HINT: A hierarchical independent component analysis toolbox for investigating brain functional networks using neuroimaging data
•Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network differences.•Interactive visualization to display user-specified sub-population brain networks.•Model based estimation of brain networks on both individual and...
Saved in:
Published in | Journal of neuroscience methods Vol. 341; p. 108726 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2020.108726 |
Cover
Loading…
Abstract | •Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network differences.•Interactive visualization to display user-specified sub-population brain networks.•Model based estimation of brain networks on both individual and population level.•Command line version of toolbox for batch processing.
Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects’ clinical and demographic variables. Existing ICA methods and toolboxes don’t incorporate subjects’ covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects’ groups.
We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script.
HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons.
We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods.
HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups. |
---|---|
AbstractList | •Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network differences.•Interactive visualization to display user-specified sub-population brain networks.•Model based estimation of brain networks on both individual and population level.•Command line version of toolbox for batch processing.
Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects’ clinical and demographic variables. Existing ICA methods and toolboxes don’t incorporate subjects’ covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects’ groups.
We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script.
HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons.
We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods.
HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups. Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects' clinical and demographic variables. Existing ICA methods and toolboxes don't incorporate subjects' covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects' groups. We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script. HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons. We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods. HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups. Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects' clinical and demographic variables. Existing ICA methods and toolboxes don't incorporate subjects' covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects' groups.BACKGROUNDIndependent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects' clinical and demographic variables. Existing ICA methods and toolboxes don't incorporate subjects' covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects' groups.We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script.NEW METHODWe introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script.HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons.COMPARISON TO EXISTING METHODSHINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons.We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods.RESULTSWe demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods.HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups.CONCLUSIONHINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups. |
ArticleNumber | 108726 |
Author | Verma, Amit Guo, Ying Lukemire, Joshua Wang, Yikai |
Author_xml | – sequence: 1 givenname: Joshua surname: Lukemire fullname: Lukemire, Joshua – sequence: 2 givenname: Yikai surname: Wang fullname: Wang, Yikai – sequence: 3 givenname: Amit surname: Verma fullname: Verma, Amit – sequence: 4 givenname: Ying surname: Guo fullname: Guo, Ying email: yguo2@emory.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32360892$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFu1DAQtVBRuy39hcpHLllsJ7YThBBVVWilCi5F4mY5zmTXS2IvtrPQU38dR9tFwKUXjz1-b97MvFN05LwDhC4oWVJCxZvNcuNgGiGtl4ywOVlLJl6gBc2xELL-doQWGcgLwiQ5QacxbgghVUPEMTopWSlI3bAFery5_Xz_Fl_itYWgg1lbowdsXQdbyIdL2Phxm7XzTTs9PEQbcfJ-aP0v3PuQoTuIya50sm6F26Ctw_3kTLI-w7GD9NOH7xFPcf7PPQdvR72aH51O-hV62eshwvlTPENfP17fX90Ud18-3V5d3hWmkjQVDdSac8l6KqHnDFpRkUrIjgN0nHLJW142RnJCG9oSKaqOlJWUBEjDoTN9eYbe7-tup3bMmTxP0IPahtxMeFBeW_Xvj7NrtfI7JcuyZlWdC7x-KhD8jymPrEYbDQyDduCnqFjZ1FSQUlYZevG31h-Rw9Yz4N0eYIKPMUCvjE163liWtoOiRM0mq406mKxmk9Xe5EwX_9EPCs8SP-yJkDe9y4araCw4A50NYJLqvH2uxG-unskr |
CitedBy_id | crossref_primary_10_1111_biom_13867 crossref_primary_10_1214_22_AOAS1670 |
Cites_doi | 10.1073/pnas.1121329109 10.1109/TMI.2003.822821 10.3389/fnins.2016.00123 10.1002/hbm.21170 10.1098/rstb.2005.1634 10.1073/pnas.0905267106 10.1089/brain.2018.0615 10.1214/16-AOAS946 10.1016/S1053-8119(09)71511-3 10.1016/j.jneumeth.2011.10.025 10.1109/42.906424 10.1016/j.neuroimage.2018.12.024 10.3389/fpsyg.2015.00603 10.1016/j.neuroimage.2013.11.046 10.1016/S0893-6080(00)00026-5 10.1016/j.neuroimage.2012.11.008 10.1016/j.neuroimage.2008.05.008 10.1016/S1053-8119(01)91431-4 10.1073/pnas.0911855107 10.1016/j.neuroimage.2013.05.039 10.1111/j.1541-0420.2011.01601.x 10.1016/j.neuroimage.2014.03.034 10.1016/j.mri.2006.09.032 10.1111/biom.12068 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jneumeth.2020.108726 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 108726 |
ExternalDocumentID | PMC7338248 32360892 10_1016_j_jneumeth_2020_108726 S0165027020301497 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH118771 – fundername: NIMH NIH HHS grantid: R01 MH105561 – fundername: NCATS NIH HHS grantid: UL1 TR002378 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c471t-9e8a5572f17ef52eb640467d5eed51575b539c750191b0764d034770e095edcf3 |
IEDL.DBID | AIKHN |
ISSN | 0165-0270 1872-678X |
IngestDate | Thu Aug 21 18:19:54 EDT 2025 Thu Sep 04 21:46:15 EDT 2025 Mon Jul 21 05:50:52 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Tue Jul 01 02:57:13 EDT 2025 Fri Feb 23 02:46:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | fMRI Hierarchical model Independent component analysis (ICA) Covariate effects Brain network Matlab |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-9e8a5572f17ef52eb640467d5eed51575b539c750191b0764d034770e095edcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7338248 |
PMID | 32360892 |
PQID | 2398160374 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7338248 proquest_miscellaneous_2398160374 pubmed_primary_32360892 crossref_citationtrail_10_1016_j_jneumeth_2020_108726 crossref_primary_10_1016_j_jneumeth_2020_108726 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-15 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Smith, Miller, Moeller, Xu, Auerbach, Woolrich, Beckmann, Jenkinson, Andersson, Glasser (bib0120) 2012; 109 Gao, X., Shahbaba, B., and Ombao, H. (2017). Modeling binary time series using gaussian processes with application to predicting sleep states. arXiv preprint arXiv:1711.05466. Zhang, Brady, Smith (bib0140) 2001; 20 Wang, Guo (bib0125) 2019; 189 Guo, Tang (bib0065) 2013; 69 Ma, Wang, Chen, Xiong (bib0085) 2007; 25 Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (bib0035) 2011; 32 Guo (bib0055) 2011; 67 Du, Fan (bib0030) 2013; 69 Calhoun, Adali, Pearlson, Pekar (bib0025) 2001; 13 McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib0090) 1997 Guo, Pagnoni (bib0060) 2008; 42 Beckmann, Mackay, Filippini, Smith (bib0010) 2009; 47 Beckmann, Smith (bib0015) 2004; 23 Zhang, Agravat, Derado, Chen, McIntosh, Bowman (bib0135) 2012; 204 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0100) 2014; 90 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0050) 2014; 95 Kemmer, Guo, Wang, Pagnoni (bib0075) 2015; 6 Gao, X., Shen, W., and Ombao, H. (2018). Regularized matrix data clustering and its application to image analysis. arXiv preprint arXiv:1808.01749. Beckmann, DeLuca, Devlin, Smith (bib0005) 2005; 360 Hyvärinen, Oja (bib0070) 2000; 13 Shi, Guo (bib0105) 2016; 10 Kemmer, Wang, Bowman, Mayberg, Guo (bib0080) 2018; 8 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (bib0115) 2009; 106 Wang, Kang, Kemmer, Guo (bib0130) 2016; 10 Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (bib0110) 2013; 80 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe (bib0020) 2010; 107 Minka (bib0095) 2001 Du (10.1016/j.jneumeth.2020.108726_bib0030) 2013; 69 Salimi-Khorshidi (10.1016/j.jneumeth.2020.108726_bib0100) 2014; 90 Minka (10.1016/j.jneumeth.2020.108726_bib0095) 2001 Guo (10.1016/j.jneumeth.2020.108726_bib0055) 2011; 67 Kemmer (10.1016/j.jneumeth.2020.108726_bib0075) 2015; 6 Beckmann (10.1016/j.jneumeth.2020.108726_bib0015) 2004; 23 Hyvärinen (10.1016/j.jneumeth.2020.108726_bib0070) 2000; 13 Ma (10.1016/j.jneumeth.2020.108726_bib0085) 2007; 25 Zhang (10.1016/j.jneumeth.2020.108726_bib0140) 2001; 20 10.1016/j.jneumeth.2020.108726_bib0045 Shi (10.1016/j.jneumeth.2020.108726_bib0105) 2016; 10 Erhardt (10.1016/j.jneumeth.2020.108726_bib0035) 2011; 32 10.1016/j.jneumeth.2020.108726_bib0040 Smith (10.1016/j.jneumeth.2020.108726_bib0110) 2013; 80 Smith (10.1016/j.jneumeth.2020.108726_bib0115) 2009; 106 Wang (10.1016/j.jneumeth.2020.108726_bib0125) 2019; 189 Beckmann (10.1016/j.jneumeth.2020.108726_bib0010) 2009; 47 Griffanti (10.1016/j.jneumeth.2020.108726_bib0050) 2014; 95 Beckmann (10.1016/j.jneumeth.2020.108726_bib0005) 2005; 360 McKeown (10.1016/j.jneumeth.2020.108726_bib0090) 1997 Wang (10.1016/j.jneumeth.2020.108726_bib0130) 2016; 10 Calhoun (10.1016/j.jneumeth.2020.108726_bib0025) 2001; 13 Guo (10.1016/j.jneumeth.2020.108726_bib0060) 2008; 42 Smith (10.1016/j.jneumeth.2020.108726_bib0120) 2012; 109 Guo (10.1016/j.jneumeth.2020.108726_bib0065) 2013; 69 Kemmer (10.1016/j.jneumeth.2020.108726_bib0080) 2018; 8 Biswal (10.1016/j.jneumeth.2020.108726_bib0020) 2010; 107 Zhang (10.1016/j.jneumeth.2020.108726_bib0135) 2012; 204 |
References_xml | – volume: 32 start-page: 2075 year: 2011 end-page: 2095 ident: bib0035 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Hum. Brain Mapping – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib0070 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. – volume: 67 start-page: 1532 year: 2011 end-page: 1542 ident: bib0055 article-title: A general probabilistic model for group independent component analysis and its estimation methods publication-title: Biometrics – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib0140 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 189 start-page: 380 year: 2019 end-page: 400 ident: bib0125 article-title: A hierarchical independent component analysis model for longitudinal neuroimaging studies publication-title: NeuroImage – year: 1997 ident: bib0090 article-title: Analysis of fMRI data by blind separation into independent spatial components, Technical report – volume: 13 start-page: 88 year: 2001 ident: bib0025 article-title: A method for making group inferences using independent component analysis of functional MRI data: exploring the visual system publication-title: Neuroimage – volume: 8 start-page: 579 year: 2018 end-page: 594 ident: bib0080 article-title: Evaluating the strength of structural connectivity underlying brain functional networks publication-title: Brain Connect. – volume: 6 start-page: 603 year: 2015 ident: bib0075 article-title: Network-based characterization of brain functional connectivity in Zen practitioners publication-title: Front. Psychol. – start-page: 598 year: 2001 end-page: 604 ident: bib0095 article-title: Automatic choice of dimensionality for PCA publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 123 year: 2016 ident: bib0130 article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation publication-title: Front. Neurosci. – volume: 69 start-page: 157 year: 2013 end-page: 197 ident: bib0030 article-title: Group information guided ICA for fMRI data analysis publication-title: Neuroimage – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: bib0020 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. – volume: 109 start-page: 3131 year: 2012 end-page: 3136 ident: bib0120 article-title: Temporally-independent functional modes of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bib0015 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging – volume: 69 start-page: 970 year: 2013 end-page: 981 ident: bib0065 article-title: A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies publication-title: Biometrics – volume: 10 start-page: 1930 year: 2016 ident: bib0105 article-title: Investigating differences in brain functional networks using hierarchical covariate-adjusted independent component analysis publication-title: Ann. Appl. Stat. – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib0005 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci. – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: bib0110 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage – volume: 204 start-page: 133 year: 2012 end-page: 143 ident: bib0135 article-title: BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity publication-title: J. Neurosci. Methods – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib0115 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib0100 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 42 start-page: 1078 year: 2008 end-page: 1093 ident: bib0060 article-title: A unified framework for group independent component analysis for multi-subject fMRI data publication-title: NeuroImage – reference: Gao, X., Shahbaba, B., and Ombao, H. (2017). Modeling binary time series using gaussian processes with application to predicting sleep states. arXiv preprint arXiv:1711.05466. – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib0050 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage – volume: 25 start-page: 47 year: 2007 end-page: 56 ident: bib0085 article-title: Detecting functional connectivity in the resting brain: a comparison between ICA and CCA publication-title: Magn. Reson. Imaging – volume: 47 start-page: S148 year: 2009 ident: bib0010 article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression publication-title: Neuroimage – reference: Gao, X., Shen, W., and Ombao, H. (2018). Regularized matrix data clustering and its application to image analysis. arXiv preprint arXiv:1808.01749. – ident: 10.1016/j.jneumeth.2020.108726_bib0045 – volume: 109 start-page: 3131 issue: 8 year: 2012 ident: 10.1016/j.jneumeth.2020.108726_bib0120 article-title: Temporally-independent functional modes of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1121329109 – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.jneumeth.2020.108726_bib0015 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 10 start-page: 123 year: 2016 ident: 10.1016/j.jneumeth.2020.108726_bib0130 article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00123 – volume: 32 start-page: 2075 issue: 12 year: 2011 ident: 10.1016/j.jneumeth.2020.108726_bib0035 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Hum. Brain Mapping doi: 10.1002/hbm.21170 – volume: 360 start-page: 1001 issue: 1457 year: 2005 ident: 10.1016/j.jneumeth.2020.108726_bib0005 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.jneumeth.2020.108726_bib0115 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 8 start-page: 579 issue: 10 year: 2018 ident: 10.1016/j.jneumeth.2020.108726_bib0080 article-title: Evaluating the strength of structural connectivity underlying brain functional networks publication-title: Brain Connect. doi: 10.1089/brain.2018.0615 – volume: 10 start-page: 1930 issue: 4 year: 2016 ident: 10.1016/j.jneumeth.2020.108726_bib0105 article-title: Investigating differences in brain functional networks using hierarchical covariate-adjusted independent component analysis publication-title: Ann. Appl. Stat. doi: 10.1214/16-AOAS946 – volume: 47 start-page: S148 issue: Suppl 1 year: 2009 ident: 10.1016/j.jneumeth.2020.108726_bib0010 article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression publication-title: Neuroimage doi: 10.1016/S1053-8119(09)71511-3 – volume: 204 start-page: 133 issue: 1 year: 2012 ident: 10.1016/j.jneumeth.2020.108726_bib0135 article-title: BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.10.025 – start-page: 598 year: 2001 ident: 10.1016/j.jneumeth.2020.108726_bib0095 article-title: Automatic choice of dimensionality for PCA publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.jneumeth.2020.108726_bib0140 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 189 start-page: 380 year: 2019 ident: 10.1016/j.jneumeth.2020.108726_bib0125 article-title: A hierarchical independent component analysis model for longitudinal neuroimaging studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.12.024 – volume: 6 start-page: 603 year: 2015 ident: 10.1016/j.jneumeth.2020.108726_bib0075 article-title: Network-based characterization of brain functional connectivity in Zen practitioners publication-title: Front. Psychol. doi: 10.3389/fpsyg.2015.00603 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.jneumeth.2020.108726_bib0100 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – ident: 10.1016/j.jneumeth.2020.108726_bib0040 – volume: 13 start-page: 411 issue: 4 year: 2000 ident: 10.1016/j.jneumeth.2020.108726_bib0070 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 69 start-page: 157 year: 2013 ident: 10.1016/j.jneumeth.2020.108726_bib0030 article-title: Group information guided ICA for fMRI data analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.008 – year: 1997 ident: 10.1016/j.jneumeth.2020.108726_bib0090 – volume: 42 start-page: 1078 issue: 3 year: 2008 ident: 10.1016/j.jneumeth.2020.108726_bib0060 article-title: A unified framework for group independent component analysis for multi-subject fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.008 – volume: 13 start-page: 88 issue: 6 year: 2001 ident: 10.1016/j.jneumeth.2020.108726_bib0025 article-title: A method for making group inferences using independent component analysis of functional MRI data: exploring the visual system publication-title: Neuroimage doi: 10.1016/S1053-8119(01)91431-4 – volume: 107 start-page: 4734 issue: 10 year: 2010 ident: 10.1016/j.jneumeth.2020.108726_bib0020 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0911855107 – volume: 80 start-page: 144 year: 2013 ident: 10.1016/j.jneumeth.2020.108726_bib0110 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 67 start-page: 1532 issue: 4 year: 2011 ident: 10.1016/j.jneumeth.2020.108726_bib0055 article-title: A general probabilistic model for group independent component analysis and its estimation methods publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01601.x – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.jneumeth.2020.108726_bib0050 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 25 start-page: 47 issue: 1 year: 2007 ident: 10.1016/j.jneumeth.2020.108726_bib0085 article-title: Detecting functional connectivity in the resting brain: a comparison between ICA and CCA publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.09.032 – volume: 69 start-page: 970 issue: 4 year: 2013 ident: 10.1016/j.jneumeth.2020.108726_bib0065 article-title: A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies publication-title: Biometrics doi: 10.1111/biom.12068 |
SSID | ssj0004906 |
Score | 2.3250527 |
Snippet | •Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network... Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108726 |
SubjectTerms | Brain - diagnostic imaging Brain Mapping Brain network Covariate effects fMRI Hierarchical model Humans Independent component analysis (ICA) Magnetic Resonance Imaging Matlab Models, Statistical Neuroimaging Principal Component Analysis |
Title | HINT: A hierarchical independent component analysis toolbox for investigating brain functional networks using neuroimaging data |
URI | https://dx.doi.org/10.1016/j.jneumeth.2020.108726 https://www.ncbi.nlm.nih.gov/pubmed/32360892 https://www.proquest.com/docview/2398160374 https://pubmed.ncbi.nlm.nih.gov/PMC7338248 |
Volume | 341 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61WwlxQX0AXUorIyFu6XodO7a5rSqqLah7oZV6i-I8SlZtUtGsBBf468w4D7qA1AO3PGzJyjieGfub7wN4m2KWbHhkA2OlCmThROBkkgVZJDItVJoWnGqHzxfR_FJ-vFJXG3DS18IQrLJb-9s13a_W3ZNJ9zUnd2U5-UyFOJzKqXxaYPUmbInQRmoEW7OzT_PF7_JI6yU2qT0dWfIHhcLL42WVr0isGVNF4RF3mngW_u2j_o5B_4RSPvBNp9vwrAsq2awd9w5s5NUu7M0qTKhvv7N3zMM8_f75Ljw5707T9-Dn_Gxx8Z7NGOlh-xMFNBgrB2HchhHgvK7oKunIS1hT1zeu_sYw2MWmA0lHdc0cqU0wcpTt_iKrWoj5PSNw_TXz1JnlrZdFYoRMfQ6Xpx8uTuZBJ8gQpOjDmsDmJlFKi2Kq80KJ3EUS02udKXS0GBdp5VRoU4xBMAl0XEcy46HUmucYx-EnKsIXMKpw1PvAhEulybI0SRInTZQYilQdxhKcZ7mxyRhUb4I47djKSTTjJu5hacu4N11Mpotb041hMvS7a_k6Hu1hewvHazMvRqfyaN83_ZSI8beks5akyuvVfUy0iqTgreUYXrZTZBhPKMKIGyvGoNcmz9CAKL_X31TlF0_9rcPQCGle_ceYD-Ap3dH-9FS9hlHzdZUfYmDVuCPYPP4xPep-n1-DUibk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXVFoeCwWMhLil6zp27HBbVVRb6O6FrdSbFedRsmqTimYluNC_3hnnQReQeuAWJbZkZWzPN_Y33wC8TzFKNjyKAxNLFcjCicDJJAuySGRaqDQtOOUOz-bR9ER-PlWnG3DQ58IQrbLb-9s93e_W3Ztx9zfHl2U5_kqJOJzSqXxYEOt7cF-qUBOvb-_Xb56HjH2BTWpNF5b8Vprwcm9Z5Ssq1YyBovB8O00qC__2UH8j0D-JlLc80-EWPO4gJZu0o34CG3m1DTuTCsPpi5_sA_MkT396vg0PZt1d-g5cT4_mi49swqgatr9PQHOxciiL2zCim9cVPSWddAlr6vrc1T8YQl1sOkh0VGfMUa0JRm6yPV1kVUswv2JErT9jXjizvPBFkRjxUp_CyeGnxcE06MoxBCl6sCaIc5MopUWxr_NCidxFEoNrnSl0s4iKtHIqjFNEIBgCOq4jmfFQas1zRHH4i4rwGWxWOOoXwIRLpcmyNEkSJ02UGMKpDpEE51lu4mQEqjeBTTutciqZcW57UtrS9qazZDrbmm4E46HfZavWcWePuLewXZt3Fl3KnX3f9VPC4qKkm5akyuvVlSVRRarfreUInrdTZBhPKMKIm1iMQK9NnqEBCX6vf6nKb174W4ehEdK8_I8xv4WH08Xs2B4fzb-8gkf0hU6q99UubDbfV_lrhFiNe-OX0A0QQyev |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HINT%3A+A+Hierarchical+Independent+Component+Analysis+Toolbox+for+Investigating+Brain+Functional+Networks+using+Neuroimaging+Data&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Lukemire%2C+Joshua&rft.au=Wang%2C+Yikai&rft.au=Verma%2C+Amit&rft.au=Guo%2C+Ying&rft.date=2020-07-15&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=341&rft.spage=108726&rft.epage=108726&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108726&rft_id=info%3Apmid%2F32360892&rft.externalDocID=PMC7338248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |