Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh
Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future l...
Saved in:
Published in | Environmental monitoring and assessment Vol. 189; no. 11; p. 565 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. “Bare lands” decreased by 21% being occupied by other land uses, especially by “shrimp farms.” Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in “settlement” area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy cultivation to shrimp farming were related to each other. Around 31.3% of the total respondents stated that at least one of their family members had migrated. Climate-driven southwestern coastal people usually migrate from the vulnerable rural areas towards the nearest relatively safe city due to adverse effects of natural disasters. To control the unplanned development and reduce the internal migration in Assasuni and other coastal areas, a comprehensive land use management plan was suggested that would accommodate the diversified uses of coastal lands and eventually lessen the threats to the life and livelihood of the local people. |
---|---|
AbstractList | Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. “Bare lands” decreased by 21% being occupied by other land uses, especially by “shrimp farms.” Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in “settlement” area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy cultivation to shrimp farming were related to each other. Around 31.3% of the total respondents stated that at least one of their family members had migrated. Climate-driven southwestern coastal people usually migrate from the vulnerable rural areas towards the nearest relatively safe city due to adverse effects of natural disasters. To control the unplanned development and reduce the internal migration in Assasuni and other coastal areas, a comprehensive land use management plan was suggested that would accommodate the diversified uses of coastal lands and eventually lessen the threats to the life and livelihood of the local people. Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. “Bare lands” decreased by 21% being occupied by other land uses, especially by “shrimp farms.” Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in “settlement” area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy cultivation to shrimp farming were related to each other. Around 31.3% of the total respondents stated that at least one of their family members had migrated. Climate-driven southwestern coastal people usually migrate from the vulnerable rural areas towards the nearest relatively safe city due to adverse effects of natural disasters. To control the unplanned development and reduce the internal migration in Assasuni and other coastal areas, a comprehensive land use management plan was suggested that would accommodate the diversified uses of coastal lands and eventually lessen the threats to the life and livelihood of the local people. Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. "Bare lands" decreased by 21% being occupied by other land uses, especially by "shrimp farms." Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in "settlement" area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy cultivation to shrimp farming were related to each other. Around 31.3% of the total respondents stated that at least one of their family members had migrated. Climate-driven southwestern coastal people usually migrate from the vulnerable rural areas towards the nearest relatively safe city due to adverse effects of natural disasters. To control the unplanned development and reduce the internal migration in Assasuni and other coastal areas, a comprehensive land use management plan was suggested that would accommodate the diversified uses of coastal lands and eventually lessen the threats to the life and livelihood of the local people.Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. "Bare lands" decreased by 21% being occupied by other land uses, especially by "shrimp farms." Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in "settlement" area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy cultivation to shrimp farming were related to each other. Around 31.3% of the total respondents stated that at least one of their family members had migrated. Climate-driven southwestern coastal people usually migrate from the vulnerable rural areas towards the nearest relatively safe city due to adverse effects of natural disasters. To control the unplanned development and reduce the internal migration in Assasuni and other coastal areas, a comprehensive land use management plan was suggested that would accommodate the diversified uses of coastal lands and eventually lessen the threats to the life and livelihood of the local people. |
ArticleNumber | 565 |
Author | Rahman, M. Tauhid Ur Ferdous, Jannatul Rasheduzzaman, Md Tabassum, Faheemah Zahedul Islam, A. Z. M. Uddin, Syed Zia Saba, Humayra Sarkar, Lina |
Author_xml | – sequence: 1 givenname: M. Tauhid Ur surname: Rahman fullname: Rahman, M. Tauhid Ur email: tauhid_cee@yahoo.com organization: Climate Change Lab, Department of Civil Engineering, Military Institute of Science and Technology (MIST), Department of Civil and Environmental Engineering, Shahjalal University of Science and Technology – sequence: 2 givenname: Faheemah surname: Tabassum fullname: Tabassum, Faheemah organization: Climate Change Lab, Department of Civil Engineering, Military Institute of Science and Technology (MIST) – sequence: 3 givenname: Md surname: Rasheduzzaman fullname: Rasheduzzaman, Md organization: Climate Change Lab, Department of Civil Engineering, Military Institute of Science and Technology (MIST), Civil, Architectural & Environmental Engineering (CAEE), Drexel University – sequence: 4 givenname: Humayra surname: Saba fullname: Saba, Humayra organization: Climate Change Lab, Department of Civil Engineering, Military Institute of Science and Technology (MIST) – sequence: 5 givenname: Lina surname: Sarkar fullname: Sarkar, Lina organization: Climate Change Lab, Department of Civil Engineering, Military Institute of Science and Technology (MIST) – sequence: 6 givenname: Jannatul surname: Ferdous fullname: Ferdous, Jannatul organization: Climate Change Lab, Department of Civil Engineering, Military Institute of Science and Technology (MIST) – sequence: 7 givenname: Syed Zia surname: Uddin fullname: Uddin, Syed Zia organization: W.M. Keck Center for 3D Innovation, The University of Texas at El Paso – sequence: 8 givenname: A. Z. M. surname: Zahedul Islam fullname: Zahedul Islam, A. Z. M. organization: Bangladesh Space Research and Remote Sensing Organization (SPARRSO), Ministry of Defence |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29039035$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFvFCEUhYmpsdvqD_DFkPjiy1guDDA8rhurJk19qc-EBaZLMwMrzNTsv5fpVk2aqAkJBL5z7r2cM3QSU_QIvQbyHgiRFwWIENAQkI2gkjbkGVoBl6yhiqsTtCIg6gsT6hSdlXJHCFGyVS_QKVWE1cVX6HDjx33KZsDuEM0YbMGpx4OJDs_FXzwcbLr3GdudibceLxdhKnifvQt2CilWMMRbvFk36-trPCbnB9ynjEuap90PXyafY_UwZapVPlSTwThfdi_R894Mxb963M_Rt8uPN5vPzdXXT18266vGthKmRjnLATroldiC76UQzkjbOSZZC0CUIlti2i21nnJBXS85d0Ba5agXppOWnaN3R999Tt_n2o4eQ7F-qKP5NBdN67dwKdqu_S8KilOiuk5BRd8-Qe_SnGMdRDPKZMuAUlKpN4_UvB290_scRpMP-tf_VwCOgM2plOz73wgQvWSsjxnrmrFeMtaLqXyisWEySxJTNmH4p5IelaVWqWHmP03_XfQTW2W5Cw |
CitedBy_id | crossref_primary_10_1080_10106049_2020_1831621 crossref_primary_10_1007_s12517_022_09735_7 crossref_primary_10_1016_j_jnc_2024_126658 crossref_primary_10_1007_s41748_024_00509_7 crossref_primary_10_1007_s40808_025_02309_y crossref_primary_10_1007_s11852_024_01059_w crossref_primary_10_3390_land12030693 crossref_primary_10_3390_rs13132427 crossref_primary_10_3390_land11081274 crossref_primary_10_1016_j_indic_2024_100445 crossref_primary_10_3390_rs14122797 crossref_primary_10_2478_quageo_2022_0026 crossref_primary_10_1007_s40808_023_01771_w crossref_primary_10_1007_s42452_021_04183_6 crossref_primary_10_1016_j_ocecoaman_2022_106285 crossref_primary_10_1007_s41748_020_00155_9 crossref_primary_10_3390_f14030529 crossref_primary_10_1007_s10113_024_02312_6 crossref_primary_10_24057_2071_9388_2021_093 crossref_primary_10_3390_buildings15020192 crossref_primary_10_3390_land10030282 crossref_primary_10_3390_app14188562 crossref_primary_10_1016_j_ecolind_2021_107612 crossref_primary_10_1007_s10708_024_11069_8 crossref_primary_10_3390_land11030419 crossref_primary_10_3390_su131910805 crossref_primary_10_1109_JSTARS_2024_3367116 crossref_primary_10_1016_j_eng_2023_10_015 crossref_primary_10_1080_10106049_2020_1723714 crossref_primary_10_1007_s11356_022_19032_1 crossref_primary_10_1007_s12518_022_00441_3 crossref_primary_10_1016_j_rsase_2024_101144 crossref_primary_10_1016_j_ocecoaman_2024_107241 crossref_primary_10_3390_su142315625 crossref_primary_10_1080_21580103_2021_1922512 crossref_primary_10_1007_s11356_021_17904_6 crossref_primary_10_1007_s11356_023_28400_4 crossref_primary_10_3390_su151612329 crossref_primary_10_1109_JSTARS_2022_3181885 crossref_primary_10_1016_j_ocecoaman_2023_106859 crossref_primary_10_1007_s10708_024_11152_0 crossref_primary_10_3390_land12071302 crossref_primary_10_1016_j_ecoinf_2024_102513 crossref_primary_10_1371_journal_pclm_0000239 crossref_primary_10_1007_s41742_023_00518_w crossref_primary_10_3390_hydrobiology2010011 crossref_primary_10_3390_land10101026 crossref_primary_10_1016_j_heliyon_2024_e34662 crossref_primary_10_1007_s41324_023_00509_1 crossref_primary_10_1016_j_ecohyd_2020_12_001 crossref_primary_10_1080_19475705_2024_2338533 crossref_primary_10_1007_s13762_023_05436_0 crossref_primary_10_1038_s41598_020_57547_0 crossref_primary_10_3390_ijgi8100454 crossref_primary_10_1007_s11356_022_22079_9 crossref_primary_10_1007_s42452_020_04064_4 crossref_primary_10_3389_fenvs_2023_1144686 crossref_primary_10_1016_j_ecolind_2022_108743 crossref_primary_10_2166_wcc_2024_675 crossref_primary_10_1016_j_pce_2025_103884 crossref_primary_10_1007_s10661_024_12928_0 crossref_primary_10_1007_s10708_024_11187_3 crossref_primary_10_1016_j_envc_2021_100148 crossref_primary_10_3390_land13081160 crossref_primary_10_1016_j_enbuild_2022_112452 crossref_primary_10_1080_24749508_2024_2338970 crossref_primary_10_1007_s40030_024_00849_7 crossref_primary_10_1007_s10661_018_6485_x crossref_primary_10_1016_j_envc_2022_100562 crossref_primary_10_33411_IJIST_2022040118 crossref_primary_10_1007_s42452_021_04700_7 crossref_primary_10_1007_s10661_022_10673_w crossref_primary_10_3390_land11081239 crossref_primary_10_1016_j_envres_2024_119520 crossref_primary_10_3390_rs16234480 crossref_primary_10_3390_rs15235522 crossref_primary_10_1016_j_apgeog_2020_102328 crossref_primary_10_1007_s10668_024_05133_z crossref_primary_10_1016_j_ecoinf_2023_102324 crossref_primary_10_1007_s11356_019_06072_3 crossref_primary_10_1186_s40562_023_00287_6 crossref_primary_10_1029_2020JG005632 crossref_primary_10_3390_cli8090098 crossref_primary_10_1007_s10113_021_01787_x crossref_primary_10_1007_s10661_022_10623_6 crossref_primary_10_1007_s13762_022_04331_4 crossref_primary_10_3390_rs11070790 crossref_primary_10_1038_s41598_025_93689_9 crossref_primary_10_3390_geosciences14020040 crossref_primary_10_1016_j_landusepol_2020_104868 crossref_primary_10_1007_s10708_022_10814_1 crossref_primary_10_3390_land11111886 crossref_primary_10_1007_s43621_024_00263_w crossref_primary_10_3390_w14030402 crossref_primary_10_1371_journal_pone_0288694 crossref_primary_10_1080_19475683_2020_1870558 crossref_primary_10_3390_su16135652 crossref_primary_10_1007_s11356_022_24153_8 crossref_primary_10_3390_ijerph191811732 crossref_primary_10_1007_s12517_018_3940_5 crossref_primary_10_1016_j_uclim_2023_101766 crossref_primary_10_3390_land11101621 crossref_primary_10_1016_j_ejrs_2022_03_002 crossref_primary_10_1080_24749508_2021_1923272 crossref_primary_10_3390_ecologies2010007 crossref_primary_10_1515_geo_2020_0298 crossref_primary_10_3390_w14040634 crossref_primary_10_3390_land13040557 crossref_primary_10_1007_s11053_018_9402_7 crossref_primary_10_1007_s12518_024_00595_2 crossref_primary_10_1007_s10661_023_11205_w crossref_primary_10_1007_s42797_022_00058_0 crossref_primary_10_1016_j_envc_2021_100400 crossref_primary_10_1007_s12524_021_01402_w crossref_primary_10_1007_s10661_023_12128_2 crossref_primary_10_1016_j_envc_2021_100365 crossref_primary_10_1016_j_rsase_2022_100773 crossref_primary_10_3390_su11195492 crossref_primary_10_1007_s10661_018_6591_9 crossref_primary_10_1007_s41748_023_00339_z crossref_primary_10_3390_land12040917 crossref_primary_10_3390_land10060584 crossref_primary_10_1007_s40808_023_01814_2 crossref_primary_10_1007_s10661_019_7478_0 crossref_primary_10_1016_j_pce_2022_103117 crossref_primary_10_3390_su13020471 crossref_primary_10_3390_drones6120414 crossref_primary_10_3390_su15043572 crossref_primary_10_1007_s10531_019_01714_x crossref_primary_10_1007_s12594_023_2362_5 crossref_primary_10_3389_frsen_2023_1123254 crossref_primary_10_3390_su13179798 crossref_primary_10_3390_s22134965 crossref_primary_10_1007_s11356_022_21650_8 crossref_primary_10_1016_j_geosus_2024_01_010 crossref_primary_10_1007_s10661_018_7025_4 crossref_primary_10_1016_j_scitotenv_2024_178261 crossref_primary_10_1016_j_asr_2024_08_030 crossref_primary_10_1093_ce_zkad080 crossref_primary_10_1007_s10661_025_13808_x crossref_primary_10_1007_s42452_023_05520_7 crossref_primary_10_1007_s10661_019_7959_1 crossref_primary_10_1007_s10661_023_12166_w crossref_primary_10_1007_s10661_023_11418_z crossref_primary_10_3390_atmos14020382 |
Cites_doi | 10.14358/PERS.79.11.1037 10.1016/j.ecolmodel.2011.09.009 10.1007/BF00124382 10.1017/CBO9780511817434 10.1007/s10113-014-0642-8 10.12691/aees-1-6-5 10.1080/13658810410001713434 10.1007/s00267-012-9831-8 10.1016/j.apgeog.2015.06.015 10.1155/2013/268623 10.1080/19475705.2013.795502 10.1006/jema.2001.0509 10.1016/S0964-5691(98)00074-X 10.1007/s11806-011-0441-z 10.1016/S0167-8809(01)00199-2 10.3329/jesnr.v7i1.22181 10.1007/s10584-015-1470-7 10.1007/BF02990747 10.5194/isprsannals-II-4-W2-163-2015 10.1007/s13369-014-1119-2 10.1080/0143116031000139863 10.1073/pnas.0704119104 10.1016/j.jhydrol.2009.08.007 10.1016/j.ecolmodel.2009.05.021 10.3390/ijgi1010003 10.1068/b307 10.1016/S0959-3780(01)00007-3 10.1007/BF00137155 10.1016/j.envsoft.2013.09.010 10.1175/JCLI-D-12-00087.1 10.1016/0038-0121(77)90041-6 10.1016/j.ejrs.2017.04.003 10.4236/ajcc.2015.43020 10.1016/j.agee.2011.01.011 10.3329/jles.v6i0.9726 10.1007/BF00029138 10.2737/NE-GTR-297 10.3923/jas.2015.689.695 10.1098/rstb.2001.0953 10.1186/s40068-014-0026-6 10.4103/2423-7752.159922 10.1007/978-0-387-77251-6_35 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG 2017 Springer International Publishing AG 2017. |
Copyright_xml | – notice: Springer International Publishing AG 2017 – notice: Springer International Publishing AG 2017. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO F1W FR3 FRNLG FYUFA F~G GHDGH GNUQQ H97 HCIFZ K60 K6~ K9. KL. L.- L.G M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7X8 7S9 L.6 |
DOI | 10.1007/s10661-017-6272-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database (via ProQuest SciTech Premium Collection) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts Aqualine ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Oceanic Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences |
EISSN | 1573-2959 |
EndPage | 565 |
ExternalDocumentID | 29039035 10_1007_s10661_017_6272_0 |
Genre | Journal Article |
GeographicLocations | Bangladesh |
GeographicLocations_xml | – name: Bangladesh |
GrantInformation_xml | – fundername: HEQEP grantid: CP-3143 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -XX -Y2 -~C ..I .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M1P M2P M4Y MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H97 K9. KL. L.- L.G M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI Q9U SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c471t-9dc51181f96b1ef766da7c8d3734110990b0a4b2ce2562df755d1049d2e6a87c3 |
IEDL.DBID | U2A |
ISSN | 0167-6369 1573-2959 |
IngestDate | Fri Jul 11 16:10:09 EDT 2025 Fri Jul 11 03:43:20 EDT 2025 Sat Aug 23 12:31:04 EDT 2025 Thu Apr 03 07:00:09 EDT 2025 Tue Jul 01 02:51:39 EDT 2025 Thu Apr 24 22:58:11 EDT 2025 Fri Feb 21 02:24:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Bare lands CA-ANN model Migration Assasuni Shrimp farm MOLUSCE |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-9dc51181f96b1ef766da7c8d3734110990b0a4b2ce2562df755d1049d2e6a87c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29039035 |
PQID | 3237431220 |
PQPubID | 54151 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2000576484 proquest_miscellaneous_1952098891 proquest_journals_3237431220 pubmed_primary_29039035 crossref_primary_10_1007_s10661_017_6272_0 crossref_citationtrail_10_1007_s10661_017_6272_0 springer_journals_10_1007_s10661_017_6272_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Man and the Environment |
PublicationTitle | Environmental monitoring and assessment |
PublicationTitleAbbrev | Environ Monit Assess |
PublicationTitleAlternate | Environ Monit Assess |
PublicationYear | 2017 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | RobsonMMapping exercise on water-logging in south west of Bangladesh2015Food And Agriculture Organization of The Unite NationsDhaka Jensen, J. (2005). Introductory digital image processing: a remote sensing perspective (3rd ed.), Upper Saddle River, N.J., Prentice Hall. RahmanMMBegumSLand cover change analysis around the Sundarbans mangrove forest of Bangladesh using remote sensing and GIS applicationJournal of Science Foundation201191 and 295107 HalmyMWAGesslerPEHickeJASalemBBLand use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CAApplied Geography201563201510111210.1016/j.apgeog.2015.06.015 MubeaKWNgigiTGMundiaCNAssessing application of Markov chain analysis in predicting land cover change: a case study of Nakuru municipalityJournal of Agriculture, Science and Technology2010122126144 IslamMSAhmedRLand use change prediction in Dhaka city using GIS aided Markov chain modelingJournal of Life and Earth Science201168189 Li, T., & Li, W. (2015). Multiple land use change simulation with Monte Carlo approach and CA-ANN model, a case study in Shenzhen, China. Environmental Systems Research, 4(1). Mkrtchian, A., & Svidzinska, D. (2015). Quantifying landscape changes through land cover transition potential analysis and modeling (on the example of the Black Tisza river basin). http://www.uke.sav.sk/old/phocadownload/symposium/o21_Svidzinska-Mkrtchian-et-al_ORAL_Symp2015.pdf Accessed 15 June 2017. Lia, Z., Liu, W. Z., Zhangc, X. C., Zheng, F., et al. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1–2). MallickBAhmedBVogtJLiving with the risks of cyclone disasters in the south-western coastal region of BangladeshEnvironments20174132017 SubediPSubediKThapaBApplication of a hybrid cellular automaton–Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, FloridaApplied Ecology and Environmental Sciences20131612613210.12691/aees-1-6-5 ComarazamyDEGonzálezJELuvallJCRickmanDLBornsteinRDClimate impacts of land-cover and land-use changes in tropical islands under conditions of global climate changeJournal of Climate2013261535155010.1175/JCLI-D-12-00087.1 FalahatkarSSoffianianARKhajeddinSJZiaeeHRNadoushanMAIntegration of remote sensing data and GIS for prediction of land cover mapInternational Journal of Geomatics and Geosciences201114847864 TurnerBLLambinEFReenbergAThe emergence of land change science for global environmental change and sustainabilityProceedings of the National Academy of Sciences20071045220666206711:CAS:528:DC%2BD1cXksVyhug%3D%3D10.1073/pnas.0704119104 Mallupattu, P.K., & and Reddy, J.R.S. (2013). Analysis of land use/land cover changes using remote sensing data and GIS at an urban area, Tirupati, India, The Scientific World Journal, 2013. Eastman, J. R. (2009). IDRISI guide to GIS and image processing accessed in IDRISI Selva. 17 (pp 182–185). Worcester, MA: Clark University. Vázquez-QuinteroGSolís-MorenoRPompa-GarcíaMVillarreal-GuerreroFPinedo-AlvarezCPinedo-AlvarezADetection and projection of forest changes by using the Markov chain model and cellular automataSustainability201682362016 BajoccoSAngelisADPeriniLFerraraASalvatiLThe impact of land use/land cover changes on land degradation dynamics: a Mediterranean case studyEnvironmental Management2012499809891:STN:280:DC%2BC38vmvVCquw%3D%3D10.1007/s00267-012-9831-8 NadoushanMASoffianianAAlebrahimAModeling land use/cover changes by the combination of Markov chain and cellular automata Markov (CA-Markov) modelsInternational Journal of Earth, Environment and Health201511162110.4103/2423-7752.159922 YuanTYipingXLeiZDanqingLLand use and cover change simulation and prediction in Hangzhou city based on CA-Markov model. International Proceedings of ChemicalBiological and Environmental Engineering2015902015108113 RendanaMRahimSAIdrisWMRLihanTRahmanZACA-Markov for predicting land use changes in tropical catchment area: a case study in Cameron Highland, MalaysiaJournal of Applied Sciences201515468969510.3923/jas.2015.689.695 HadeelASJabbarMTXiaolingCRemote sensing and GIS application in the detection of environmental degradation indicatorsGeo-spatial Information Science201114394710.1007/s11806-011-0441-z BakerWLA review of models of landscape changeLandscape Ecology1989211113310.1007/BF00137155 KumarSRadhakrishnanNMathewSLand use change modelling using a Markov model and remote sensingGeomatics, Natural Hazards and Risk20145214515610.1080/19475705.2013.795502 YagoubMMKolanGRMonitoring coastal zone land use and land cover changes of Abu Dhabi using remote sensingJournal of the Indian Society of Remote Sensing2006341576810.1007/BF02990747 LuDMauselPBrondizioEMoranEChange detection techniquesInternational Journal of Remote Sensing2003252365240110.1080/0143116031000139863 Policy, C. Z. (2005). Ministry of Water Resources. Government of the People’s Republic of Bangladesh. HaiderMZHossainMZImpact of salinity on livelihood strategies of farmersJournal of Soil Science and Plant Nutrition2013132417431 RoySFarzanaKPapiaMHasanMMonitoring and prediction of land use/land cover change using the integration of Markov chain model and cellular automation in the southeastern tertiary hilly area of BangladeshInternational Journal of Sciences: Basic and Applied Research (IJSBAR)2015244125148 VerburgPHEckJRVHijsTCDDijstMJSchotPDetermination of land use change patterns in the NetherlandsEnvironment and Planning B: Urban Analytics and City Science200431112515010.1068/b307 Li, S.H., Jin, B.X., Wei, X.Y., Jiang, Y.Y., Wang, J.L., et al. (2015). Using CA-Markov model to model the spatiotemporal change of land use/cover in Fuxian lake for decision support. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-4/W2, 163–168. Islam, M.R. (2006). Managing diverse land-uses in coastal Bangladesh: institutional approaches. Program Development Office for Integrated Coastal Zone Management, Dhaka, Bangladesh. http://www.pg-du.com/cru/wp-content/uploads/2013/12/Hoanh_1845931076-Chapter18.pdf Accessed 19 May 2016. YeBBaiZSimulating land use/cover changes of Nenjiang County based on CA-Markov modelInternational Federation for Information Processing Publications (IFIP)200825832133010.1007/978-0-387-77251-6_35 GuanDLiHInohaeTSuWNagaieTHokaoKModeling urban land use change by the integration of cellular automaton and Markov modelEcological Modelling20112223761377210.1016/j.ecolmodel.2011.09.009 Banglapedia, (2015). Assasuni Upazila. http://en.banglapedia.org/index.php?title=Assasuni_Upazila Accessed 15 May 2016. FreierKPSchneiderUAFinckhMDynamic interactions between vegetation and land use in semi-arid Morocco: using a Markov process for modeling rangelands under climate changeAgriculture, Ecosystems and Environment201114046247210.1016/j.agee.2011.01.011 ZimmermannMGlombitzaKFRothenbergerBDisaster adaptation programme for Bangladesh 2010-2012Swiss Agency for Development and Cooperation (SDC)2009 Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., Srinivas, Y., Saravanan, S., et al. (2017). Coastal land use and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2017.04.003. UNDP. (2010). Cyclone Aila, Joint UN Multisector Assessment & Response Framework. Bucx, T., Marchand, M., Makaske, A., Guchte, C.V. D., et al. (2010). Comparative assessment of the vulnerability and resilience of 10 deltas—synthesis report. Delta Alliance report number 1. Delta Alliance International, Delft-Wageningen. BatenMASealLLisaKSSalinity intrusion in interior coast of Bangladesh: challenges to agriculture in south-central coastal regionAmerican Journal of Climate Change20154324826210.4236/ajcc.2015.43020 Disaster Management Bureau. (2010). National plan for disaster management 2010–2015. Government of the People’s Republic of Bangladesh. PontiusGRMalansonJComparison of the structure and accuracy of two land change modelsInternational Journal of Geographical Information Science20051924326510.1080/13658810410001713434 Planning Commission. (2009). Steps towards change national strategy for accelerated poverty reduction II (revised). Fiscal year 2009–11, Government of the People’s Republic of Bangladesh, Dhaka. WickramasuriyaRCBregtAKDeldenHVHagen-ZankerAThe dynamics of shifting cultivation captured in an extended constrained cellular automata land use modelEcological Modelling20092202302230910.1016/j.ecolmodel.2009.05.021 NEXTGIS. (2017). MOLUSCE—quick and convenient analysis of land cover changes. https://nextgis.com/blog/molusce/ Accessed 10 June 2017. HasanSSDengXLiZChenDProjections of future land use in Bangladesh under the background of baseline, ecological protection and economic developmentSustainability201795052017 KhanMMHBrycesonIKolivrasKNFaruqueFRahmanMMHaqueUNatural disasters and land-use/land-cover change in the southwest coastal areas of BangladeshRegional Environmental Change20141524125010.1007/s10113-014-0642-8 MyersNEnvironmental refugees: a growing phenomenon of the 21st centuryPhilosophical Transactions of the Royal Society B200135760961310.1098/rstb.2001.0953 BeeviHNSivakumarSVasanthiRLand use / land cover classification of Kanniykumari Coast, Tamilnadu, India. Using remote sensing and GIS techniquesInternational Journal of Engineering Research and Applications2015577887 Muttitanon, W., & Tripathi, N. K. (2008). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing, 26(11). Jogun, T. (2016). The simulation model of land cover change in the Požega-Slavonia County. Diploma thesis, Faculty of Science, Department of Geography. http://digre.pmf.unizg.hr/4908/ Accessed on 20 June 2017. MasJFKolbMPaegelowMOlmedoMTCHouetTInductive pattern-based land use/cover change models: a comparison of four software packagesEnvironm EJ Bell (6272_CR8) 1977; 11 RC Wickramasuriya (6272_CR67) 2009; 220 KW Mubea (6272_CR39) 2010; 12 6272_CR27 6272_CR23 6272_CR26 6272_CR25 6272_CR22 6272_CR62 MMH Khan (6272_CR28) 2014; 15 KP Freier (6272_CR16) 2011; 140 M Rendana (6272_CR51) 2015; 15 P Sinha (6272_CR57) 2013; 79 BL Turner (6272_CR61) 2007; 104 6272_CR38 6272_CR35 G Vázquez-Quintero (6272_CR63) 2016; 8 MR Muller (6272_CR40) 1994; 9 6272_CR31 B Mallick (6272_CR34) 2017; 4 Q Weng (6272_CR66) 2002; 64 6272_CR30 6272_CR32 6272_CR9 S Mitro (6272_CR37) 2014; 7 J Richards (6272_CR52) 2001; 11 M Zimmermann (6272_CR71) 2009 6272_CR5 DM Theobald (6272_CR60) 1998; 2 MS Islam (6272_CR24) 2011; 6 SS Hasan (6272_CR21) 2017; 9 6272_CR1 MM Rahman (6272_CR49) 2011; 9 DE Comarazamy (6272_CR10) 2013; 26 S Kumar (6272_CR29) 2014; 5 S Bajocco (6272_CR3) 2012; 49 PH Verburg (6272_CR65) 2004; 31 AK Deb (6272_CR12) 1998; 41 MIM Shameem (6272_CR56) 2015; 133 GR Pontius (6272_CR48) 2005; 19 6272_CR46 S Roy (6272_CR55) 2015; 24 D Guan (6272_CR17) 2011; 222 6272_CR45 MWA Halmy (6272_CR20) 2015; 63 6272_CR47 T Yuan (6272_CR70) 2015; 90 6272_CR41 B Ye (6272_CR69) 2008; 258 6272_CR44 MM Yagoub (6272_CR68) 2006; 34 A Veldkamp (6272_CR64) 2001; 85 HN Beevi (6272_CR7) 2015; 5 MA Nadoushan (6272_CR43) 2015; 1 P Subedi (6272_CR59) 2013; 1 MZ Haider (6272_CR19) 2013; 13 S Falahatkar (6272_CR15) 2011; 1 AS Hadeel (6272_CR18) 2011; 14 AI Robertson (6272_CR53) 1995; 245 M Robson (6272_CR54) 2015 MA Baten (6272_CR6) 2015; 4 6272_CR13 D Lu (6272_CR33) 2003; 25 B Ahmed (6272_CR2) 2012; 1 6272_CR14 6272_CR58 N Myers (6272_CR42) 2001; 357 6272_CR11 JF Mas (6272_CR36) 2014; 51 WL Baker (6272_CR4) 1989; 2 6272_CR50 23781152 - ScientificWorldJournal. 2013 May 28;2013:268623 12040960 - J Environ Manage. 2002 Mar;64(3):273-84 22419398 - Environ Manage. 2012 May;49(5):980-9 12028796 - Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):609-13 18093934 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20666-71 |
References_xml | – reference: WickramasuriyaRCBregtAKDeldenHVHagen-ZankerAThe dynamics of shifting cultivation captured in an extended constrained cellular automata land use modelEcological Modelling20092202302230910.1016/j.ecolmodel.2009.05.021 – reference: MullerMRMiddletonJA Markov model of land-use change dynamics in the Niagara Region, Ontario, CanadaLandscape Ecology19949151157 – reference: LuDMauselPBrondizioEMoranEChange detection techniquesInternational Journal of Remote Sensing2003252365240110.1080/0143116031000139863 – reference: BakerWLA review of models of landscape changeLandscape Ecology1989211113310.1007/BF00137155 – reference: BajoccoSAngelisADPeriniLFerraraASalvatiLThe impact of land use/land cover changes on land degradation dynamics: a Mediterranean case studyEnvironmental Management2012499809891:STN:280:DC%2BC38vmvVCquw%3D%3D10.1007/s00267-012-9831-8 – reference: RobsonMMapping exercise on water-logging in south west of Bangladesh2015Food And Agriculture Organization of The Unite NationsDhaka – reference: Li, S.H., Jin, B.X., Wei, X.Y., Jiang, Y.Y., Wang, J.L., et al. (2015). Using CA-Markov model to model the spatiotemporal change of land use/cover in Fuxian lake for decision support. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-4/W2, 163–168. – reference: MitroSKhatunRBatenMSocio-economic and environmental impacts of shrimp culture in some selected areas of Bagerhat DistrictJournal of Environmental Science & Natural Resources201471265269 – reference: WengQLand use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modellingJournal of Environmental Management20026427328410.1006/jema.2001.0509 – reference: IslamMSAhmedRLand use change prediction in Dhaka city using GIS aided Markov chain modelingJournal of Life and Earth Science201168189 – reference: RendanaMRahimSAIdrisWMRLihanTRahmanZACA-Markov for predicting land use changes in tropical catchment area: a case study in Cameron Highland, MalaysiaJournal of Applied Sciences201515468969510.3923/jas.2015.689.695 – reference: Mallupattu, P.K., & and Reddy, J.R.S. (2013). Analysis of land use/land cover changes using remote sensing data and GIS at an urban area, Tirupati, India, The Scientific World Journal, 2013. – reference: Bucx, T., Marchand, M., Makaske, A., Guchte, C.V. D., et al. (2010). Comparative assessment of the vulnerability and resilience of 10 deltas—synthesis report. Delta Alliance report number 1. Delta Alliance International, Delft-Wageningen. – reference: Mkrtchian, A., & Svidzinska, D. (2015). Quantifying landscape changes through land cover transition potential analysis and modeling (on the example of the Black Tisza river basin). http://www.uke.sav.sk/old/phocadownload/symposium/o21_Svidzinska-Mkrtchian-et-al_ORAL_Symp2015.pdf Accessed 15 June 2017. – reference: Disaster Management Bureau. (2010). National plan for disaster management 2010–2015. Government of the People’s Republic of Bangladesh. – reference: Vázquez-QuinteroGSolís-MorenoRPompa-GarcíaMVillarreal-GuerreroFPinedo-AlvarezCPinedo-AlvarezADetection and projection of forest changes by using the Markov chain model and cellular automataSustainability201682362016 – reference: NEXTGIS. (2017). MOLUSCE—quick and convenient analysis of land cover changes. https://nextgis.com/blog/molusce/ Accessed 10 June 2017. – reference: Agrawal, C., Green, G., Grove, J., Evans, T., Schweik, C., et al. (2002). A review and assessment of land-use change models: dynamics of space, time, and human choice. Delaware OH: USDA Forest Service. – reference: TurnerBLLambinEFReenbergAThe emergence of land change science for global environmental change and sustainabilityProceedings of the National Academy of Sciences20071045220666206711:CAS:528:DC%2BD1cXksVyhug%3D%3D10.1073/pnas.0704119104 – reference: Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., Srinivas, Y., Saravanan, S., et al. (2017). Coastal land use and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2017.04.003. – reference: VerburgPHEckJRVHijsTCDDijstMJSchotPDetermination of land use change patterns in the NetherlandsEnvironment and Planning B: Urban Analytics and City Science200431112515010.1068/b307 – reference: RahmanMMBegumSLand cover change analysis around the Sundarbans mangrove forest of Bangladesh using remote sensing and GIS applicationJournal of Science Foundation201191 and 295107 – reference: ShameemMIMMomtazSKiemASLocal perceptions of and adaptation to climate variability and change: the case of shrimp farming communities in the coastal region of BangladeshClimate Change2015133225326610.1007/s10584-015-1470-7 – reference: Planning Commission. (2009). Steps towards change national strategy for accelerated poverty reduction II (revised). Fiscal year 2009–11, Government of the People’s Republic of Bangladesh, Dhaka. – reference: Nouri, J., Gharagozlou, A., Arjmandi, R., Faryadi, S., Adl, M., et al. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-014-1119-2. – reference: RobertsonAIPhillipsMJMangroves as filters of shrimp pond effluent: predictions and biogeochemical research needsHydrobiologia1995245131132110.1007/BF00029138 – reference: ZimmermannMGlombitzaKFRothenbergerBDisaster adaptation programme for Bangladesh 2010-2012Swiss Agency for Development and Cooperation (SDC)2009 – reference: HaiderMZHossainMZImpact of salinity on livelihood strategies of farmersJournal of Soil Science and Plant Nutrition2013132417431 – reference: KhanMMHBrycesonIKolivrasKNFaruqueFRahmanMMHaqueUNatural disasters and land-use/land-cover change in the southwest coastal areas of BangladeshRegional Environmental Change20141524125010.1007/s10113-014-0642-8 – reference: HadeelASJabbarMTXiaolingCRemote sensing and GIS application in the detection of environmental degradation indicatorsGeo-spatial Information Science201114394710.1007/s11806-011-0441-z – reference: FreierKPSchneiderUAFinckhMDynamic interactions between vegetation and land use in semi-arid Morocco: using a Markov process for modeling rangelands under climate changeAgriculture, Ecosystems and Environment201114046247210.1016/j.agee.2011.01.011 – reference: BellEJHinojosaRCMarkov analysis of land use change: continuous time and stationary processesSocio-Economic Planning Sciences197711131710.1016/0038-0121(77)90041-6 – reference: MubeaKWNgigiTGMundiaCNAssessing application of Markov chain analysis in predicting land cover change: a case study of Nakuru municipalityJournal of Agriculture, Science and Technology2010122126144 – reference: UNDP. (2010). Cyclone Aila, Joint UN Multisector Assessment & Response Framework. – reference: HalmyMWAGesslerPEHickeJASalemBBLand use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CAApplied Geography201563201510111210.1016/j.apgeog.2015.06.015 – reference: ComarazamyDEGonzálezJELuvallJCRickmanDLBornsteinRDClimate impacts of land-cover and land-use changes in tropical islands under conditions of global climate changeJournal of Climate2013261535155010.1175/JCLI-D-12-00087.1 – reference: TheobaldDMHobbsNTForecasting rural land-use change: a comparison of regression- and spatial transition-based modelsGeographical and Environmental Modelling199826582 – reference: AhmedBAhmedRModeling urban land cover growth dynamics using multi-temporal satellite images: a case study of Dhaka, BangladeshISPRS International Journal of Geo-Information2012133110.3390/ijgi1010003 – reference: Policy, C. Z. (2005). Ministry of Water Resources. Government of the People’s Republic of Bangladesh. – reference: DebAKFake blue revolution: environmental and socio-economic impacts of shrimp culture in the coastal areas of BangladeshOcean & Coastal Management1998411638810.1016/S0964-5691(98)00074-X – reference: GuanDLiHInohaeTSuWNagaieTHokaoKModeling urban land use change by the integration of cellular automaton and Markov modelEcological Modelling20112223761377210.1016/j.ecolmodel.2011.09.009 – reference: FalahatkarSSoffianianARKhajeddinSJZiaeeHRNadoushanMAIntegration of remote sensing data and GIS for prediction of land cover mapInternational Journal of Geomatics and Geosciences201114847864 – reference: YuanTYipingXLeiZDanqingLLand use and cover change simulation and prediction in Hangzhou city based on CA-Markov model. International Proceedings of ChemicalBiological and Environmental Engineering2015902015108113 – reference: Islam, M.R. (2006). Managing diverse land-uses in coastal Bangladesh: institutional approaches. Program Development Office for Integrated Coastal Zone Management, Dhaka, Bangladesh. http://www.pg-du.com/cru/wp-content/uploads/2013/12/Hoanh_1845931076-Chapter18.pdf Accessed 19 May 2016. – reference: PontiusGRMalansonJComparison of the structure and accuracy of two land change modelsInternational Journal of Geographical Information Science20051924326510.1080/13658810410001713434 – reference: YagoubMMKolanGRMonitoring coastal zone land use and land cover changes of Abu Dhabi using remote sensingJournal of the Indian Society of Remote Sensing2006341576810.1007/BF02990747 – reference: Banglapedia, (2015). Assasuni Upazila. http://en.banglapedia.org/index.php?title=Assasuni_Upazila Accessed 15 May 2016. – reference: KumarSRadhakrishnanNMathewSLand use change modelling using a Markov model and remote sensingGeomatics, Natural Hazards and Risk20145214515610.1080/19475705.2013.795502 – reference: De, S. N. (2012). “Assasuni Upazila”. In Islam, S. Jamal, A. A. Banglapedia: National Encyclopedia of Bangladesh (Second ed.). Asiatic Society of Bangladesh. – reference: SinhaPKimarLMarkov land cover change modeling using pairs of time-series satellite imagesPhotogrammetric Engineering & Remote Sensing2013791037105110.14358/PERS.79.11.1037 – reference: MasJFKolbMPaegelowMOlmedoMTCHouetTInductive pattern-based land use/cover change models: a comparison of four software packagesEnvironmental Modelling & Software20145120149411110.1016/j.envsoft.2013.09.010 – reference: BeeviHNSivakumarSVasanthiRLand use / land cover classification of Kanniykumari Coast, Tamilnadu, India. Using remote sensing and GIS techniquesInternational Journal of Engineering Research and Applications2015577887 – reference: YeBBaiZSimulating land use/cover changes of Nenjiang County based on CA-Markov modelInternational Federation for Information Processing Publications (IFIP)200825832133010.1007/978-0-387-77251-6_35 – reference: Li, T., & Li, W. (2015). Multiple land use change simulation with Monte Carlo approach and CA-ANN model, a case study in Shenzhen, China. Environmental Systems Research, 4(1). – reference: MyersNEnvironmental refugees: a growing phenomenon of the 21st centuryPhilosophical Transactions of the Royal Society B200135760961310.1098/rstb.2001.0953 – reference: SubediPSubediKThapaBApplication of a hybrid cellular automaton–Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, FloridaApplied Ecology and Environmental Sciences20131612613210.12691/aees-1-6-5 – reference: Eastman, J. R. (2009). IDRISI guide to GIS and image processing accessed in IDRISI Selva. 17 (pp 182–185). Worcester, MA: Clark University. – reference: Lia, Z., Liu, W. Z., Zhangc, X. C., Zheng, F., et al. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1–2). – reference: Stern, N. (2007). The economics of climate change. Cambridge University Press. – reference: Rahman, M.T., & Hasan, M.N. (2003). Assessment of shifting of agricultural land to non-agricultural land in Bangladesh, SRDI, Ministry of Agriculture, Dhaka. – reference: Jensen, J. (2005). Introductory digital image processing: a remote sensing perspective (3rd ed.), Upper Saddle River, N.J., Prentice Hall. – reference: RoySFarzanaKPapiaMHasanMMonitoring and prediction of land use/land cover change using the integration of Markov chain model and cellular automation in the southeastern tertiary hilly area of BangladeshInternational Journal of Sciences: Basic and Applied Research (IJSBAR)2015244125148 – reference: VeldkampALambinEF(2001). Predicting land-use change. AgricultureEcosystems & Environment2001851610.1016/S0167-8809(01)00199-2 – reference: Muttitanon, W., & Tripathi, N. K. (2008). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing, 26(11). – reference: Huang, W., Liu, H., Luan, Q., Jiang, Q., Liu, J., Liu, H., et al. (2008). Detection and prediction of land use change in Beijing based on remote sensing and GIS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (2008), 75–82. – reference: Jogun, T. (2016). The simulation model of land cover change in the Požega-Slavonia County. Diploma thesis, Faculty of Science, Department of Geography. http://digre.pmf.unizg.hr/4908/ Accessed on 20 June 2017. – reference: MallickBAhmedBVogtJLiving with the risks of cyclone disasters in the south-western coastal region of BangladeshEnvironments20174132017 – reference: NadoushanMASoffianianAAlebrahimAModeling land use/cover changes by the combination of Markov chain and cellular automata Markov (CA-Markov) modelsInternational Journal of Earth, Environment and Health201511162110.4103/2423-7752.159922 – reference: BatenMASealLLisaKSSalinity intrusion in interior coast of Bangladesh: challenges to agriculture in south-central coastal regionAmerican Journal of Climate Change20154324826210.4236/ajcc.2015.43020 – reference: HasanSSDengXLiZChenDProjections of future land use in Bangladesh under the background of baseline, ecological protection and economic developmentSustainability201795052017 – reference: RichardsJSkånesHSteffenWStoneGSvedinUVeldkampTVogelCXuJThe causes of land-use and land-cover change: moving beyond the mythsGlobal Environmental Change200111426126910.1016/S0959-3780(01)00007-3 – ident: 6272_CR5 – volume: 79 start-page: 1037 year: 2013 ident: 6272_CR57 publication-title: Photogrammetric Engineering & Remote Sensing doi: 10.14358/PERS.79.11.1037 – volume: 222 start-page: 3761 year: 2011 ident: 6272_CR17 publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2011.09.009 – volume: 9 start-page: 151 year: 1994 ident: 6272_CR40 publication-title: Landscape Ecology doi: 10.1007/BF00124382 – volume: 9 start-page: 2017 issue: 505 year: 2017 ident: 6272_CR21 publication-title: Sustainability – ident: 6272_CR58 doi: 10.1017/CBO9780511817434 – ident: 6272_CR13 – volume: 12 start-page: 126 issue: 2 year: 2010 ident: 6272_CR39 publication-title: Journal of Agriculture, Science and Technology – volume: 1 start-page: 847 issue: 4 year: 2011 ident: 6272_CR15 publication-title: International Journal of Geomatics and Geosciences – volume-title: Swiss Agency for Development and Cooperation (SDC) year: 2009 ident: 6272_CR71 – volume: 15 start-page: 241 year: 2014 ident: 6272_CR28 publication-title: Regional Environmental Change doi: 10.1007/s10113-014-0642-8 – volume: 1 start-page: 126 issue: 6 year: 2013 ident: 6272_CR59 publication-title: Applied Ecology and Environmental Sciences doi: 10.12691/aees-1-6-5 – volume: 19 start-page: 243 year: 2005 ident: 6272_CR48 publication-title: International Journal of Geographical Information Science doi: 10.1080/13658810410001713434 – volume: 49 start-page: 980 year: 2012 ident: 6272_CR3 publication-title: Environmental Management doi: 10.1007/s00267-012-9831-8 – ident: 6272_CR9 – volume: 63 start-page: 101 issue: 2015 year: 2015 ident: 6272_CR20 publication-title: Applied Geography doi: 10.1016/j.apgeog.2015.06.015 – ident: 6272_CR22 – ident: 6272_CR35 doi: 10.1155/2013/268623 – ident: 6272_CR26 – volume: 5 start-page: 145 issue: 2 year: 2014 ident: 6272_CR29 publication-title: Geomatics, Natural Hazards and Risk doi: 10.1080/19475705.2013.795502 – ident: 6272_CR62 – volume: 90 start-page: 108 issue: 2015 year: 2015 ident: 6272_CR70 publication-title: Biological and Environmental Engineering – volume: 4 start-page: 2017 issue: 13 year: 2017 ident: 6272_CR34 publication-title: Environments – volume: 64 start-page: 273 year: 2002 ident: 6272_CR66 publication-title: Journal of Environmental Management doi: 10.1006/jema.2001.0509 – volume: 41 start-page: 63 issue: 1 year: 1998 ident: 6272_CR12 publication-title: Ocean & Coastal Management doi: 10.1016/S0964-5691(98)00074-X – volume: 14 start-page: 39 year: 2011 ident: 6272_CR18 publication-title: Geo-spatial Information Science doi: 10.1007/s11806-011-0441-z – volume: 85 start-page: 1 year: 2001 ident: 6272_CR64 publication-title: Ecosystems & Environment doi: 10.1016/S0167-8809(01)00199-2 – volume: 13 start-page: 417 issue: 2 year: 2013 ident: 6272_CR19 publication-title: Journal of Soil Science and Plant Nutrition – volume: 9 start-page: 95 issue: 1 and 2 year: 2011 ident: 6272_CR49 publication-title: Journal of Science Foundation – volume: 7 start-page: 265 issue: 1 year: 2014 ident: 6272_CR37 publication-title: Journal of Environmental Science & Natural Resources doi: 10.3329/jesnr.v7i1.22181 – volume: 133 start-page: 253 issue: 2 year: 2015 ident: 6272_CR56 publication-title: Climate Change doi: 10.1007/s10584-015-1470-7 – volume: 34 start-page: 57 issue: 1 year: 2006 ident: 6272_CR68 publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/BF02990747 – ident: 6272_CR31 doi: 10.5194/isprsannals-II-4-W2-163-2015 – ident: 6272_CR45 doi: 10.1007/s13369-014-1119-2 – ident: 6272_CR23 – volume: 25 start-page: 2365 year: 2003 ident: 6272_CR33 publication-title: International Journal of Remote Sensing doi: 10.1080/0143116031000139863 – volume: 104 start-page: 20666 issue: 52 year: 2007 ident: 6272_CR61 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0704119104 – ident: 6272_CR32 doi: 10.1016/j.jhydrol.2009.08.007 – volume: 220 start-page: 2302 year: 2009 ident: 6272_CR67 publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2009.05.021 – ident: 6272_CR44 – volume: 2 start-page: 65 year: 1998 ident: 6272_CR60 publication-title: Geographical and Environmental Modelling – volume: 1 start-page: 3 year: 2012 ident: 6272_CR2 publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi1010003 – volume-title: Mapping exercise on water-logging in south west of Bangladesh year: 2015 ident: 6272_CR54 – volume: 31 start-page: 125 issue: 1 year: 2004 ident: 6272_CR65 publication-title: Environment and Planning B: Urban Analytics and City Science doi: 10.1068/b307 – volume: 11 start-page: 261 issue: 4 year: 2001 ident: 6272_CR52 publication-title: Global Environmental Change doi: 10.1016/S0959-3780(01)00007-3 – ident: 6272_CR11 – ident: 6272_CR38 – volume: 2 start-page: 111 year: 1989 ident: 6272_CR4 publication-title: Landscape Ecology doi: 10.1007/BF00137155 – ident: 6272_CR50 – volume: 51 start-page: 94 issue: 2014 year: 2014 ident: 6272_CR36 publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2013.09.010 – volume: 26 start-page: 1535 year: 2013 ident: 6272_CR10 publication-title: Journal of Climate doi: 10.1175/JCLI-D-12-00087.1 – volume: 11 start-page: 13 year: 1977 ident: 6272_CR8 publication-title: Socio-Economic Planning Sciences doi: 10.1016/0038-0121(77)90041-6 – volume: 5 start-page: 78 issue: 7 year: 2015 ident: 6272_CR7 publication-title: International Journal of Engineering Research and Applications – ident: 6272_CR47 – ident: 6272_CR27 doi: 10.1016/j.ejrs.2017.04.003 – ident: 6272_CR41 – volume: 4 start-page: 248 issue: 3 year: 2015 ident: 6272_CR6 publication-title: American Journal of Climate Change doi: 10.4236/ajcc.2015.43020 – volume: 8 start-page: 2016 issue: 236 year: 2016 ident: 6272_CR63 publication-title: Sustainability – volume: 140 start-page: 462 year: 2011 ident: 6272_CR16 publication-title: Agriculture, Ecosystems and Environment doi: 10.1016/j.agee.2011.01.011 – volume: 6 start-page: 81 year: 2011 ident: 6272_CR24 publication-title: Journal of Life and Earth Science doi: 10.3329/jles.v6i0.9726 – volume: 245 start-page: 311 issue: 1 year: 1995 ident: 6272_CR53 publication-title: Hydrobiologia doi: 10.1007/BF00029138 – ident: 6272_CR1 doi: 10.2737/NE-GTR-297 – volume: 15 start-page: 689 issue: 4 year: 2015 ident: 6272_CR51 publication-title: Journal of Applied Sciences doi: 10.3923/jas.2015.689.695 – volume: 357 start-page: 609 year: 2001 ident: 6272_CR42 publication-title: Philosophical Transactions of the Royal Society B doi: 10.1098/rstb.2001.0953 – ident: 6272_CR14 – volume: 24 start-page: 125 issue: 4 year: 2015 ident: 6272_CR55 publication-title: International Journal of Sciences: Basic and Applied Research (IJSBAR) – ident: 6272_CR30 doi: 10.1186/s40068-014-0026-6 – ident: 6272_CR25 – volume: 1 start-page: 16 issue: 1 year: 2015 ident: 6272_CR43 publication-title: International Journal of Earth, Environment and Health doi: 10.4103/2423-7752.159922 – ident: 6272_CR46 – volume: 258 start-page: 321 year: 2008 ident: 6272_CR69 publication-title: International Federation for Information Processing Publications (IFIP) doi: 10.1007/978-0-387-77251-6_35 – reference: 22419398 - Environ Manage. 2012 May;49(5):980-9 – reference: 12028796 - Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):609-13 – reference: 12040960 - J Environ Manage. 2002 Mar;64(3):273-84 – reference: 23781152 - ScientificWorldJournal. 2013 May 28;2013:268623 – reference: 18093934 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20666-71 |
SSID | ssj0009749 |
Score | 2.5434706 |
Snippet | Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 565 |
SubjectTerms | adverse effects Agriculture - methods Anthropogenic factors Aquaculture Artificial neural networks Atmospheric Protection/Air Quality Control/Air Pollution Bangladesh Cellular automata Cities Climate Climate change Coastal zone coasts Conservation of Natural Resources - methods data collection Disasters Earth and Environmental Science Ecology Ecotoxicology Environment Environmental degradation Environmental Management Environmental Monitoring - methods farm area Fisheries Focus groups Human influences Internal migration Land cover Land management land policy Land use land use and land cover maps land use change Land use management land use planning Landsat Livelihood Marine crustaceans Markov analysis Monitoring/Environmental Analysis Natural disasters Neural networks paddies Population Growth prediction questionnaires Remote sensing Rural areas Satellite Imagery Shellfish farming Shrimp culture Shrimps surveys temporal variation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABQaEQKMhInEBWvXbixwktVasKiT210t4ixw9AqnaXevfAv8eTOBtQ1Uo5RImTWJmxZ-yZ-T6Aj85FZ2x0tPNW0Fp0hlrtOxpdnCkWhXYMi5O_L-TFVf1t2SzLhlsqaZXjnNhP1H7tcI_8RHCBxo5z9mXzmyJrFEZXC4XGQ3iE0GWY0qWWagLdVYP7i9jeUkgzRjWH0rlsmSjO0ZIrTtn_dumWs3krUNrbn_Nn8LQ4jmQ-SPo5PAirQ3jyD5zgIRydTVVruWkZtukF_LkcAKiuiR8I6BNZR4I5jWSXwkl_4jCXkwx1wAQv_NomsrnBOA7KjmCC_A9yOqfzxYL0_Dkk-7skIQVfgVvI77AJv_zVIjWID-nnS7g6P7s8vaCFc4G6bKa21HiHa45ZNLKbhaik9FY57YXK5q6PonXM1h13IftK3EfVND6v6IznQVqtnDiCg9V6FV4DsbITuuZKOmVrFZ1uchOfPSZlNTKwV8DGP966AkiOvBjX7QSljEJqs5BaFFLLKvi0f2QzoHHc1_h4FGNbBmZqJzWq4MP-dh5SGCexq7DepTZrEmdGazO7uw1WOOWlWq3rCl4NKrLvETdM5KOp4POoM1MH7uzum_u7-xYec9TWvgzyGA62N7vwLvtD2-59r_R_AZk_BjQ priority: 102 providerName: ProQuest |
Title | Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh |
URI | https://link.springer.com/article/10.1007/s10661-017-6272-0 https://www.ncbi.nlm.nih.gov/pubmed/29039035 https://www.proquest.com/docview/3237431220 https://www.proquest.com/docview/1952098891 https://www.proquest.com/docview/2000576484 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0RbAPoqfV03qs4JOymOwm-_GYHqlF8RDpwfkUNrvZKpS70r176H_fmXzcVWoFISQh2d0smdmdGWbmN4S8dy44Y4NjtbeCZaI2zGpfs-BCqpIgtEswOfnbTJ7Osy-LfNHnccch2n1wSbY79a1kN5AlDHdVyRVnYKfv52i6AxPPebFD2lWdzouA3lJIM7gy_zbEn8LojoZ5xzvaCp2Tp-RJry3SoiPvM_KgWY7Io7JFmr4ekYNbaIIjcljuktagU79q43NyfdbhT11Q39Wfj3QVKIY00k1sPrU3DkM5aZcGTPHB73Wkl1foxkHSUYyPP6fTghWzGW3L51BQd2nECnw92gKMYSN--dhiZRDfxF8vyPykPJuesr7kAnMgpdbMeIcmRxqMrNMmKCm9VU57oUDatU60OrFZzV0DqhL3QeW5B4POeN5Iq5UTh2RvuVo2rwi1shY640o6ZTMVnM6hiQeFSVmNBdjHJBn-feV6PHIsi3FR7ZCUkVwVkKtCclXJmHzYdrnswDj-1fhoIGjVr8tYCS5QZeIcXr_bvoYVhW4Su2xWm1ilBkODtDbp_W0wwQkstUxnY_KyY5btjLhJBBz5mHwcuGc3gXun-_q_Wr8hjzmycZsUeUT21leb5i1oR-t6Qh6qhYKznqYTsl98_vm1hOtxOfv-Y9KulBtdCQqZ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4ICgUAgWMBBeQ1cROYueA0LZstaVthNBW6i11bIdWqnaXeleof4rfiCePDahqb5VyiBLHsTLjeWQeH8B7rSudqUrT0ihOY15mVElT0kpXkQgrLnWIxclHeTo-jr-dJCdr8KerhcG0yk4m1oLazDT-I9_mjKOyYyz8Mv9FETUKo6sdhEbDFgf26rd32dzn_a-evh8Y2xtNdse0RRWg2gviBc2MRqs6qrK0jGwl0tQooaXhwgv0Ok5UhioumbbeGmCmEklivM-SGWZTJYXmft57sB5z78oMYH1nlH__0bf5FY3Bjd3EU55mXRy1KdbzupCiVkiZYDT8XxNeM2-vhWZrjbf3GB61pioZNrz1BNbsdAMe_tPAcAM2R32dnB_aCgr3FK4mTcurC2IayHtHZhXBLEqydHa7PtGYPUqaymOCF84XjswvMXKE3EIwJf8n2R3SYZ6TGrGHeAubOAT9axs8-DmUwzfvKAQjMdadPYPjO6HHJgyms6l9AUSlJZcxE6kWKhaVlokfYryNJpREzPcAwu6LF7ptgY5IHBdF37wZiVR4IhVIpCIM4OPqkXnT_-O2wVsdGYtWFLiiZ9wA3q1u-02MkRk1tbOlK6IMs5GkzKKbx2BNlXcOYxkH8LxhkdWKWBZyfyQBfOp4pl_Ajct9efty38L98eTosDjczw9ewQOGnFsXYW7BYHG5tK-9NbYo37RbgMDpXe-6vxhVQ4E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Na9RA9FEriB5Eq63RqiPoRRk2mUkyk4PI2nZprS4eWthbnMyHFuru2tlF9q_565yXj41S2lshh5C8TB55n5P3BfBaa6cL5TStjOI05VVBlTQVddolInZc6hiLk7-M88PT9NMkm2zAn64WBtMqO51YK2oz0_iPfMAZR2PHWDxwbVrE1_3Rh_kvihOkMNLajdNoWOTYrn6H7Zt_f7QfaP2GsdHByd4hbScMUB2U8oIWRqOHnbgirxLrRJ4bJbQ0XATlXseMqlilFdM2eAbMOJFlJuxfCsNsrqTQPKx7C24LniUoY2Ii-oa_onG9sa94zvOii6g2ZXvBKlK0DzkTjMb_28RLju6lIG1t-0YP4H7rtJJhw2UPYcNOt-DeP60Mt2D7oK-YC6CtyvCPYHXSNL86J2Y1VT_PtCczRzCfkiy9HdQnGvNISVODTPDC2cKT-QXGkJBvCCbnfyd7Qzocj0k9u4cEX5t4HP_XtnoIayiPb_6ocCyJsf7HYzi9EWpsw-Z0NrVPgKi84jJlItdCpcJpmQUQE7w1oSROf48g7r54qdtm6DiT47zs2zgjkcpApBKJVMYRvF0_Mm86gVwHvNuRsWyVgi97Fo7g1fp2EGeM0aipnS19mRSYlyRlkVwNg9VVYZuYyjSCnYZF1hixIubhyCJ41_FMj8CV6D69Ht2XcCfIWvn5aHz8DO4yZNy6GnMXNhcXS_s8uGWL6kXN_wS-3bTA_QXQOEZR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+dynamics+of+land+use%2Fland+cover+change+and+its+prediction+using+CA-ANN+model+for+southwestern+coastal+Bangladesh&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Rahman%2C+M+Tauhid+Ur&rft.au=Tabassum%2C+Faheemah&rft.au=Rasheduzzaman%2C+Md&rft.au=Saba%2C+Humayra&rft.date=2017-11-01&rft.eissn=1573-2959&rft.volume=189&rft.issue=11&rft.spage=565&rft_id=info:doi/10.1007%2Fs10661-017-6272-0&rft_id=info%3Apmid%2F29039035&rft.externalDocID=29039035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon |