MSCSO: A Modified Sand Cat Swarm Algorithm for 3D UAV Path Planning in Complex Environments with Multiple Threats
To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flig...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2730 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25092730 |
Cover
Loading…
Abstract | To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight–Metropolis hybrid exploration mechanisms, simulated annealing–particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21–35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems. |
---|---|
AbstractList | To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight-Metropolis hybrid exploration mechanisms, simulated annealing-particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21-35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems.To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight-Metropolis hybrid exploration mechanisms, simulated annealing-particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21-35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems. To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight–Metropolis hybrid exploration mechanisms, simulated annealing–particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21–35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems. |
Audience | Academic |
Author | Huang, Canjian Lai, Dangyue Zhan, Zhengsheng Yang, Jian Zhang, Zhixiang Deng, Yongle |
AuthorAffiliation | School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China |
AuthorAffiliation_xml | – name: School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China |
Author_xml | – sequence: 1 givenname: Zhengsheng surname: Zhan fullname: Zhan, Zhengsheng – sequence: 2 givenname: Dangyue surname: Lai fullname: Lai, Dangyue – sequence: 3 givenname: Canjian surname: Huang fullname: Huang, Canjian – sequence: 4 givenname: Zhixiang surname: Zhang fullname: Zhang, Zhixiang – sequence: 5 givenname: Yongle surname: Deng fullname: Deng, Yongle – sequence: 6 givenname: Jian surname: Yang fullname: Yang, Jian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40363168$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vEzEQhi1URNvAgT-ALHGBQ4q_1mtzqaJQoFKjVkrL1XK89sbRrp3auy38e9ymRC3ywdbM43fmHc0xOAgxWADeY3RCqURfMqmQJDVFr8ARZoRNBSHo4Nn7EBznvEGIUErFG3DIEOUUc3EEbhfL-fLyK5zBRWy887aBSx0aONcDXN7r1MNZ18bkh3UPXUyQfoM3s1_wSg9reNXpEHxooQ9wHvttZ3_Ds3DnUwy9DUOG9-UbXIzd4EsOXq-T1UN-C1473WX77umegJvvZ9fzn9OLyx_n89nF1LAaD1NBeYVxhQiptKmYoKiqpLUE14jJlaOcC8GIqHXFWCMrwZHmGjNdIcNWslnRCTjf6TZRb9Q2-V6nPypqrx4DMbVKp8GbziojnXOYW25kzQR2glOEVkTqUhA3xBSt053Wdlz1tjHFXdLdC9GXmeDXqo13ChNUM1a6n4BPTwop3o42D6r32diujNDGMStKEJWEccYK-vE_dBPHFMqsHinCBJEPgic7qtXFgQ8ulsKmnMb23pT9cL7EZ4JKiWVdHE3Ah-ce9s3_24UCfN4BJsWck3V7BCP1sGdqv2f0L3OowFQ |
Cites_doi | 10.1007/s11071-024-10406-3 10.3390/electronics13050886 10.1016/j.eswa.2021.114854 10.1002/dac.4975 10.1016/j.procs.2023.10.145 10.1007/s11831-024-10217-0 10.1038/s41598-023-50910-x 10.1145/3570723 10.1016/j.asoc.2010.12.001 10.1109/ICCASIT58768.2023.10351766 10.1007/s10462-022-10281-7 10.1109/ACCESS.2023.3327732 10.1016/j.future.2021.05.001 10.1093/cercor/bhae329 10.1109/ACCESS.2022.3201147 10.1109/TPAMI.2021.3119563 10.1109/ACCESS.2020.2984236 10.1007/s11042-020-10139-6 10.1007/s11370-022-00452-4 10.1016/j.ejor.2023.02.030 10.1109/ICSP58490.2023.10248633 10.1016/j.knosys.2022.110248 10.1007/s10489-022-03641-x 10.1007/s00366-022-01746-y 10.1016/j.asoc.2020.106503 10.1080/13675567.2021.1981273 10.1007/s00366-022-01604-x 10.1016/j.asoc.2021.107376 10.1007/s10462-024-10986-x 10.3390/math11102340 10.1007/s00603-023-03522-w 10.1016/j.measen.2024.101100 10.1016/j.measurement.2024.114649 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25092730 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c9fff16e6c97481f86300b29a9ee1d2c PMC12074448 A839919786 40363168 10_3390_s25092730 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Provincial College Students’ Innovation and Entrepreneurship Training Program grantid: S202410561346 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c471t-83651150225ac54830559ee217049bf366884287a544d95860a6a14a50c4b9db3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:04 EDT 2025 Thu Aug 21 18:29:52 EDT 2025 Fri Sep 05 16:44:11 EDT 2025 Fri Jul 25 10:22:35 EDT 2025 Tue Jun 10 20:56:20 EDT 2025 Sat May 17 01:30:25 EDT 2025 Tue Jul 01 05:08:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | UAV path planning chaotic mapping sand cat swarm optimization nonlinear particle swarm optimization weight Lévy flight long-step perturbation elite mutation mechanism |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-83651150225ac54830559ee217049bf366884287a544d95860a6a14a50c4b9db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25092730 |
PMID | 40363168 |
PQID | 3203248298 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c9fff16e6c97481f86300b29a9ee1d2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074448 proquest_miscellaneous_3203924644 proquest_journals_3203248298 gale_infotracacademiconefile_A839919786 pubmed_primary_40363168 crossref_primary_10_3390_s25092730 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-25 |
PublicationDateYYYYMMDD | 2025-04-25 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhu (ref_1) 2022; 44 Li (ref_26) 2022; 10 Huang (ref_7) 2020; 8 Bogar (ref_29) 2020; 95 Hu (ref_31) 2023; 39 ref_34 ref_11 Tang (ref_20) 2023; 56 Jia (ref_22) 2025; 58 ref_33 ref_32 Jemmali (ref_6) 2023; 225 Mohamed (ref_12) 2023; 262 Jones (ref_8) 2023; 55 ref_16 Wang (ref_17) 2024; 34 Li (ref_18) 2024; 233 Qiu (ref_19) 2023; 56 Chen (ref_10) 2024; 33 Su (ref_9) 2021; 125 Seyyedabbasi (ref_15) 2023; 39 Li (ref_23) 2023; 11 Ocran (ref_30) 2022; 7 Mohsan (ref_5) 2023; 16 Karaboga (ref_28) 2010; 11 Mohanty (ref_13) 2021; 34 Rejeb (ref_3) 2023; 26 ref_25 ref_24 Katoch (ref_14) 2021; 80 Winkenbach (ref_4) 2021; 177 Qian (ref_35) 2025; 113 Yin (ref_2) 2023; 309 Phung (ref_27) 2021; 107 Wang (ref_21) 2023; 53 |
References_xml | – volume: 113 start-page: 4815 year: 2025 ident: ref_35 article-title: Dynamic time-delay perturbation: A strategy for enhancing chaotic system performance and its applications publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-10406-3 – ident: ref_11 doi: 10.3390/electronics13050886 – volume: 177 start-page: 114854 year: 2021 ident: ref_4 article-title: Applications and Research avenues for drone-based models in logistics: A classification and review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114854 – ident: ref_34 – volume: 34 start-page: e4975 year: 2021 ident: ref_13 article-title: MIMO broadcast scheduling using binary spider monkey optimization algorithm publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4975 – volume: 225 start-page: 1562 year: 2023 ident: ref_6 article-title: Optimizing Forest Fire Prevention: Intelligent Scheduling Algorithms for Drone-Based Surveillance System publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2023.10.145 – ident: ref_16 doi: 10.1007/s11831-024-10217-0 – ident: ref_24 doi: 10.1038/s41598-023-50910-x – volume: 55 start-page: 234 year: 2023 ident: ref_8 article-title: Path-Planning for Unmanned Aerial Vehicles with Environment Complexity Considerations: A Survey publication-title: ACM Comput. Surv. doi: 10.1145/3570723 – volume: 11 start-page: 3021 year: 2010 ident: ref_28 article-title: A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2010.12.001 – ident: ref_32 doi: 10.1109/ICCASIT58768.2023.10351766 – volume: 56 start-page: 4295 year: 2023 ident: ref_20 article-title: Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10281-7 – volume: 11 start-page: 122315 year: 2023 ident: ref_23 article-title: IMSCSO: An Intensified Sand Cat Swarm Optimization With Multi-Strategy for Solving Global and Engineering Optimization Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3327732 – volume: 125 start-page: 151 year: 2021 ident: ref_9 article-title: Research on the optimum synchronous network search data extraction based on swarm intelligence algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.05.001 – volume: 34 start-page: bhae329 year: 2024 ident: ref_17 article-title: A novel sand cat swarm optimization algorithm-based SVM for diagnosis imaging genomics in Alzheimer’s disease publication-title: Cereb. Cortex doi: 10.1093/cercor/bhae329 – volume: 10 start-page: 89989 year: 2022 ident: ref_26 article-title: Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3201147 – volume: 44 start-page: 7380 year: 2022 ident: ref_1 article-title: Detection and Tracking Meet Drones Challenge publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3119563 – volume: 8 start-page: 65071 year: 2020 ident: ref_7 article-title: A novel route planning method of fixed-wing unmanned aerial vehicle based on improved QPSO publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984236 – volume: 80 start-page: 8091 year: 2021 ident: ref_14 article-title: A review on genetic algorithm: Past, present, and future publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10139-6 – volume: 16 start-page: 109 year: 2023 ident: ref_5 article-title: Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-022-00452-4 – volume: 309 start-page: 1125 year: 2023 ident: ref_2 article-title: A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2023.02.030 – ident: ref_33 doi: 10.1109/ICSP58490.2023.10248633 – volume: 262 start-page: 110248 year: 2023 ident: ref_12 article-title: Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110248 – volume: 53 start-page: 4841 year: 2023 ident: ref_21 article-title: Research on natural computing method of multi-spatially cooperative game based on clustering publication-title: Appl. Intell. doi: 10.1007/s10489-022-03641-x – volume: 39 start-page: 1653 year: 2023 ident: ref_31 article-title: An enhanced hybrid seagull optimization algorithm with its application in engineering optimization publication-title: Eng. Comput. doi: 10.1007/s00366-022-01746-y – volume: 95 start-page: 106503 year: 2020 ident: ref_29 article-title: Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106503 – volume: 26 start-page: 708 year: 2023 ident: ref_3 article-title: Drones for supply chain management and logistics: A review and research agenda publication-title: Int. J. Logist. Res. Appl. doi: 10.1080/13675567.2021.1981273 – volume: 39 start-page: 2627 year: 2023 ident: ref_15 article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 107 start-page: 107376 year: 2021 ident: ref_27 article-title: Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107376 – volume: 58 start-page: 5 year: 2025 ident: ref_22 article-title: Improved sandcat swarm optimization algorithm for solving global optimum problems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10986-x – ident: ref_25 doi: 10.3390/math11102340 – volume: 56 start-page: 8745 year: 2023 ident: ref_19 article-title: Short-Term Rockburst Damage Assessment in Burst-Prone Mines: An Explainable XGBOOST Hybrid Model with SCSO Algorithm publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-023-03522-w – volume: 33 start-page: 101100 year: 2024 ident: ref_10 article-title: Optimization simulation of sports stadium training based on Ant colony algorithm and sensor network publication-title: Meas. Sens. doi: 10.1016/j.measen.2024.101100 – volume: 233 start-page: 114649 year: 2024 ident: ref_18 article-title: Improved sand cat swarm optimization algorithm for enhancing coverage of wireless sensor networks publication-title: Measurement doi: 10.1016/j.measurement.2024.114649 – volume: 7 start-page: 401 year: 2022 ident: ref_30 article-title: A compositional function hybridization of PSO and GWO for solving well placement optimisation problem publication-title: Pet. Res. |
SSID | ssj0023338 |
Score | 2.445973 |
Snippet | To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2730 |
SubjectTerms | Adaptation Algorithms chaotic mapping elite mutation mechanism Genetic algorithms Kinematics Lévy flight long-step perturbation Mathematical optimization nonlinear particle swarm optimization weight Optimization algorithms sand cat swarm optimization UAV path planning Unmanned aerial vehicles Velocity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfJNS0ICQOEVNYsexuYWlVYW0gLRd1Fvkr7ArtVnYTQU_n5kku0rEgQuXHJxYcmY8nvcS-w1jb_Paa6G8ja2sfSwsXkzheGy5NmngIvNdzcj5Z3mxFJ-u8qtRqS_aE9bLA_eGO3W6rutUBukQ-aq0VqQRZTNtdAipzxytvpjz9mRqoFocmVevI8SR1J_uMNFrTNTJJPt0Iv1_L8WjXDTdJzlKPOcP2P0BMULZj_QhuxOaR-zeSEfwMfs5X8wWX95DCfONX9eIKmFhGg8z08Lil9neQHn9fbNdt6sbQJAK_CMsy2_wFdEf7KsWwboBWhyuw284G51-A_pSC_Nh3yFcrghl7p6w5fnZ5ewiHmopxA7TTxsrLnMCfxi-xiFLIaEvtCASEqQItuZSKkXsyeRCeJ0rmRhpUmHyxAmrveVP2VGzacJzBkJ7nTlsSupEFIVFQMOVsKYIosAOJmJv9jaufvSSGRVSDXJEdXBExD6Q9Q8PkMp114C-rwbfV__yfcTeke8qikV0kDPDkQIcJ6laVSWiP50iT5YRO9m7txqCdFdxqh4vVKZVxF4fbmN40T8T04TNbf8MUlREjRF71s-Gw5gF_QRPJfZWk3kyeanpnWa96iS80wyhGzLj4_9hhhfsbkZViRMRZ_kJO2q3t-ElQqXWvuqi4g_eXxDq priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDKu9AQQYhcYqaxI7X5oLSZasKaUvFdlFvkR073ZXapN1NVX4-M4k3bITEJYc8JMfjmfk-P74h5FNaWsWlNaERpQ25gYseFyw0TOnYMZ7Ytmbk7FScLPj3i_TCT7ht_LbKbUxsA7WtC5wjP2RY6pvLRMmvN7chVo3C1VVfQuMh2YMQLNMR2Tuanp797CkXAwbW6QkxIPeHG0j4ChJ2NMhCrVj_vyF5JycN90vuJKDjffLEI0eadaZ-Sh646hl5vKMn-JzczuaT-Y8vNKOz2q5KQJd0ritLJ7qh83u9vqbZ1SX8VLO8pgBWKftGF9kvegYokG6rF9FVRTFIXLnfdLpzCo7ijC2d-f2H9HyJaHPzgiyOp-eTk9DXVAgLSENNKJlIEQSCG-sC2AoKfinngJgAVTAlE0JKZFE65dyqVIpICx1znUYFN8oa9pKMqrpyrwnlyqqkgFtRGfHx2ACwYZIbPXZ8DB_ogHzc9nF-00ln5EA50BB5b4iAHGHv9y-g2nV7o15f5t558kKVZRkLJwpgPzIuJeqEmURpaHlskyIgn9F2OfokGKjQ_mgBtBPVrfIMUKCKgS-LgBxszZt7Z93kf4dWQD70j8HNcO1EV66-694BqgroMSCvutHQt5njYngs4Gs5GCeDnxo-qVbLVso7TgDCAUN-8_92vSWPEqw7HPEwSQ_IqFnfuXcAhhrz3o_4P3V3CTM priority: 102 providerName: ProQuest |
Title | MSCSO: A Modified Sand Cat Swarm Algorithm for 3D UAV Path Planning in Complex Environments with Multiple Threats |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40363168 https://www.proquest.com/docview/3203248298 https://www.proquest.com/docview/3203924644 https://pubmed.ncbi.nlm.nih.gov/PMC12074448 https://doaj.org/article/c9fff16e6c97481f86300b29a9ee1d2c |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdoED4vfCRmUQEqdAEzuOjYRQVlompIyJrqi3yI6dtVKXbGkmxn_Pc36pEZy45ODYkuP3Xt73xfH3EHobZFpQrpWrWKZdquAiw5S4igjpGUJ9XdeMjM_Y6YJ-WwbLPdTV2GwXcPtPamfrSS3Kzfu7m9-fIeA_WcYJlP3DFtK4gDQMzP0AEhKzzh3TfjPBJ0DDGlGhYfdBKqoV-_9-L-8kpuFPkztZaPYIPWzhI44aez9GeyZ_gh7siAo-RTfxfDL__hFHOC70OgOIiecy13giKzz_JcsrHG0ui3Jdra4wIFZMvuBF9BOfAxTEXQkjvM6xfVNszB2e7hyFw_azLY7bnxDxxcpCzu0ztJhNLyanbltYwU0hF1UuJyywSBBiWaZAWazqlzAG2AnwBZURxji3VEoGlGoRcDaWTHpUBuOUKqEVeY728yI3hwhToYWfQtM4G9MwVIBuCKdKhoaGMEA66E23xsl1o5-RAO-whkh6QzjoxK5-38FKXtcNRXmZtBGUpCLLMo8ZlgIF4l7GrViY8oWEmXvaTx30ztousa4CBkple74A5mklrpIIoKDwgDQzBx135k06h0uILSVPuS-4g173tyHW7AaKzE1x2_QBvgoQ0kEvGm_o50ztjrjHYDQf-MngoYZ38vWq1vP2fMBxQJNf_v_QI3Tft4WJx9T1g2O0X5W35hWgpUqN0L1wGcKVz76O0MHJ9Oz8x6j-8jCqo-QPv-4ZbA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeAAeEHcCAwwC8RQtiR3HRkKodCsdWwdS22lvwY6dtdKWbG2nwZ_iN3JOLqUVEm97yUOcRI7P8fH3-fIdQt7GuVVcWuMbkVufG7joJGO-YUqHjvHIVjkjB4eiP-Zfj-PjDfK7PQuD2yrbmFgFaltmOEe-zTDVN5eRkp_OL3zMGoWrq20Kjdot9t2vK6Bs8497O2Dfd1HU2x11-36TVcDPIBAvfMlEjDAIHFlngNdR8ko5B9AcwLLJmRBSIo_QMedWxVIEWuiQ6zjIuFHWMPjuDXKTM6ZQq1_2viwJHgO-V6sXQWGwPQd4oQAeBGtjXpUa4N8BYGUEXN-duTLc9e6Ruw1OpZ3ase6TDVc8IHdW1AsfkovBsDv89oF26KC00xywLB3qwtKuXtDhlZ6d0c7pCTThYnJGARpTtkPHnSP6HTAnbXMl0WlBMSSdup90d-XMHcX5YTpodjvS0QSx7fwRGV9LWz8mm0VZuKeEcmVVlMGtIA94khiAUUxyoxPHE3hBe-RN28bpeS3UkQLBQUOkS0N45DO2_vIB1NaubpSzk7Tpqmmm8jwPhRMZcC0Z5hJVyUykNNQ8tFHmkfdouxQjABgo081BBqgnammlHcCcKgR2Ljyy1Zo3bULDPP3ryB55vSyGTo0rNbpw5WX9DBBjwKoeeVJ7w7LOHJfeQwFvyzU_Wfup9ZJiOqmEw8MIACPw8Wf_r9crcqs_GhykB3uH-8_J7QgzHgfcj-ItsrmYXboXAMMW5mXl-5T8uO7O9gfkTUEd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgEE9Rk9hxbCSEun5oY7RMdJ32FuzYWStt6dZ2Gvxr_HWcm6S0QuJtL3lw7Mjxne9-P3_cAbyLcyOZMNrXPDc-0_hQSUZ9TaUKLWWRWeaM7A_43oh9OYlPtuB3fRfGHausbeLSUJtp5tbIm9Sl-mYikqKZV8ciDju9zxeXvssg5XZa63QapYoc2F_XSN_mn_Y7KOv3UdTrHrX3_CrDgJ-hUV74gvLYQSJUapUhdnfhr6S1CNMROOucci6E4xQqZszIWPBAcRUyFQcZ09Joit-9BdsJekXRgO3d7uDw-4ruUWR_ZSwjSmXQnCPYkAgWgg0PuEwU8K87WPOHm2c115xf7z7cq1AraZVq9gC2bPEQ7q7FMnwEl_1he_jtI2mR_tRMckS2ZKgKQ9pqQYbXanZOWmenOIiL8TlBoExoh4xax-QQESipMyeRSUGcgTqzP0l37QYecavFpF-dfSRHY4d0549hdCOj_QQaxbSwz4AwaWSUYVGQByxJNIIqKphWiWUJNlAevK3HOL0ow3akSHecINKVIDzYdaO_quAibS8LprPTtJq4aSbzPA-55RkyLxHmwsUo05FU2PPQRJkHH5zsUmcPUECZqq41YD9dZK20hQhUhsjVuQc7tXjTylDM079q7cGb1Wuc4m7fRhV2elXWQZqMyNWDp6U2rPrM3EZ8yLG12NCTjZ_afFNMxssw4mGE8BHZ-fP_9-s13MaJln7dHxy8gDuRS38cMD-Kd6CxmF3Zl4jJFvpVpfwEftz0fPsDit9GuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSCSO%3A+A+Modified+Sand+Cat+Swarm+Algorithm+for+3D+UAV+Path+Planning+in+Complex+Environments+with+Multiple+Threats&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhan%2C+Zhengsheng&rft.au=Lai%2C+Dangyue&rft.au=Huang%2C+Canjian&rft.au=Zhang%2C+Zhixiang&rft.date=2025-04-25&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092730&rft.externalDocID=PMC12074448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |