Guided Filter-Inspired Network for Low-Light RAW Image Enhancement

Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, c...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 9; p. 2637
Main Authors Liu, Xinyi, Zhao, Qian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability.
AbstractList Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability.
Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability.Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability.
Audience Academic
Author Zhao, Qian
Liu, Xinyi
AuthorAffiliation School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China; xinyil2525@gmail.com
AuthorAffiliation_xml – name: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China; xinyil2525@gmail.com
Author_xml – sequence: 1
  givenname: Xinyi
  surname: Liu
  fullname: Liu, Xinyi
– sequence: 2
  givenname: Qian
  orcidid: 0000-0001-9956-0064
  surname: Zhao
  fullname: Zhao, Qian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40363077$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AkbjAIcWxHX-c0FK1ZaUVSAjE0XLsSdZLYm_tLBX_HrdbVi3ywfb4mXdmPHOKjkIMgNDrBp9TqvCHTFqsCKfiGTppGGG1JAQfPTofo9OcNxgTSql8gY4ZppxiIU7Qp-udd-CqKz_OkOplyFufyv0LzLcx_ar6mKpVvK1XfljP1bfFz2o5mQGqy7A2wcIEYX6JnvdmzPDqYT9DP64uv198rldfr5cXi1VtmWjmWolWCuCGcg6EUNYpKR0YwI52thNtx5ntCe6562yrrGuFNcAt76BnjChHz9Byr-ui2eht8pNJf3Q0Xt8bYhq0SbO3I2hKBKUYUwGSMcNLUCMMaR2W0nJpm6L1ca-13XUTOFvKSGZ8Ivr0Jfi1HuJv3RAsGGN3Cu8eFFK82UGe9eSzhXE0AeIulxQwVYQxwQr69j90E3cplL-6pwhhgtNCne-pwZQKfOhjCWzLcjB5Wxre-2JfSKpUo7gixeHN4xoOyf9rbgHe7wGbYs4J-gPSYH03OPowOPQvAxKx8A
Cites_doi 10.1007/3-540-44745-8_2
10.61356/SMIJ.2024.9380
10.1007/978-3-031-20071-7_2
10.1109/CVPR42600.2020.00283
10.1007/978-3-642-15549-9_1
10.1109/TIP.2012.2226047
10.1002/ima.22228
10.1038/s41377-024-01721-w
10.1007/978-3-319-24574-4_28
10.1109/CVPR52729.2023.01739
10.1007/s11263-024-02292-4
10.1007/978-3-319-10578-9_53
10.1145/3343031.3350926
10.1109/CVPR.2018.00197
10.1109/TIP.2020.2984098
10.1109/CVPR52688.2022.01691
10.1016/S0734-189X(87)80186-X
10.1109/CVPR42600.2020.00235
10.1109/CVPRW63382.2024.00639
10.1038/s41598-025-87412-x
10.1109/TPAMI.2012.213
10.1038/scientificamerican1277-108
10.1109/TIP.2022.3160399
10.1109/CVPR.2016.304
10.1109/ICCC62609.2024.10942102
10.1109/ISCID.2009.22
10.1109/CVPR.2018.00068
10.1145/3394171.3413925
10.61356/SMIJ.2025.10449
10.1016/j.patrec.2018.01.010
10.1109/TIP.2013.2244222
10.1109/CVPR.2018.00347
10.1609/aaai.v34i07.7013
10.1109/83.557356
10.1109/ICCV.2019.00260
10.1109/CVPR52688.2022.00561
10.1109/CVPR46437.2021.00349
10.1109/TIP.2013.2284059
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25092637
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_327330037e844a66a3a7a25d088c68c1
PMC12074441
A839919692
40363077
10_3390_s25092637
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62331028
– fundername: National Natural Science Foundation of China
  grantid: 12471485
– fundername: National Natural Science Foundation of China
  grantid: 12471485; 62331028
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-97587e6a366e2234b988deae0d3bcb75b64cf20f6dbc59cd57cae6c6bef4429d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:07:50 EDT 2025
Thu Aug 21 18:29:35 EDT 2025
Fri Jul 11 17:56:47 EDT 2025
Fri Jul 25 10:33:18 EDT 2025
Tue Jun 10 20:56:19 EDT 2025
Sat May 17 01:30:25 EDT 2025
Tue Jul 01 05:12:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords guided image filter
low-light RAW image enhancement
convolutional neural networks
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-97587e6a366e2234b988deae0d3bcb75b64cf20f6dbc59cd57cae6c6bef4429d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9956-0064
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25092637
PMID 40363077
PQID 3203224763
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_327330037e844a66a3a7a25d088c68c1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074441
proquest_miscellaneous_3203924474
proquest_journals_3203224763
gale_infotracacademiconefile_A839919692
pubmed_primary_40363077
crossref_primary_10_3390_s25092637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-22
PublicationDateYYYYMMDD 2025-04-22
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-22
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yang (ref_25) 2025; 133
Lee (ref_18) 2013; 22
ref_13
Li (ref_22) 2018; 104
ref_12
Dong (ref_16) 2022; 44
ref_11
ref_33
Ham (ref_34) 2015; 37
ref_10
ref_31
ref_30
Ullah (ref_39) 2025; 10
Huang (ref_20) 2012; 22
ref_15
Zhang (ref_37) 2022; 31
Li (ref_35) 2013; 22
Jobson (ref_1) 1997; 6
He (ref_14) 2013; 35
Land (ref_21) 1977; 237
ref_24
ref_46
ref_23
ref_45
Zhang (ref_47) 2022; 44
ref_44
ref_43
Bavirisetti (ref_36) 2017; 27
ref_42
ref_41
Wang (ref_48) 2025; 14
ref_40
Guan (ref_19) 2009; Volume 1
ref_2
Abid (ref_38) 2024; 9
ref_29
Pizer (ref_17) 1987; 39
ref_28
ref_27
Ren (ref_3) 2020; 29
ref_26
ref_9
ref_8
ref_5
Li (ref_32) 2014; 24
ref_4
ref_7
ref_6
References_xml – ident: ref_6
  doi: 10.1007/3-540-44745-8_2
– volume: 9
  start-page: 1
  year: 2024
  ident: ref_38
  article-title: Tumor Detection in MRI Data using Deep Learning Techniques for Image Classification and Semantic Segmentation
  publication-title: Sustain. Mach. Intell. J.
  doi: 10.61356/SMIJ.2024.9380
– ident: ref_42
  doi: 10.1007/978-3-031-20071-7_2
– ident: ref_10
  doi: 10.1109/CVPR42600.2020.00283
– ident: ref_5
– ident: ref_13
  doi: 10.1007/978-3-642-15549-9_1
– volume: 22
  start-page: 1032
  year: 2012
  ident: ref_20
  article-title: Efficient contrast enhancement using adaptive gamma correction with weighting distribution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2226047
– volume: 27
  start-page: 227
  year: 2017
  ident: ref_36
  article-title: Fusion of MRI and CT images using guided image filter and image statistics
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22228
– volume: 14
  start-page: 70
  year: 2025
  ident: ref_48
  article-title: Single-shot super-resolved fringe projection profilometry (SSSR-FPP): 100,000 frames-per-second 3D imaging with deep learning
  publication-title: Light. Sci. Appl.
  doi: 10.1038/s41377-024-01721-w
– ident: ref_24
– ident: ref_28
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_29
  doi: 10.1109/CVPR52729.2023.01739
– volume: 24
  start-page: 120
  year: 2014
  ident: ref_32
  article-title: Weighted guided image filtering
  publication-title: IEEE Trans. Image Process.
– volume: 133
  start-page: 2527
  year: 2025
  ident: ref_25
  article-title: DiffLLE: Diffusion-based Domain Calibration for Weak Supervised Low-light Image Enhancement
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-024-02292-4
– ident: ref_33
  doi: 10.1007/978-3-319-10578-9_53
– ident: ref_4
  doi: 10.1145/3343031.3350926
– ident: ref_44
  doi: 10.1109/CVPR.2018.00197
– volume: 44
  start-page: 4819
  year: 2022
  ident: ref_47
  article-title: Deep learning-based multi-focus image fusion: A survey and a comparative study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  start-page: 5862
  year: 2020
  ident: ref_3
  article-title: LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2984098
– ident: ref_12
  doi: 10.1109/CVPR52688.2022.01691
– volume: 39
  start-page: 355
  year: 1987
  ident: ref_17
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vision Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– ident: ref_40
– ident: ref_9
  doi: 10.1109/CVPR42600.2020.00235
– ident: ref_26
  doi: 10.1109/CVPRW63382.2024.00639
– ident: ref_30
  doi: 10.1038/s41598-025-87412-x
– volume: 35
  start-page: 1397
  year: 2013
  ident: ref_14
  article-title: Guided Image Filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– volume: 237
  start-page: 108
  year: 1977
  ident: ref_21
  article-title: The retinex theory of color vision
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1277-108
– volume: 44
  start-page: 8355
  year: 2022
  ident: ref_16
  article-title: Learning Spatially Variant Linear Representation Models for Joint Filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 2695
  year: 2022
  ident: ref_37
  article-title: Guided Filter Network for Semantic Image Segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3160399
– ident: ref_2
  doi: 10.1109/CVPR.2016.304
– ident: ref_27
– ident: ref_31
  doi: 10.1109/ICCC62609.2024.10942102
– volume: Volume 1
  start-page: 60
  year: 2009
  ident: ref_19
  article-title: An image enhancement method based on gamma correction
  publication-title: Proceedings of the 2009 Second International Symposium on Computational Intelligence and Design
  doi: 10.1109/ISCID.2009.22
– ident: ref_45
  doi: 10.1109/CVPR.2018.00068
– ident: ref_46
– ident: ref_23
  doi: 10.1145/3394171.3413925
– volume: 10
  start-page: 23
  year: 2025
  ident: ref_39
  article-title: Deep Learning for Precise MRI Segmentation of Lower-Grade Gliomas
  publication-title: Sustain. Mach. Intell. J.
  doi: 10.61356/SMIJ.2025.10449
– volume: 104
  start-page: 15
  year: 2018
  ident: ref_22
  article-title: LightenNet: A convolutional neural network for weakly illuminated image enhancement
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.01.010
– volume: 37
  start-page: 1576
  year: 2015
  ident: ref_34
  article-title: Robust guided image filtering using nonconvex potentials
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 22
  start-page: 2864
  year: 2013
  ident: ref_35
  article-title: Image Fusion With Guided Filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2244222
– ident: ref_15
– ident: ref_7
  doi: 10.1109/CVPR.2018.00347
– ident: ref_11
  doi: 10.1609/aaai.v34i07.7013
– volume: 6
  start-page: 451
  year: 1997
  ident: ref_1
  article-title: Properties and performance of a center/surround retinex
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.557356
– ident: ref_8
  doi: 10.1109/ICCV.2019.00260
– ident: ref_41
  doi: 10.1109/CVPR52688.2022.00561
– ident: ref_43
  doi: 10.1109/CVPR46437.2021.00349
– volume: 22
  start-page: 5372
  year: 2013
  ident: ref_18
  article-title: Contrast enhancement based on layered difference representation of 2D histograms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2284059
SSID ssj0023338
Score 2.445826
Snippet Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2637
SubjectTerms convolutional neural networks
Datasets
Deep learning
guided image filter
Light
low-light RAW image enhancement
Neural networks
Principles
Signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swGCSKTO1QNE3aqnlACQp0IiKTFB-jU8R5IM1QNGg2gSJpxEPkIrGRv5_7JNmQ0aFLRluyTd1n8u5E6sjYt8I4DxoqObyy4CqWgTsXIeRkLUufIFFH9DTyzxt9cauu7sq7wVZftCasiwfugDuR4FdJKSnJKuW19tIbL8qI3hG0Da3xwY-tzFRvtSScV5cjJGHqT55A9E5o2ux8wD5tSP-_Q_GAizbXSQ6IZ_KBve8VYz7uWrrN3qTmI3s3yBHcYafny1lMMZ_MaO6bXzY0fY7XN90a7xzCNL-eP_NrcuL5r_Gf_PIB40h-1txT0ekG4S67nZz9_nHB-80ReACfLLiD0DcJcGidQPGqdtbG5FMRZR1qU9ZahakopjrWoXQhliYA-qDrNFXgoCg_sa1m3qQvLE_GmCI4K0YxKOuMMwmfteSdnJVeZOx4BVr1t8vAqOAdCNlqjWzGTgnO9QkUW92-gWJWfTGr_xUzY9-pGBV1LiAefP-MANpJMVXVGHLOUaAP2rS_qlfV97onfH2B8UlhyMzY0fow-gtNgvgmzZfdOfCcyqiMfe7Ku26zolntwuBa7EbhNy5q80gzu28zuUcCWgzS8utrwLDH3graZrhQXIh9trV4XKYDaJ9Ffdj-zV8A2fX-bA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8Sa0VAEhcbKa2I4fJ7RF3bao9ICo6M1ybG-7B5LS3RV_vzNJNuwKqce8pMlMZr5vPM4MwKdCW48wVDHMlTmTsQrM2ohETtSi8gkpakl_I38_VycX8ttldTksuC2GbZXrmNgF6tgGWiM_EDTqm0t0hy83fxhNjaLq6jBC4yE8KhFpaEuXmR6PCZfA_KvvJiQwtT9YINxbrmjk-QYGda36_w_IG4i0vVtyA36mz-DpwBvzSW_o5_AgNS_gyUY3wZdweLyaxxTz6Zwq4Oy0oSI6Hp_3O71zpKf5WfuXnVE-nv-Y_MpPf2M0yY-aazI9LRO-govp0c-vJ2wYkcACosqSWaT7OikvlEoI9LK2xsTkUxFFHWpd1UqGGS9mKtahsiFWOqABgqrTTCISRfEadpq2SW8hT1rrIljDyxiksdrqhM8ayqCsEZ5n8HGtNHfTd8JwmEGQZt2o2QwOSZ3jDdS8ujvR3l65wRecQMokqPFNMlJ6hdJ77XkVMeAFZUKZwWcyhiMXQ40HP_wpgHJSsyo3QVJnqa0PyrS3tpcbfG_h_n0pGXwYL6PXUCnEN6ld9fdg5im1zOBNb95RZkm17ULju5gtw2-91PaVZn7ddeYuOTIyJJjv7pdrFx5zGiNcSMb5Huwsb1fpPXKbZb3ffcB37TX3Tg
  priority: 102
  providerName: ProQuest
Title Guided Filter-Inspired Network for Low-Light RAW Image Enhancement
URI https://www.ncbi.nlm.nih.gov/pubmed/40363077
https://www.proquest.com/docview/3203224763
https://www.proquest.com/docview/3203924474
https://pubmed.ncbi.nlm.nih.gov/PMC12074441
https://doaj.org/article/327330037e844a66a3a7a25d088c68c1
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxHuzLFVASJwMqe3E9gGhFrW7i3YrtKKit8ixXbYSpEu3FfDvmUnSqBEcuETKU_aMPd98nngG4FWijEUYShlyZc6kTx0zxqMjJwqR2oAuap92I19OsrOp_DhLZ3uwrbHZCPD2n9SO6klNV9_e_Prx-z1O-HfEOJGyv71FGDc8E2ofDhGQFBUyuJRtMIELURW0pj1dDPEwqRMMdV_twFKVvf9vG70DUt0fKHcQaXwf7jWuZDyodf8A9kL5EO7uJBh8BMPTzcIHH48XFBRn5yXF1fF8Uv_8HaPHGl8sf7ILoujx1eBLfP4dDUw8Kq9pNNDK4WOYjkefP5yxpmoCcwg0a2aQAaiQWZFlAbFfFkZrH2xIvChcodIik27Ok3nmC5ca51PlUCcuK8JcIjh58QQOymUZjiAOSqnEGc373kltlFEB39VEqowWlkfwciu0_KZOjpEjqSDJ5q1kIxiSONsHKJ91dWG5-po30yMX6EUJyoUTtJQ2w9ZbZXnq0Qa6TLt-BK9JGTmNA5S4s83mAWwn5a_KB-jnGcr0g2062eor344m_HyChkuiLY3gRXsbJxJFR2wZlpv6GSSjUskIntbqbdssKdydKOyL7ii-06nunXJxXSXr7nN00tDnPP7vHjyDO5yKDCeScX4CB-vVJjxHz2dd9GBfzRQe9fi0B4fD0eTTVa9aRehVI_4Pe90DQA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgaBOK3q7K53vQeEUmia0DQH1IretvbuhuaAXZpEFX-K38iMHZtESNx6jNeOxvP8xrM7A_A20SbHMJQyzJU5kz51zBiPQE4UIs0DQtQenUY-mqjhifxymp5uwe_2LAxtq2x9Yu2ofeXoG_muoFHfXKI5fLz4yWhqFFVX2xEajVochl9XmLLNP4w-o3zfcT7YP_40ZKupAsyhI14wgwhZB5ULpQLGRlmYLPMhD4kXhSt0WijppjyZKl-41Difaoc0O1WEqUTn7QX-7w24KQVGcjqZPjjoEjyB-V7TvQgXk905wgvDFY1YX4t59WiAfwPAWgTc3J25Fu4G9-DuCqfG_Uax7sNWKB_AnbXuhQ9h72A588HHgxlV3NmopKI9_p40O8tjhMPxuLpiY8r_46_9b_HoB3qveL88J1Wjz5KP4ORamPcYtsuqDE8hDlrrxJmM97yTmdFGB3w2o4zNZCLnEbxpmWYvms4bFjMW4qztOBvBHrGzu4GaZdcXqsvvdmV7ViBEE9RoJ2RS5gqpz3XOU48O1qnM9SJ4T8KwZNLIcZevTiYgndQcy_YRRBpqI4Q07bTysitbn9u_mhnB624ZrZRKL3kZqmVzD2a6UssInjTi7WiWVEtPNL5LtiH4jZfaXCln53Un8B5HBIiA9tn_6XoFt4bHR2M7Hk0On8NtTiOME8k434HtxeUyvEBctShe1socw9l1W88f-042Fw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFDAIxGkVZ3ft9R4QSmhCQ0NUVVT05q53NzQH7NIkqvhr_Dpm4geJkLj16NixxvP8Zmd3BuBNpLTBMBQzzJU5ky62TGuHQE7kIjYeIWqPTiN_mSYHJ_LzaXy6A7-bszC0rbLxiWtH7UpLa-RdQaO-uURz6M7qbRFH-6MPFz8ZTZCiSmszTqNSkUP_6wrTt8X78T7K-i3no-HXjwesnjDALDrlJdOIlpVPjEgSj3FS5jpNnTc-ciK3uYrzRNoZj2aJy22srYuVRfptkvuZREfuBL73Buwqyoo6sDsYTo-O23RPYPZX9TISQkfdBYINzRMauL4RAdeDAv4NBxvxcHuv5kbwG92FOzVqDfuVmt2DHV_ch9sbvQwfwODTau68C0dzqr-zcUElfLyeVvvMQwTH4aS8YhNaDQiP-9_C8Q_0ZeGwOCfFo0XKh3ByLex7BJ2iLPwTCL1SKrI65T1nZaqVVh7_m1L-plNheACvG6ZlF1UfjgzzF-Js1nI2gAGxs32AWmevfygvv2e1JWYCAZugtjs-ldIkSL1RhscO3a1NUtsL4B0JIyMDR45bU59TQDqpVVbWR0ipqakQ0rTXyCurLX-R_dXTAF61t9FmqRBjCl-uqmcw75VKBvC4Em9Ls6TKeqTwW9ItwW991PadYn6-7gve44gHEd4-_T9dL-EmWk42GU8Pn8EtTvOMI8k434PO8nLlnyPIWuYvam0O4ey6DegPb007qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guided+Filter-Inspired+Network+for+Low-Light+RAW+Image+Enhancement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Xinyi&rft.au=Zhao%2C+Qian&rft.date=2025-04-22&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092637&rft.externalDocID=A839919692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon