An SPM8-Based Approach for Attenuation Correction Combining Segmentation and Nonrigid Template Formation: Application to Simultaneous PET/MR Brain Imaging

We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Co...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nuclear Medicine Vol. 55; no. 11; pp. 1825 - 1830
Main Authors Izquierdo-Garcia, David, Hansen, Adam E., Förster, Stefan, Benoit, Didier, Schachoff, Sylvia, Fürst, Sebastian, Chen, Kevin T., Chonde, Daniel B., Catana, Ciprian
Format Journal Article
LanguageEnglish
Published United States Society of Nuclear Medicine 01.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.
AbstractList We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.
We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps ( maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% plus or minus 4.52%) compared with the gold standard. Similar results (RC, 1.86% plus or minus 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% plus or minus 5.0% and 2.74% plus or minus 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% plus or minus 10.25% and 9.38% plus or minus 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.
We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners.UNLABELLEDWe present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners.Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed.METHODSCoregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed.The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement.RESULTSThe leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement.We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.CONCLUSIONWe have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.
We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.
Author Izquierdo-Garcia, David
Benoit, Didier
Hansen, Adam E.
Schachoff, Sylvia
Fürst, Sebastian
Chonde, Daniel B.
Catana, Ciprian
Chen, Kevin T.
Förster, Stefan
Author_xml – sequence: 1
  givenname: David
  surname: Izquierdo-Garcia
  fullname: Izquierdo-Garcia, David
– sequence: 2
  givenname: Adam E.
  surname: Hansen
  fullname: Hansen, Adam E.
– sequence: 3
  givenname: Stefan
  surname: Förster
  fullname: Förster, Stefan
– sequence: 4
  givenname: Didier
  surname: Benoit
  fullname: Benoit, Didier
– sequence: 5
  givenname: Sylvia
  surname: Schachoff
  fullname: Schachoff, Sylvia
– sequence: 6
  givenname: Sebastian
  surname: Fürst
  fullname: Fürst, Sebastian
– sequence: 7
  givenname: Kevin T.
  surname: Chen
  fullname: Chen, Kevin T.
– sequence: 8
  givenname: Daniel B.
  surname: Chonde
  fullname: Chonde, Daniel B.
– sequence: 9
  givenname: Ciprian
  surname: Catana
  fullname: Catana, Ciprian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25278515$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhS1URNPAA7BBltiwmdQej3-GXRq1UKmFigSJneXx3ARHM3bq8Sx4FZ4Wh0k3lRArX8nfObo_5wKd-eABobeULMpayMu9H3toF5SyBWWCVfQFmpWU14UQ5Y8zNCNU0IJzws_RxTDsCSFCKfUKnZe8lIpTPkO_lx6vH-5VcWUGaPHycIjB2J94GyJepgR-NMkFj1chRrCnsm-cd36H17DrwaeJML7FX4KPbudavIH-0JkE-CbE_u__x6N35-wEp4DXrh-7ZDyEccAP15vL-2_4Khrn8W1vdtn-NXq5Nd0Ab07vHH2_ud6sPhd3Xz_drpZ3ha0kTUXNWF0xYVtaKZBkK1pBZG0FqYxsWQOE1WpbW6oaBiAaKUslVMsrC4I1PKvn6MPkm0d_HGFIuneDha6betNUKsJLLqX8PypKwpUQuaE5ev8M3Ycx-jzIkcpdSFWpTL07UWOTT6kP0fUm_tJPB8qAnAAbwzBE2GrrpoWnvKtOU6KPUdBTFHSOgp6ikJX0mfLJ_N-aP85yt_k
CODEN JNMEAQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120631
crossref_primary_10_3389_fneur_2023_1142734
crossref_primary_10_3389_fphy_2018_00047
crossref_primary_10_1038_s41386_024_01859_6
crossref_primary_10_1212_WNL_0000000000007371
crossref_primary_10_1088_1361_6560_aac763
crossref_primary_10_1186_s40658_018_0220_0
crossref_primary_10_1016_j_mric_2017_01_002
crossref_primary_10_1093_brain_awab429
crossref_primary_10_1016_j_neuroimage_2020_116656
crossref_primary_10_1007_s10803_019_04010_3
crossref_primary_10_1080_0284186X_2018_1477257
crossref_primary_10_1016_j_remn_2020_03_004
crossref_primary_10_1162_imag_a_00402
crossref_primary_10_1016_j_neuroimage_2020_117221
crossref_primary_10_1016_j_msard_2025_106350
crossref_primary_10_1118_1_4963809
crossref_primary_10_1089_neu_2022_0030
crossref_primary_10_3389_fphy_2019_00243
crossref_primary_10_1002_ana_24791
crossref_primary_10_1038_s41598_021_94967_y
crossref_primary_10_1038_s41467_020_14693_3
crossref_primary_10_2967_jnumed_115_156299
crossref_primary_10_1016_j_neuroimage_2016_01_060
crossref_primary_10_1016_j_bbi_2024_04_015
crossref_primary_10_1007_s00259_020_05061_w
crossref_primary_10_1038_s44220_023_00046_8
crossref_primary_10_1016_j_dadm_2019_09_004
crossref_primary_10_2967_jnumed_117_207142
crossref_primary_10_1007_s40042_021_00186_z
crossref_primary_10_1109_TMI_2018_2888491
crossref_primary_10_1016_j_nicl_2018_08_007
crossref_primary_10_1021_acsomega_3c04824
crossref_primary_10_1016_j_bbi_2023_12_016
crossref_primary_10_1016_j_bbi_2025_02_002
crossref_primary_10_1109_JPROC_2019_2936809
crossref_primary_10_1016_j_ejmp_2020_07_028
crossref_primary_10_1021_acschemneuro_8b00072
crossref_primary_10_1109_TNS_2015_2452574
crossref_primary_10_1148_radiol_2017161603
crossref_primary_10_1016_j_isci_2024_110159
crossref_primary_10_2967_jnumed_115_163550
crossref_primary_10_1002_ana_25251
crossref_primary_10_1088_1748_0221_19_01_C01001
crossref_primary_10_1177_1352458519843048
crossref_primary_10_1016_j_eurpsy_2017_11_007
crossref_primary_10_1172_JCI123743
crossref_primary_10_1007_s00259_016_3422_5
crossref_primary_10_1055_s_0042_1750013
crossref_primary_10_1097_j_pain_0000000000003272
crossref_primary_10_1016_j_neuroimage_2015_03_009
crossref_primary_10_4236_ijmpcero_2018_73023
crossref_primary_10_1021_acschemneuro_0c00772
crossref_primary_10_1109_TRPMS_2020_3009269
crossref_primary_10_2967_jnumed_114_146308
crossref_primary_10_3389_fnins_2014_00434
crossref_primary_10_1007_s11307_018_1171_5
crossref_primary_10_1177_0271678X231216144
crossref_primary_10_3389_fphys_2019_01422
crossref_primary_10_3389_fnagi_2021_632237
crossref_primary_10_1093_gerona_glae209
crossref_primary_10_3390_app11083508
crossref_primary_10_1038_s41598_024_61519_z
crossref_primary_10_1088_0031_9155_60_20_8047
crossref_primary_10_1118_1_4941014
crossref_primary_10_1007_s13042_023_01871_0
crossref_primary_10_1016_j_nicl_2023_103553
crossref_primary_10_2967_jnumed_116_175398
crossref_primary_10_2147_IJN_S362192
crossref_primary_10_2967_jnumed_115_159228
crossref_primary_10_1016_j_neuroimage_2020_117154
crossref_primary_10_1177_0271678X221078616
crossref_primary_10_1093_brain_awu377
crossref_primary_10_1109_JBHI_2019_2927368
crossref_primary_10_1109_TMI_2017_2776324
crossref_primary_10_3389_fphy_2019_00211
crossref_primary_10_1007_s00259_016_3394_5
crossref_primary_10_2967_jnumed_115_166967
crossref_primary_10_2967_jnumed_116_183343
crossref_primary_10_1088_0031_9155_61_17_6531
crossref_primary_10_1016_j_nicl_2020_102346
crossref_primary_10_1109_TRPMS_2020_3006844
crossref_primary_10_1038_nature25988
crossref_primary_10_1007_s40336_016_0213_8
crossref_primary_10_1016_j_remnie_2020_03_002
crossref_primary_10_1016_j_ijrobp_2018_06_024
crossref_primary_10_1212_NXI_0000000000001144
crossref_primary_10_1109_TNS_2015_2513064
crossref_primary_10_1088_0031_9155_61_15_5547
crossref_primary_10_1109_TRPMS_2018_2877644
crossref_primary_10_1016_j_cpet_2015_10_002
crossref_primary_10_1016_j_clineuro_2021_106669
crossref_primary_10_1093_brain_awaf029
crossref_primary_10_3233_JAD_180217
crossref_primary_10_1007_s10278_020_00361_x
crossref_primary_10_3233_JPD_223542
crossref_primary_10_1007_s00259_015_3082_x
crossref_primary_10_1007_s00259_016_3462_x
crossref_primary_10_1259_bjro_20190033
crossref_primary_10_1016_j_bbih_2025_100945
crossref_primary_10_1038_s41398_020_01170_0
crossref_primary_10_2967_jnumed_118_214320
crossref_primary_10_1007_s00259_016_3489_z
crossref_primary_10_1016_j_nicl_2019_101651
crossref_primary_10_1016_j_bbih_2021_100287
crossref_primary_10_1118_1_4932367
crossref_primary_10_1007_s00259_019_04407_3
crossref_primary_10_1016_j_bbi_2020_01_020
crossref_primary_10_1177_0271678X211023387
crossref_primary_10_3389_fnins_2017_00453
crossref_primary_10_1007_s12021_018_9355_3
crossref_primary_10_1093_brain_awab336
crossref_primary_10_1259_bjr_20160363
crossref_primary_10_1016_j_neunet_2020_05_001
crossref_primary_10_1109_TRPMS_2018_2868946
crossref_primary_10_2967_jnumed_115_169045
crossref_primary_10_1088_0031_9155_61_18_6668
crossref_primary_10_2967_jnumed_119_241059
crossref_primary_10_1038_jcbfm_2015_158
crossref_primary_10_1109_TNS_2017_2692306
crossref_primary_10_3390_app122211600
crossref_primary_10_2967_jnumed_118_217901
crossref_primary_10_1016_j_bbi_2018_09_018
crossref_primary_10_1073_pnas_1612233114
crossref_primary_10_1088_1361_6560_abb0f8
crossref_primary_10_1016_j_brs_2024_07_019
crossref_primary_10_2967_jnumed_116_178335
crossref_primary_10_1002_mrm_28689
crossref_primary_10_1088_1361_6560_aa5f6c
crossref_primary_10_1002_acm2_13121
crossref_primary_10_1016_j_neuroimage_2021_118695
crossref_primary_10_1002_jmri_26000
crossref_primary_10_1126_scitranslmed_aaf7551
crossref_primary_10_1002_hbm_24314
crossref_primary_10_1016_j_mri_2015_10_037
crossref_primary_10_1177_13872877241302350
crossref_primary_10_1002_mp_14180
crossref_primary_10_1177_1352458519867320
crossref_primary_10_1088_1748_0221_19_04_C04028
crossref_primary_10_1016_j_nicl_2021_102858
crossref_primary_10_1093_brain_awae030
crossref_primary_10_1016_j_ijrobp_2019_06_2535
crossref_primary_10_1186_s13550_019_0547_0
crossref_primary_10_1002_nbm_3775
crossref_primary_10_1007_s12350_015_0159_7
crossref_primary_10_1016_j_nicl_2015_01_009
crossref_primary_10_1038_s41398_020_00911_5
crossref_primary_10_1038_s41398_022_02153_z
crossref_primary_10_1109_TMI_2018_2790962
crossref_primary_10_1186_s40658_020_00320_z
crossref_primary_10_1007_s00259_020_04816_9
crossref_primary_10_1016_j_mric_2016_12_001
crossref_primary_10_3389_fpsyt_2022_862958
crossref_primary_10_1007_s11307_015_0886_9
crossref_primary_10_1016_j_neuroimage_2016_12_010
crossref_primary_10_1038_s41380_020_0682_z
crossref_primary_10_1186_s40658_023_00569_0
crossref_primary_10_1016_j_nicl_2017_11_011
crossref_primary_10_2967_jnumed_118_209288
crossref_primary_10_1016_j_bbih_2021_100336
crossref_primary_10_1016_j_neuroimage_2016_02_042
crossref_primary_10_1109_TRPMS_2024_3370252
crossref_primary_10_1118_1_4934374
crossref_primary_10_3389_fnins_2024_1395769
crossref_primary_10_1109_TRPMS_2018_2863953
crossref_primary_10_1002_ana_25731
crossref_primary_10_1038_s41380_019_0433_1
Cites_doi 10.1118/1.3578928
10.1016/j.nucmedbio.2009.05.005
10.2967/jnumed.107.049353
10.1007/s00259-008-0734-0
10.1088/0031-9155/57/4/885
10.2967/jnumed.109.065425
10.1007/s00259-008-1007-7
10.2967/jnumed.109.069112
10.1007/s00259-002-0796-3
10.1016/j.neuroimage.2013.08.042
10.1109/TMI.2012.2212719
10.1007/s00259-012-2113-0
10.1117/12.175110
10.2967/jnumed.111.092577
10.1097/RLI.0b013e318283292f
10.2967/jnumed.112.105346
10.2967/jnumed.111.092726
10.1016/j.neuroimage.2007.07.007
10.1053/j.semnuclmed.2012.08.002
10.2967/jnumed.108.054726
10.1109/42.668698
10.1016/j.neuroimage.2008.12.037
10.1007/s00259-010-1603-1
10.1109/TMI.2012.2220376
10.1109/42.774167
10.1007/s10334-012-0339-2
10.1109/TMI.2012.2198831
10.1109/TMI.2010.2095464
10.1148/radiol.2262012141
10.2967/jnumed.110.085076
ContentType Journal Article
Copyright 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Copyright Society of Nuclear Medicine Nov 1, 2014
Copyright_xml – notice: 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
– notice: Copyright Society of Nuclear Medicine Nov 1, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
8FD
FR3
K9.
M7Z
NAPCQ
P64
7X8
7QO
DOI 10.2967/jnumed.113.136341
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
Docstoc
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Nursing & Allied Health Premium
Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2159-662X
1535-5667
EndPage 1830
ExternalDocumentID 3506655911
25278515
10_2967_jnumed_113_136341
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA137254
– fundername: NIBIB NIH HHS
  grantid: 1R01EB014894
– fundername: NIBIB NIH HHS
  grantid: R01 EB014894
– fundername: NCI NIH HHS
  grantid: R01CA137254
GroupedDBID 123
18M
41~
5VS
96U
AAYXX
ACGFO
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CITATION
GX1
N9A
RHI
TSM
U5U
W8F
---
-~X
.55
.GJ
29L
2WC
3O-
53G
5RE
7RV
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8WZ
A6W
ABEFU
ABSQV
ABUWG
ACGOD
ACIWK
ACPRK
ADDZX
ADMOG
AENEX
AFFNX
AFKRA
AFOSN
AFRAH
AHMBA
AI.
ALIPV
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
EX3
F5P
F9R
FYUFA
GNUQQ
H13
HCIFZ
HMCUK
I-F
IL9
INIJC
J5H
KQ8
L7B
LK8
M1P
M2P
M2Q
M7P
N4W
NAPCQ
NPM
OK1
P2P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
R0Z
RNS
RWL
S0X
SJN
SV3
TAE
TR2
TUS
UKHRP
VH1
WH7
WOQ
WOW
X7M
YHG
YQJ
ZGI
ZXP
4T-
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c471t-9339436cd148e70f6d6079c604a7d3be0398f9c18b3ee6b772868d54ce63b5933
ISSN 0161-5505
1535-5667
IngestDate Fri Jul 11 05:27:47 EDT 2025
Fri Jul 11 16:04:46 EDT 2025
Mon Jun 30 10:50:25 EDT 2025
Mon Jul 21 06:01:28 EDT 2025
Tue Jul 01 01:45:11 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords template
segmentation
integrated PET/MRI
attenuation correction
Language English
License 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-9339436cd148e70f6d6079c604a7d3be0398f9c18b3ee6b772868d54ce63b5933
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://jnm.snmjournals.org/content/55/11/1825.full.pdf
PMID 25278515
PQID 1627727848
PQPubID 40808
PageCount 6
ParticipantIDs proquest_miscellaneous_1780525777
proquest_miscellaneous_1620586694
proquest_journals_1627727848
pubmed_primary_25278515
crossref_citationtrail_10_2967_jnumed_113_136341
crossref_primary_10_2967_jnumed_113_136341
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of Nuclear Medicine
PublicationTitleAlternate J Nucl Med
PublicationYear 2014
Publisher Society of Nuclear Medicine
Publisher_xml – name: Society of Nuclear Medicine
References 2021051712065374000_55.11.1825.18
2021051712065374000_55.11.1825.19
2021051712065374000_55.11.1825.16
2021051712065374000_55.11.1825.17
2021051712065374000_55.11.1825.10
2021051712065374000_55.11.1825.11
2021051712065374000_55.11.1825.30
2021051712065374000_55.11.1825.31
2021051712065374000_55.11.1825.14
2021051712065374000_55.11.1825.15
2021051712065374000_55.11.1825.12
2021051712065374000_55.11.1825.13
2021051712065374000_55.11.1825.3
2021051712065374000_55.11.1825.6
2021051712065374000_55.11.1825.5
2021051712065374000_55.11.1825.8
2021051712065374000_55.11.1825.7
2021051712065374000_55.11.1825.9
2021051712065374000_55.11.1825.29
2021051712065374000_55.11.1825.27
2021051712065374000_55.11.1825.28
2021051712065374000_55.11.1825.2
2021051712065374000_55.11.1825.1
2021051712065374000_55.11.1825.21
2021051712065374000_55.11.1825.22
2021051712065374000_55.11.1825.20
2021051712065374000_55.11.1825.25
2021051712065374000_55.11.1825.26
2021051712065374000_55.11.1825.23
2021051712065374000_55.11.1825.24
Kops (2021051712065374000_55.11.1825.4) 2007; 6
22080447 - J Nucl Med. 2011 Dec;52(12):1914-22
23143086 - J Nucl Med. 2012 Dec;53(12):1916-25
19289430 - J Nucl Med. 2009 Apr;50(4):520-6
19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
22526955 - Eur J Nucl Med Mol Imaging. 2012 Jul;39(7):1154-60
18927326 - J Nucl Med. 2008 Nov;49(11):1875-83
22955943 - MAGMA. 2013 Feb;26(1):127-36
23994317 - Neuroimage. 2014 Jan 1;84:206-16
21776807 - Med Phys. 2011 May;38(5):2708-14
18283452 - Eur J Nucl Med Mol Imaging. 2008 Jun;35(6):1142-6
22290428 - Phys Med Biol. 2012 Feb 21;57(4):885-99
22899574 - IEEE Trans Med Imaging. 2012 Dec;31(12):2224-33
23442772 - Invest Radiol. 2013 May;48(5):323-32
19720290 - Nucl Med Biol. 2009 Oct;36(7):779-87
19104810 - Eur J Nucl Med Mol Imaging. 2009 Mar;36 Suppl 1:S93-104
22505568 - J Nucl Med. 2012 May;53(5):796-804
20439508 - J Nucl Med. 2010 May;51(5):812-8
12563158 - Radiology. 2003 Feb;226(2):577-84
9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
21724984 - J Nucl Med. 2011 Jul;52(7):1142-9
23178088 - Semin Nucl Med. 2013 Jan;43(1):45-59
23014717 - IEEE Trans Med Imaging. 2013 Feb;32(2):237-46
12111133 - Eur J Nucl Med Mol Imaging. 2002 Jul;29(7):922-7
20810759 - J Nucl Med. 2010 Sep;51(9):1431-8
17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
10416801 - IEEE Trans Med Imaging. 1999 May;18(5):393-403
22948340 - IEEE Trans Med Imaging. 2012 Sep;31(9):1734-42
20922522 - Eur J Nucl Med Mol Imaging. 2011 Jan;38(1):138-52
21118768 - IEEE Trans Med Imaging. 2011 Mar;30(3):804-13
References_xml – ident: 2021051712065374000_55.11.1825.29
  doi: 10.1118/1.3578928
– ident: 2021051712065374000_55.11.1825.23
  doi: 10.1016/j.nucmedbio.2009.05.005
– ident: 2021051712065374000_55.11.1825.5
  doi: 10.2967/jnumed.107.049353
– ident: 2021051712065374000_55.11.1825.6
  doi: 10.1007/s00259-008-0734-0
– ident: 2021051712065374000_55.11.1825.18
  doi: 10.1088/0031-9155/57/4/885
– ident: 2021051712065374000_55.11.1825.12
  doi: 10.2967/jnumed.109.065425
– ident: 2021051712065374000_55.11.1825.7
  doi: 10.1007/s00259-008-1007-7
– ident: 2021051712065374000_55.11.1825.11
  doi: 10.2967/jnumed.109.069112
– ident: 2021051712065374000_55.11.1825.22
  doi: 10.1007/s00259-002-0796-3
– ident: 2021051712065374000_55.11.1825.24
  doi: 10.1016/j.neuroimage.2013.08.042
– ident: 2021051712065374000_55.11.1825.16
  doi: 10.1109/TMI.2012.2212719
– ident: 2021051712065374000_55.11.1825.28
  doi: 10.1007/s00259-012-2113-0
– ident: 2021051712065374000_55.11.1825.9
  doi: 10.1117/12.175110
– ident: 2021051712065374000_55.11.1825.13
  doi: 10.2967/jnumed.111.092577
– ident: 2021051712065374000_55.11.1825.31
  doi: 10.1097/RLI.0b013e318283292f
– ident: 2021051712065374000_55.11.1825.1
  doi: 10.2967/jnumed.112.105346
– ident: 2021051712065374000_55.11.1825.20
  doi: 10.2967/jnumed.111.092726
– ident: 2021051712065374000_55.11.1825.25
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: 2021051712065374000_55.11.1825.2
  doi: 10.1053/j.semnuclmed.2012.08.002
– ident: 2021051712065374000_55.11.1825.10
  doi: 10.2967/jnumed.108.054726
– ident: 2021051712065374000_55.11.1825.21
  doi: 10.1109/42.668698
– ident: 2021051712065374000_55.11.1825.26
  doi: 10.1016/j.neuroimage.2008.12.037
– ident: 2021051712065374000_55.11.1825.3
  doi: 10.1007/s00259-010-1603-1
– ident: 2021051712065374000_55.11.1825.17
  doi: 10.1109/TMI.2012.2220376
– ident: 2021051712065374000_55.11.1825.14
  doi: 10.1109/42.774167
– ident: 2021051712065374000_55.11.1825.30
  doi: 10.1007/s10334-012-0339-2
– ident: 2021051712065374000_55.11.1825.19
  doi: 10.1109/TMI.2012.2198831
– ident: 2021051712065374000_55.11.1825.15
  doi: 10.1109/TMI.2010.2095464
– ident: 2021051712065374000_55.11.1825.27
  doi: 10.1148/radiol.2262012141
– volume: 6
  start-page: 4327
  year: 2007
  ident: 2021051712065374000_55.11.1825.4
  article-title: Alternative methods for attenuation correction for PET images in MR-PET scanners
  publication-title: Nucl Sci Symp Conf Rec.
– ident: 2021051712065374000_55.11.1825.8
  doi: 10.2967/jnumed.110.085076
– reference: 22505568 - J Nucl Med. 2012 May;53(5):796-804
– reference: 12111133 - Eur J Nucl Med Mol Imaging. 2002 Jul;29(7):922-7
– reference: 22290428 - Phys Med Biol. 2012 Feb 21;57(4):885-99
– reference: 23442772 - Invest Radiol. 2013 May;48(5):323-32
– reference: 22955943 - MAGMA. 2013 Feb;26(1):127-36
– reference: 19289430 - J Nucl Med. 2009 Apr;50(4):520-6
– reference: 21776807 - Med Phys. 2011 May;38(5):2708-14
– reference: 20922522 - Eur J Nucl Med Mol Imaging. 2011 Jan;38(1):138-52
– reference: 18283452 - Eur J Nucl Med Mol Imaging. 2008 Jun;35(6):1142-6
– reference: 21118768 - IEEE Trans Med Imaging. 2011 Mar;30(3):804-13
– reference: 23994317 - Neuroimage. 2014 Jan 1;84:206-16
– reference: 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
– reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
– reference: 18927326 - J Nucl Med. 2008 Nov;49(11):1875-83
– reference: 21724984 - J Nucl Med. 2011 Jul;52(7):1142-9
– reference: 23143086 - J Nucl Med. 2012 Dec;53(12):1916-25
– reference: 20439508 - J Nucl Med. 2010 May;51(5):812-8
– reference: 22080447 - J Nucl Med. 2011 Dec;52(12):1914-22
– reference: 23178088 - Semin Nucl Med. 2013 Jan;43(1):45-59
– reference: 23014717 - IEEE Trans Med Imaging. 2013 Feb;32(2):237-46
– reference: 10416801 - IEEE Trans Med Imaging. 1999 May;18(5):393-403
– reference: 19104810 - Eur J Nucl Med Mol Imaging. 2009 Mar;36 Suppl 1:S93-104
– reference: 22526955 - Eur J Nucl Med Mol Imaging. 2012 Jul;39(7):1154-60
– reference: 22899574 - IEEE Trans Med Imaging. 2012 Dec;31(12):2224-33
– reference: 12563158 - Radiology. 2003 Feb;226(2):577-84
– reference: 22948340 - IEEE Trans Med Imaging. 2012 Sep;31(9):1734-42
– reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
– reference: 19720290 - Nucl Med Biol. 2009 Oct;36(7):779-87
– reference: 20810759 - J Nucl Med. 2010 Sep;51(9):1431-8
SSID ssj0006888
ssj0062072
Score 2.5335875
Snippet We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1825
SubjectTerms Algorithms
Bone and Bones - diagnostic imaging
Brain - diagnostic imaging
Brain - pathology
Brain cancer
Brain Mapping - methods
Cognition Disorders - diagnostic imaging
Cognition Disorders - pathology
Glioblastoma - diagnostic imaging
Glioblastoma - pathology
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Neuroimaging
Nuclear medicine
Positron-Emission Tomography
Reproducibility of Results
Skull - diagnostic imaging
Software
Tumors
Title An SPM8-Based Approach for Attenuation Correction Combining Segmentation and Nonrigid Template Formation: Application to Simultaneous PET/MR Brain Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/25278515
https://www.proquest.com/docview/1627727848
https://www.proquest.com/docview/1620586694
https://www.proquest.com/docview/1780525777
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPvKBjIST1RhSZw4MW8dtGywFthSqW9RnDioqE23kb7sp_A3-IOcY-c2LtPgJcrFjhOfz8fn2OdCyAtMrxcolVsqlLnlJTm3JIdLO_WEdEXmCIG-w5MpP5h57-f-vNf70bFa2pTyVXrxR7-S_6Eq3AO6opfsP1C2eSncgHOgLxyBwnC8Fo2HMDYBstY-TEUZCpTGPQotB4clCMMmjDeM-XPN1_TpSuqUEMAkvqwqvyNjjzxdF5gkKxtEanW6BBF0MK4dG_XqYbvTjfLqyQJNEZNCoQntp1EEPzE5BqQki2JwuNKpj7pyb-uBtjSmIymmq2h29nW4KNA0O-sShxdnG5iys7X1DtMdmeXfxv4eWWZRLR4Ns2TVOlTUmUZOSpW3yN9XxXqh55u3i2xRWSRXix2OV3n9ddY_uWOhUtVl4CbObw1Up8OOQXnyO1N7ffnrtOEKjhvXXwt4W4ZZbtD4j5mAXJdDdE8_xuPZ0VEcjebRDXLTBd0EmeuHz22Ieh7qZKfNl5qtdGxi77cGLgtDf9FwtKQT3SV3KjLRocHbPdJTxX1ya1KR6gH5PixoCztaw44C7GgHdrSFHW1gR7uwowA7WsOO1rCjDexe0w7oaLmmXdBRAN3e5JhqyNEKcg_JbDyK3hxYVYoPKwWpqLQEY8JjPM1AK1eBnfOM24FIue0lQcakspkIc5E6oWRKcQndHfIw871UcSZ9qP2IbBXrQm0Tyl0J80_KEsnguZuKXHncVj7jCchf0u4Tu-7rOK3i32MalmUMejCSJzbkAZ2YxYY8ffKyqXJqgr9cVXi3JmBc8YhvscMRIkHohX3yvHkMHBy35Ux3YRnbDzkX3hVldOoRPwiCPnlswNF8ketDA6CWPLlG7R1yux1Wu2SrPN-opyBVl_KZRvFPPQrQNg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SPM8-Based+Approach+for+Attenuation+Correction+Combining+Segmentation+and+Nonrigid+Template+Formation%3A+Application+to+Simultaneous+PET%2FMR+Brain+Imaging&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Izquierdo-Garcia%2C+Avid&rft.au=Hansen%2C+Adam+E&rft.au=ster%2C+Stefan&rft.au=Benoit%2C+Didier&rft.date=2014-11-01&rft.issn=0161-5505&rft.volume=55&rft.issue=11&rft.spage=1825&rft.epage=1825&rft_id=info:doi/10.2967%2Fjnumed.113.136341&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon