HINT: A hierarchical independent component analysis toolbox for investigating brain functional networks using neuroimaging data

•Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network differences.•Interactive visualization to display user-specified sub-population brain networks.•Model based estimation of brain networks on both individual and...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 341; p. 108726
Main Authors Lukemire, Joshua, Wang, Yikai, Verma, Amit, Guo, Ying
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.07.2020
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2020.108726

Cover

Loading…
Abstract •Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network differences.•Interactive visualization to display user-specified sub-population brain networks.•Model based estimation of brain networks on both individual and population level.•Command line version of toolbox for batch processing. Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects’ clinical and demographic variables. Existing ICA methods and toolboxes don’t incorporate subjects’ covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects’ groups. We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script. HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons. We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods. HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups.
AbstractList •Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network differences.•Interactive visualization to display user-specified sub-population brain networks.•Model based estimation of brain networks on both individual and population level.•Command line version of toolbox for batch processing. Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects’ clinical and demographic variables. Existing ICA methods and toolboxes don’t incorporate subjects’ covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects’ groups. We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script. HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons. We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods. HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups.
Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects' clinical and demographic variables. Existing ICA methods and toolboxes don't incorporate subjects' covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects' groups. We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script. HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons. We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods. HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups.
Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects' clinical and demographic variables. Existing ICA methods and toolboxes don't incorporate subjects' covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects' groups.BACKGROUNDIndependent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to study how brain networks are modulated by subjects' clinical and demographic variables. Existing ICA methods and toolboxes don't incorporate subjects' covariates effects in ICA estimation of brain networks, which potentially leads to loss in accuracy and statistical power in detecting brain network differences between subjects' groups.We introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script.NEW METHODWe introduce a Matlab toolbox, HINT (Hierarchical INdependent component analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and testing covariate effects and generates model-based estimates of brain networks on both the population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to easily load images, specify covariate effects, monitor model estimation via an EM algorithm, specify hypothesis tests, and visualize results. HINT also has a command line interface which allows users to conveniently run and reproduce the analysis with a script.HINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons.COMPARISON TO EXISTING METHODSHINT implements a new multi-level probabilistic ICA model for group ICA. It provides a statistically principled ICA modeling framework for investigating covariate effects on brain networks. HINT can also generate and visualize model-based network estimates for user-specified subject groups, which greatly facilitates group comparisons.We demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods.RESULTSWe demonstrate the steps and functionality of HINT with an fMRI example data to estimate treatment effects on brain networks while controlling for other covariates. Results demonstrate estimated brain networks and model-based comparisons between the treatment and control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power in detecting group differences in networks especially in small sample sizes, while maintaining a low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing both population- and individual-level source signal maps as compared to some state-of-the-art group ICA methods.HINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups.CONCLUSIONHINT can provide a useful tool for both statistical and neuroscience researchers to evaluate and test differences in brain networks between subject groups.
ArticleNumber 108726
Author Verma, Amit
Guo, Ying
Lukemire, Joshua
Wang, Yikai
Author_xml – sequence: 1
  givenname: Joshua
  surname: Lukemire
  fullname: Lukemire, Joshua
– sequence: 2
  givenname: Yikai
  surname: Wang
  fullname: Wang, Yikai
– sequence: 3
  givenname: Amit
  surname: Verma
  fullname: Verma, Amit
– sequence: 4
  givenname: Ying
  surname: Guo
  fullname: Guo, Ying
  email: yguo2@emory.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32360892$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1DAQtVBRuy39hcpHLllsJ7YThBBVVWilCi5F4mY5zmTXS2IvtrPQU38dR9tFwKUXjz1-b97MvFN05LwDhC4oWVJCxZvNcuNgGiGtl4ywOVlLJl6gBc2xELL-doQWGcgLwiQ5QacxbgghVUPEMTopWSlI3bAFery5_Xz_Fl_itYWgg1lbowdsXQdbyIdL2Phxm7XzTTs9PEQbcfJ-aP0v3PuQoTuIya50sm6F26Ctw_3kTLI-w7GD9NOH7xFPcf7PPQdvR72aH51O-hV62eshwvlTPENfP17fX90Ud18-3V5d3hWmkjQVDdSac8l6KqHnDFpRkUrIjgN0nHLJW142RnJCG9oSKaqOlJWUBEjDoTN9eYbe7-tup3bMmTxP0IPahtxMeFBeW_Xvj7NrtfI7JcuyZlWdC7x-KhD8jymPrEYbDQyDduCnqFjZ1FSQUlYZevG31h-Rw9Yz4N0eYIKPMUCvjE163liWtoOiRM0mq406mKxmk9Xe5EwX_9EPCs8SP-yJkDe9y4araCw4A50NYJLqvH2uxG-unskr
CitedBy_id crossref_primary_10_1111_biom_13867
crossref_primary_10_1214_22_AOAS1670
Cites_doi 10.1073/pnas.1121329109
10.1109/TMI.2003.822821
10.3389/fnins.2016.00123
10.1002/hbm.21170
10.1098/rstb.2005.1634
10.1073/pnas.0905267106
10.1089/brain.2018.0615
10.1214/16-AOAS946
10.1016/S1053-8119(09)71511-3
10.1016/j.jneumeth.2011.10.025
10.1109/42.906424
10.1016/j.neuroimage.2018.12.024
10.3389/fpsyg.2015.00603
10.1016/j.neuroimage.2013.11.046
10.1016/S0893-6080(00)00026-5
10.1016/j.neuroimage.2012.11.008
10.1016/j.neuroimage.2008.05.008
10.1016/S1053-8119(01)91431-4
10.1073/pnas.0911855107
10.1016/j.neuroimage.2013.05.039
10.1111/j.1541-0420.2011.01601.x
10.1016/j.neuroimage.2014.03.034
10.1016/j.mri.2006.09.032
10.1111/biom.12068
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jneumeth.2020.108726
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 108726
ExternalDocumentID PMC7338248
32360892
10_1016_j_jneumeth_2020_108726
S0165027020301497
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH118771
– fundername: NIMH NIH HHS
  grantid: R01 MH105561
– fundername: NCATS NIH HHS
  grantid: UL1 TR002378
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c471t-9e8a5572f17ef52eb640467d5eed51575b539c750191b0764d034770e095edcf3
IEDL.DBID AIKHN
ISSN 0165-0270
1872-678X
IngestDate Thu Aug 21 18:19:54 EDT 2025
Thu Sep 04 21:46:15 EDT 2025
Mon Jul 21 05:50:52 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 02:57:13 EDT 2025
Fri Feb 23 02:46:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
Hierarchical model
Independent component analysis (ICA)
Covariate effects
Brain network
Matlab
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-9e8a5572f17ef52eb640467d5eed51575b539c750191b0764d034770e095edcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7338248
PMID 32360892
PQID 2398160374
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7338248
proquest_miscellaneous_2398160374
pubmed_primary_32360892
crossref_citationtrail_10_1016_j_jneumeth_2020_108726
crossref_primary_10_1016_j_jneumeth_2020_108726
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-15
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Smith, Miller, Moeller, Xu, Auerbach, Woolrich, Beckmann, Jenkinson, Andersson, Glasser (bib0120) 2012; 109
Gao, X., Shahbaba, B., and Ombao, H. (2017). Modeling binary time series using gaussian processes with application to predicting sleep states. arXiv preprint arXiv:1711.05466.
Zhang, Brady, Smith (bib0140) 2001; 20
Wang, Guo (bib0125) 2019; 189
Guo, Tang (bib0065) 2013; 69
Ma, Wang, Chen, Xiong (bib0085) 2007; 25
Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (bib0035) 2011; 32
Guo (bib0055) 2011; 67
Du, Fan (bib0030) 2013; 69
Calhoun, Adali, Pearlson, Pekar (bib0025) 2001; 13
McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib0090) 1997
Guo, Pagnoni (bib0060) 2008; 42
Beckmann, Mackay, Filippini, Smith (bib0010) 2009; 47
Beckmann, Smith (bib0015) 2004; 23
Zhang, Agravat, Derado, Chen, McIntosh, Bowman (bib0135) 2012; 204
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0100) 2014; 90
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0050) 2014; 95
Kemmer, Guo, Wang, Pagnoni (bib0075) 2015; 6
Gao, X., Shen, W., and Ombao, H. (2018). Regularized matrix data clustering and its application to image analysis. arXiv preprint arXiv:1808.01749.
Beckmann, DeLuca, Devlin, Smith (bib0005) 2005; 360
Hyvärinen, Oja (bib0070) 2000; 13
Shi, Guo (bib0105) 2016; 10
Kemmer, Wang, Bowman, Mayberg, Guo (bib0080) 2018; 8
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (bib0115) 2009; 106
Wang, Kang, Kemmer, Guo (bib0130) 2016; 10
Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (bib0110) 2013; 80
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe (bib0020) 2010; 107
Minka (bib0095) 2001
Du (10.1016/j.jneumeth.2020.108726_bib0030) 2013; 69
Salimi-Khorshidi (10.1016/j.jneumeth.2020.108726_bib0100) 2014; 90
Minka (10.1016/j.jneumeth.2020.108726_bib0095) 2001
Guo (10.1016/j.jneumeth.2020.108726_bib0055) 2011; 67
Kemmer (10.1016/j.jneumeth.2020.108726_bib0075) 2015; 6
Beckmann (10.1016/j.jneumeth.2020.108726_bib0015) 2004; 23
Hyvärinen (10.1016/j.jneumeth.2020.108726_bib0070) 2000; 13
Ma (10.1016/j.jneumeth.2020.108726_bib0085) 2007; 25
Zhang (10.1016/j.jneumeth.2020.108726_bib0140) 2001; 20
10.1016/j.jneumeth.2020.108726_bib0045
Shi (10.1016/j.jneumeth.2020.108726_bib0105) 2016; 10
Erhardt (10.1016/j.jneumeth.2020.108726_bib0035) 2011; 32
10.1016/j.jneumeth.2020.108726_bib0040
Smith (10.1016/j.jneumeth.2020.108726_bib0110) 2013; 80
Smith (10.1016/j.jneumeth.2020.108726_bib0115) 2009; 106
Wang (10.1016/j.jneumeth.2020.108726_bib0125) 2019; 189
Beckmann (10.1016/j.jneumeth.2020.108726_bib0010) 2009; 47
Griffanti (10.1016/j.jneumeth.2020.108726_bib0050) 2014; 95
Beckmann (10.1016/j.jneumeth.2020.108726_bib0005) 2005; 360
McKeown (10.1016/j.jneumeth.2020.108726_bib0090) 1997
Wang (10.1016/j.jneumeth.2020.108726_bib0130) 2016; 10
Calhoun (10.1016/j.jneumeth.2020.108726_bib0025) 2001; 13
Guo (10.1016/j.jneumeth.2020.108726_bib0060) 2008; 42
Smith (10.1016/j.jneumeth.2020.108726_bib0120) 2012; 109
Guo (10.1016/j.jneumeth.2020.108726_bib0065) 2013; 69
Kemmer (10.1016/j.jneumeth.2020.108726_bib0080) 2018; 8
Biswal (10.1016/j.jneumeth.2020.108726_bib0020) 2010; 107
Zhang (10.1016/j.jneumeth.2020.108726_bib0135) 2012; 204
References_xml – volume: 32
  start-page: 2075
  year: 2011
  end-page: 2095
  ident: bib0035
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Hum. Brain Mapping
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib0070
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– volume: 67
  start-page: 1532
  year: 2011
  end-page: 1542
  ident: bib0055
  article-title: A general probabilistic model for group independent component analysis and its estimation methods
  publication-title: Biometrics
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0140
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 189
  start-page: 380
  year: 2019
  end-page: 400
  ident: bib0125
  article-title: A hierarchical independent component analysis model for longitudinal neuroimaging studies
  publication-title: NeuroImage
– year: 1997
  ident: bib0090
  article-title: Analysis of fMRI data by blind separation into independent spatial components, Technical report
– volume: 13
  start-page: 88
  year: 2001
  ident: bib0025
  article-title: A method for making group inferences using independent component analysis of functional MRI data: exploring the visual system
  publication-title: Neuroimage
– volume: 8
  start-page: 579
  year: 2018
  end-page: 594
  ident: bib0080
  article-title: Evaluating the strength of structural connectivity underlying brain functional networks
  publication-title: Brain Connect.
– volume: 6
  start-page: 603
  year: 2015
  ident: bib0075
  article-title: Network-based characterization of brain functional connectivity in Zen practitioners
  publication-title: Front. Psychol.
– start-page: 598
  year: 2001
  end-page: 604
  ident: bib0095
  article-title: Automatic choice of dimensionality for PCA
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 123
  year: 2016
  ident: bib0130
  article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation
  publication-title: Front. Neurosci.
– volume: 69
  start-page: 157
  year: 2013
  end-page: 197
  ident: bib0030
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: Neuroimage
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: bib0020
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
– volume: 109
  start-page: 3131
  year: 2012
  end-page: 3136
  ident: bib0120
  article-title: Temporally-independent functional modes of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bib0015
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 69
  start-page: 970
  year: 2013
  end-page: 981
  ident: bib0065
  article-title: A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies
  publication-title: Biometrics
– volume: 10
  start-page: 1930
  year: 2016
  ident: bib0105
  article-title: Investigating differences in brain functional networks using hierarchical covariate-adjusted independent component analysis
  publication-title: Ann. Appl. Stat.
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib0005
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci.
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bib0110
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
– volume: 204
  start-page: 133
  year: 2012
  end-page: 143
  ident: bib0135
  article-title: BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity
  publication-title: J. Neurosci. Methods
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0115
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0100
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 42
  start-page: 1078
  year: 2008
  end-page: 1093
  ident: bib0060
  article-title: A unified framework for group independent component analysis for multi-subject fMRI data
  publication-title: NeuroImage
– reference: Gao, X., Shahbaba, B., and Ombao, H. (2017). Modeling binary time series using gaussian processes with application to predicting sleep states. arXiv preprint arXiv:1711.05466.
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib0050
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
– volume: 25
  start-page: 47
  year: 2007
  end-page: 56
  ident: bib0085
  article-title: Detecting functional connectivity in the resting brain: a comparison between ICA and CCA
  publication-title: Magn. Reson. Imaging
– volume: 47
  start-page: S148
  year: 2009
  ident: bib0010
  article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression
  publication-title: Neuroimage
– reference: Gao, X., Shen, W., and Ombao, H. (2018). Regularized matrix data clustering and its application to image analysis. arXiv preprint arXiv:1808.01749.
– ident: 10.1016/j.jneumeth.2020.108726_bib0045
– volume: 109
  start-page: 3131
  issue: 8
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108726_bib0120
  article-title: Temporally-independent functional modes of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1121329109
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.jneumeth.2020.108726_bib0015
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 10
  start-page: 123
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108726_bib0130
  article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00123
– volume: 32
  start-page: 2075
  issue: 12
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108726_bib0035
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Hum. Brain Mapping
  doi: 10.1002/hbm.21170
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: 10.1016/j.jneumeth.2020.108726_bib0005
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.jneumeth.2020.108726_bib0115
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 8
  start-page: 579
  issue: 10
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108726_bib0080
  article-title: Evaluating the strength of structural connectivity underlying brain functional networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2018.0615
– volume: 10
  start-page: 1930
  issue: 4
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108726_bib0105
  article-title: Investigating differences in brain functional networks using hierarchical covariate-adjusted independent component analysis
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/16-AOAS946
– volume: 47
  start-page: S148
  issue: Suppl 1
  year: 2009
  ident: 10.1016/j.jneumeth.2020.108726_bib0010
  article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(09)71511-3
– volume: 204
  start-page: 133
  issue: 1
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108726_bib0135
  article-title: BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.10.025
– start-page: 598
  year: 2001
  ident: 10.1016/j.jneumeth.2020.108726_bib0095
  article-title: Automatic choice of dimensionality for PCA
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.jneumeth.2020.108726_bib0140
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 189
  start-page: 380
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108726_bib0125
  article-title: A hierarchical independent component analysis model for longitudinal neuroimaging studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.12.024
– volume: 6
  start-page: 603
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108726_bib0075
  article-title: Network-based characterization of brain functional connectivity in Zen practitioners
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2015.00603
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108726_bib0100
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– ident: 10.1016/j.jneumeth.2020.108726_bib0040
– volume: 13
  start-page: 411
  issue: 4
  year: 2000
  ident: 10.1016/j.jneumeth.2020.108726_bib0070
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 69
  start-page: 157
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108726_bib0030
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.008
– year: 1997
  ident: 10.1016/j.jneumeth.2020.108726_bib0090
– volume: 42
  start-page: 1078
  issue: 3
  year: 2008
  ident: 10.1016/j.jneumeth.2020.108726_bib0060
  article-title: A unified framework for group independent component analysis for multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.008
– volume: 13
  start-page: 88
  issue: 6
  year: 2001
  ident: 10.1016/j.jneumeth.2020.108726_bib0025
  article-title: A method for making group inferences using independent component analysis of functional MRI data: exploring the visual system
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(01)91431-4
– volume: 107
  start-page: 4734
  issue: 10
  year: 2010
  ident: 10.1016/j.jneumeth.2020.108726_bib0020
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0911855107
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108726_bib0110
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 67
  start-page: 1532
  issue: 4
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108726_bib0055
  article-title: A general probabilistic model for group independent component analysis and its estimation methods
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01601.x
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108726_bib0050
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 25
  start-page: 47
  issue: 1
  year: 2007
  ident: 10.1016/j.jneumeth.2020.108726_bib0085
  article-title: Detecting functional connectivity in the resting brain: a comparison between ICA and CCA
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.09.032
– volume: 69
  start-page: 970
  issue: 4
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108726_bib0065
  article-title: A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies
  publication-title: Biometrics
  doi: 10.1111/biom.12068
SSID ssj0004906
Score 2.3250527
Snippet •Matlab GUI toolbox for investigating brain network differences using hc-ICA.•Reliable and powerful estimation and testing of brain network...
Independent component analysis (ICA) is a popular tool for investigating brain organization in neuroscience research. In fMRI studies, an important goal is to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108726
SubjectTerms Brain - diagnostic imaging
Brain Mapping
Brain network
Covariate effects
fMRI
Hierarchical model
Humans
Independent component analysis (ICA)
Magnetic Resonance Imaging
Matlab
Models, Statistical
Neuroimaging
Principal Component Analysis
Title HINT: A hierarchical independent component analysis toolbox for investigating brain functional networks using neuroimaging data
URI https://dx.doi.org/10.1016/j.jneumeth.2020.108726
https://www.ncbi.nlm.nih.gov/pubmed/32360892
https://www.proquest.com/docview/2398160374
https://pubmed.ncbi.nlm.nih.gov/PMC7338248
Volume 341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61WwlxQX0AXUorIyFu6XodO7a5rSqqLah7oZV6i-I8SlZtUtGsBBf468w4D7qA1AO3PGzJyjieGfub7wN4m2KWbHhkA2OlCmThROBkkgVZJDItVJoWnGqHzxfR_FJ-vFJXG3DS18IQrLJb-9s13a_W3ZNJ9zUnd2U5-UyFOJzKqXxaYPUmbInQRmoEW7OzT_PF7_JI6yU2qT0dWfIHhcLL42WVr0isGVNF4RF3mngW_u2j_o5B_4RSPvBNp9vwrAsq2awd9w5s5NUu7M0qTKhvv7N3zMM8_f75Ljw5707T9-Dn_Gxx8Z7NGOlh-xMFNBgrB2HchhHgvK7oKunIS1hT1zeu_sYw2MWmA0lHdc0cqU0wcpTt_iKrWoj5PSNw_TXz1JnlrZdFYoRMfQ6Xpx8uTuZBJ8gQpOjDmsDmJlFKi2Kq80KJ3EUS02udKXS0GBdp5VRoU4xBMAl0XEcy46HUmucYx-EnKsIXMKpw1PvAhEulybI0SRInTZQYilQdxhKcZ7mxyRhUb4I47djKSTTjJu5hacu4N11Mpotb041hMvS7a_k6Hu1hewvHazMvRqfyaN83_ZSI8beks5akyuvVfUy0iqTgreUYXrZTZBhPKMKIGyvGoNcmz9CAKL_X31TlF0_9rcPQCGle_ceYD-Ap3dH-9FS9hlHzdZUfYmDVuCPYPP4xPep-n1-DUibk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXVFoeCwWMhLil6zp27HBbVVRb6O6FrdSbFedRsmqTimYluNC_3hnnQReQeuAWJbZkZWzPN_Y33wC8TzFKNjyKAxNLFcjCicDJJAuySGRaqDQtOOUOz-bR9ER-PlWnG3DQ58IQrbLb-9s93e_W3Ztx9zfHl2U5_kqJOJzSqXxYEOt7cF-qUBOvb-_Xb56HjH2BTWpNF5b8Vprwcm9Z5Ssq1YyBovB8O00qC__2UH8j0D-JlLc80-EWPO4gJZu0o34CG3m1DTuTCsPpi5_sA_MkT396vg0PZt1d-g5cT4_mi49swqgatr9PQHOxciiL2zCim9cVPSWddAlr6vrc1T8YQl1sOkh0VGfMUa0JRm6yPV1kVUswv2JErT9jXjizvPBFkRjxUp_CyeGnxcE06MoxBCl6sCaIc5MopUWxr_NCidxFEoNrnSl0s4iKtHIqjFNEIBgCOq4jmfFQas1zRHH4i4rwGWxWOOoXwIRLpcmyNEkSJ02UGMKpDpEE51lu4mQEqjeBTTutciqZcW57UtrS9qazZDrbmm4E46HfZavWcWePuLewXZt3Fl3KnX3f9VPC4qKkm5akyuvVlSVRRarfreUInrdTZBhPKMKIm1iMQK9NnqEBCX6vf6nKb174W4ehEdK8_I8xv4WH08Xs2B4fzb-8gkf0hU6q99UubDbfV_lrhFiNe-OX0A0QQyev
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HINT%3A+A+Hierarchical+Independent+Component+Analysis+Toolbox+for+Investigating+Brain+Functional+Networks+using+Neuroimaging+Data&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Lukemire%2C+Joshua&rft.au=Wang%2C+Yikai&rft.au=Verma%2C+Amit&rft.au=Guo%2C+Ying&rft.date=2020-07-15&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=341&rft.spage=108726&rft.epage=108726&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108726&rft_id=info%3Apmid%2F32360892&rft.externalDocID=PMC7338248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon