MSCSO: A Modified Sand Cat Swarm Algorithm for 3D UAV Path Planning in Complex Environments with Multiple Threats

To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flig...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 9; p. 2730
Main Authors Zhan, Zhengsheng, Lai, Dangyue, Huang, Canjian, Zhang, Zhixiang, Deng, Yongle, Yang, Jian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.04.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25092730

Cover

Loading…
Abstract To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight–Metropolis hybrid exploration mechanisms, simulated annealing–particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21–35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems.
AbstractList To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight-Metropolis hybrid exploration mechanisms, simulated annealing-particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21-35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems.To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight-Metropolis hybrid exploration mechanisms, simulated annealing-particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21-35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems.
To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight–Metropolis hybrid exploration mechanisms, simulated annealing–particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21–35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems.
Audience Academic
Author Huang, Canjian
Lai, Dangyue
Zhan, Zhengsheng
Yang, Jian
Zhang, Zhixiang
Deng, Yongle
AuthorAffiliation School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
AuthorAffiliation_xml – name: School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
Author_xml – sequence: 1
  givenname: Zhengsheng
  surname: Zhan
  fullname: Zhan, Zhengsheng
– sequence: 2
  givenname: Dangyue
  surname: Lai
  fullname: Lai, Dangyue
– sequence: 3
  givenname: Canjian
  surname: Huang
  fullname: Huang, Canjian
– sequence: 4
  givenname: Zhixiang
  surname: Zhang
  fullname: Zhang, Zhixiang
– sequence: 5
  givenname: Yongle
  surname: Deng
  fullname: Deng, Yongle
– sequence: 6
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40363168$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1vEzEQhi1URNvAgT-ALHGBQ4q_1mtzqaJQoFKjVkrL1XK89sbRrp3auy38e9ymRC3ywdbM43fmHc0xOAgxWADeY3RCqURfMqmQJDVFr8ARZoRNBSHo4Nn7EBznvEGIUErFG3DIEOUUc3EEbhfL-fLyK5zBRWy887aBSx0aONcDXN7r1MNZ18bkh3UPXUyQfoM3s1_wSg9reNXpEHxooQ9wHvttZ3_Ds3DnUwy9DUOG9-UbXIzd4EsOXq-T1UN-C1473WX77umegJvvZ9fzn9OLyx_n89nF1LAaD1NBeYVxhQiptKmYoKiqpLUE14jJlaOcC8GIqHXFWCMrwZHmGjNdIcNWslnRCTjf6TZRb9Q2-V6nPypqrx4DMbVKp8GbziojnXOYW25kzQR2glOEVkTqUhA3xBSt053Wdlz1tjHFXdLdC9GXmeDXqo13ChNUM1a6n4BPTwop3o42D6r32diujNDGMStKEJWEccYK-vE_dBPHFMqsHinCBJEPgic7qtXFgQ8ulsKmnMb23pT9cL7EZ4JKiWVdHE3Ah-ce9s3_24UCfN4BJsWck3V7BCP1sGdqv2f0L3OowFQ
Cites_doi 10.1007/s11071-024-10406-3
10.3390/electronics13050886
10.1016/j.eswa.2021.114854
10.1002/dac.4975
10.1016/j.procs.2023.10.145
10.1007/s11831-024-10217-0
10.1038/s41598-023-50910-x
10.1145/3570723
10.1016/j.asoc.2010.12.001
10.1109/ICCASIT58768.2023.10351766
10.1007/s10462-022-10281-7
10.1109/ACCESS.2023.3327732
10.1016/j.future.2021.05.001
10.1093/cercor/bhae329
10.1109/ACCESS.2022.3201147
10.1109/TPAMI.2021.3119563
10.1109/ACCESS.2020.2984236
10.1007/s11042-020-10139-6
10.1007/s11370-022-00452-4
10.1016/j.ejor.2023.02.030
10.1109/ICSP58490.2023.10248633
10.1016/j.knosys.2022.110248
10.1007/s10489-022-03641-x
10.1007/s00366-022-01746-y
10.1016/j.asoc.2020.106503
10.1080/13675567.2021.1981273
10.1007/s00366-022-01604-x
10.1016/j.asoc.2021.107376
10.1007/s10462-024-10986-x
10.3390/math11102340
10.1007/s00603-023-03522-w
10.1016/j.measen.2024.101100
10.1016/j.measurement.2024.114649
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25092730
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c9fff16e6c97481f86300b29a9ee1d2c
PMC12074448
A839919786
40363168
10_3390_s25092730
Genre Journal Article
GrantInformation_xml – fundername: Provincial College Students’ Innovation and Entrepreneurship Training Program
  grantid: S202410561346
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-83651150225ac54830559ee217049bf366884287a544d95860a6a14a50c4b9db3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:04 EDT 2025
Thu Aug 21 18:29:52 EDT 2025
Fri Sep 05 16:44:11 EDT 2025
Fri Jul 25 10:22:35 EDT 2025
Tue Jun 10 20:56:20 EDT 2025
Sat May 17 01:30:25 EDT 2025
Tue Jul 01 05:08:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords UAV path planning
chaotic mapping
sand cat swarm optimization
nonlinear particle swarm optimization weight
Lévy flight long-step perturbation
elite mutation mechanism
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-83651150225ac54830559ee217049bf366884287a544d95860a6a14a50c4b9db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25092730
PMID 40363168
PQID 3203248298
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c9fff16e6c97481f86300b29a9ee1d2c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074448
proquest_miscellaneous_3203924644
proquest_journals_3203248298
gale_infotracacademiconefile_A839919786
pubmed_primary_40363168
crossref_primary_10_3390_s25092730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhu (ref_1) 2022; 44
Li (ref_26) 2022; 10
Huang (ref_7) 2020; 8
Bogar (ref_29) 2020; 95
Hu (ref_31) 2023; 39
ref_34
ref_11
Tang (ref_20) 2023; 56
Jia (ref_22) 2025; 58
ref_33
ref_32
Jemmali (ref_6) 2023; 225
Mohamed (ref_12) 2023; 262
Jones (ref_8) 2023; 55
ref_16
Wang (ref_17) 2024; 34
Li (ref_18) 2024; 233
Qiu (ref_19) 2023; 56
Chen (ref_10) 2024; 33
Su (ref_9) 2021; 125
Seyyedabbasi (ref_15) 2023; 39
Li (ref_23) 2023; 11
Ocran (ref_30) 2022; 7
Mohsan (ref_5) 2023; 16
Karaboga (ref_28) 2010; 11
Mohanty (ref_13) 2021; 34
Rejeb (ref_3) 2023; 26
ref_25
ref_24
Katoch (ref_14) 2021; 80
Winkenbach (ref_4) 2021; 177
Qian (ref_35) 2025; 113
Yin (ref_2) 2023; 309
Phung (ref_27) 2021; 107
Wang (ref_21) 2023; 53
References_xml – volume: 113
  start-page: 4815
  year: 2025
  ident: ref_35
  article-title: Dynamic time-delay perturbation: A strategy for enhancing chaotic system performance and its applications
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-10406-3
– ident: ref_11
  doi: 10.3390/electronics13050886
– volume: 177
  start-page: 114854
  year: 2021
  ident: ref_4
  article-title: Applications and Research avenues for drone-based models in logistics: A classification and review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114854
– ident: ref_34
– volume: 34
  start-page: e4975
  year: 2021
  ident: ref_13
  article-title: MIMO broadcast scheduling using binary spider monkey optimization algorithm
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4975
– volume: 225
  start-page: 1562
  year: 2023
  ident: ref_6
  article-title: Optimizing Forest Fire Prevention: Intelligent Scheduling Algorithms for Drone-Based Surveillance System
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.10.145
– ident: ref_16
  doi: 10.1007/s11831-024-10217-0
– ident: ref_24
  doi: 10.1038/s41598-023-50910-x
– volume: 55
  start-page: 234
  year: 2023
  ident: ref_8
  article-title: Path-Planning for Unmanned Aerial Vehicles with Environment Complexity Considerations: A Survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3570723
– volume: 11
  start-page: 3021
  year: 2010
  ident: ref_28
  article-title: A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2010.12.001
– ident: ref_32
  doi: 10.1109/ICCASIT58768.2023.10351766
– volume: 56
  start-page: 4295
  year: 2023
  ident: ref_20
  article-title: Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10281-7
– volume: 11
  start-page: 122315
  year: 2023
  ident: ref_23
  article-title: IMSCSO: An Intensified Sand Cat Swarm Optimization With Multi-Strategy for Solving Global and Engineering Optimization Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3327732
– volume: 125
  start-page: 151
  year: 2021
  ident: ref_9
  article-title: Research on the optimum synchronous network search data extraction based on swarm intelligence algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.05.001
– volume: 34
  start-page: bhae329
  year: 2024
  ident: ref_17
  article-title: A novel sand cat swarm optimization algorithm-based SVM for diagnosis imaging genomics in Alzheimer’s disease
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhae329
– volume: 10
  start-page: 89989
  year: 2022
  ident: ref_26
  article-title: Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3201147
– volume: 44
  start-page: 7380
  year: 2022
  ident: ref_1
  article-title: Detection and Tracking Meet Drones Challenge
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3119563
– volume: 8
  start-page: 65071
  year: 2020
  ident: ref_7
  article-title: A novel route planning method of fixed-wing unmanned aerial vehicle based on improved QPSO
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984236
– volume: 80
  start-page: 8091
  year: 2021
  ident: ref_14
  article-title: A review on genetic algorithm: Past, present, and future
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10139-6
– volume: 16
  start-page: 109
  year: 2023
  ident: ref_5
  article-title: Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-022-00452-4
– volume: 309
  start-page: 1125
  year: 2023
  ident: ref_2
  article-title: A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2023.02.030
– ident: ref_33
  doi: 10.1109/ICSP58490.2023.10248633
– volume: 262
  start-page: 110248
  year: 2023
  ident: ref_12
  article-title: Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110248
– volume: 53
  start-page: 4841
  year: 2023
  ident: ref_21
  article-title: Research on natural computing method of multi-spatially cooperative game based on clustering
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03641-x
– volume: 39
  start-page: 1653
  year: 2023
  ident: ref_31
  article-title: An enhanced hybrid seagull optimization algorithm with its application in engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01746-y
– volume: 95
  start-page: 106503
  year: 2020
  ident: ref_29
  article-title: Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106503
– volume: 26
  start-page: 708
  year: 2023
  ident: ref_3
  article-title: Drones for supply chain management and logistics: A review and research agenda
  publication-title: Int. J. Logist. Res. Appl.
  doi: 10.1080/13675567.2021.1981273
– volume: 39
  start-page: 2627
  year: 2023
  ident: ref_15
  article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 107
  start-page: 107376
  year: 2021
  ident: ref_27
  article-title: Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107376
– volume: 58
  start-page: 5
  year: 2025
  ident: ref_22
  article-title: Improved sandcat swarm optimization algorithm for solving global optimum problems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10986-x
– ident: ref_25
  doi: 10.3390/math11102340
– volume: 56
  start-page: 8745
  year: 2023
  ident: ref_19
  article-title: Short-Term Rockburst Damage Assessment in Burst-Prone Mines: An Explainable XGBOOST Hybrid Model with SCSO Algorithm
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-023-03522-w
– volume: 33
  start-page: 101100
  year: 2024
  ident: ref_10
  article-title: Optimization simulation of sports stadium training based on Ant colony algorithm and sensor network
  publication-title: Meas. Sens.
  doi: 10.1016/j.measen.2024.101100
– volume: 233
  start-page: 114649
  year: 2024
  ident: ref_18
  article-title: Improved sand cat swarm optimization algorithm for enhancing coverage of wireless sensor networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114649
– volume: 7
  start-page: 401
  year: 2022
  ident: ref_30
  article-title: A compositional function hybridization of PSO and GWO for solving well placement optimisation problem
  publication-title: Pet. Res.
SSID ssj0023338
Score 2.445973
Snippet To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2730
SubjectTerms Adaptation
Algorithms
chaotic mapping
elite mutation mechanism
Genetic algorithms
Kinematics
Lévy flight long-step perturbation
Mathematical optimization
nonlinear particle swarm optimization weight
Optimization algorithms
sand cat swarm optimization
UAV path planning
Unmanned aerial vehicles
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfJNS0ICQOEVNYsexuYWlVYW0gLRd1Fvkr7ArtVnYTQU_n5kku0rEgQuXHJxYcmY8nvcS-w1jb_Paa6G8ja2sfSwsXkzheGy5NmngIvNdzcj5Z3mxFJ-u8qtRqS_aE9bLA_eGO3W6rutUBukQ-aq0VqQRZTNtdAipzxytvpjz9mRqoFocmVevI8SR1J_uMNFrTNTJJPt0Iv1_L8WjXDTdJzlKPOcP2P0BMULZj_QhuxOaR-zeSEfwMfs5X8wWX95DCfONX9eIKmFhGg8z08Lil9neQHn9fbNdt6sbQJAK_CMsy2_wFdEf7KsWwboBWhyuw284G51-A_pSC_Nh3yFcrghl7p6w5fnZ5ewiHmopxA7TTxsrLnMCfxi-xiFLIaEvtCASEqQItuZSKkXsyeRCeJ0rmRhpUmHyxAmrveVP2VGzacJzBkJ7nTlsSupEFIVFQMOVsKYIosAOJmJv9jaufvSSGRVSDXJEdXBExD6Q9Q8PkMp114C-rwbfV__yfcTeke8qikV0kDPDkQIcJ6laVSWiP50iT5YRO9m7txqCdFdxqh4vVKZVxF4fbmN40T8T04TNbf8MUlREjRF71s-Gw5gF_QRPJfZWk3kyeanpnWa96iS80wyhGzLj4_9hhhfsbkZViRMRZ_kJO2q3t-ElQqXWvuqi4g_eXxDq
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDKu9AQQYhcYqaxI7X5oLSZasKaUvFdlFvkR073ZXapN1NVX4-M4k3bITEJYc8JMfjmfk-P74h5FNaWsWlNaERpQ25gYseFyw0TOnYMZ7Ytmbk7FScLPj3i_TCT7ht_LbKbUxsA7WtC5wjP2RY6pvLRMmvN7chVo3C1VVfQuMh2YMQLNMR2Tuanp797CkXAwbW6QkxIPeHG0j4ChJ2NMhCrVj_vyF5JycN90vuJKDjffLEI0eadaZ-Sh646hl5vKMn-JzczuaT-Y8vNKOz2q5KQJd0ritLJ7qh83u9vqbZ1SX8VLO8pgBWKftGF9kvegYokG6rF9FVRTFIXLnfdLpzCo7ijC2d-f2H9HyJaHPzgiyOp-eTk9DXVAgLSENNKJlIEQSCG-sC2AoKfinngJgAVTAlE0JKZFE65dyqVIpICx1znUYFN8oa9pKMqrpyrwnlyqqkgFtRGfHx2ACwYZIbPXZ8DB_ogHzc9nF-00ln5EA50BB5b4iAHGHv9y-g2nV7o15f5t558kKVZRkLJwpgPzIuJeqEmURpaHlskyIgn9F2OfokGKjQ_mgBtBPVrfIMUKCKgS-LgBxszZt7Z93kf4dWQD70j8HNcO1EV66-694BqgroMSCvutHQt5njYngs4Gs5GCeDnxo-qVbLVso7TgDCAUN-8_92vSWPEqw7HPEwSQ_IqFnfuXcAhhrz3o_4P3V3CTM
  priority: 102
  providerName: ProQuest
Title MSCSO: A Modified Sand Cat Swarm Algorithm for 3D UAV Path Planning in Complex Environments with Multiple Threats
URI https://www.ncbi.nlm.nih.gov/pubmed/40363168
https://www.proquest.com/docview/3203248298
https://www.proquest.com/docview/3203924644
https://pubmed.ncbi.nlm.nih.gov/PMC12074448
https://doaj.org/article/c9fff16e6c97481f86300b29a9ee1d2c
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdoED4vfCRmUQEqdAEzuOjYRQVlompIyJrqi3yI6dtVKXbGkmxn_Pc36pEZy45ODYkuP3Xt73xfH3EHobZFpQrpWrWKZdquAiw5S4igjpGUJ9XdeMjM_Y6YJ-WwbLPdTV2GwXcPtPamfrSS3Kzfu7m9-fIeA_WcYJlP3DFtK4gDQMzP0AEhKzzh3TfjPBJ0DDGlGhYfdBKqoV-_9-L-8kpuFPkztZaPYIPWzhI44aez9GeyZ_gh7siAo-RTfxfDL__hFHOC70OgOIiecy13giKzz_JcsrHG0ui3Jdra4wIFZMvuBF9BOfAxTEXQkjvM6xfVNszB2e7hyFw_azLY7bnxDxxcpCzu0ztJhNLyanbltYwU0hF1UuJyywSBBiWaZAWazqlzAG2AnwBZURxji3VEoGlGoRcDaWTHpUBuOUKqEVeY728yI3hwhToYWfQtM4G9MwVIBuCKdKhoaGMEA66E23xsl1o5-RAO-whkh6QzjoxK5-38FKXtcNRXmZtBGUpCLLMo8ZlgIF4l7GrViY8oWEmXvaTx30ztousa4CBkple74A5mklrpIIoKDwgDQzBx135k06h0uILSVPuS-4g173tyHW7AaKzE1x2_QBvgoQ0kEvGm_o50ztjrjHYDQf-MngoYZ38vWq1vP2fMBxQJNf_v_QI3Tft4WJx9T1g2O0X5W35hWgpUqN0L1wGcKVz76O0MHJ9Oz8x6j-8jCqo-QPv-4ZbA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeAAeEHcCAwwC8RQtiR3HRkKodCsdWwdS22lvwY6dtdKWbG2nwZ_iN3JOLqUVEm97yUOcRI7P8fH3-fIdQt7GuVVcWuMbkVufG7joJGO-YUqHjvHIVjkjB4eiP-Zfj-PjDfK7PQuD2yrbmFgFaltmOEe-zTDVN5eRkp_OL3zMGoWrq20Kjdot9t2vK6Bs8497O2Dfd1HU2x11-36TVcDPIBAvfMlEjDAIHFlngNdR8ko5B9AcwLLJmRBSIo_QMedWxVIEWuiQ6zjIuFHWMPjuDXKTM6ZQq1_2viwJHgO-V6sXQWGwPQd4oQAeBGtjXpUa4N8BYGUEXN-duTLc9e6Ruw1OpZ3ase6TDVc8IHdW1AsfkovBsDv89oF26KC00xywLB3qwtKuXtDhlZ6d0c7pCTThYnJGARpTtkPHnSP6HTAnbXMl0WlBMSSdup90d-XMHcX5YTpodjvS0QSx7fwRGV9LWz8mm0VZuKeEcmVVlMGtIA94khiAUUxyoxPHE3hBe-RN28bpeS3UkQLBQUOkS0N45DO2_vIB1NaubpSzk7Tpqmmm8jwPhRMZcC0Z5hJVyUykNNQ8tFHmkfdouxQjABgo081BBqgnammlHcCcKgR2Ljyy1Zo3bULDPP3ryB55vSyGTo0rNbpw5WX9DBBjwKoeeVJ7w7LOHJfeQwFvyzU_Wfup9ZJiOqmEw8MIACPw8Wf_r9crcqs_GhykB3uH-8_J7QgzHgfcj-ItsrmYXboXAMMW5mXl-5T8uO7O9gfkTUEd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgEE9Rk9hxbCSEun5oY7RMdJ32FuzYWStt6dZ2Gvxr_HWcm6S0QuJtL3lw7Mjxne9-P3_cAbyLcyOZMNrXPDc-0_hQSUZ9TaUKLWWRWeaM7A_43oh9OYlPtuB3fRfGHausbeLSUJtp5tbIm9Sl-mYikqKZV8ciDju9zxeXvssg5XZa63QapYoc2F_XSN_mn_Y7KOv3UdTrHrX3_CrDgJ-hUV74gvLYQSJUapUhdnfhr6S1CNMROOucci6E4xQqZszIWPBAcRUyFQcZ09Joit-9BdsJekXRgO3d7uDw-4ruUWR_ZSwjSmXQnCPYkAgWgg0PuEwU8K87WPOHm2c115xf7z7cq1AraZVq9gC2bPEQ7q7FMnwEl_1he_jtI2mR_tRMckS2ZKgKQ9pqQYbXanZOWmenOIiL8TlBoExoh4xax-QQESipMyeRSUGcgTqzP0l37QYecavFpF-dfSRHY4d0549hdCOj_QQaxbSwz4AwaWSUYVGQByxJNIIqKphWiWUJNlAevK3HOL0ow3akSHecINKVIDzYdaO_quAibS8LprPTtJq4aSbzPA-55RkyLxHmwsUo05FU2PPQRJkHH5zsUmcPUECZqq41YD9dZK20hQhUhsjVuQc7tXjTylDM079q7cGb1Wuc4m7fRhV2elXWQZqMyNWDp6U2rPrM3EZ8yLG12NCTjZ_afFNMxssw4mGE8BHZ-fP_9-s13MaJln7dHxy8gDuRS38cMD-Kd6CxmF3Zl4jJFvpVpfwEftz0fPsDit9GuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSCSO%3A+A+Modified+Sand+Cat+Swarm+Algorithm+for+3D+UAV+Path+Planning+in+Complex+Environments+with+Multiple+Threats&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhan%2C+Zhengsheng&rft.au=Lai%2C+Dangyue&rft.au=Huang%2C+Canjian&rft.au=Zhang%2C+Zhixiang&rft.date=2025-04-25&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092730&rft.externalDocID=PMC12074448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon