Guided Filter-Inspired Network for Low-Light RAW Image Enhancement
Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, c...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2637 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability. |
---|---|
AbstractList | Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability. Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability.Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability. |
Audience | Academic |
Author | Zhao, Qian Liu, Xinyi |
AuthorAffiliation | School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China; xinyil2525@gmail.com |
AuthorAffiliation_xml | – name: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China; xinyil2525@gmail.com |
Author_xml | – sequence: 1 givenname: Xinyi surname: Liu fullname: Liu, Xinyi – sequence: 2 givenname: Qian orcidid: 0000-0001-9956-0064 surname: Zhao fullname: Zhao, Qian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40363077$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URD_gwB9AkbjAIcWxHX-c0FK1ZaUVSAjE0XLsSdZLYm_tLBX_HrdbVi3ywfb4mXdmPHOKjkIMgNDrBp9TqvCHTFqsCKfiGTppGGG1JAQfPTofo9OcNxgTSql8gY4ZppxiIU7Qp-udd-CqKz_OkOplyFufyv0LzLcx_ar6mKpVvK1XfljP1bfFz2o5mQGqy7A2wcIEYX6JnvdmzPDqYT9DP64uv198rldfr5cXi1VtmWjmWolWCuCGcg6EUNYpKR0YwI52thNtx5ntCe6562yrrGuFNcAt76BnjChHz9Byr-ui2eht8pNJf3Q0Xt8bYhq0SbO3I2hKBKUYUwGSMcNLUCMMaR2W0nJpm6L1ca-13XUTOFvKSGZ8Ivr0Jfi1HuJv3RAsGGN3Cu8eFFK82UGe9eSzhXE0AeIulxQwVYQxwQr69j90E3cplL-6pwhhgtNCne-pwZQKfOhjCWzLcjB5Wxre-2JfSKpUo7gixeHN4xoOyf9rbgHe7wGbYs4J-gPSYH03OPowOPQvAxKx8A |
Cites_doi | 10.1007/3-540-44745-8_2 10.61356/SMIJ.2024.9380 10.1007/978-3-031-20071-7_2 10.1109/CVPR42600.2020.00283 10.1007/978-3-642-15549-9_1 10.1109/TIP.2012.2226047 10.1002/ima.22228 10.1038/s41377-024-01721-w 10.1007/978-3-319-24574-4_28 10.1109/CVPR52729.2023.01739 10.1007/s11263-024-02292-4 10.1007/978-3-319-10578-9_53 10.1145/3343031.3350926 10.1109/CVPR.2018.00197 10.1109/TIP.2020.2984098 10.1109/CVPR52688.2022.01691 10.1016/S0734-189X(87)80186-X 10.1109/CVPR42600.2020.00235 10.1109/CVPRW63382.2024.00639 10.1038/s41598-025-87412-x 10.1109/TPAMI.2012.213 10.1038/scientificamerican1277-108 10.1109/TIP.2022.3160399 10.1109/CVPR.2016.304 10.1109/ICCC62609.2024.10942102 10.1109/ISCID.2009.22 10.1109/CVPR.2018.00068 10.1145/3394171.3413925 10.61356/SMIJ.2025.10449 10.1016/j.patrec.2018.01.010 10.1109/TIP.2013.2244222 10.1109/CVPR.2018.00347 10.1609/aaai.v34i07.7013 10.1109/83.557356 10.1109/ICCV.2019.00260 10.1109/CVPR52688.2022.00561 10.1109/CVPR46437.2021.00349 10.1109/TIP.2013.2284059 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25092637 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_327330037e844a66a3a7a25d088c68c1 PMC12074441 A839919692 40363077 10_3390_s25092637 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62331028 – fundername: National Natural Science Foundation of China grantid: 12471485 – fundername: National Natural Science Foundation of China grantid: 12471485; 62331028 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-97587e6a366e2234b988deae0d3bcb75b64cf20f6dbc59cd57cae6c6bef4429d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:07:50 EDT 2025 Thu Aug 21 18:29:35 EDT 2025 Fri Jul 11 17:56:47 EDT 2025 Fri Jul 25 10:33:18 EDT 2025 Tue Jun 10 20:56:19 EDT 2025 Sat May 17 01:30:25 EDT 2025 Tue Jul 01 05:12:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | guided image filter low-light RAW image enhancement convolutional neural networks |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-97587e6a366e2234b988deae0d3bcb75b64cf20f6dbc59cd57cae6c6bef4429d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9956-0064 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25092637 |
PMID | 40363077 |
PQID | 3203224763 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_327330037e844a66a3a7a25d088c68c1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074441 proquest_miscellaneous_3203924474 proquest_journals_3203224763 gale_infotracacademiconefile_A839919692 pubmed_primary_40363077 crossref_primary_10_3390_s25092637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-22 |
PublicationDateYYYYMMDD | 2025-04-22 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yang (ref_25) 2025; 133 Lee (ref_18) 2013; 22 ref_13 Li (ref_22) 2018; 104 ref_12 Dong (ref_16) 2022; 44 ref_11 ref_33 Ham (ref_34) 2015; 37 ref_10 ref_31 ref_30 Ullah (ref_39) 2025; 10 Huang (ref_20) 2012; 22 ref_15 Zhang (ref_37) 2022; 31 Li (ref_35) 2013; 22 Jobson (ref_1) 1997; 6 He (ref_14) 2013; 35 Land (ref_21) 1977; 237 ref_24 ref_46 ref_23 ref_45 Zhang (ref_47) 2022; 44 ref_44 ref_43 Bavirisetti (ref_36) 2017; 27 ref_42 ref_41 Wang (ref_48) 2025; 14 ref_40 Guan (ref_19) 2009; Volume 1 ref_2 Abid (ref_38) 2024; 9 ref_29 Pizer (ref_17) 1987; 39 ref_28 ref_27 Ren (ref_3) 2020; 29 ref_26 ref_9 ref_8 ref_5 Li (ref_32) 2014; 24 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_6 doi: 10.1007/3-540-44745-8_2 – volume: 9 start-page: 1 year: 2024 ident: ref_38 article-title: Tumor Detection in MRI Data using Deep Learning Techniques for Image Classification and Semantic Segmentation publication-title: Sustain. Mach. Intell. J. doi: 10.61356/SMIJ.2024.9380 – ident: ref_42 doi: 10.1007/978-3-031-20071-7_2 – ident: ref_10 doi: 10.1109/CVPR42600.2020.00283 – ident: ref_5 – ident: ref_13 doi: 10.1007/978-3-642-15549-9_1 – volume: 22 start-page: 1032 year: 2012 ident: ref_20 article-title: Efficient contrast enhancement using adaptive gamma correction with weighting distribution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2226047 – volume: 27 start-page: 227 year: 2017 ident: ref_36 article-title: Fusion of MRI and CT images using guided image filter and image statistics publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22228 – volume: 14 start-page: 70 year: 2025 ident: ref_48 article-title: Single-shot super-resolved fringe projection profilometry (SSSR-FPP): 100,000 frames-per-second 3D imaging with deep learning publication-title: Light. Sci. Appl. doi: 10.1038/s41377-024-01721-w – ident: ref_24 – ident: ref_28 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_29 doi: 10.1109/CVPR52729.2023.01739 – volume: 24 start-page: 120 year: 2014 ident: ref_32 article-title: Weighted guided image filtering publication-title: IEEE Trans. Image Process. – volume: 133 start-page: 2527 year: 2025 ident: ref_25 article-title: DiffLLE: Diffusion-based Domain Calibration for Weak Supervised Low-light Image Enhancement publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-024-02292-4 – ident: ref_33 doi: 10.1007/978-3-319-10578-9_53 – ident: ref_4 doi: 10.1145/3343031.3350926 – ident: ref_44 doi: 10.1109/CVPR.2018.00197 – volume: 44 start-page: 4819 year: 2022 ident: ref_47 article-title: Deep learning-based multi-focus image fusion: A survey and a comparative study publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 29 start-page: 5862 year: 2020 ident: ref_3 article-title: LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2984098 – ident: ref_12 doi: 10.1109/CVPR52688.2022.01691 – volume: 39 start-page: 355 year: 1987 ident: ref_17 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vision Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X – ident: ref_40 – ident: ref_9 doi: 10.1109/CVPR42600.2020.00235 – ident: ref_26 doi: 10.1109/CVPRW63382.2024.00639 – ident: ref_30 doi: 10.1038/s41598-025-87412-x – volume: 35 start-page: 1397 year: 2013 ident: ref_14 article-title: Guided Image Filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – volume: 237 start-page: 108 year: 1977 ident: ref_21 article-title: The retinex theory of color vision publication-title: Sci. Am. doi: 10.1038/scientificamerican1277-108 – volume: 44 start-page: 8355 year: 2022 ident: ref_16 article-title: Learning Spatially Variant Linear Representation Models for Joint Filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 2695 year: 2022 ident: ref_37 article-title: Guided Filter Network for Semantic Image Segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3160399 – ident: ref_2 doi: 10.1109/CVPR.2016.304 – ident: ref_27 – ident: ref_31 doi: 10.1109/ICCC62609.2024.10942102 – volume: Volume 1 start-page: 60 year: 2009 ident: ref_19 article-title: An image enhancement method based on gamma correction publication-title: Proceedings of the 2009 Second International Symposium on Computational Intelligence and Design doi: 10.1109/ISCID.2009.22 – ident: ref_45 doi: 10.1109/CVPR.2018.00068 – ident: ref_46 – ident: ref_23 doi: 10.1145/3394171.3413925 – volume: 10 start-page: 23 year: 2025 ident: ref_39 article-title: Deep Learning for Precise MRI Segmentation of Lower-Grade Gliomas publication-title: Sustain. Mach. Intell. J. doi: 10.61356/SMIJ.2025.10449 – volume: 104 start-page: 15 year: 2018 ident: ref_22 article-title: LightenNet: A convolutional neural network for weakly illuminated image enhancement publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.01.010 – volume: 37 start-page: 1576 year: 2015 ident: ref_34 article-title: Robust guided image filtering using nonconvex potentials publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 22 start-page: 2864 year: 2013 ident: ref_35 article-title: Image Fusion With Guided Filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2244222 – ident: ref_15 – ident: ref_7 doi: 10.1109/CVPR.2018.00347 – ident: ref_11 doi: 10.1609/aaai.v34i07.7013 – volume: 6 start-page: 451 year: 1997 ident: ref_1 article-title: Properties and performance of a center/surround retinex publication-title: IEEE Trans. Image Process. doi: 10.1109/83.557356 – ident: ref_8 doi: 10.1109/ICCV.2019.00260 – ident: ref_41 doi: 10.1109/CVPR52688.2022.00561 – ident: ref_43 doi: 10.1109/CVPR46437.2021.00349 – volume: 22 start-page: 5372 year: 2013 ident: ref_18 article-title: Contrast enhancement based on layered difference representation of 2D histograms publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2284059 |
SSID | ssj0023338 |
Score | 2.445826 |
Snippet | Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2637 |
SubjectTerms | convolutional neural networks Datasets Deep learning guided image filter Light low-light RAW image enhancement Neural networks Principles Signal processing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swGCSKTO1QNE3aqnlACQp0IiKTFB-jU8R5IM1QNGg2gSJpxEPkIrGRv5_7JNmQ0aFLRluyTd1n8u5E6sjYt8I4DxoqObyy4CqWgTsXIeRkLUufIFFH9DTyzxt9cauu7sq7wVZftCasiwfugDuR4FdJKSnJKuW19tIbL8qI3hG0Da3xwY-tzFRvtSScV5cjJGHqT55A9E5o2ux8wD5tSP-_Q_GAizbXSQ6IZ_KBve8VYz7uWrrN3qTmI3s3yBHcYafny1lMMZ_MaO6bXzY0fY7XN90a7xzCNL-eP_NrcuL5r_Gf_PIB40h-1txT0ekG4S67nZz9_nHB-80ReACfLLiD0DcJcGidQPGqdtbG5FMRZR1qU9ZahakopjrWoXQhliYA-qDrNFXgoCg_sa1m3qQvLE_GmCI4K0YxKOuMMwmfteSdnJVeZOx4BVr1t8vAqOAdCNlqjWzGTgnO9QkUW92-gWJWfTGr_xUzY9-pGBV1LiAefP-MANpJMVXVGHLOUaAP2rS_qlfV97onfH2B8UlhyMzY0fow-gtNgvgmzZfdOfCcyqiMfe7Ku26zolntwuBa7EbhNy5q80gzu28zuUcCWgzS8utrwLDH3graZrhQXIh9trV4XKYDaJ9Ffdj-zV8A2fX-bA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8Sa0VAEhcbKa2I4fJ7RF3bao9ICo6M1ybG-7B5LS3RV_vzNJNuwKqce8pMlMZr5vPM4MwKdCW48wVDHMlTmTsQrM2ohETtSi8gkpakl_I38_VycX8ttldTksuC2GbZXrmNgF6tgGWiM_EDTqm0t0hy83fxhNjaLq6jBC4yE8KhFpaEuXmR6PCZfA_KvvJiQwtT9YINxbrmjk-QYGda36_w_IG4i0vVtyA36mz-DpwBvzSW_o5_AgNS_gyUY3wZdweLyaxxTz6Zwq4Oy0oSI6Hp_3O71zpKf5WfuXnVE-nv-Y_MpPf2M0yY-aazI9LRO-govp0c-vJ2wYkcACosqSWaT7OikvlEoI9LK2xsTkUxFFHWpd1UqGGS9mKtahsiFWOqABgqrTTCISRfEadpq2SW8hT1rrIljDyxiksdrqhM8ayqCsEZ5n8HGtNHfTd8JwmEGQZt2o2QwOSZ3jDdS8ujvR3l65wRecQMokqPFNMlJ6hdJ77XkVMeAFZUKZwWcyhiMXQ40HP_wpgHJSsyo3QVJnqa0PyrS3tpcbfG_h_n0pGXwYL6PXUCnEN6ld9fdg5im1zOBNb95RZkm17ULju5gtw2-91PaVZn7ddeYuOTIyJJjv7pdrFx5zGiNcSMb5Huwsb1fpPXKbZb3ffcB37TX3Tg priority: 102 providerName: ProQuest |
Title | Guided Filter-Inspired Network for Low-Light RAW Image Enhancement |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40363077 https://www.proquest.com/docview/3203224763 https://www.proquest.com/docview/3203924474 https://pubmed.ncbi.nlm.nih.gov/PMC12074441 https://doaj.org/article/327330037e844a66a3a7a25d088c68c1 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxHuzLFVASJwMqe3E9gGhFrW7i3YrtKKit8ixXbYSpEu3FfDvmUnSqBEcuETKU_aMPd98nngG4FWijEUYShlyZc6kTx0zxqMjJwqR2oAuap92I19OsrOp_DhLZ3uwrbHZCPD2n9SO6klNV9_e_Prx-z1O-HfEOJGyv71FGDc8E2ofDhGQFBUyuJRtMIELURW0pj1dDPEwqRMMdV_twFKVvf9vG70DUt0fKHcQaXwf7jWuZDyodf8A9kL5EO7uJBh8BMPTzcIHH48XFBRn5yXF1fF8Uv_8HaPHGl8sf7ILoujx1eBLfP4dDUw8Kq9pNNDK4WOYjkefP5yxpmoCcwg0a2aQAaiQWZFlAbFfFkZrH2xIvChcodIik27Ok3nmC5ca51PlUCcuK8JcIjh58QQOymUZjiAOSqnEGc373kltlFEB39VEqowWlkfwciu0_KZOjpEjqSDJ5q1kIxiSONsHKJ91dWG5-po30yMX6EUJyoUTtJQ2w9ZbZXnq0Qa6TLt-BK9JGTmNA5S4s83mAWwn5a_KB-jnGcr0g2062eor344m_HyChkuiLY3gRXsbJxJFR2wZlpv6GSSjUskIntbqbdssKdydKOyL7ii-06nunXJxXSXr7nN00tDnPP7vHjyDO5yKDCeScX4CB-vVJjxHz2dd9GBfzRQe9fi0B4fD0eTTVa9aRehVI_4Pe90DQA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgaBOK3q7K53vQeEUmia0DQH1IretvbuhuaAXZpEFX-K38iMHZtESNx6jNeOxvP8xrM7A_A20SbHMJQyzJU5kz51zBiPQE4UIs0DQtQenUY-mqjhifxymp5uwe_2LAxtq2x9Yu2ofeXoG_muoFHfXKI5fLz4yWhqFFVX2xEajVochl9XmLLNP4w-o3zfcT7YP_40ZKupAsyhI14wgwhZB5ULpQLGRlmYLPMhD4kXhSt0WijppjyZKl-41Difaoc0O1WEqUTn7QX-7w24KQVGcjqZPjjoEjyB-V7TvQgXk905wgvDFY1YX4t59WiAfwPAWgTc3J25Fu4G9-DuCqfG_Uax7sNWKB_AnbXuhQ9h72A588HHgxlV3NmopKI9_p40O8tjhMPxuLpiY8r_46_9b_HoB3qveL88J1Wjz5KP4ORamPcYtsuqDE8hDlrrxJmM97yTmdFGB3w2o4zNZCLnEbxpmWYvms4bFjMW4qztOBvBHrGzu4GaZdcXqsvvdmV7ViBEE9RoJ2RS5gqpz3XOU48O1qnM9SJ4T8KwZNLIcZevTiYgndQcy_YRRBpqI4Q07bTysitbn9u_mhnB624ZrZRKL3kZqmVzD2a6UssInjTi7WiWVEtPNL5LtiH4jZfaXCln53Un8B5HBIiA9tn_6XoFt4bHR2M7Hk0On8NtTiOME8k434HtxeUyvEBctShe1socw9l1W88f-042Fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFDAIxGkVZ3ft9R4QSmhCQ0NUVVT05q53NzQH7NIkqvhr_Dpm4geJkLj16NixxvP8Zmd3BuBNpLTBMBQzzJU5ky62TGuHQE7kIjYeIWqPTiN_mSYHJ_LzaXy6A7-bszC0rbLxiWtH7UpLa-RdQaO-uURz6M7qbRFH-6MPFz8ZTZCiSmszTqNSkUP_6wrTt8X78T7K-i3no-HXjwesnjDALDrlJdOIlpVPjEgSj3FS5jpNnTc-ciK3uYrzRNoZj2aJy22srYuVRfptkvuZREfuBL73Buwqyoo6sDsYTo-O23RPYPZX9TISQkfdBYINzRMauL4RAdeDAv4NBxvxcHuv5kbwG92FOzVqDfuVmt2DHV_ch9sbvQwfwODTau68C0dzqr-zcUElfLyeVvvMQwTH4aS8YhNaDQiP-9_C8Q_0ZeGwOCfFo0XKh3ByLex7BJ2iLPwTCL1SKrI65T1nZaqVVh7_m1L-plNheACvG6ZlF1UfjgzzF-Js1nI2gAGxs32AWmevfygvv2e1JWYCAZugtjs-ldIkSL1RhscO3a1NUtsL4B0JIyMDR45bU59TQDqpVVbWR0ipqakQ0rTXyCurLX-R_dXTAF61t9FmqRBjCl-uqmcw75VKBvC4Em9Ls6TKeqTwW9ItwW991PadYn6-7gve44gHEd4-_T9dL-EmWk42GU8Pn8EtTvOMI8k434PO8nLlnyPIWuYvam0O4ey6DegPb007qQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guided+Filter-Inspired+Network+for+Low-Light+RAW+Image+Enhancement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Xinyi&rft.au=Zhao%2C+Qian&rft.date=2025-04-22&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092637&rft.externalDocID=A839919692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |