15110032 - Neuroimage. 2004 May;22(1):394-400
20688104 - J Neurosci Methods. 2010 Oct 15;192(2):207-13
15907293 - Neuroimage. 2005 Jun;26(2):317-29
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
11144753 - Hum Brain Mapp. 2000 Dec;11(4):233-48
15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78
21151556 - PLoS One. 2010;5(12):e14277
19344772 - Neuroimage. 2009 Aug 1;47(1):204-12
19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86
19306363 - J Magn Reson Imaging. 2009 Apr;29(4):751-9
22268094 - AJNR Am J Neuroradiol. 2012 May;33(5):833-8
21671731 - J Cogn Neurosci. 2011 Dec;23(12):4022-37
16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106
11755724 - Magn Reson Imaging. 2001 Nov;19(9):1149-58
11906227 - Neuroimage. 2002 Apr;15(4):870-8
12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
9430345 - NMR Biomed. 1997 Jun-Aug;10(4-5):179-82
19621066 - PLoS Biol. 2009 Jul;7(7):e1000157
22732664 - IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):682-96
22431587 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5487-92
19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
19931396 - Neuroimage. 2010 Feb 15;49(4):3110-21
20829489 - Science. 2010 Sep 10;329(5997):1358-61
12377157 - Neuroimage. 2002 Oct;17(2):825-41
24928301 - Magn Reson Imaging. 2014 Sep;32(7):819-31
10075900 - Neuroimage. 1999 Mar;9(3):298-310
19859933 - Magn Reson Med. 2009 Dec;62(6):1619-28
11284046 - Hum Brain Mapp. 2001 May;13(1):43-53
15027530 - IEEE Trans Med Imaging. 2004 Mar;23(3):374-87
9673671 - Hum Brain Mapp. 1998;6(3):160-88
21818285 - PLoS One. 2011;6(7):e21976
15046247 - Neuroinformatics. 2003;1(3):259-69
12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70
18463251 - J Neurosci. 2008 May 7;28(19):4974-81
15768852 - Int J Neurosci. 2005 Jan;115(1):55-77
22227886 - Neuroimage. 2012 Mar;60(1):601-13
21669407 - Brain Res. 2011 Jul 21;1402:46-53
11440593 - Neural Comput. 2001 Jul;13(7):1443-71
References_xml – volume: 22
  start-page: 165
  year: 2004
  end-page: 178
  ident: bib0250
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum Brain Mapp
– volume: 6
  start-page: 160
  year: 1998
  end-page: 188
  ident: bib0150
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum Brain Mapp
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib0025
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl Discovery
– volume: 19
  start-page: 4165
  year: 2011
  ident: bib0200
  article-title: fMRI detection of Asperger's disorder using support vector machine classification
  publication-title: Proc ISMRM
– volume: 7
  start-page: e1000157
  year: 2009
  ident: bib0245
  article-title: Development of large-scale functional brain networks in children
  publication-title: PLoS Biol.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0120
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib0060
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Stat Soc, Ser B
– volume: 35
  start-page: 682
  year: 2013
  end-page: 696
  ident: bib0055
  article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: bib0090
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
– volume: 5
  start-page: e14227
  year: 2010
  ident: bib0065
  article-title: Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity
  publication-title: PLoS ONE
– volume: 103
  start-page: 281
  year: 1995
  end-page: 299
  ident: bib0175
  article-title: The stationary wavelet transform and some statistical applications
  publication-title: Lect Notes Stat
– volume: 49
  start-page: 3110
  year: 2010
  end-page: 3121
  ident: bib0205
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: NeuroImage
– volume: 63
  start-page: 1099
  year: 2012
  end-page: 1106
  ident: bib0005
  article-title: Voxel-level functional connectivity using spatial regularization
  publication-title: NeuroImage
– volume: 33
  start-page: 833
  year: 2012
  end-page: 838
  ident: bib0040
  article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study
  publication-title: Am J Neuroradiol
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bib0070
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 11
  start-page: 233
  year: 2000
  end-page: 248
  ident: bib0115
  article-title: Spatial mixture modeling of fMRI data
  publication-title: Hum Brain Mapp
– volume: 60
  start-page: 601
  year: 2012
  end-page: 613
  ident: bib0155
  article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks
  publication-title: NeuroImage
– start-page: 364
  year: 2006
  end-page: 367
  ident: bib0075
  article-title: Incorporating spatial contiguity into the design of a support vector machine classifier
  publication-title: Proc IEEE Geosci Remote Sens Symp
– year: 1998
  ident: bib0255
  article-title: Statistical learning theory
– volume: 32
  start-page: 819
  year: 2014
  end-page: 831
  ident: bib0235
  article-title: A SVM-based quantitative fMRI method for resting-state functional network detection
  publication-title: Magn Reson Imaging
– volume: 45
  start-page: S173
  year: 2009
  end-page: S186
  ident: bib0275
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
– volume: 22
  start-page: 394
  year: 2004
  end-page: 400
  ident: bib0290
  article-title: Regional homogeneity approach to fMRI data analysis
  publication-title: NeuroImage
– volume: 62
  start-page: 1619
  year: 2009
  end-page: 1628
  ident: bib0050
  article-title: Disease state predication from resting state functional connectivity
  publication-title: Magn Reson Med
– volume: 12
  start-page: 4022
  year: 2011
  end-page: 4037
  ident: bib0130
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J Cognit Neurosci
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: bib0020
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 4974
  year: 2008
  end-page: 4981
  ident: bib0160
  article-title: fMRI of delay and trace eyeblink conditioning in the primary visual cortex of the rabbit
  publication-title: J Neurosci
– volume: 19
  start-page: 1149
  year: 2001
  end-page: 1158
  ident: bib0180
  article-title: Activation detection in event-related fMRI data based on spatio-temporal properties
  publication-title: Magn Reson Imag
– volume: 45
  start-page: S163
  year: 2009
  end-page: S172
  ident: bib0035
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
– start-page: 2857
  year: 2006
  end-page: 2860
  ident: bib0225
  article-title: Spatiotemporal denoising and clustering of fMRI data
  publication-title: Proc IEEE Int Conf Image Process
– volume: 15
  start-page: 911
  year: 2003
  end-page: 920
  ident: bib0080
  article-title: Image representations and feature selection for multimedia database search
  publication-title: IEEE Trans Knowl Data Eng
– volume: 47
  start-page: 204
  year: 2009
  end-page: 212
  ident: bib0230
  article-title: Unsupervised spatiotemporal fMRI data analysis using support vector machines
  publication-title: NeuroImage
– volume: 23
  start-page: 439
  year: 2008
  end-page: 464
  ident: bib0140
  article-title: The statistical analysis of fMRI data
  publication-title: Stat Sci
– volume: 26
  start-page: 317
  year: 2005
  end-page: 329
  ident: bib0125
  article-title: Support vector machines for temporal classification of black design fMRI data
  publication-title: NeuroImage
– start-page: 1463
  year: 2006
  end-page: 1469
  ident: bib0135
  article-title: Spatial SVM for feature selection and fMRI activation detection
  publication-title: Proc Int Joint Conf Neural Netw
– volume: 6
  start-page: e21976
  year: 2011
  ident: bib0265
  article-title: Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data
  publication-title: PLoS ONE
– start-page: 27
  year: 2005
  end-page: 30
  ident: bib0240
  article-title: SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information
  publication-title: Proc. the 5th IEEE Intl. Conf. Data Mining
– start-page: 824
  year: 2005
  end-page: 831
  ident: bib0215
  article-title: Beyond the point cloud: from transductive to semi-supervised learning
  publication-title: Proc the 22nd Intl Conf Machine Learning
– volume: 1
  start-page: 259
  year: 2003
  end-page: 270
  ident: bib0145
  article-title: A modified temporal self-correlation method for analysis of fMRI time series
  publication-title: NeuroInformatics
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib0015
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc B
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0220
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: PNAS
– volume: 192
  start-page: 207
  year: 2010
  end-page: 213
  ident: bib0185
  article-title: Fully exploratory network ICA (FENICA) on resting-state fMRI data
  publication-title: J Neurosci Methods
– volume: 57
  start-page: 145
  year: 2004
  end-page: 175
  ident: bib0165
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach Learn
– volume: 115
  start-page: 55
  year: 2005
  end-page: 77
  ident: bib0285
  article-title: Long-term reproducibility analysis of fMRI using hand motor tasks
  publication-title: Int J Neurosci
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  ident: bib0280
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J Mach Learn Res
– volume: 1402
  start-page: 46
  year: 2011
  end-page: 53
  ident: bib0295
  article-title: Distinct resting-state brain activities in heroin-dependent individuals
  publication-title: Brain Res
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  ident: bib0095
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
– volume: 41
  start-page: 886
  year: 2008
  end-page: 902
  ident: bib0210
  article-title: Low-dimensional embedding of fMRI datasets
  publication-title: NeuroImage
– volume: 23
  start-page: 374
  year: 2004
  end-page: 387
  ident: bib0270
  article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing
  publication-title: IEEE Trans Med Imag
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bib0010
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib0110
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: PNAS
– volume: 2111
  start-page: 416
  year: 2001
  end-page: 426
  ident: bib0190
  article-title: A generalized representer theorem, computational learning theory
  publication-title: Lect Notes Comput Sci
– volume: 9
  start-page: 298
  year: 1999
  end-page: 310
  ident: bib0105
  article-title: On clustering fMRI time series
  publication-title: NeuroImage
– volume: 13
  start-page: 43
  year: 2001
  end-page: 53
  ident: bib0030
  article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of block-design waveforms
  publication-title: Hum Brain Mapp
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: bib0045
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: bib0195
  article-title: Estimating the support of high-dimensional distribution
  publication-title: Neural Comput.
– start-page: 73
  year: 2013
  end-page: 74
  ident: bib0085
  article-title: Support vector machine with spatial regularization for pixel classification
  publication-title: Proceedings of international workshop on advances in regularization, optimization, kernel methods and support vector machines: theory and applications
– volume: 29
  start-page: 751
  year: 2009
  end-page: 759
  ident: bib0260
  article-title: fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment, adjustment
  publication-title: J Magn Reson Imaging
– volume: 109
  start-page: 5487
  year: 2012
  end-page: 5492
  ident: bib0100
  article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis
  publication-title: PNAS
– volume: 10
  start-page: 179
  year: 1997
  end-page: 182
  ident: bib0170
  article-title: Investigation of BOLD contrast in fMRI using multi-shot EPI
  publication-title: NMR Biomed
– volume: 23
  start-page: 374
  issue: 3
  year: 2004
  ident: 10.1016/j.jneumeth.2015.10.001_bib0270
  article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2004.824234
– volume: 22
  start-page: 165
  year: 2004
  ident: 10.1016/j.jneumeth.2015.10.001_bib0250
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20022
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.jneumeth.2015.10.001_bib0010
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 33
  start-page: 833
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.001_bib0040
  article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A2894
– volume: 15
  start-page: 911
  issue: 4
  year: 2003
  ident: 10.1016/j.jneumeth.2015.10.001_bib0080
  article-title: Image representations and feature selection for multimedia database search
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2003.1209008
– volume: 23
  start-page: 439
  issue: 4
  year: 2008
  ident: 10.1016/j.jneumeth.2015.10.001_bib0140
  article-title: The statistical analysis of fMRI data
  publication-title: Stat Sci
  doi: 10.1214/09-STS282
– volume: 22
  start-page: 394
  year: 2004
  ident: 10.1016/j.jneumeth.2015.10.001_bib0290
  article-title: Regional homogeneity approach to fMRI data analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.12.030
– volume: 11
  start-page: 233
  issue: 4
  year: 2000
  ident: 10.1016/j.jneumeth.2015.10.001_bib0115
  article-title: Spatial mixture modeling of fMRI data
  publication-title: Hum Brain Mapp
  doi: 10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F
– volume: 47
  start-page: 204
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.001_bib0230
  article-title: Unsupervised spatiotemporal fMRI data analysis using support vector machines
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.03.054
– start-page: 2857
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.001_bib0225
  article-title: Spatiotemporal denoising and clustering of fMRI data
– year: 1998
  ident: 10.1016/j.jneumeth.2015.10.001_bib0255
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.jneumeth.2015.10.001_bib0120
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 115
  start-page: 55
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.001_bib0285
  article-title: Long-term reproducibility analysis of fMRI using hand motor tasks
  publication-title: Int J Neurosci
  doi: 10.1080/00207450490512650
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1016/j.jneumeth.2015.10.001_bib0090
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.460020402
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  ident: 10.1016/j.jneumeth.2015.10.001_bib0195
  article-title: Estimating the support of high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– start-page: 364
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.001_bib0075
  article-title: Incorporating spatial contiguity into the design of a support vector machine classifier
  publication-title: Proc IEEE Geosci Remote Sens Symp
– volume: 26
  start-page: 317
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.001_bib0125
  article-title: Support vector machines for temporal classification of black design fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.048
– volume: 192
  start-page: 207
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.001_bib0185
  article-title: Fully exploratory network ICA (FENICA) on resting-state fMRI data
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.07.028
– volume: 32
  start-page: 819
  year: 2014
  ident: 10.1016/j.jneumeth.2015.10.001_bib0235
  article-title: A SVM-based quantitative fMRI method for resting-state functional network detection
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2014.04.004
– volume: 329
  start-page: 1358
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.001_bib0070
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 109
  start-page: 5487
  issue: 14
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.001_bib0100
  article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis
  publication-title: PNAS
  doi: 10.1073/pnas.1121049109
– volume: 13
  start-page: 43
  year: 2001
  ident: 10.1016/j.jneumeth.2015.10.001_bib0030
  article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of block-design waveforms
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1024
– volume: 5
  start-page: e14227
  issue: 12
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.001_bib0065
  article-title: Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0014277
– volume: 19
  start-page: 1149
  year: 2001
  ident: 10.1016/j.jneumeth.2015.10.001_bib0180
  article-title: Activation detection in event-related fMRI data based on spatio-temporal properties
  publication-title: Magn Reson Imag
  doi: 10.1016/S0730-725X(01)00444-1
– volume: 35
  start-page: 682
  issue: 3
  year: 2013
  ident: 10.1016/j.jneumeth.2015.10.001_bib0055
  article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.142
– volume: 63
  start-page: 1099
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.001_bib0005
  article-title: Voxel-level functional connectivity using spatial regularization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.07.046
– volume: 103
  start-page: 281
  year: 1995
  ident: 10.1016/j.jneumeth.2015.10.001_bib0175
  article-title: The stationary wavelet transform and some statistical applications
  publication-title: Lect Notes Stat
  doi: 10.1007/978-1-4612-2544-7_17
– volume: 49
  start-page: 3110
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.001_bib0205
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.11.011
– start-page: 824
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.001_bib0215
  article-title: Beyond the point cloud: from transductive to semi-supervised learning
– volume: 28
  start-page: 4974
  issue: 19
  year: 2008
  ident: 10.1016/j.jneumeth.2015.10.001_bib0160
  article-title: fMRI of delay and trace eyeblink conditioning in the primary visual cortex of the rabbit
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5622-07.2008
– volume: 62
  start-page: 1619
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.001_bib0050
  article-title: Disease state predication from resting state functional connectivity
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22159
– volume: 7
  start-page: e1000157
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.001_bib0245
  article-title: Development of large-scale functional brain networks in children
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000157
– start-page: 1463
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.001_bib0135
  article-title: Spatial SVM for feature selection and fMRI activation detection
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.jneumeth.2015.10.001_bib0060
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Stat Soc, Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 100
  start-page: 253
  issue: 1
  year: 2003
  ident: 10.1016/j.jneumeth.2015.10.001_bib0110
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: PNAS
  doi: 10.1073/pnas.0135058100
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.001_bib0015
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc B
  doi: 10.1098/rstb.2005.1634
– volume: 15
  start-page: 870
  year: 2002
  ident: 10.1016/j.jneumeth.2015.10.001_bib0095
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1037
– volume: 57
  start-page: 145
  year: 2004
  ident: 10.1016/j.jneumeth.2015.10.001_bib0165
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 29
  start-page: 751
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.001_bib0260
  article-title: fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment, adjustment
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21716
– volume: 5
  start-page: 975
  year: 2004
  ident: 10.1016/j.jneumeth.2015.10.001_bib0280
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J Mach Learn Res
– volume: 1402
  start-page: 46
  year: 2011
  ident: 10.1016/j.jneumeth.2015.10.001_bib0295
  article-title: Distinct resting-state brain activities in heroin-dependent individuals
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2011.05.054
– volume: 12
  start-page: 4022
  year: 2011
  ident: 10.1016/j.jneumeth.2015.10.001_bib0130
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J Cognit Neurosci
  doi: 10.1162/jocn_a_00077
– volume: 9
  start-page: 298
  year: 1999
  ident: 10.1016/j.jneumeth.2015.10.001_bib0105
  article-title: On clustering fMRI time series
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0391
– volume: 10
  start-page: 179
  year: 1997
  ident: 10.1016/j.jneumeth.2015.10.001_bib0170
  article-title: Investigation of BOLD contrast in fMRI using multi-shot EPI
  publication-title: NMR Biomed
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X
– volume: 41
  start-page: 886
  year: 2008
  ident: 10.1016/j.jneumeth.2015.10.001_bib0210
  article-title: Low-dimensional embedding of fMRI datasets
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.051
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.001_bib0020
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– volume: 60
  start-page: 601
  issue: 1
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.001_bib0155
  article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.12.052
– volume: 1
  start-page: 259
  year: 2003
  ident: 10.1016/j.jneumeth.2015.10.001_bib0145
  article-title: A modified temporal self-correlation method for analysis of fMRI time series
  publication-title: NeuroInformatics
  doi: 10.1385/NI:1:3:259
– volume: 19
  start-page: 261
  year: 2003
  ident: 10.1016/j.jneumeth.2015.10.001_bib0045
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 6
  start-page: e21976
  issue: 7
  year: 2011
  ident: 10.1016/j.jneumeth.2015.10.001_bib0265
  article-title: Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021976
– volume: 2111
  start-page: 416
  year: 2001
  ident: 10.1016/j.jneumeth.2015.10.001_bib0190
  article-title: A generalized representer theorem, computational learning theory
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/3-540-44581-1_27
– volume: 45
  start-page: S173
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.001_bib0275
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.055
– volume: 45
  start-page: S163
  issue: 1 (Suppl)
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.001_bib0035
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.057
– start-page: 27
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.001_bib0240
  article-title: SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information
– start-page: 73
  year: 2013
  ident: 10.1016/j.jneumeth.2015.10.001_bib0085
  article-title: Support vector machine with spatial regularization for pixel classification
– volume: 6
  start-page: 160
  year: 1998
  ident: 10.1016/j.jneumeth.2015.10.001_bib0150
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum Brain Mapp
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– volume: 19
  start-page: 4165
  year: 2011
  ident: 10.1016/j.jneumeth.2015.10.001_bib0200
  article-title: fMRI detection of Asperger's disorder using support vector machine classification
  publication-title: Proc ISMRM
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1016/j.jneumeth.2015.10.001_bib0025
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl Discovery
  doi: 10.1023/A:1009715923555
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.001_bib0220
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: PNAS
  doi: 10.1073/pnas.0905267106
– reference: 11144753 - Hum Brain Mapp. 2000 Dec;11(4):233-48
– reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 15027530 - IEEE Trans Med Imaging. 2004 Mar;23(3):374-87
– reference: 11755724 - Magn Reson Imaging. 2001 Nov;19(9):1149-58
– reference: 11284046 - Hum Brain Mapp. 2001 May;13(1):43-53
– reference: 21671731 - J Cogn Neurosci. 2011 Dec;23(12):4022-37
– reference: 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
– reference: 11906227 - Neuroimage. 2002 Apr;15(4):870-8
– reference: 19621066 - PLoS Biol. 2009 Jul;7(7):e1000157
– reference: 21669407 - Brain Res. 2011 Jul 21;1402:46-53
– reference: 9430345 - NMR Biomed. 1997 Jun-Aug;10(4-5):179-82
– reference: 9673671 - Hum Brain Mapp. 1998;6(3):160-88
– reference: 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70
– reference: 19306363 - J Magn Reson Imaging. 2009 Apr;29(4):751-9
– reference: 15046247 - Neuroinformatics. 2003;1(3):259-69
– reference: 18450478 - Neuroimage. 2008 Jul 1;41(3):886-902
– reference: 22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106
– reference: 10075900 - Neuroimage. 1999 Mar;9(3):298-310
– reference: 19931396 - Neuroimage. 2010 Feb 15;49(4):3110-21
– reference: 19344772 - Neuroimage. 2009 Aug 1;47(1):204-12
– reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
– reference: 24928301 - Magn Reson Imaging. 2014 Sep;32(7):819-31
– reference: 20829489 - Science. 2010 Sep 10;329(5997):1358-61
– reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41
– reference: 11440593 - Neural Comput. 2001 Jul;13(7):1443-71
– reference: 19859933 - Magn Reson Med. 2009 Dec;62(6):1619-28
– reference: 19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86
– reference: 21818285 - PLoS One. 2011;6(7):e21976
– reference: 15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78
– reference: 22268094 - AJNR Am J Neuroradiol. 2012 May;33(5):833-8
– reference: 21151556 - PLoS One. 2010;5(12):e14277
– reference: 20688104 - J Neurosci Methods. 2010 Oct 15;192(2):207-13
– reference: 22227886 - Neuroimage. 2012 Mar;60(1):601-13
– reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
– reference: 22732664 - IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):682-96
– reference: 15768852 - Int J Neurosci. 2005 Jan;115(1):55-77
– reference: 15907293 - Neuroimage. 2005 Jun;26(2):317-29
– reference: 22431587 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5487-92
– reference: 18463251 - J Neurosci. 2008 May 7;28(19):4974-81
– reference: 15110032 - Neuroimage. 2004 May;22(1):394-400
SSID ssj0004906
Score 2.149371
Snippet •A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection...
Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Brain - physiology
Brain Mapping - methods
Computer Simulation
Datasets as Topic
Fingers - physiology
Humans
Linear Models
Magnetic Resonance Imaging - methods
Mental Processes - physiology
Models, Neurological
Motor Activity - physiology
Neural Pathways - physiology
Neuropsychological Tests
Outlier detection
Quantitative fMRI
Reproducibility of Results
Rest
Spatial regularization
Support Vector Machine
Visual Perception - physiology
Title Spatially regularized machine learning for task and resting-state fMRI
URI https://dx.doi.org/10.1016/j.jneumeth.2015.10.001
https://www.ncbi.nlm.nih.gov/pubmed/26470627
https://www.proquest.com/docview/1737476394
https://pubmed.ncbi.nlm.nih.gov/PMC4670826
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hkBAL4k14yUiILY2bt8cKURVQGXhIbJGdONACAZV2gIHfzp2TlBaEOjDasSXL38X3nX0PgCPphRlH4mC7UYwGioxDW3ApbFK3kci51jnFDncvw86tf34X3M3BSR0LQ26V1dlfnunmtK56nGo3nddez7mmQBw0qshk55SfhyLY_YikvPH57ebhC1NfkwbTeyWfiBLuN_qFHlGlZnLxChrGy6v5l4L6TUB_-lFOKKb2CixXjJK1ykWvwpwu1mC9VaA1_fzOjpnx8TSX52uw2K2e0tehTcWIUfie3tnA1KMf9D50xp6Nc6VmVTWJe4aklg3l2yOTRcaokAd22iYMieXdq7MNuG2f3px07Kqogp2iHhraEk0610OE0BASCEXc5LEvo1ipnGfIYV3legEiq_Mojz0dcuUFKhep8DIey1R6mzBfvBR6G1gglM6ERuWXUmK_QEmphXSxJXLBlWtBUO9kklYZx6nwxVNSu5b1kxqBhBCgfkTAAmc877XMuTFzhqiBSqakJ0HFMHPuYY1sgr8WvZfIQr-M3pJm5KGxhRTOt2CrRHq8HuSREWV4tiCakoHxAErbPf2l6D2Y9N2ompB3hTv_WPMuLGHLXAU1gz2YHw5Geh_J0VAdGOk_gIXW2UXn8guCZBBg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6CIgEXxPgxysbwpIlbqJvUSXysEFULtIcNJG6WnTjQrgRU2gP76_ee63SUaeKwY5xYsvw5ft-z33sfwDcdxTlH4hCESYoOik7jQHItAzK3iSy4tQXlDvcHcfemdXErblfgrMqFobBKv_fP93S3W_uWhp_NxtNw2PhBiTjoVJHLzqk-zyqsUXUqUYO1du-yO_iTHimdxCZ9T1eW_FWi8Oh0VNoZiTVTlJc4dYFezX_ZqL856NtQyle2qbMNW55UsvZ83B9gxZY7sNsu0aF-eGEnzIV5uvPzHVjv-9v0XeiQHjGuv_ELmzhJ-snwl83Zg4uvtMwLStwx5LVsqp9_Ml3mjLQ8sDFwmUis6H_v7cFN5_z6rBt4XYUgQ1M0DTR6dWGEIKEvJBGNtMnTlk5SYwqeI40NTRgJBNcWSZFGNuYmEqaQmYxynupMR_tQKx9LewBMSGNzadH-ZVTbTxitrdQhPslCchPWQVQzqTJfdJy0L8aqii4bqQoBRQhQOyJQh8ai39O87Ma7PWQFlFpaQAptw7t9v1bIKvy76MpEl_Zx9qyaSYT-FrK4Vh0-zpFejAepZEJFnuuQLK2BxQdUuXv5TTm8dxW80Toh9YoP_2PMx7DRve5fqave4PITbOIbdzLUFJ-hNp3M7BFypan54v-F38SAExE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+regularized+machine+learning+for+task+and+resting-state+fMRI&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Song%2C+Xiaomu&rft.au=Panych%2C+Lawrence+P&rft.au=Chen%2C+Nan-kuei&rft.date=2016-01-15&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=257&rft.spage=214&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.10.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon