Spatially regularized machine learning for task and resting-state fMRI
•A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection process.•Support vector machines are used to implement a semi-supervised learning.•Spatial constraints are integrated into the support vector learnin...
Saved in:
Published in | Journal of neuroscience methods Vol. 257; pp. 214 - 228 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2015.10.001 |
Cover
Loading…
Abstract | •A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection process.•Support vector machines are used to implement a semi-supervised learning.•Spatial constraints are integrated into the support vector learning.•Salient features are identified for the brain mapping in task- and resting-state.
Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades.
A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space.
The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level.
A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level.
The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. |
---|---|
AbstractList | Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades.
A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space.
The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level.
A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level.
The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades.BACKGROUNDReliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades.A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space.NEW METHODA spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space.The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level.RESULTSThe method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level.A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level.COMPARISON WITH EXISTING METHODSA comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level.The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.CONCLUSIONSThe proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. •A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection process.•Support vector machines are used to implement a semi-supervised learning.•Spatial constraints are integrated into the support vector learning.•Salient features are identified for the brain mapping in task- and resting-state. Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. |
Author | Song, Xiaomu Panych, Lawrence P. Chen, Nan-kuei |
AuthorAffiliation | 1 Department of Electrical Engineering, School of Engineering, Widener University, Kirkbride Hall, Room 369, One University Place, Chester, PA 19013 3 Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Hock Plaza, Durham, NC 27710 2 Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 |
AuthorAffiliation_xml | – name: 3 Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Hock Plaza, Durham, NC 27710 – name: 1 Department of Electrical Engineering, School of Engineering, Widener University, Kirkbride Hall, Room 369, One University Place, Chester, PA 19013 – name: 2 Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 |
Author_xml | – sequence: 1 givenname: Xiaomu surname: Song fullname: Song, Xiaomu email: xmsong@widener.edu organization: Department of Electrical Engineering, School of Engineering, Widener University, Kirkbride Hall, Room 369, One University Place, Chester, PA 19013, United States – sequence: 2 givenname: Lawrence P. surname: Panych fullname: Panych, Lawrence P. organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States – sequence: 3 givenname: Nan-kuei surname: Chen fullname: Chen, Nan-kuei organization: Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Hock Plaza, Durham, NC 27710, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26470627$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUdFqFDEUDdJit9VfKPPoy2xvktkkCyJKsbbQUqgKvoVM5s5u1kxmTTKF-vVm2baoL30KnJxz7r3nHJODMAYk5JTCnAIVZ5v5JuA0YF7PGdBFAecA9BWZUSVZLaT6cUBmhbiogUk4IscpbQCgWYJ4TY6YaCQIJmfk4uvWZGe8f6giriZvovuNXTUYu3YBK48mBhdWVT_GKpv0szKhK8yUC1inbDJW_c3d1Rty2Buf8O3je0K-X3z-dn5ZX99-uTr_dF3bRtJcG6oaxrnoKC2bICoKqjFStW0PnaItaxlfYIvYy15xFNDyRdsv7ZJ3oIw1_IR82Ptup3bAzmLI0Xi9jW4w8UGPxul_f4Jb69V4rxshQTFRDN49GsTx11Tu0INLFr03AccpaSq5bKTgy6ZQT_-e9TzkKbxCEHuCjWNKEftnCgW9a0lv9FNLetfSDi8tFeH7_4TWlSjduNvZ-ZflH_dyLEnfO4w6WYfBYuci2qy70b1k8QfGdrQd |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2016_05_055 |
Cites_doi | 10.1109/TMI.2004.824234 10.1002/hbm.20022 10.1109/TMI.2003.822821 10.3174/ajnr.A2894 10.1109/TKDE.2003.1209008 10.1214/09-STS282 10.1016/j.neuroimage.2003.12.030 10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F 10.1016/j.neuroimage.2009.03.054 10.1006/nimg.2002.1132 10.1080/00207450490512650 10.1002/hbm.460020402 10.1162/089976601750264965 10.1016/j.neuroimage.2005.01.048 10.1016/j.jneumeth.2010.07.028 10.1016/j.mri.2014.04.004 10.1126/science.1194144 10.1073/pnas.1121049109 10.1002/hbm.1024 10.1371/journal.pone.0014277 10.1016/S0730-725X(01)00444-1 10.1109/TPAMI.2012.142 10.1016/j.neuroimage.2012.07.046 10.1007/978-1-4612-2544-7_17 10.1016/j.neuroimage.2009.11.011 10.1523/JNEUROSCI.5622-07.2008 10.1002/mrm.22159 10.1371/journal.pbio.1000157 10.1111/j.2517-6161.1977.tb01600.x 10.1073/pnas.0135058100 10.1098/rstb.2005.1634 10.1006/nimg.2001.1037 10.1023/B:MACH.0000035475.85309.1b 10.1002/jmri.21716 10.1016/j.brainres.2011.05.054 10.1162/jocn_a_00077 10.1006/nimg.1998.0391 10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X 10.1016/j.neuroimage.2008.02.051 10.1016/j.neuroimage.2011.12.052 10.1385/NI:1:3:259 10.1016/S1053-8119(03)00049-1 10.1371/journal.pone.0021976 10.1007/3-540-44581-1_27 10.1016/j.neuroimage.2008.10.055 10.1016/j.neuroimage.2008.10.057 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1023/A:1009715923555 10.1073/pnas.0905267106 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jneumeth.2015.10.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 228 |
ExternalDocumentID | PMC4670826 26470627 10_1016_j_jneumeth_2015_10_001 S0165027015003738 |
Genre | Evaluation Studies Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01-NS074045 – fundername: NINDS NIH HHS grantid: R01 NS074045 – fundername: NINDS NIH HHS grantid: R01-NS037992 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c471t-a1842336d11490ee81084a78bbf0d81b2b235ebeef7f83e60b35bf9c93d08aca3 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Thu Aug 21 18:18:00 EDT 2025 Wed Jul 30 10:35:55 EDT 2025 Mon Jul 21 05:55:05 EDT 2025 Thu Jul 03 08:27:05 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Fri Feb 23 02:33:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Outlier detection Spatial regularization Support vector machine Quantitative fMRI |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-a1842336d11490ee81084a78bbf0d81b2b235ebeef7f83e60b35bf9c93d08aca3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.jneumeth.2015.10.001 |
PMID | 26470627 |
PQID | 1737476394 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4670826 proquest_miscellaneous_1737476394 pubmed_primary_26470627 crossref_primary_10_1016_j_jneumeth_2015_10_001 crossref_citationtrail_10_1016_j_jneumeth_2015_10_001 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_10_001 |
PublicationCentury | 2000 |
PublicationDate | 2016-01-15 |
PublicationDateYYYYMMDD | 2016-01-15 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Stoeckel, Fung (bib0240) 2005 Shah, Yoon, Ousley, Hu, Peltier (bib0200) 2011; 19 Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens (bib0275) 2009; 45 Van de Ven, Formisano, Prvulovic, Roeder, Linden (bib0250) 2004; 22 Cuingnet, Glaunès, Chupin, Benali, Colliot (bib0055) 2013; 35 Nason, Silverman (bib0175) 1995; 103 Liang, Cherkassky, Rottenberg (bib0135) 2006 Shen, Meyer (bib0210) 2008; 41 Sindhwani, Niyogi, Belkin (bib0215) 2005 Gonzalez-Castillo, Saad, Handwerker, Inati, Brenowitz (bib0100) 2012; 109 Flamary, Rakotomamonjy (bib0085) 2013 Zhang, Tian, Yuan, Liu, Zhuo, Qin (bib0295) 2011; 1402 Song, Murphy, Wyrwicz (bib0225) 2006 Wu, Lin, Weng (bib0280) 2004; 5 Calhoun, Liu, Adali (bib0035) 2009; 45 LaConte, Strother, Cherkassky, Anderson, Hu (bib0125) 2005; 26 Vapnik (bib0255) 1998 Beckmann, DeLuca, Devlin, Smith (bib0015) 2005; 360 Greicius, Krasnow, Reiss, Menon (bib0110) 2003; 100 Craddock, Holtzheimer, Hu, Mayberg (bib0050) 2009; 62 Menon, Thomas, Gati (bib0170) 1997; 10 Dempster, Laird, Rubin (bib0060) 1977; 39 Lindquist (bib0140) 2008; 23 McKeown, Makeig, Brown, Jung, Kindermann, Bell (bib0150) 1998; 6 Supekar, Musen, Menon (bib0245) 2009; 7 Wang, Zuo, Gohel, Milham, Biswal, He (bib0265) 2011; 6 Evgeniou, Pontil, Papageorgiou, Poggio (bib0080) 2003; 15 Schőlkopf, Platt, Shawe-Taylor, Smola, Williamson (bib0195) 2001; 13 Schőlkopf, Herbrich, Smola (bib0190) 2001; 2111 Dosenbach, Nardos, Cohen, Fair, Power, Church (bib0070) 2010; 329 Schöpf, Kasess, Lanzenberger, Fischmeister, Windischberger, Moser (bib0185) 2010; 192 Song, Wyrwicz (bib0230) 2009; 47 Zang, Jiang, Lu, He, Tian (bib0290) 2004; 22 Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just (bib0165) 2004; 57 Deshpande, Li, Santhanam, Claire, Coles, Lynch (bib0065) 2010; 5 Laird, Fox, Eickhoff, Turner, Ray, McKay (bib0130) 2011; 12 Genovese, Lazar, Nichols (bib0095) 2002; 15 Chou, Panych, Dickey, Petrella, Chen (bib0040) 2012; 33 Meier, Desphande, Vergun, Nair, Song, Biswal (bib0155) 2012; 60 Jenkinson, Bannister, Brady, Smith (bib0120) 2002; 17 Song, Chen (bib0235) 2014; 32 Dundar, Theiler, Perkins (bib0075) 2006 Hartvig, Jensen (bib0115) 2000; 11 Belkin, Niyogi, Sindhwani (bib0020) 2006; 7 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bib0090) 1995; 2 Voyvodic, Petrella, Friedman (bib0260) 2009; 29 Cox, Savoy (bib0045) 2003; 19 Wink, Roerdink (bib0270) 2004; 23 Ngan, Auffermann, Sarkar, Hu (bib0180) 2001; 19 Beckmann, Smith (bib0010) 2004; 23 Burges (bib0025) 1998; 2 Calhoun, Adali, Pearlson, Pekar (bib0030) 2001; 13 Smith, Fox, Miller, Glahn, Fox, Mackay (bib0220) 2009; 106 Miller, Weiss, Song, Iordanescu, Disterhoft, Wyrwicz (bib0160) 2008; 28 Yoo, Dickey, Guttmann, Panych (bib0285) 2005; 115 Lu, Zang, Jiang (bib0145) 2003; 1 Shen, Wang, Liu, Hu (bib0205) 2010; 49 Goutte, Toft, Rostrup, Nielsen, Hansen (bib0105) 1999; 9 Baldassano, Iordan, Beck, Li (bib0005) 2012; 63 Jenkinson (10.1016/j.jneumeth.2015.10.001_bib0120) 2002; 17 Voyvodic (10.1016/j.jneumeth.2015.10.001_bib0260) 2009; 29 Dempster (10.1016/j.jneumeth.2015.10.001_bib0060) 1977; 39 Song (10.1016/j.jneumeth.2015.10.001_bib0225) 2006 Shen (10.1016/j.jneumeth.2015.10.001_bib0210) 2008; 41 Stoeckel (10.1016/j.jneumeth.2015.10.001_bib0240) 2005 Baldassano (10.1016/j.jneumeth.2015.10.001_bib0005) 2012; 63 Dosenbach (10.1016/j.jneumeth.2015.10.001_bib0070) 2010; 329 Goutte (10.1016/j.jneumeth.2015.10.001_bib0105) 1999; 9 Lindquist (10.1016/j.jneumeth.2015.10.001_bib0140) 2008; 23 Schőlkopf (10.1016/j.jneumeth.2015.10.001_bib0190) 2001; 2111 Zhang (10.1016/j.jneumeth.2015.10.001_bib0295) 2011; 1402 Wink (10.1016/j.jneumeth.2015.10.001_bib0270) 2004; 23 Shen (10.1016/j.jneumeth.2015.10.001_bib0205) 2010; 49 Flamary (10.1016/j.jneumeth.2015.10.001_bib0085) 2013 Dundar (10.1016/j.jneumeth.2015.10.001_bib0075) 2006 Song (10.1016/j.jneumeth.2015.10.001_bib0230) 2009; 47 Van de Ven (10.1016/j.jneumeth.2015.10.001_bib0250) 2004; 22 Smith (10.1016/j.jneumeth.2015.10.001_bib0220) 2009; 106 Miller (10.1016/j.jneumeth.2015.10.001_bib0160) 2008; 28 Menon (10.1016/j.jneumeth.2015.10.001_bib0170) 1997; 10 Chou (10.1016/j.jneumeth.2015.10.001_bib0040) 2012; 33 Wu (10.1016/j.jneumeth.2015.10.001_bib0280) 2004; 5 LaConte (10.1016/j.jneumeth.2015.10.001_bib0125) 2005; 26 Mitchell (10.1016/j.jneumeth.2015.10.001_bib0165) 2004; 57 Nason (10.1016/j.jneumeth.2015.10.001_bib0175) 1995; 103 Meier (10.1016/j.jneumeth.2015.10.001_bib0155) 2012; 60 Song (10.1016/j.jneumeth.2015.10.001_bib0235) 2014; 32 Cox (10.1016/j.jneumeth.2015.10.001_bib0045) 2003; 19 Ngan (10.1016/j.jneumeth.2015.10.001_bib0180) 2001; 19 Craddock (10.1016/j.jneumeth.2015.10.001_bib0050) 2009; 62 Burges (10.1016/j.jneumeth.2015.10.001_bib0025) 1998; 2 Deshpande (10.1016/j.jneumeth.2015.10.001_bib0065) 2010; 5 Yoo (10.1016/j.jneumeth.2015.10.001_bib0285) 2005; 115 Supekar (10.1016/j.jneumeth.2015.10.001_bib0245) 2009; 7 Wang (10.1016/j.jneumeth.2015.10.001_bib0265) 2011; 6 Calhoun (10.1016/j.jneumeth.2015.10.001_bib0030) 2001; 13 Belkin (10.1016/j.jneumeth.2015.10.001_bib0020) 2006; 7 Gonzalez-Castillo (10.1016/j.jneumeth.2015.10.001_bib0100) 2012; 109 Genovese (10.1016/j.jneumeth.2015.10.001_bib0095) 2002; 15 Liang (10.1016/j.jneumeth.2015.10.001_bib0135) 2006 Beckmann (10.1016/j.jneumeth.2015.10.001_bib0015) 2005; 360 Laird (10.1016/j.jneumeth.2015.10.001_bib0130) 2011; 12 Woolrich (10.1016/j.jneumeth.2015.10.001_bib0275) 2009; 45 Schöpf (10.1016/j.jneumeth.2015.10.001_bib0185) 2010; 192 Evgeniou (10.1016/j.jneumeth.2015.10.001_bib0080) 2003; 15 Vapnik (10.1016/j.jneumeth.2015.10.001_bib0255) 1998 McKeown (10.1016/j.jneumeth.2015.10.001_bib0150) 1998; 6 Sindhwani (10.1016/j.jneumeth.2015.10.001_bib0215) 2005 Hartvig (10.1016/j.jneumeth.2015.10.001_bib0115) 2000; 11 Greicius (10.1016/j.jneumeth.2015.10.001_bib0110) 2003; 100 Beckmann (10.1016/j.jneumeth.2015.10.001_bib0010) 2004; 23 Cuingnet (10.1016/j.jneumeth.2015.10.001_bib0055) 2013; 35 Calhoun (10.1016/j.jneumeth.2015.10.001_bib0035) 2009; 45 Shah (10.1016/j.jneumeth.2015.10.001_bib0200) 2011; 19 Friston (10.1016/j.jneumeth.2015.10.001_bib0090) 1995; 2 Lu (10.1016/j.jneumeth.2015.10.001_bib0145) 2003; 1 Zang (10.1016/j.jneumeth.2015.10.001_bib0290) 2004; 22 Schőlkopf (10.1016/j.jneumeth.2015.10.001_bib0195) 2001; 13 18450478 - Neuroimage. 2008 Jul 1;41(3):886-902 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 15110032 - Neuroimage. 2004 May;22(1):394-400 20688104 - J Neurosci Methods. 2010 Oct 15;192(2):207-13 15907293 - Neuroimage. 2005 Jun;26(2):317-29 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 11144753 - Hum Brain Mapp. 2000 Dec;11(4):233-48 15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78 21151556 - PLoS One. 2010;5(12):e14277 19344772 - Neuroimage. 2009 Aug 1;47(1):204-12 19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86 19306363 - J Magn Reson Imaging. 2009 Apr;29(4):751-9 22268094 - AJNR Am J Neuroradiol. 2012 May;33(5):833-8 21671731 - J Cogn Neurosci. 2011 Dec;23(12):4022-37 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106 11755724 - Magn Reson Imaging. 2001 Nov;19(9):1149-58 11906227 - Neuroimage. 2002 Apr;15(4):870-8 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 9430345 - NMR Biomed. 1997 Jun-Aug;10(4-5):179-82 19621066 - PLoS Biol. 2009 Jul;7(7):e1000157 22732664 - IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):682-96 22431587 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5487-92 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72 19931396 - Neuroimage. 2010 Feb 15;49(4):3110-21 20829489 - Science. 2010 Sep 10;329(5997):1358-61 12377157 - Neuroimage. 2002 Oct;17(2):825-41 24928301 - Magn Reson Imaging. 2014 Sep;32(7):819-31 10075900 - Neuroimage. 1999 Mar;9(3):298-310 19859933 - Magn Reson Med. 2009 Dec;62(6):1619-28 11284046 - Hum Brain Mapp. 2001 May;13(1):43-53 15027530 - IEEE Trans Med Imaging. 2004 Mar;23(3):374-87 9673671 - Hum Brain Mapp. 1998;6(3):160-88 21818285 - PLoS One. 2011;6(7):e21976 15046247 - Neuroinformatics. 2003;1(3):259-69 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70 18463251 - J Neurosci. 2008 May 7;28(19):4974-81 15768852 - Int J Neurosci. 2005 Jan;115(1):55-77 22227886 - Neuroimage. 2012 Mar;60(1):601-13 21669407 - Brain Res. 2011 Jul 21;1402:46-53 11440593 - Neural Comput. 2001 Jul;13(7):1443-71 |
References_xml | – volume: 22 start-page: 165 year: 2004 end-page: 178 ident: bib0250 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum Brain Mapp – volume: 6 start-page: 160 year: 1998 end-page: 188 ident: bib0150 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum Brain Mapp – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: bib0025 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl Discovery – volume: 19 start-page: 4165 year: 2011 ident: bib0200 article-title: fMRI detection of Asperger's disorder using support vector machine classification publication-title: Proc ISMRM – volume: 7 start-page: e1000157 year: 2009 ident: bib0245 article-title: Development of large-scale functional brain networks in children publication-title: PLoS Biol. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0120 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib0060 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Royal Stat Soc, Ser B – volume: 35 start-page: 682 year: 2013 end-page: 696 ident: bib0055 article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: bib0090 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp – volume: 5 start-page: e14227 year: 2010 ident: bib0065 article-title: Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity publication-title: PLoS ONE – volume: 103 start-page: 281 year: 1995 end-page: 299 ident: bib0175 article-title: The stationary wavelet transform and some statistical applications publication-title: Lect Notes Stat – volume: 49 start-page: 3110 year: 2010 end-page: 3121 ident: bib0205 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: NeuroImage – volume: 63 start-page: 1099 year: 2012 end-page: 1106 ident: bib0005 article-title: Voxel-level functional connectivity using spatial regularization publication-title: NeuroImage – volume: 33 start-page: 833 year: 2012 end-page: 838 ident: bib0040 article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study publication-title: Am J Neuroradiol – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bib0070 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 11 start-page: 233 year: 2000 end-page: 248 ident: bib0115 article-title: Spatial mixture modeling of fMRI data publication-title: Hum Brain Mapp – volume: 60 start-page: 601 year: 2012 end-page: 613 ident: bib0155 article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks publication-title: NeuroImage – start-page: 364 year: 2006 end-page: 367 ident: bib0075 article-title: Incorporating spatial contiguity into the design of a support vector machine classifier publication-title: Proc IEEE Geosci Remote Sens Symp – year: 1998 ident: bib0255 article-title: Statistical learning theory – volume: 32 start-page: 819 year: 2014 end-page: 831 ident: bib0235 article-title: A SVM-based quantitative fMRI method for resting-state functional network detection publication-title: Magn Reson Imaging – volume: 45 start-page: S173 year: 2009 end-page: S186 ident: bib0275 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage – volume: 22 start-page: 394 year: 2004 end-page: 400 ident: bib0290 article-title: Regional homogeneity approach to fMRI data analysis publication-title: NeuroImage – volume: 62 start-page: 1619 year: 2009 end-page: 1628 ident: bib0050 article-title: Disease state predication from resting state functional connectivity publication-title: Magn Reson Med – volume: 12 start-page: 4022 year: 2011 end-page: 4037 ident: bib0130 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J Cognit Neurosci – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: bib0020 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – volume: 28 start-page: 4974 year: 2008 end-page: 4981 ident: bib0160 article-title: fMRI of delay and trace eyeblink conditioning in the primary visual cortex of the rabbit publication-title: J Neurosci – volume: 19 start-page: 1149 year: 2001 end-page: 1158 ident: bib0180 article-title: Activation detection in event-related fMRI data based on spatio-temporal properties publication-title: Magn Reson Imag – volume: 45 start-page: S163 year: 2009 end-page: S172 ident: bib0035 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage – start-page: 2857 year: 2006 end-page: 2860 ident: bib0225 article-title: Spatiotemporal denoising and clustering of fMRI data publication-title: Proc IEEE Int Conf Image Process – volume: 15 start-page: 911 year: 2003 end-page: 920 ident: bib0080 article-title: Image representations and feature selection for multimedia database search publication-title: IEEE Trans Knowl Data Eng – volume: 47 start-page: 204 year: 2009 end-page: 212 ident: bib0230 article-title: Unsupervised spatiotemporal fMRI data analysis using support vector machines publication-title: NeuroImage – volume: 23 start-page: 439 year: 2008 end-page: 464 ident: bib0140 article-title: The statistical analysis of fMRI data publication-title: Stat Sci – volume: 26 start-page: 317 year: 2005 end-page: 329 ident: bib0125 article-title: Support vector machines for temporal classification of black design fMRI data publication-title: NeuroImage – start-page: 1463 year: 2006 end-page: 1469 ident: bib0135 article-title: Spatial SVM for feature selection and fMRI activation detection publication-title: Proc Int Joint Conf Neural Netw – volume: 6 start-page: e21976 year: 2011 ident: bib0265 article-title: Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data publication-title: PLoS ONE – start-page: 27 year: 2005 end-page: 30 ident: bib0240 article-title: SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information publication-title: Proc. the 5th IEEE Intl. Conf. Data Mining – start-page: 824 year: 2005 end-page: 831 ident: bib0215 article-title: Beyond the point cloud: from transductive to semi-supervised learning publication-title: Proc the 22nd Intl Conf Machine Learning – volume: 1 start-page: 259 year: 2003 end-page: 270 ident: bib0145 article-title: A modified temporal self-correlation method for analysis of fMRI time series publication-title: NeuroInformatics – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib0015 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc B – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib0220 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: PNAS – volume: 192 start-page: 207 year: 2010 end-page: 213 ident: bib0185 article-title: Fully exploratory network ICA (FENICA) on resting-state fMRI data publication-title: J Neurosci Methods – volume: 57 start-page: 145 year: 2004 end-page: 175 ident: bib0165 article-title: Learning to decode cognitive states from brain images publication-title: Mach Learn – volume: 115 start-page: 55 year: 2005 end-page: 77 ident: bib0285 article-title: Long-term reproducibility analysis of fMRI using hand motor tasks publication-title: Int J Neurosci – volume: 5 start-page: 975 year: 2004 end-page: 1005 ident: bib0280 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J Mach Learn Res – volume: 1402 start-page: 46 year: 2011 end-page: 53 ident: bib0295 article-title: Distinct resting-state brain activities in heroin-dependent individuals publication-title: Brain Res – volume: 15 start-page: 870 year: 2002 end-page: 878 ident: bib0095 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage – volume: 41 start-page: 886 year: 2008 end-page: 902 ident: bib0210 article-title: Low-dimensional embedding of fMRI datasets publication-title: NeuroImage – volume: 23 start-page: 374 year: 2004 end-page: 387 ident: bib0270 article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing publication-title: IEEE Trans Med Imag – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bib0010 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans Med Imaging – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bib0110 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: PNAS – volume: 2111 start-page: 416 year: 2001 end-page: 426 ident: bib0190 article-title: A generalized representer theorem, computational learning theory publication-title: Lect Notes Comput Sci – volume: 9 start-page: 298 year: 1999 end-page: 310 ident: bib0105 article-title: On clustering fMRI time series publication-title: NeuroImage – volume: 13 start-page: 43 year: 2001 end-page: 53 ident: bib0030 article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of block-design waveforms publication-title: Hum Brain Mapp – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: bib0045 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: NeuroImage – volume: 13 start-page: 1443 year: 2001 end-page: 1471 ident: bib0195 article-title: Estimating the support of high-dimensional distribution publication-title: Neural Comput. – start-page: 73 year: 2013 end-page: 74 ident: bib0085 article-title: Support vector machine with spatial regularization for pixel classification publication-title: Proceedings of international workshop on advances in regularization, optimization, kernel methods and support vector machines: theory and applications – volume: 29 start-page: 751 year: 2009 end-page: 759 ident: bib0260 article-title: fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment, adjustment publication-title: J Magn Reson Imaging – volume: 109 start-page: 5487 year: 2012 end-page: 5492 ident: bib0100 article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis publication-title: PNAS – volume: 10 start-page: 179 year: 1997 end-page: 182 ident: bib0170 article-title: Investigation of BOLD contrast in fMRI using multi-shot EPI publication-title: NMR Biomed – volume: 23 start-page: 374 issue: 3 year: 2004 ident: 10.1016/j.jneumeth.2015.10.001_bib0270 article-title: Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2004.824234 – volume: 22 start-page: 165 year: 2004 ident: 10.1016/j.jneumeth.2015.10.001_bib0250 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum Brain Mapp doi: 10.1002/hbm.20022 – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.jneumeth.2015.10.001_bib0010 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.822821 – volume: 33 start-page: 833 year: 2012 ident: 10.1016/j.jneumeth.2015.10.001_bib0040 article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A2894 – volume: 15 start-page: 911 issue: 4 year: 2003 ident: 10.1016/j.jneumeth.2015.10.001_bib0080 article-title: Image representations and feature selection for multimedia database search publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2003.1209008 – volume: 23 start-page: 439 issue: 4 year: 2008 ident: 10.1016/j.jneumeth.2015.10.001_bib0140 article-title: The statistical analysis of fMRI data publication-title: Stat Sci doi: 10.1214/09-STS282 – volume: 22 start-page: 394 year: 2004 ident: 10.1016/j.jneumeth.2015.10.001_bib0290 article-title: Regional homogeneity approach to fMRI data analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.12.030 – volume: 11 start-page: 233 issue: 4 year: 2000 ident: 10.1016/j.jneumeth.2015.10.001_bib0115 article-title: Spatial mixture modeling of fMRI data publication-title: Hum Brain Mapp doi: 10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F – volume: 47 start-page: 204 year: 2009 ident: 10.1016/j.jneumeth.2015.10.001_bib0230 article-title: Unsupervised spatiotemporal fMRI data analysis using support vector machines publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.03.054 – start-page: 2857 year: 2006 ident: 10.1016/j.jneumeth.2015.10.001_bib0225 article-title: Spatiotemporal denoising and clustering of fMRI data – year: 1998 ident: 10.1016/j.jneumeth.2015.10.001_bib0255 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.jneumeth.2015.10.001_bib0120 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 115 start-page: 55 year: 2005 ident: 10.1016/j.jneumeth.2015.10.001_bib0285 article-title: Long-term reproducibility analysis of fMRI using hand motor tasks publication-title: Int J Neurosci doi: 10.1080/00207450490512650 – volume: 2 start-page: 189 year: 1995 ident: 10.1016/j.jneumeth.2015.10.001_bib0090 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp doi: 10.1002/hbm.460020402 – volume: 13 start-page: 1443 issue: 7 year: 2001 ident: 10.1016/j.jneumeth.2015.10.001_bib0195 article-title: Estimating the support of high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – start-page: 364 year: 2006 ident: 10.1016/j.jneumeth.2015.10.001_bib0075 article-title: Incorporating spatial contiguity into the design of a support vector machine classifier publication-title: Proc IEEE Geosci Remote Sens Symp – volume: 26 start-page: 317 year: 2005 ident: 10.1016/j.jneumeth.2015.10.001_bib0125 article-title: Support vector machines for temporal classification of black design fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.048 – volume: 192 start-page: 207 year: 2010 ident: 10.1016/j.jneumeth.2015.10.001_bib0185 article-title: Fully exploratory network ICA (FENICA) on resting-state fMRI data publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.07.028 – volume: 32 start-page: 819 year: 2014 ident: 10.1016/j.jneumeth.2015.10.001_bib0235 article-title: A SVM-based quantitative fMRI method for resting-state functional network detection publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2014.04.004 – volume: 329 start-page: 1358 year: 2010 ident: 10.1016/j.jneumeth.2015.10.001_bib0070 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 109 start-page: 5487 issue: 14 year: 2012 ident: 10.1016/j.jneumeth.2015.10.001_bib0100 article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis publication-title: PNAS doi: 10.1073/pnas.1121049109 – volume: 13 start-page: 43 year: 2001 ident: 10.1016/j.jneumeth.2015.10.001_bib0030 article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of block-design waveforms publication-title: Hum Brain Mapp doi: 10.1002/hbm.1024 – volume: 5 start-page: e14227 issue: 12 year: 2010 ident: 10.1016/j.jneumeth.2015.10.001_bib0065 article-title: Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity publication-title: PLoS ONE doi: 10.1371/journal.pone.0014277 – volume: 19 start-page: 1149 year: 2001 ident: 10.1016/j.jneumeth.2015.10.001_bib0180 article-title: Activation detection in event-related fMRI data based on spatio-temporal properties publication-title: Magn Reson Imag doi: 10.1016/S0730-725X(01)00444-1 – volume: 35 start-page: 682 issue: 3 year: 2013 ident: 10.1016/j.jneumeth.2015.10.001_bib0055 article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.142 – volume: 63 start-page: 1099 year: 2012 ident: 10.1016/j.jneumeth.2015.10.001_bib0005 article-title: Voxel-level functional connectivity using spatial regularization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.07.046 – volume: 103 start-page: 281 year: 1995 ident: 10.1016/j.jneumeth.2015.10.001_bib0175 article-title: The stationary wavelet transform and some statistical applications publication-title: Lect Notes Stat doi: 10.1007/978-1-4612-2544-7_17 – volume: 49 start-page: 3110 year: 2010 ident: 10.1016/j.jneumeth.2015.10.001_bib0205 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.11.011 – start-page: 824 year: 2005 ident: 10.1016/j.jneumeth.2015.10.001_bib0215 article-title: Beyond the point cloud: from transductive to semi-supervised learning – volume: 28 start-page: 4974 issue: 19 year: 2008 ident: 10.1016/j.jneumeth.2015.10.001_bib0160 article-title: fMRI of delay and trace eyeblink conditioning in the primary visual cortex of the rabbit publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5622-07.2008 – volume: 62 start-page: 1619 year: 2009 ident: 10.1016/j.jneumeth.2015.10.001_bib0050 article-title: Disease state predication from resting state functional connectivity publication-title: Magn Reson Med doi: 10.1002/mrm.22159 – volume: 7 start-page: e1000157 year: 2009 ident: 10.1016/j.jneumeth.2015.10.001_bib0245 article-title: Development of large-scale functional brain networks in children publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000157 – start-page: 1463 year: 2006 ident: 10.1016/j.jneumeth.2015.10.001_bib0135 article-title: Spatial SVM for feature selection and fMRI activation detection – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.jneumeth.2015.10.001_bib0060 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Royal Stat Soc, Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 100 start-page: 253 issue: 1 year: 2003 ident: 10.1016/j.jneumeth.2015.10.001_bib0110 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: PNAS doi: 10.1073/pnas.0135058100 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.jneumeth.2015.10.001_bib0015 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc B doi: 10.1098/rstb.2005.1634 – volume: 15 start-page: 870 year: 2002 ident: 10.1016/j.jneumeth.2015.10.001_bib0095 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage doi: 10.1006/nimg.2001.1037 – volume: 57 start-page: 145 year: 2004 ident: 10.1016/j.jneumeth.2015.10.001_bib0165 article-title: Learning to decode cognitive states from brain images publication-title: Mach Learn doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 29 start-page: 751 year: 2009 ident: 10.1016/j.jneumeth.2015.10.001_bib0260 article-title: fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment, adjustment publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21716 – volume: 5 start-page: 975 year: 2004 ident: 10.1016/j.jneumeth.2015.10.001_bib0280 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J Mach Learn Res – volume: 1402 start-page: 46 year: 2011 ident: 10.1016/j.jneumeth.2015.10.001_bib0295 article-title: Distinct resting-state brain activities in heroin-dependent individuals publication-title: Brain Res doi: 10.1016/j.brainres.2011.05.054 – volume: 12 start-page: 4022 year: 2011 ident: 10.1016/j.jneumeth.2015.10.001_bib0130 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J Cognit Neurosci doi: 10.1162/jocn_a_00077 – volume: 9 start-page: 298 year: 1999 ident: 10.1016/j.jneumeth.2015.10.001_bib0105 article-title: On clustering fMRI time series publication-title: NeuroImage doi: 10.1006/nimg.1998.0391 – volume: 10 start-page: 179 year: 1997 ident: 10.1016/j.jneumeth.2015.10.001_bib0170 article-title: Investigation of BOLD contrast in fMRI using multi-shot EPI publication-title: NMR Biomed doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<179::AID-NBM463>3.0.CO;2-X – volume: 41 start-page: 886 year: 2008 ident: 10.1016/j.jneumeth.2015.10.001_bib0210 article-title: Low-dimensional embedding of fMRI datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.051 – volume: 7 start-page: 2399 year: 2006 ident: 10.1016/j.jneumeth.2015.10.001_bib0020 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – volume: 60 start-page: 601 issue: 1 year: 2012 ident: 10.1016/j.jneumeth.2015.10.001_bib0155 article-title: Support vector machine classification and characterization of age-related reorganization of functional brain networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.12.052 – volume: 1 start-page: 259 year: 2003 ident: 10.1016/j.jneumeth.2015.10.001_bib0145 article-title: A modified temporal self-correlation method for analysis of fMRI time series publication-title: NeuroInformatics doi: 10.1385/NI:1:3:259 – volume: 19 start-page: 261 year: 2003 ident: 10.1016/j.jneumeth.2015.10.001_bib0045 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00049-1 – volume: 6 start-page: e21976 issue: 7 year: 2011 ident: 10.1016/j.jneumeth.2015.10.001_bib0265 article-title: Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data publication-title: PLoS ONE doi: 10.1371/journal.pone.0021976 – volume: 2111 start-page: 416 year: 2001 ident: 10.1016/j.jneumeth.2015.10.001_bib0190 article-title: A generalized representer theorem, computational learning theory publication-title: Lect Notes Comput Sci doi: 10.1007/3-540-44581-1_27 – volume: 45 start-page: S173 year: 2009 ident: 10.1016/j.jneumeth.2015.10.001_bib0275 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.055 – volume: 45 start-page: S163 issue: 1 (Suppl) year: 2009 ident: 10.1016/j.jneumeth.2015.10.001_bib0035 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.057 – start-page: 27 year: 2005 ident: 10.1016/j.jneumeth.2015.10.001_bib0240 article-title: SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information – start-page: 73 year: 2013 ident: 10.1016/j.jneumeth.2015.10.001_bib0085 article-title: Support vector machine with spatial regularization for pixel classification – volume: 6 start-page: 160 year: 1998 ident: 10.1016/j.jneumeth.2015.10.001_bib0150 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum Brain Mapp doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – volume: 19 start-page: 4165 year: 2011 ident: 10.1016/j.jneumeth.2015.10.001_bib0200 article-title: fMRI detection of Asperger's disorder using support vector machine classification publication-title: Proc ISMRM – volume: 2 start-page: 121 year: 1998 ident: 10.1016/j.jneumeth.2015.10.001_bib0025 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl Discovery doi: 10.1023/A:1009715923555 – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.jneumeth.2015.10.001_bib0220 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: PNAS doi: 10.1073/pnas.0905267106 – reference: 11144753 - Hum Brain Mapp. 2000 Dec;11(4):233-48 – reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 15027530 - IEEE Trans Med Imaging. 2004 Mar;23(3):374-87 – reference: 11755724 - Magn Reson Imaging. 2001 Nov;19(9):1149-58 – reference: 11284046 - Hum Brain Mapp. 2001 May;13(1):43-53 – reference: 21671731 - J Cogn Neurosci. 2011 Dec;23(12):4022-37 – reference: 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72 – reference: 11906227 - Neuroimage. 2002 Apr;15(4):870-8 – reference: 19621066 - PLoS Biol. 2009 Jul;7(7):e1000157 – reference: 21669407 - Brain Res. 2011 Jul 21;1402:46-53 – reference: 9430345 - NMR Biomed. 1997 Jun-Aug;10(4-5):179-82 – reference: 9673671 - Hum Brain Mapp. 1998;6(3):160-88 – reference: 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70 – reference: 19306363 - J Magn Reson Imaging. 2009 Apr;29(4):751-9 – reference: 15046247 - Neuroinformatics. 2003;1(3):259-69 – reference: 18450478 - Neuroimage. 2008 Jul 1;41(3):886-902 – reference: 22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106 – reference: 10075900 - Neuroimage. 1999 Mar;9(3):298-310 – reference: 19931396 - Neuroimage. 2010 Feb 15;49(4):3110-21 – reference: 19344772 - Neuroimage. 2009 Aug 1;47(1):204-12 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 24928301 - Magn Reson Imaging. 2014 Sep;32(7):819-31 – reference: 20829489 - Science. 2010 Sep 10;329(5997):1358-61 – reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41 – reference: 11440593 - Neural Comput. 2001 Jul;13(7):1443-71 – reference: 19859933 - Magn Reson Med. 2009 Dec;62(6):1619-28 – reference: 19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86 – reference: 21818285 - PLoS One. 2011;6(7):e21976 – reference: 15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78 – reference: 22268094 - AJNR Am J Neuroradiol. 2012 May;33(5):833-8 – reference: 21151556 - PLoS One. 2010;5(12):e14277 – reference: 20688104 - J Neurosci Methods. 2010 Oct 15;192(2):207-13 – reference: 22227886 - Neuroimage. 2012 Mar;60(1):601-13 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 22732664 - IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):682-96 – reference: 15768852 - Int J Neurosci. 2005 Jan;115(1):55-77 – reference: 15907293 - Neuroimage. 2005 Jun;26(2):317-29 – reference: 22431587 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5487-92 – reference: 18463251 - J Neurosci. 2008 May 7;28(19):4974-81 – reference: 15110032 - Neuroimage. 2004 May;22(1):394-400 |
SSID | ssj0004906 |
Score | 2.149371 |
Snippet | •A quantitative method is developed for task- and resting-state fMRI data analysis.•The brain functional mapping is formulated as an outlier detection... Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 214 |
SubjectTerms | Brain - physiology Brain Mapping - methods Computer Simulation Datasets as Topic Fingers - physiology Humans Linear Models Magnetic Resonance Imaging - methods Mental Processes - physiology Models, Neurological Motor Activity - physiology Neural Pathways - physiology Neuropsychological Tests Outlier detection Quantitative fMRI Reproducibility of Results Rest Spatial regularization Support Vector Machine Visual Perception - physiology |
Title | Spatially regularized machine learning for task and resting-state fMRI |
URI | https://dx.doi.org/10.1016/j.jneumeth.2015.10.001 https://www.ncbi.nlm.nih.gov/pubmed/26470627 https://www.proquest.com/docview/1737476394 https://pubmed.ncbi.nlm.nih.gov/PMC4670826 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hkBAL4k14yUiILY2bt8cKURVQGXhIbJGdONACAZV2gIHfzp2TlBaEOjDasSXL38X3nX0PgCPphRlH4mC7UYwGioxDW3ApbFK3kci51jnFDncvw86tf34X3M3BSR0LQ26V1dlfnunmtK56nGo3nddez7mmQBw0qshk55SfhyLY_YikvPH57ebhC1NfkwbTeyWfiBLuN_qFHlGlZnLxChrGy6v5l4L6TUB_-lFOKKb2CixXjJK1ykWvwpwu1mC9VaA1_fzOjpnx8TSX52uw2K2e0tehTcWIUfie3tnA1KMf9D50xp6Nc6VmVTWJe4aklg3l2yOTRcaokAd22iYMieXdq7MNuG2f3px07Kqogp2iHhraEk0610OE0BASCEXc5LEvo1ipnGfIYV3legEiq_Mojz0dcuUFKhep8DIey1R6mzBfvBR6G1gglM6ERuWXUmK_QEmphXSxJXLBlWtBUO9kklYZx6nwxVNSu5b1kxqBhBCgfkTAAmc877XMuTFzhqiBSqakJ0HFMHPuYY1sgr8WvZfIQr-M3pJm5KGxhRTOt2CrRHq8HuSREWV4tiCakoHxAErbPf2l6D2Y9N2ompB3hTv_WPMuLGHLXAU1gz2YHw5Geh_J0VAdGOk_gIXW2UXn8guCZBBg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6CIgEXxPgxysbwpIlbqJvUSXysEFULtIcNJG6WnTjQrgRU2gP76_ee63SUaeKwY5xYsvw5ft-z33sfwDcdxTlH4hCESYoOik7jQHItAzK3iSy4tQXlDvcHcfemdXErblfgrMqFobBKv_fP93S3W_uWhp_NxtNw2PhBiTjoVJHLzqk-zyqsUXUqUYO1du-yO_iTHimdxCZ9T1eW_FWi8Oh0VNoZiTVTlJc4dYFezX_ZqL856NtQyle2qbMNW55UsvZ83B9gxZY7sNsu0aF-eGEnzIV5uvPzHVjv-9v0XeiQHjGuv_ELmzhJ-snwl83Zg4uvtMwLStwx5LVsqp9_Ml3mjLQ8sDFwmUis6H_v7cFN5_z6rBt4XYUgQ1M0DTR6dWGEIKEvJBGNtMnTlk5SYwqeI40NTRgJBNcWSZFGNuYmEqaQmYxynupMR_tQKx9LewBMSGNzadH-ZVTbTxitrdQhPslCchPWQVQzqTJfdJy0L8aqii4bqQoBRQhQOyJQh8ai39O87Ma7PWQFlFpaQAptw7t9v1bIKvy76MpEl_Zx9qyaSYT-FrK4Vh0-zpFejAepZEJFnuuQLK2BxQdUuXv5TTm8dxW80Toh9YoP_2PMx7DRve5fqave4PITbOIbdzLUFJ-hNp3M7BFypan54v-F38SAExE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+regularized+machine+learning+for+task+and+resting-state+fMRI&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Song%2C+Xiaomu&rft.au=Panych%2C+Lawrence+P&rft.au=Chen%2C+Nan-kuei&rft.date=2016-01-15&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=257&rft.spage=214&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.10.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |