An SPM8-Based Approach for Attenuation Correction Combining Segmentation and Nonrigid Template Formation: Application to Simultaneous PET/MR Brain Imaging
We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Co...
Saved in:
Published in | Journal of Nuclear Medicine Vol. 55; no. 11; pp. 1825 - 1830 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Nuclear Medicine
01.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners.
Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed.
The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement.
We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks. |
---|---|
AbstractList | We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks. We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps ( maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% plus or minus 4.52%) compared with the gold standard. Similar results (RC, 1.86% plus or minus 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% plus or minus 5.0% and 2.74% plus or minus 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% plus or minus 10.25% and 9.38% plus or minus 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks. We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners.UNLABELLEDWe present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners.Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed.METHODSCoregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed.The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement.RESULTSThe leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement.We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.CONCLUSIONWe have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks. We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks. |
Author | Izquierdo-Garcia, David Benoit, Didier Hansen, Adam E. Schachoff, Sylvia Fürst, Sebastian Chonde, Daniel B. Catana, Ciprian Chen, Kevin T. Förster, Stefan |
Author_xml | – sequence: 1 givenname: David surname: Izquierdo-Garcia fullname: Izquierdo-Garcia, David – sequence: 2 givenname: Adam E. surname: Hansen fullname: Hansen, Adam E. – sequence: 3 givenname: Stefan surname: Förster fullname: Förster, Stefan – sequence: 4 givenname: Didier surname: Benoit fullname: Benoit, Didier – sequence: 5 givenname: Sylvia surname: Schachoff fullname: Schachoff, Sylvia – sequence: 6 givenname: Sebastian surname: Fürst fullname: Fürst, Sebastian – sequence: 7 givenname: Kevin T. surname: Chen fullname: Chen, Kevin T. – sequence: 8 givenname: Daniel B. surname: Chonde fullname: Chonde, Daniel B. – sequence: 9 givenname: Ciprian surname: Catana fullname: Catana, Ciprian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25278515$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhS1URNPAA7BBltiwmdQej3-GXRq1UKmFigSJneXx3ARHM3bq8Sx4FZ4Wh0k3lRArX8nfObo_5wKd-eABobeULMpayMu9H3toF5SyBWWCVfQFmpWU14UQ5Y8zNCNU0IJzws_RxTDsCSFCKfUKnZe8lIpTPkO_lx6vH-5VcWUGaPHycIjB2J94GyJepgR-NMkFj1chRrCnsm-cd36H17DrwaeJML7FX4KPbudavIH-0JkE-CbE_u__x6N35-wEp4DXrh-7ZDyEccAP15vL-2_4Khrn8W1vdtn-NXq5Nd0Ab07vHH2_ud6sPhd3Xz_drpZ3ha0kTUXNWF0xYVtaKZBkK1pBZG0FqYxsWQOE1WpbW6oaBiAaKUslVMsrC4I1PKvn6MPkm0d_HGFIuneDha6betNUKsJLLqX8PypKwpUQuaE5ev8M3Ycx-jzIkcpdSFWpTL07UWOTT6kP0fUm_tJPB8qAnAAbwzBE2GrrpoWnvKtOU6KPUdBTFHSOgp6ikJX0mfLJ_N-aP85yt_k |
CODEN | JNMEAQ |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120631 crossref_primary_10_3389_fneur_2023_1142734 crossref_primary_10_3389_fphy_2018_00047 crossref_primary_10_1038_s41386_024_01859_6 crossref_primary_10_1212_WNL_0000000000007371 crossref_primary_10_1088_1361_6560_aac763 crossref_primary_10_1186_s40658_018_0220_0 crossref_primary_10_1016_j_mric_2017_01_002 crossref_primary_10_1093_brain_awab429 crossref_primary_10_1016_j_neuroimage_2020_116656 crossref_primary_10_1007_s10803_019_04010_3 crossref_primary_10_1080_0284186X_2018_1477257 crossref_primary_10_1016_j_remn_2020_03_004 crossref_primary_10_1162_imag_a_00402 crossref_primary_10_1016_j_neuroimage_2020_117221 crossref_primary_10_1016_j_msard_2025_106350 crossref_primary_10_1118_1_4963809 crossref_primary_10_1089_neu_2022_0030 crossref_primary_10_3389_fphy_2019_00243 crossref_primary_10_1002_ana_24791 crossref_primary_10_1038_s41598_021_94967_y crossref_primary_10_1038_s41467_020_14693_3 crossref_primary_10_2967_jnumed_115_156299 crossref_primary_10_1016_j_neuroimage_2016_01_060 crossref_primary_10_1016_j_bbi_2024_04_015 crossref_primary_10_1007_s00259_020_05061_w crossref_primary_10_1038_s44220_023_00046_8 crossref_primary_10_1016_j_dadm_2019_09_004 crossref_primary_10_2967_jnumed_117_207142 crossref_primary_10_1007_s40042_021_00186_z crossref_primary_10_1109_TMI_2018_2888491 crossref_primary_10_1016_j_nicl_2018_08_007 crossref_primary_10_1021_acsomega_3c04824 crossref_primary_10_1016_j_bbi_2023_12_016 crossref_primary_10_1016_j_bbi_2025_02_002 crossref_primary_10_1109_JPROC_2019_2936809 crossref_primary_10_1016_j_ejmp_2020_07_028 crossref_primary_10_1021_acschemneuro_8b00072 crossref_primary_10_1109_TNS_2015_2452574 crossref_primary_10_1148_radiol_2017161603 crossref_primary_10_1016_j_isci_2024_110159 crossref_primary_10_2967_jnumed_115_163550 crossref_primary_10_1002_ana_25251 crossref_primary_10_1088_1748_0221_19_01_C01001 crossref_primary_10_1177_1352458519843048 crossref_primary_10_1016_j_eurpsy_2017_11_007 crossref_primary_10_1172_JCI123743 crossref_primary_10_1007_s00259_016_3422_5 crossref_primary_10_1055_s_0042_1750013 crossref_primary_10_1097_j_pain_0000000000003272 crossref_primary_10_1016_j_neuroimage_2015_03_009 crossref_primary_10_4236_ijmpcero_2018_73023 crossref_primary_10_1021_acschemneuro_0c00772 crossref_primary_10_1109_TRPMS_2020_3009269 crossref_primary_10_2967_jnumed_114_146308 crossref_primary_10_3389_fnins_2014_00434 crossref_primary_10_1007_s11307_018_1171_5 crossref_primary_10_1177_0271678X231216144 crossref_primary_10_3389_fphys_2019_01422 crossref_primary_10_3389_fnagi_2021_632237 crossref_primary_10_1093_gerona_glae209 crossref_primary_10_3390_app11083508 crossref_primary_10_1038_s41598_024_61519_z crossref_primary_10_1088_0031_9155_60_20_8047 crossref_primary_10_1118_1_4941014 crossref_primary_10_1007_s13042_023_01871_0 crossref_primary_10_1016_j_nicl_2023_103553 crossref_primary_10_2967_jnumed_116_175398 crossref_primary_10_2147_IJN_S362192 crossref_primary_10_2967_jnumed_115_159228 crossref_primary_10_1016_j_neuroimage_2020_117154 crossref_primary_10_1177_0271678X221078616 crossref_primary_10_1093_brain_awu377 crossref_primary_10_1109_JBHI_2019_2927368 crossref_primary_10_1109_TMI_2017_2776324 crossref_primary_10_3389_fphy_2019_00211 crossref_primary_10_1007_s00259_016_3394_5 crossref_primary_10_2967_jnumed_115_166967 crossref_primary_10_2967_jnumed_116_183343 crossref_primary_10_1088_0031_9155_61_17_6531 crossref_primary_10_1016_j_nicl_2020_102346 crossref_primary_10_1109_TRPMS_2020_3006844 crossref_primary_10_1038_nature25988 crossref_primary_10_1007_s40336_016_0213_8 crossref_primary_10_1016_j_remnie_2020_03_002 crossref_primary_10_1016_j_ijrobp_2018_06_024 crossref_primary_10_1212_NXI_0000000000001144 crossref_primary_10_1109_TNS_2015_2513064 crossref_primary_10_1088_0031_9155_61_15_5547 crossref_primary_10_1109_TRPMS_2018_2877644 crossref_primary_10_1016_j_cpet_2015_10_002 crossref_primary_10_1016_j_clineuro_2021_106669 crossref_primary_10_1093_brain_awaf029 crossref_primary_10_3233_JAD_180217 crossref_primary_10_1007_s10278_020_00361_x crossref_primary_10_3233_JPD_223542 crossref_primary_10_1007_s00259_015_3082_x crossref_primary_10_1007_s00259_016_3462_x crossref_primary_10_1259_bjro_20190033 crossref_primary_10_1016_j_bbih_2025_100945 crossref_primary_10_1038_s41398_020_01170_0 crossref_primary_10_2967_jnumed_118_214320 crossref_primary_10_1007_s00259_016_3489_z crossref_primary_10_1016_j_nicl_2019_101651 crossref_primary_10_1016_j_bbih_2021_100287 crossref_primary_10_1118_1_4932367 crossref_primary_10_1007_s00259_019_04407_3 crossref_primary_10_1016_j_bbi_2020_01_020 crossref_primary_10_1177_0271678X211023387 crossref_primary_10_3389_fnins_2017_00453 crossref_primary_10_1007_s12021_018_9355_3 crossref_primary_10_1093_brain_awab336 crossref_primary_10_1259_bjr_20160363 crossref_primary_10_1016_j_neunet_2020_05_001 crossref_primary_10_1109_TRPMS_2018_2868946 crossref_primary_10_2967_jnumed_115_169045 crossref_primary_10_1088_0031_9155_61_18_6668 crossref_primary_10_2967_jnumed_119_241059 crossref_primary_10_1038_jcbfm_2015_158 crossref_primary_10_1109_TNS_2017_2692306 crossref_primary_10_3390_app122211600 crossref_primary_10_2967_jnumed_118_217901 crossref_primary_10_1016_j_bbi_2018_09_018 crossref_primary_10_1073_pnas_1612233114 crossref_primary_10_1088_1361_6560_abb0f8 crossref_primary_10_1016_j_brs_2024_07_019 crossref_primary_10_2967_jnumed_116_178335 crossref_primary_10_1002_mrm_28689 crossref_primary_10_1088_1361_6560_aa5f6c crossref_primary_10_1002_acm2_13121 crossref_primary_10_1016_j_neuroimage_2021_118695 crossref_primary_10_1002_jmri_26000 crossref_primary_10_1126_scitranslmed_aaf7551 crossref_primary_10_1002_hbm_24314 crossref_primary_10_1016_j_mri_2015_10_037 crossref_primary_10_1177_13872877241302350 crossref_primary_10_1002_mp_14180 crossref_primary_10_1177_1352458519867320 crossref_primary_10_1088_1748_0221_19_04_C04028 crossref_primary_10_1016_j_nicl_2021_102858 crossref_primary_10_1093_brain_awae030 crossref_primary_10_1016_j_ijrobp_2019_06_2535 crossref_primary_10_1186_s13550_019_0547_0 crossref_primary_10_1002_nbm_3775 crossref_primary_10_1007_s12350_015_0159_7 crossref_primary_10_1016_j_nicl_2015_01_009 crossref_primary_10_1038_s41398_020_00911_5 crossref_primary_10_1038_s41398_022_02153_z crossref_primary_10_1109_TMI_2018_2790962 crossref_primary_10_1186_s40658_020_00320_z crossref_primary_10_1007_s00259_020_04816_9 crossref_primary_10_1016_j_mric_2016_12_001 crossref_primary_10_3389_fpsyt_2022_862958 crossref_primary_10_1007_s11307_015_0886_9 crossref_primary_10_1016_j_neuroimage_2016_12_010 crossref_primary_10_1038_s41380_020_0682_z crossref_primary_10_1186_s40658_023_00569_0 crossref_primary_10_1016_j_nicl_2017_11_011 crossref_primary_10_2967_jnumed_118_209288 crossref_primary_10_1016_j_bbih_2021_100336 crossref_primary_10_1016_j_neuroimage_2016_02_042 crossref_primary_10_1109_TRPMS_2024_3370252 crossref_primary_10_1118_1_4934374 crossref_primary_10_3389_fnins_2024_1395769 crossref_primary_10_1109_TRPMS_2018_2863953 crossref_primary_10_1002_ana_25731 crossref_primary_10_1038_s41380_019_0433_1 |
Cites_doi | 10.1118/1.3578928 10.1016/j.nucmedbio.2009.05.005 10.2967/jnumed.107.049353 10.1007/s00259-008-0734-0 10.1088/0031-9155/57/4/885 10.2967/jnumed.109.065425 10.1007/s00259-008-1007-7 10.2967/jnumed.109.069112 10.1007/s00259-002-0796-3 10.1016/j.neuroimage.2013.08.042 10.1109/TMI.2012.2212719 10.1007/s00259-012-2113-0 10.1117/12.175110 10.2967/jnumed.111.092577 10.1097/RLI.0b013e318283292f 10.2967/jnumed.112.105346 10.2967/jnumed.111.092726 10.1016/j.neuroimage.2007.07.007 10.1053/j.semnuclmed.2012.08.002 10.2967/jnumed.108.054726 10.1109/42.668698 10.1016/j.neuroimage.2008.12.037 10.1007/s00259-010-1603-1 10.1109/TMI.2012.2220376 10.1109/42.774167 10.1007/s10334-012-0339-2 10.1109/TMI.2012.2198831 10.1109/TMI.2010.2095464 10.1148/radiol.2262012141 10.2967/jnumed.110.085076 |
ContentType | Journal Article |
Copyright | 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc. Copyright Society of Nuclear Medicine Nov 1, 2014 |
Copyright_xml | – notice: 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc. – notice: Copyright Society of Nuclear Medicine Nov 1, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 8FD FR3 K9. M7Z NAPCQ P64 7X8 7QO |
DOI | 10.2967/jnumed.113.136341 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database Docstoc Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Nursing & Allied Health Premium Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2159-662X 1535-5667 |
EndPage | 1830 |
ExternalDocumentID | 3506655911 25278515 10_2967_jnumed_113_136341 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA137254 – fundername: NIBIB NIH HHS grantid: 1R01EB014894 – fundername: NIBIB NIH HHS grantid: R01 EB014894 – fundername: NCI NIH HHS grantid: R01CA137254 |
GroupedDBID | 123 18M 41~ 5VS 96U AAYXX ACGFO AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CITATION GX1 N9A RHI TSM U5U W8F --- -~X .55 .GJ 29L 2WC 3O- 53G 5RE 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8WZ A6W ABEFU ABSQV ABUWG ACGOD ACIWK ACPRK ADDZX ADMOG AENEX AFFNX AFKRA AFOSN AFRAH AHMBA AI. ALIPV ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EBD EBS ECM EIF EJD EMOBN EX3 F5P F9R FYUFA GNUQQ H13 HCIFZ HMCUK I-F IL9 INIJC J5H KQ8 L7B LK8 M1P M2P M2Q M7P N4W NAPCQ NPM OK1 P2P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X R0Z RNS RWL S0X SJN SV3 TAE TR2 TUS UKHRP VH1 WH7 WOQ WOW X7M YHG YQJ ZGI ZXP 4T- 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c471t-9339436cd148e70f6d6079c604a7d3be0398f9c18b3ee6b772868d54ce63b5933 |
ISSN | 0161-5505 1535-5667 |
IngestDate | Fri Jul 11 05:27:47 EDT 2025 Fri Jul 11 16:04:46 EDT 2025 Mon Jun 30 10:50:25 EDT 2025 Mon Jul 21 06:01:28 EDT 2025 Tue Jul 01 01:45:11 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | template segmentation integrated PET/MRI attenuation correction |
Language | English |
License | 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-9339436cd148e70f6d6079c604a7d3be0398f9c18b3ee6b772868d54ce63b5933 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://jnm.snmjournals.org/content/55/11/1825.full.pdf |
PMID | 25278515 |
PQID | 1627727848 |
PQPubID | 40808 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1780525777 proquest_miscellaneous_1620586694 proquest_journals_1627727848 pubmed_primary_25278515 crossref_citationtrail_10_2967_jnumed_113_136341 crossref_primary_10_2967_jnumed_113_136341 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of Nuclear Medicine |
PublicationTitleAlternate | J Nucl Med |
PublicationYear | 2014 |
Publisher | Society of Nuclear Medicine |
Publisher_xml | – name: Society of Nuclear Medicine |
References | 2021051712065374000_55.11.1825.18 2021051712065374000_55.11.1825.19 2021051712065374000_55.11.1825.16 2021051712065374000_55.11.1825.17 2021051712065374000_55.11.1825.10 2021051712065374000_55.11.1825.11 2021051712065374000_55.11.1825.30 2021051712065374000_55.11.1825.31 2021051712065374000_55.11.1825.14 2021051712065374000_55.11.1825.15 2021051712065374000_55.11.1825.12 2021051712065374000_55.11.1825.13 2021051712065374000_55.11.1825.3 2021051712065374000_55.11.1825.6 2021051712065374000_55.11.1825.5 2021051712065374000_55.11.1825.8 2021051712065374000_55.11.1825.7 2021051712065374000_55.11.1825.9 2021051712065374000_55.11.1825.29 2021051712065374000_55.11.1825.27 2021051712065374000_55.11.1825.28 2021051712065374000_55.11.1825.2 2021051712065374000_55.11.1825.1 2021051712065374000_55.11.1825.21 2021051712065374000_55.11.1825.22 2021051712065374000_55.11.1825.20 2021051712065374000_55.11.1825.25 2021051712065374000_55.11.1825.26 2021051712065374000_55.11.1825.23 2021051712065374000_55.11.1825.24 Kops (2021051712065374000_55.11.1825.4) 2007; 6 22080447 - J Nucl Med. 2011 Dec;52(12):1914-22 23143086 - J Nucl Med. 2012 Dec;53(12):1916-25 19289430 - J Nucl Med. 2009 Apr;50(4):520-6 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802 22526955 - Eur J Nucl Med Mol Imaging. 2012 Jul;39(7):1154-60 18927326 - J Nucl Med. 2008 Nov;49(11):1875-83 22955943 - MAGMA. 2013 Feb;26(1):127-36 23994317 - Neuroimage. 2014 Jan 1;84:206-16 21776807 - Med Phys. 2011 May;38(5):2708-14 18283452 - Eur J Nucl Med Mol Imaging. 2008 Jun;35(6):1142-6 22290428 - Phys Med Biol. 2012 Feb 21;57(4):885-99 22899574 - IEEE Trans Med Imaging. 2012 Dec;31(12):2224-33 23442772 - Invest Radiol. 2013 May;48(5):323-32 19720290 - Nucl Med Biol. 2009 Oct;36(7):779-87 19104810 - Eur J Nucl Med Mol Imaging. 2009 Mar;36 Suppl 1:S93-104 22505568 - J Nucl Med. 2012 May;53(5):796-804 20439508 - J Nucl Med. 2010 May;51(5):812-8 12563158 - Radiology. 2003 Feb;226(2):577-84 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 21724984 - J Nucl Med. 2011 Jul;52(7):1142-9 23178088 - Semin Nucl Med. 2013 Jan;43(1):45-59 23014717 - IEEE Trans Med Imaging. 2013 Feb;32(2):237-46 12111133 - Eur J Nucl Med Mol Imaging. 2002 Jul;29(7):922-7 20810759 - J Nucl Med. 2010 Sep;51(9):1431-8 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113 10416801 - IEEE Trans Med Imaging. 1999 May;18(5):393-403 22948340 - IEEE Trans Med Imaging. 2012 Sep;31(9):1734-42 20922522 - Eur J Nucl Med Mol Imaging. 2011 Jan;38(1):138-52 21118768 - IEEE Trans Med Imaging. 2011 Mar;30(3):804-13 |
References_xml | – ident: 2021051712065374000_55.11.1825.29 doi: 10.1118/1.3578928 – ident: 2021051712065374000_55.11.1825.23 doi: 10.1016/j.nucmedbio.2009.05.005 – ident: 2021051712065374000_55.11.1825.5 doi: 10.2967/jnumed.107.049353 – ident: 2021051712065374000_55.11.1825.6 doi: 10.1007/s00259-008-0734-0 – ident: 2021051712065374000_55.11.1825.18 doi: 10.1088/0031-9155/57/4/885 – ident: 2021051712065374000_55.11.1825.12 doi: 10.2967/jnumed.109.065425 – ident: 2021051712065374000_55.11.1825.7 doi: 10.1007/s00259-008-1007-7 – ident: 2021051712065374000_55.11.1825.11 doi: 10.2967/jnumed.109.069112 – ident: 2021051712065374000_55.11.1825.22 doi: 10.1007/s00259-002-0796-3 – ident: 2021051712065374000_55.11.1825.24 doi: 10.1016/j.neuroimage.2013.08.042 – ident: 2021051712065374000_55.11.1825.16 doi: 10.1109/TMI.2012.2212719 – ident: 2021051712065374000_55.11.1825.28 doi: 10.1007/s00259-012-2113-0 – ident: 2021051712065374000_55.11.1825.9 doi: 10.1117/12.175110 – ident: 2021051712065374000_55.11.1825.13 doi: 10.2967/jnumed.111.092577 – ident: 2021051712065374000_55.11.1825.31 doi: 10.1097/RLI.0b013e318283292f – ident: 2021051712065374000_55.11.1825.1 doi: 10.2967/jnumed.112.105346 – ident: 2021051712065374000_55.11.1825.20 doi: 10.2967/jnumed.111.092726 – ident: 2021051712065374000_55.11.1825.25 doi: 10.1016/j.neuroimage.2007.07.007 – ident: 2021051712065374000_55.11.1825.2 doi: 10.1053/j.semnuclmed.2012.08.002 – ident: 2021051712065374000_55.11.1825.10 doi: 10.2967/jnumed.108.054726 – ident: 2021051712065374000_55.11.1825.21 doi: 10.1109/42.668698 – ident: 2021051712065374000_55.11.1825.26 doi: 10.1016/j.neuroimage.2008.12.037 – ident: 2021051712065374000_55.11.1825.3 doi: 10.1007/s00259-010-1603-1 – ident: 2021051712065374000_55.11.1825.17 doi: 10.1109/TMI.2012.2220376 – ident: 2021051712065374000_55.11.1825.14 doi: 10.1109/42.774167 – ident: 2021051712065374000_55.11.1825.30 doi: 10.1007/s10334-012-0339-2 – ident: 2021051712065374000_55.11.1825.19 doi: 10.1109/TMI.2012.2198831 – ident: 2021051712065374000_55.11.1825.15 doi: 10.1109/TMI.2010.2095464 – ident: 2021051712065374000_55.11.1825.27 doi: 10.1148/radiol.2262012141 – volume: 6 start-page: 4327 year: 2007 ident: 2021051712065374000_55.11.1825.4 article-title: Alternative methods for attenuation correction for PET images in MR-PET scanners publication-title: Nucl Sci Symp Conf Rec. – ident: 2021051712065374000_55.11.1825.8 doi: 10.2967/jnumed.110.085076 – reference: 22505568 - J Nucl Med. 2012 May;53(5):796-804 – reference: 12111133 - Eur J Nucl Med Mol Imaging. 2002 Jul;29(7):922-7 – reference: 22290428 - Phys Med Biol. 2012 Feb 21;57(4):885-99 – reference: 23442772 - Invest Radiol. 2013 May;48(5):323-32 – reference: 22955943 - MAGMA. 2013 Feb;26(1):127-36 – reference: 19289430 - J Nucl Med. 2009 Apr;50(4):520-6 – reference: 21776807 - Med Phys. 2011 May;38(5):2708-14 – reference: 20922522 - Eur J Nucl Med Mol Imaging. 2011 Jan;38(1):138-52 – reference: 18283452 - Eur J Nucl Med Mol Imaging. 2008 Jun;35(6):1142-6 – reference: 21118768 - IEEE Trans Med Imaging. 2011 Mar;30(3):804-13 – reference: 23994317 - Neuroimage. 2014 Jan 1;84:206-16 – reference: 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 – reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113 – reference: 18927326 - J Nucl Med. 2008 Nov;49(11):1875-83 – reference: 21724984 - J Nucl Med. 2011 Jul;52(7):1142-9 – reference: 23143086 - J Nucl Med. 2012 Dec;53(12):1916-25 – reference: 20439508 - J Nucl Med. 2010 May;51(5):812-8 – reference: 22080447 - J Nucl Med. 2011 Dec;52(12):1914-22 – reference: 23178088 - Semin Nucl Med. 2013 Jan;43(1):45-59 – reference: 23014717 - IEEE Trans Med Imaging. 2013 Feb;32(2):237-46 – reference: 10416801 - IEEE Trans Med Imaging. 1999 May;18(5):393-403 – reference: 19104810 - Eur J Nucl Med Mol Imaging. 2009 Mar;36 Suppl 1:S93-104 – reference: 22526955 - Eur J Nucl Med Mol Imaging. 2012 Jul;39(7):1154-60 – reference: 22899574 - IEEE Trans Med Imaging. 2012 Dec;31(12):2224-33 – reference: 12563158 - Radiology. 2003 Feb;226(2):577-84 – reference: 22948340 - IEEE Trans Med Imaging. 2012 Sep;31(9):1734-42 – reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802 – reference: 19720290 - Nucl Med Biol. 2009 Oct;36(7):779-87 – reference: 20810759 - J Nucl Med. 2010 Sep;51(9):1431-8 |
SSID | ssj0006888 ssj0062072 |
Score | 2.5335875 |
Snippet | We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1825 |
SubjectTerms | Algorithms Bone and Bones - diagnostic imaging Brain - diagnostic imaging Brain - pathology Brain cancer Brain Mapping - methods Cognition Disorders - diagnostic imaging Cognition Disorders - pathology Glioblastoma - diagnostic imaging Glioblastoma - pathology Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Neuroimaging Nuclear medicine Positron-Emission Tomography Reproducibility of Results Skull - diagnostic imaging Software Tumors |
Title | An SPM8-Based Approach for Attenuation Correction Combining Segmentation and Nonrigid Template Formation: Application to Simultaneous PET/MR Brain Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25278515 https://www.proquest.com/docview/1627727848 https://www.proquest.com/docview/1620586694 https://www.proquest.com/docview/1780525777 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPvKBjIST1RhSZw4MW8dtGywFthSqW9RnDioqE23kb7sp_A3-IOcY-c2LtPgJcrFjhOfz8fn2OdCyAtMrxcolVsqlLnlJTm3JIdLO_WEdEXmCIG-w5MpP5h57-f-vNf70bFa2pTyVXrxR7-S_6Eq3AO6opfsP1C2eSncgHOgLxyBwnC8Fo2HMDYBstY-TEUZCpTGPQotB4clCMMmjDeM-XPN1_TpSuqUEMAkvqwqvyNjjzxdF5gkKxtEanW6BBF0MK4dG_XqYbvTjfLqyQJNEZNCoQntp1EEPzE5BqQki2JwuNKpj7pyb-uBtjSmIymmq2h29nW4KNA0O-sShxdnG5iys7X1DtMdmeXfxv4eWWZRLR4Ns2TVOlTUmUZOSpW3yN9XxXqh55u3i2xRWSRXix2OV3n9ddY_uWOhUtVl4CbObw1Up8OOQXnyO1N7ffnrtOEKjhvXXwt4W4ZZbtD4j5mAXJdDdE8_xuPZ0VEcjebRDXLTBd0EmeuHz22Ieh7qZKfNl5qtdGxi77cGLgtDf9FwtKQT3SV3KjLRocHbPdJTxX1ya1KR6gH5PixoCztaw44C7GgHdrSFHW1gR7uwowA7WsOO1rCjDexe0w7oaLmmXdBRAN3e5JhqyNEKcg_JbDyK3hxYVYoPKwWpqLQEY8JjPM1AK1eBnfOM24FIue0lQcakspkIc5E6oWRKcQndHfIw871UcSZ9qP2IbBXrQm0Tyl0J80_KEsnguZuKXHncVj7jCchf0u4Tu-7rOK3i32MalmUMejCSJzbkAZ2YxYY8ffKyqXJqgr9cVXi3JmBc8YhvscMRIkHohX3yvHkMHBy35Ux3YRnbDzkX3hVldOoRPwiCPnlswNF8ketDA6CWPLlG7R1yux1Wu2SrPN-opyBVl_KZRvFPPQrQNg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SPM8-Based+Approach+for+Attenuation+Correction+Combining+Segmentation+and+Nonrigid+Template+Formation%3A+Application+to+Simultaneous+PET%2FMR+Brain+Imaging&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Izquierdo-Garcia%2C+Avid&rft.au=Hansen%2C+Adam+E&rft.au=ster%2C+Stefan&rft.au=Benoit%2C+Didier&rft.date=2014-11-01&rft.issn=0161-5505&rft.volume=55&rft.issue=11&rft.spage=1825&rft.epage=1825&rft_id=info:doi/10.2967%2Fjnumed.113.136341&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon |