A Semiautomated Method for Quantification of F 18 Florbetapir PET Images
PET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3 objectives: first, to describe a semiautomated quantitative method that does not require subject-specific MR imaging scans for estimating F 18 Flor...
Saved in:
Published in | Journal of Nuclear Medicine Vol. 56; no. 11; pp. 1736 - 1741 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Nuclear Medicine
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0161-5505 2159-662X 1535-5667 |
DOI | 10.2967/jnumed.114.153494 |
Cover
Abstract | PET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3 objectives: first, to describe a semiautomated quantitative method that does not require subject-specific MR imaging scans for estimating F 18 Florbetapir plaque binding using 10-min PET images; second, to evaluate the method's accuracy for identifying positive and negative scans; and third, to correlate derived standardized uptake value ratios to neuropathologic measures of amyloid.
The F 18 Florbetapir PET images are initially converted to Montreal Neurologic Institute brain atlas space using an internally developed PET target F 18 Florbetapir template. Subsequently, a single mean cortical standardized uptake value ratio (mcSUVr) is calculated from the mean standardized uptake value of 6 cortical regions normalized to a reference region. Four reference regions were explored: whole cerebellum, cerebellar gray matter, pons, and centrum semiovale. The performance of the resultant mcSUVrs were evaluated in 74 young cognitively normal subjects (age < 50 y) with a negligible likelihood of amyloid β pathology, and in 59 deceased subjects with autopsy-based amyloid β neuritic plaque measure who underwent F 18 Florbetapir PET imaging before death.
Significant correlations were obtained between mcSUVrs and 3 different pathologic measures of amyloid deposition at autopsy using all 4 reference regions, with the whole-cerebellum mcSUVr correlating most strongly across pathologic measures (r = 0.71-0.75, P < 0.0001). Using the whole-cerebellum mcSUVr and a threshold mcSUVr of less than 1.10, 100% of young cognitively normal subjects were correctly classified as amyloid-negative (mcSUVr range, 0.87-1.08). Similarly, 20 of 20 autopsy-negative subjects showed mcSUVrs of 1.10 or less, whereas 38 of 39 pathology-verified amyloid-positive subjects had mcSUVrs of more than 1.10.
This semiautomated F 18 Florbetapir PET quantification method yielded mcSUVrs that significantly correlated with measures of amyloid pathology at autopsy. The method also effectively discriminated autopsy-identified amyloid-positive and -negative cases using a whole-cerebellum mcSUVr threshold of 1.10. |
---|---|
AbstractList | PET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3 objectives: first, to describe a semiautomated quantitative method that does not require subject-specific MR imaging scans for estimating F 18 Florbetapir plaque binding using 10-min PET images; second, to evaluate the method's accuracy for identifying positive and negative scans; and third, to correlate derived standardized uptake value ratios to neuropathologic measures of amyloid. The F 18 Florbetapir PET images are initially converted to Montreal Neurologic Institute brain atlas space using an internally developed PET target F 18 Florbetapir template. Subsequently, a single mean cortical standardized uptake value ratio (mcSUVr) is calculated from the mean standardized uptake value of 6 cortical regions normalized to a reference region. Four reference regions were explored: whole cerebellum, cerebellar gray matter, pons, and centrum semiovale. The performance of the resultant mcSUVrs were evaluated in 74 young cognitively normal subjects (age < 50 y) with a negligible likelihood of amyloid β pathology, and in 59 deceased subjects with autopsy-based amyloid β neuritic plaque measure who underwent F 18 Florbetapir PET imaging before death. Results: Significant correlations were obtained between mcSUVrs and 3 different pathologic measures of amyloid deposition at autopsy using all 4 reference regions, with the whole-cerebellum mcSUVr correlating most strongly across pathologic measures (r = 0.71-0.75, P < 0.0001). Using the whole-cerebellum mcSUVr and a threshold mcSUVr of less than 1.10, 100% of young cognitively normal subjects were correctly classified as amyloid-negative (mcSUVr range, 0.87-1.08). Similarly, 20 of 20 autopsy-negative subjects showed mcSUVrs of 1.10 or less, whereas 38 of 39 pathology-verified amyloid-positive subjects had mcSUVrs of more than 1.10. This semiautomated F 18 Florbetapir PET quantification method yielded mcSUVrs that significantly correlated with measures of amyloid pathology at autopsy. The method also effectively discriminated autopsy-identified amyloid-positive and -negative cases using a whole-cerebellum mcSUVr threshold of 1.10. PET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3 objectives: first, to describe a semiautomated quantitative method that does not require subject-specific MR imaging scans for estimating F 18 Florbetapir plaque binding using 10-min PET images; second, to evaluate the method's accuracy for identifying positive and negative scans; and third, to correlate derived standardized uptake value ratios to neuropathologic measures of amyloid. The F 18 Florbetapir PET images are initially converted to Montreal Neurologic Institute brain atlas space using an internally developed PET target F 18 Florbetapir template. Subsequently, a single mean cortical standardized uptake value ratio (mcSUVr) is calculated from the mean standardized uptake value of 6 cortical regions normalized to a reference region. Four reference regions were explored: whole cerebellum, cerebellar gray matter, pons, and centrum semiovale. The performance of the resultant mcSUVrs were evaluated in 74 young cognitively normal subjects (age < 50 y) with a negligible likelihood of amyloid β pathology, and in 59 deceased subjects with autopsy-based amyloid β neuritic plaque measure who underwent F 18 Florbetapir PET imaging before death. Significant correlations were obtained between mcSUVrs and 3 different pathologic measures of amyloid deposition at autopsy using all 4 reference regions, with the whole-cerebellum mcSUVr correlating most strongly across pathologic measures (r = 0.71-0.75, P < 0.0001). Using the whole-cerebellum mcSUVr and a threshold mcSUVr of less than 1.10, 100% of young cognitively normal subjects were correctly classified as amyloid-negative (mcSUVr range, 0.87-1.08). Similarly, 20 of 20 autopsy-negative subjects showed mcSUVrs of 1.10 or less, whereas 38 of 39 pathology-verified amyloid-positive subjects had mcSUVrs of more than 1.10. This semiautomated F 18 Florbetapir PET quantification method yielded mcSUVrs that significantly correlated with measures of amyloid pathology at autopsy. The method also effectively discriminated autopsy-identified amyloid-positive and -negative cases using a whole-cerebellum mcSUVr threshold of 1.10. UNLABELLEDPET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3 objectives: first, to describe a semiautomated quantitative method that does not require subject-specific MR imaging scans for estimating F 18 Florbetapir plaque binding using 10-min PET images; second, to evaluate the method's accuracy for identifying positive and negative scans; and third, to correlate derived standardized uptake value ratios to neuropathologic measures of amyloid.METHODSThe F 18 Florbetapir PET images are initially converted to Montreal Neurologic Institute brain atlas space using an internally developed PET target F 18 Florbetapir template. Subsequently, a single mean cortical standardized uptake value ratio (mcSUVr) is calculated from the mean standardized uptake value of 6 cortical regions normalized to a reference region. Four reference regions were explored: whole cerebellum, cerebellar gray matter, pons, and centrum semiovale. The performance of the resultant mcSUVrs were evaluated in 74 young cognitively normal subjects (age < 50 y) with a negligible likelihood of amyloid β pathology, and in 59 deceased subjects with autopsy-based amyloid β neuritic plaque measure who underwent F 18 Florbetapir PET imaging before death.RESULTSSignificant correlations were obtained between mcSUVrs and 3 different pathologic measures of amyloid deposition at autopsy using all 4 reference regions, with the whole-cerebellum mcSUVr correlating most strongly across pathologic measures (r = 0.71-0.75, P < 0.0001). Using the whole-cerebellum mcSUVr and a threshold mcSUVr of less than 1.10, 100% of young cognitively normal subjects were correctly classified as amyloid-negative (mcSUVr range, 0.87-1.08). Similarly, 20 of 20 autopsy-negative subjects showed mcSUVrs of 1.10 or less, whereas 38 of 39 pathology-verified amyloid-positive subjects had mcSUVrs of more than 1.10.CONCLUSIONThis semiautomated F 18 Florbetapir PET quantification method yielded mcSUVrs that significantly correlated with measures of amyloid pathology at autopsy. The method also effectively discriminated autopsy-identified amyloid-positive and -negative cases using a whole-cerebellum mcSUVr threshold of 1.10. PET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3 objectives: first, to describe a semiautomated quantitative method that does not require subject-specific MR imaging scans for estimating F 18 Florbetapir plaque binding using 10-min PET images; second, to evaluate the method's accuracy for identifying positive and negative scans; and third, to correlate derived standardized uptake value ratios to neuropathologic measures of amyloid. The F 18 Florbetapir PET images are initially converted to Montreal Neurologic Institute brain atlas space using an internally developed PET target F 18 Florbetapir template. Subsequently, a single mean cortical standardized uptake value ratio (mcSUVr) is calculated from the mean standardized uptake value of 6 cortical regions normalized to a reference region. Four reference regions were explored: whole cerebellum, cerebellar gray matter, pons, and centrum semiovale. The performance of the resultant mcSUVrs were evaluated in 74 young cognitively normal subjects (age 50 y) with a negligible likelihood of amyloid pathology, and in 59 deceased subjects with autopsy-based amyloid neuritic plaque measure who underwent F 18 Florbetapir PET imaging before death. Results: Significant correlations were obtained between mcSUVrs and 3 different pathologic measures of amyloid deposition at autopsy using all 4 reference regions, with the whole-cerebellum mcSUVr correlating most strongly across pathologic measures (r = 0.71-0.75, P 0.0001). Using the whole-cerebellum mcSUVr and a threshold mcSUVr of less than 1.10, 100% of young cognitively normal subjects were correctly classified as amyloid-negative (mcSUVr range, 0.87-1.08). Similarly, 20 of 20 autopsy-negative subjects showed mcSUVrs of 1.10 or less, whereas 38 of 39 pathology-verified amyloid-positive subjects had mcSUVrs of more than 1.10. This semiautomated F 18 Florbetapir PET quantification method yielded mcSUVrs that significantly correlated with measures of amyloid pathology at autopsy. The method also effectively discriminated autopsy-identified amyloid-positive and -negative cases using a whole-cerebellum mcSUVr threshold of 1.10. |
Author | Devous, Michael D. Pontecorvo, Michael J. Skovronsky, Daniel M. Joshi, Abhinay D. Lu, Ming Mintun, Mark A. |
Author_xml | – sequence: 1 givenname: Abhinay D. surname: Joshi fullname: Joshi, Abhinay D. – sequence: 2 givenname: Michael J. surname: Pontecorvo fullname: Pontecorvo, Michael J. – sequence: 3 givenname: Ming surname: Lu fullname: Lu, Ming – sequence: 4 givenname: Daniel M. surname: Skovronsky fullname: Skovronsky, Daniel M. – sequence: 5 givenname: Mark A. surname: Mintun fullname: Mintun, Mark A. – sequence: 6 givenname: Michael D. surname: Devous fullname: Devous, Michael D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26338898$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UFP2zAYBmBrAq0t4wfsMlnahUuKP8eOnSNCLUUCAYJJ3CwnsTdXSdzZzoF_j0vhgjRpJ1-e95P8vgt0NPrRIPQdyJLWlTjfjtNguiUAWwIvWc2-oDkFXhdVRZ-P0JxABQXnhM_QIsYtIaSSUn5FM1qVpZS1nKPNBX40g9NT8oNOpsO3Jv3xHbY-4IdJj8lZ1-rk_Ii9xWsMEq97HxqT9M4FfL96wteD_m3iN3RsdR_N6ft7gn6tV0-Xm-Lm7ur68uKmaJmAVIimEaKznWRECEYtaEoJMMZK3RHBa8pq0I1ps5IgLec5VYrGmg7altC6PEFnh7u74P9OJiY1uNiavtej8VNUICThpGKM_wctCQFRS5rpz09066cw5o_sFeWyKhnJ6se7mppcvNoFN-jwoj7qzEAcQBt8jMFY1br01l4K2vUKiNoPpw7DqTycOgyXk_Ap-XH835lXmGSZSA |
CODEN | JNMEAQ |
CitedBy_id | crossref_primary_10_1007_s13311_023_01405_0 crossref_primary_10_1002_cpt_2875 crossref_primary_10_2967_jnumed_117_200006 crossref_primary_10_1016_j_nicl_2021_102749 crossref_primary_10_14283_jpad_2022_30 crossref_primary_10_2967_jnumed_115_170027 crossref_primary_10_1007_s12194_022_00653_7 crossref_primary_10_1016_j_inffus_2020_07_006 crossref_primary_10_3389_fninf_2024_1420315 crossref_primary_10_1007_s40336_017_0257_4 crossref_primary_10_1159_000492945 crossref_primary_10_1002_alz_12697 crossref_primary_10_3233_JAD_181268 crossref_primary_10_1093_brain_aww023 crossref_primary_10_1111_jon_12601 crossref_primary_10_1016_j_nicl_2017_10_031 crossref_primary_10_1016_j_neurol_2019_01_052 crossref_primary_10_3389_fnagi_2024_1422862 crossref_primary_10_1007_s00259_020_05012_5 crossref_primary_10_1007_s13311_016_0474_y crossref_primary_10_3390_diagnostics12010132 crossref_primary_10_1002_alz_13755 crossref_primary_10_1007_s11682_018_9833_0 crossref_primary_10_1016_j_nicl_2020_102386 crossref_primary_10_1212_WNL_0000000000004733 crossref_primary_10_1093_brain_aww334 crossref_primary_10_1001_jama_2023_13239 crossref_primary_10_3233_JAD_190264 crossref_primary_10_1007_s00259_016_3601_4 crossref_primary_10_1016_j_jagp_2016_02_056 crossref_primary_10_1038_s41380_018_0203_5 crossref_primary_10_1259_bjr_20181020 crossref_primary_10_1097_MNM_0000000000001899 crossref_primary_10_1016_j_neurobiolaging_2017_05_016 crossref_primary_10_1155_2021_6640054 crossref_primary_10_2967_jnumed_119_228510 crossref_primary_10_1016_j_dadm_2018_07_002 crossref_primary_10_1007_s11682_018_9869_1 crossref_primary_10_1016_j_jalz_2016_03_009 crossref_primary_10_1177_13872877241283692 crossref_primary_10_3389_fnagi_2023_1223697 crossref_primary_10_1002_hbm_23622 crossref_primary_10_6009_jjrt_2021_JSRT_77_1_32 crossref_primary_10_1007_s00259_017_3750_0 crossref_primary_10_1007_s12149_018_1236_1 crossref_primary_10_1097_ALN_0000000000002103 crossref_primary_10_3233_JAD_200808 crossref_primary_10_1212_WNL_0000000000011521 crossref_primary_10_1007_s00259_018_4140_y crossref_primary_10_3389_fnins_2023_1148054 crossref_primary_10_3233_JAD_170762 crossref_primary_10_1016_j_jalz_2017_02_009 crossref_primary_10_1148_radiol_241482 crossref_primary_10_1016_j_jalz_2018_06_1353 crossref_primary_10_1007_s00259_022_05958_8 crossref_primary_10_1007_s12149_015_0978_2 crossref_primary_10_1186_s40658_020_00337_4 crossref_primary_10_1371_journal_pone_0177924 crossref_primary_10_1186_s13195_023_01160_6 crossref_primary_10_1007_s00259_017_3644_1 crossref_primary_10_1016_j_dadm_2019_05_003 crossref_primary_10_1186_s13195_024_01395_x crossref_primary_10_23736_S1824_4785_19_03124_8 crossref_primary_10_1186_s13195_024_01545_1 crossref_primary_10_1002_trc2_12415 |
Cites_doi | 10.1155/2000/421719 10.2967/jnumed.109.069088 10.1002/hbm.10062 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4 10.1007/BF00308809 10.1016/S1474-4422(11)70077-1 10.1016/S0024-3205(01)01232-2 10.1212/01.wnl.0000228230.26044.a4 10.1212/WNL.41.4.479 10.1006/nimg.1999.0431 10.1016/S1474-4422(12)70142-4 10.1001/jama.2010.2008 10.2967/jnumed.112.109009 10.2967/jnumed.111.090340 10.1016/S1474-4422(08)70001-2 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1016/j.neuroimage.2012.12.014 10.1016/1053-8119(92)90006-9 10.1212/01.wnl.0000240117.55680.0a 10.1002/hbm.20345 |
ContentType | Journal Article |
Copyright | 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc. Copyright Society of Nuclear Medicine Nov 1, 2015 |
Copyright_xml | – notice: 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc. – notice: Copyright Society of Nuclear Medicine Nov 1, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 8FD FR3 K9. M7Z NAPCQ P64 7X8 7QO |
DOI | 10.2967/jnumed.114.153494 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database Docstoc Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2159-662X 1535-5667 |
EndPage | 1741 |
ExternalDocumentID | 3863497441 26338898 10_2967_jnumed_114_153494 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | 123 18M 41~ 5VS 96U AAYXX ACGFO AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CITATION GX1 N9A RHI TSM U5U W8F --- -~X .55 .GJ 29L 2WC 3O- 53G 5RE 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8WZ A6W ABEFU ABSQV ABUWG ACGOD ACIWK ACPRK ADDZX ADMOG AENEX AFFNX AFKRA AFOSN AFRAH AHMBA AI. ALIPV ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EBD EBS ECM EIF EJD EMOBN EX3 F5P F9R FYUFA GNUQQ H13 HCIFZ HMCUK I-F IL9 INIJC J5H KQ8 L7B LK8 M1P M2P M2Q M7P N4W NAPCQ NPM OK1 P2P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X R0Z RNS RWL S0X SJN SV3 TAE TR2 TUS UKHRP VH1 WH7 WOQ WOW X7M YHG YQJ ZGI ZXP 4T- 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c471t-7bb77dfd8407742f1a22014443ad07592491abecb77818f5547137bfed1cc0293 |
ISSN | 0161-5505 |
IngestDate | Fri Sep 05 11:18:51 EDT 2025 Fri Sep 05 03:30:57 EDT 2025 Mon Jun 30 10:41:11 EDT 2025 Mon Jul 21 05:41:02 EDT 2025 Thu Apr 24 22:50:44 EDT 2025 Tue Jul 01 01:45:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | florbetapir quantification Alzheimer’s PET neuropathology |
Language | English |
License | 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-7bb77dfd8407742f1a22014443ad07592491abecb77818f5547137bfed1cc0293 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://jnm.snmjournals.org/content/56/11/1736.full.pdf |
PMID | 26338898 |
PQID | 1732586340 |
PQPubID | 40808 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1780506445 proquest_miscellaneous_1730017982 proquest_journals_1732586340 pubmed_primary_26338898 crossref_citationtrail_10_2967_jnumed_114_153494 crossref_primary_10_2967_jnumed_114_153494 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of Nuclear Medicine |
PublicationTitleAlternate | J Nucl Med |
PublicationYear | 2015 |
Publisher | Society of Nuclear Medicine |
Publisher_xml | – name: Society of Nuclear Medicine |
References | 2021051712081737000_56.11.1736.17 2021051712081737000_56.11.1736.18 2021051712081737000_56.11.1736.19 Lopresti (2021051712081737000_56.11.1736.5) 2005; 46 2021051712081737000_56.11.1736.4 2021051712081737000_56.11.1736.2 2021051712081737000_56.11.1736.3 2021051712081737000_56.11.1736.8 2021051712081737000_56.11.1736.9 2021051712081737000_56.11.1736.6 2021051712081737000_56.11.1736.7 2021051712081737000_56.11.1736.20 2021051712081737000_56.11.1736.10 2021051712081737000_56.11.1736.21 2021051712081737000_56.11.1736.11 2021051712081737000_56.11.1736.22 2021051712081737000_56.11.1736.12 2021051712081737000_56.11.1736.23 2021051712081737000_56.11.1736.13 2021051712081737000_56.11.1736.1 2021051712081737000_56.11.1736.14 2021051712081737000_56.11.1736.15 2021051712081737000_56.11.1736.16 |
References_xml | – ident: 2021051712081737000_56.11.1736.16 doi: 10.1155/2000/421719 – ident: 2021051712081737000_56.11.1736.10 doi: 10.2967/jnumed.109.069088 – ident: 2021051712081737000_56.11.1736.15 doi: 10.1002/hbm.10062 – ident: 2021051712081737000_56.11.1736.18 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: 2021051712081737000_56.11.1736.13 doi: 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4 – ident: 2021051712081737000_56.11.1736.7 doi: 10.1007/BF00308809 – ident: 2021051712081737000_56.11.1736.2 doi: 10.1016/S1474-4422(11)70077-1 – ident: 2021051712081737000_56.11.1736.11 – ident: 2021051712081737000_56.11.1736.1 doi: 10.1016/S0024-3205(01)01232-2 – ident: 2021051712081737000_56.11.1736.6 doi: 10.1212/01.wnl.0000228230.26044.a4 – ident: 2021051712081737000_56.11.1736.17 doi: 10.1212/WNL.41.4.479 – ident: 2021051712081737000_56.11.1736.20 doi: 10.1006/nimg.1999.0431 – ident: 2021051712081737000_56.11.1736.8 doi: 10.1016/S1474-4422(12)70142-4 – ident: 2021051712081737000_56.11.1736.4 doi: 10.1001/jama.2010.2008 – ident: 2021051712081737000_56.11.1736.22 doi: 10.2967/jnumed.112.109009 – volume: 46 start-page: 1959 year: 2005 ident: 2021051712081737000_56.11.1736.5 article-title: Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis publication-title: J Nucl Med. – ident: 2021051712081737000_56.11.1736.19 doi: 10.2967/jnumed.111.090340 – ident: 2021051712081737000_56.11.1736.3 doi: 10.1016/S1474-4422(08)70001-2 – ident: 2021051712081737000_56.11.1736.12 doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – ident: 2021051712081737000_56.11.1736.21 doi: 10.1016/j.neuroimage.2012.12.014 – ident: 2021051712081737000_56.11.1736.9 doi: 10.1016/1053-8119(92)90006-9 – ident: 2021051712081737000_56.11.1736.23 doi: 10.1212/01.wnl.0000240117.55680.0a – ident: 2021051712081737000_56.11.1736.14 doi: 10.1002/hbm.20345 |
SSID | ssj0006888 ssj0062072 |
Score | 2.4292665 |
Snippet | PET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3... UNLABELLEDPET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1736 |
SubjectTerms | Adult Aged Aged, 80 and over Alzheimer Disease - diagnostic imaging Alzheimer's disease Amyloidogenic Proteins - metabolism Amyloidosis - diagnostic imaging Amyloidosis - pathology Aniline Compounds Automation Autopsy Biomarkers Brain Brain - diagnostic imaging Cerebellum - diagnostic imaging Correlation analysis Ethylene Glycols Female Humans Image Processing, Computer-Assisted - methods Male Middle Aged Neuropathology Nuclear medicine Pons - diagnostic imaging Positron-Emission Tomography - methods Positron-Emission Tomography - statistics & numerical data Radiopharmaceuticals Reproducibility of Results |
Title | A Semiautomated Method for Quantification of F 18 Florbetapir PET Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26338898 https://www.proquest.com/docview/1732586340 https://www.proquest.com/docview/1730017982 https://www.proquest.com/docview/1780506445 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG86BjIST0QpcT5s57GCVV2hE0idtLfIdhJpiCVTm0wa_wP_M2c7MSmsE-Mlqhz35PjO59_5fHcIveUySWMa5X4ui8iP4wT0IE-EH-clU0JJFUptKC6P6fwkXpwmp6PRz8GtpbaRE_Xj2riS_-EqtAFfdZTsLTjriEID_Ab-whM4DM9_4vEUlvr5mWibGnAnIMelKQdtbg5-bYW9BuQg4cwj3JuBeS6LRlycrb0vhyvv6Bz0yWYHQj3WuY5Nnp9t__ui3phSwN5U6urbV97HidOwOtkVGLSX9eBOvrdw7z-3tr3bL031r_pyDRNkz3BtxLu3nAxPI0jSheUNDigp8bXVY_cX0waoIvUpNWXTnda16cR76SIDHUpsMEK_H4PJRK7T9WFKtbf5WwXUcp3yeALKO7YVk7fzav-x37lbiGD_aCKZJaHjszNL4g66GzJmvf5Hn9zGTjl3HioaBqYwmPte6zHX9N7_NaRtzLPDkDGAZvUQPej4jKdWrB6hUVE9Rvd6Xj9B8yneki5spQuDdOFt6cJ1iWeYcDyQLgzSha10PUUns8PVh7nf1d3wFUCVxmdSMpaXOdj-YByEJRFhqA3vOBI5IExtsRMBax96AdwrAZAyEjFZFjlRKgD8-AztVXVVvECYFIEqExXbLE5ScpGzVJUFC4iURNExCvqZyVSXlF7XRvme7WTOGL1zf7mwGVlu6nzQT3fWLdxNBgIWJpxGcTBGb9xrUKvaVyaqom5NHw3gUh7e1IcHOt9jnIzRc8tKN6KQRhHnKd-_zWhfovu_19QB2mvWbfEKMG8jXxtJ_AXXBqas |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semiautomated+Method+for+Quantification+of+F+18+Florbetapir+PET+Images&rft.jtitle=Journal+of+Nuclear+Medicine&rft.au=Joshi%2C+Abhinay+D.&rft.au=Pontecorvo%2C+Michael+J.&rft.au=Lu%2C+Ming&rft.au=Skovronsky%2C+Daniel+M.&rft.date=2015-11-01&rft.issn=0161-5505&rft.eissn=2159-662X&rft.volume=56&rft.issue=11&rft.spage=1736&rft.epage=1741&rft_id=info:doi/10.2967%2Fjnumed.114.153494&rft.externalDBID=n%2Fa&rft.externalDocID=10_2967_jnumed_114_153494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon |