Efficient Support Vector Regression for Wideband DOA Estimation Using a Genetic Algorithm
High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estim...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2915 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.05.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods. |
---|---|
AbstractList | High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods. High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods.High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods. |
Audience | Academic |
Author | Zhao, Yonghong Liu, Jisong Xin, Jing Dong, Shuxin Wang, Junlong Zheng, Gang |
AuthorAffiliation | 1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China; zhaoyh2018@xaut.edu.cn (Y.Z.); 2230321285@stu.xaut.edu.cn (J.W.); 2230320112@stu.xaut.edu.cn (J.L.); 2220321243@stu.xaut.edu.cn (S.D.); xinj@xaut.edu.cn (J.X.) 2 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China |
AuthorAffiliation_xml | – name: 1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China; zhaoyh2018@xaut.edu.cn (Y.Z.); 2230321285@stu.xaut.edu.cn (J.W.); 2230320112@stu.xaut.edu.cn (J.L.); 2220321243@stu.xaut.edu.cn (S.D.); xinj@xaut.edu.cn (J.X.) – name: 2 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China |
Author_xml | – sequence: 1 givenname: Yonghong orcidid: 0009-0004-4229-5780 surname: Zhao fullname: Zhao, Yonghong – sequence: 2 givenname: Gang surname: Zheng fullname: Zheng, Gang – sequence: 3 givenname: Junlong surname: Wang fullname: Wang, Junlong – sequence: 4 givenname: Jisong surname: Liu fullname: Liu, Jisong – sequence: 5 givenname: Shuxin surname: Dong fullname: Dong, Shuxin – sequence: 6 givenname: Jing orcidid: 0000-0002-1547-0991 surname: Xin fullname: Xin, Jing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40363351$$D View this record in MEDLINE/PubMed |
BookMark | eNpdklFvFCEQx4mpse3pg1_AbOKLfbgKDOyyT-ZSz9qkSRO1Gp8Ixw5bLntwhV0Tv31pr15awwMw8-c3M8wck4MQAxLyltFTgJZ-zFzSlrdMviBHTHAxV5zTgyfnQ3Kc85pSDgDqFTkUFGoAyY7I76Vz3noMY_V92m5jGqufaMeYqm_YJ8zZx1C5cv3lO1yZ0FWfrxbVMo9-Y8Z733X2oa9MdY4BR2-rxdDH5MebzWvy0pkh45vHfUauvyx_nH2dX16dX5wtLudWNGycNytaS3BoBEN0jjad6qyTxkpALkSHTHYojVFMCsdqS7tSp4AGlRHGWQMzcrHjdtGs9TaVxNJfHY3XD4aYem1SyWxAzTi3rG0dZ7USzroSk7cgG6WMZDVdFdanHWs7rTbY2fItyQzPoM89wd_oPv4pZNoIDk0hfHgkpHg7YR71xmeLw2ACxilr4BRaDgpkkb7_T7qOUwrlrx5UXDSy9GlGTneq3pQKfHCxBLZldbjxtsyB88W-UNAqWQsqyoN3T2vYJ_-v50VwshPYFHNO6PYSRvX9POn9PMEdB4-68A |
Cites_doi | 10.1007/978-981-13-9409-6_137 10.1109/3PGCIC.2015.91 10.3390/s25082359 10.1109/ICASSP40776.2020.9053658 10.1109/ICSIDP47821.2019.9173170 10.1109/SMARTNETS.2018.8707432 10.1109/79.526899 10.1109/TSP.2008.917364 10.1049/icp.2024.1498 10.1109/MSP.2006.1593335 10.1109/ICCT46805.2019.8947053 10.1109/TCSET64720.2024.10755857 10.1109/LSENS.2023.3241080 10.1587/transcom.2018EBP3357 10.23919/EuRAD61604.2024.10734932 10.1109/ICMCCE51767.2020.00325 10.1109/LSP.2023.3349078 10.1109/CSO.2010.201 10.1109/TASSP.1985.1164667 10.1109/ICAICA54878.2022.9844565 10.1109/TASSP.1984.1164400 10.1109/EITCE47263.2019.9094997 10.1109/ACCESS.2018.2886250 10.1109/TASSP.1987.1165085 10.1109/TVT.2007.909308 10.1109/LSP.2013.2281514 10.1109/78.365295 10.1109/GrC.2010.121 10.1109/LSP.2019.2901641 10.1109/LSP.2024.3436675 10.1016/j.sigpro.2010.05.031 10.1109/ACCESS.2023.3332991 10.23919/JSEE.2022.000070 10.1049/cp:20020337 10.1109/WSA.2011.5741912 10.1109/ICCIT51783.2020.9392663 10.1109/TSP.2021.3119768 10.1109/OCEANS47191.2022.9977187 10.23919/EuCAP51087.2021.9411354 10.1109/IWS61525.2024.10713652 10.1109/29.1655 10.1109/TWC.2025.3551144 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25092915 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_122c199f21684fcfa412935788a5160b PMC12074237 A839856404 40363351 10_3390_s25092915 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. M48 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-7b0653fea41eeff07d8dcf5ac53e244de15de5aa8154f16c0d915437e8a4afca3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:22:02 EDT 2025 Thu Aug 21 18:30:34 EDT 2025 Fri Jul 11 17:56:52 EDT 2025 Fri Jul 25 10:19:08 EDT 2025 Tue Jun 10 20:56:06 EDT 2025 Sat May 17 01:30:25 EDT 2025 Tue Jul 01 05:04:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | DOA estimation genetic algorithm support vector regression machine learning broadband signals |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-7b0653fea41eeff07d8dcf5ac53e244de15de5aa8154f16c0d915437e8a4afca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1547-0991 0009-0004-4229-5780 |
OpenAccessLink | https://www.proquest.com/docview/3203247540?pq-origsite=%requestingapplication% |
PMID | 40363351 |
PQID | 3203247540 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_122c199f21684fcfa412935788a5160b pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074237 proquest_miscellaneous_3203923835 proquest_journals_3203247540 gale_infotracacademiconefile_A839856404 pubmed_primary_40363351 crossref_primary_10_3390_s25092915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-05 |
PublicationDateYYYYMMDD | 2025-05-05 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_36) 2021; 70 ref_13 Zhu (ref_39) 2020; E103B Wu (ref_42) 2019; 26 ref_11 ref_10 Wu (ref_14) 2022; 33 Hung (ref_34) 1988; 36 ref_19 ref_17 Zhang (ref_28) 2024; 31 ref_16 ref_38 ref_15 ref_37 Wang (ref_33) 1985; 33 Zhang (ref_30) 2010; 90 Han (ref_43) 2013; 20 Krim (ref_21) 1996; 13 Xie (ref_4) 2008; 57 Fan (ref_23) 2023; 7 ref_25 Wang (ref_27) 2024; 21 ref_24 Wax (ref_31) 1984; 32 ref_45 Xiao (ref_20) 2024; 31 ref_41 ref_40 ref_1 Xing (ref_18) 2023; 11 ref_3 ref_2 Bai (ref_32) 2019; 7 Haykin (ref_22) 2006; 23 ref_29 ref_26 ref_9 ref_8 Wang (ref_35) 1987; 35 ref_5 Valaee (ref_44) 1995; 43 ref_7 ref_6 Chen (ref_12) 2008; 56 |
References_xml | – ident: ref_7 – ident: ref_26 doi: 10.1007/978-981-13-9409-6_137 – ident: ref_25 doi: 10.1109/3PGCIC.2015.91 – ident: ref_29 doi: 10.3390/s25082359 – ident: ref_38 doi: 10.1109/ICASSP40776.2020.9053658 – ident: ref_17 doi: 10.1109/ICSIDP47821.2019.9173170 – ident: ref_16 doi: 10.1109/SMARTNETS.2018.8707432 – volume: 13 start-page: 67 year: 1996 ident: ref_21 article-title: Two Decades of Array Signal Processing Research: The Parametric Approach publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.526899 – volume: 56 start-page: 3038 year: 2008 ident: ref_12 article-title: Stochastic Maximum-Likelihood DOA Estimation in the Presence of Unknown Nonuniform Noise publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.917364 – ident: ref_19 doi: 10.1049/icp.2024.1498 – volume: 23 start-page: 30 year: 2006 ident: ref_22 article-title: Cognitive Radar: A Way of the Future publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2006.1593335 – ident: ref_40 doi: 10.1109/ICCT46805.2019.8947053 – ident: ref_2 doi: 10.1109/TCSET64720.2024.10755857 – volume: 7 start-page: 1 year: 2023 ident: ref_23 article-title: YOLO-DoA: A New Data-Driven Method of DoA Estimation Based on YOLO Neural Network Framework publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2023.3241080 – volume: E103B start-page: 148 year: 2020 ident: ref_39 article-title: Broadband Direction of Arrival Estimation Based on Convolutional Neural Network publication-title: IEICE Trans. Commun. doi: 10.1587/transcom.2018EBP3357 – ident: ref_13 doi: 10.23919/EuRAD61604.2024.10734932 – ident: ref_9 doi: 10.1109/ICMCCE51767.2020.00325 – volume: 31 start-page: 701 year: 2024 ident: ref_28 article-title: DOA Estimation Method Based on Unsupervised Learning Network With Threshold Capon Spectrum Weighted Penalty publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2023.3349078 – ident: ref_1 doi: 10.1109/CSO.2010.201 – volume: 33 start-page: 823 year: 1985 ident: ref_33 article-title: Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wide-Band Sources publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1985.1164667 – ident: ref_24 doi: 10.1109/ICAICA54878.2022.9844565 – volume: 32 start-page: 817 year: 1984 ident: ref_31 article-title: Spatio-temporal spectral analysis by eigenstructure methods publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1984.1164400 – ident: ref_5 doi: 10.1109/EITCE47263.2019.9094997 – volume: 21 start-page: 1 year: 2024 ident: ref_27 article-title: A Single Snapshot DOA Estimation Method Based on ADMM-Net publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 7 start-page: 1224 year: 2019 ident: ref_32 article-title: Weighted Incoherent Signal Subspace Method for DOA Estimation on Wideband Colored Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886250 – volume: 35 start-page: 1583 year: 1987 ident: ref_35 article-title: On the performance of signal-subspace processing–Part II: Coherent wide-band systems publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1987.1165085 – volume: 57 start-page: 1985 year: 2008 ident: ref_4 article-title: Fast Blind Adaptive Beamforming Algorithm With Interference Suppression publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2007.909308 – volume: 20 start-page: 1110 year: 2013 ident: ref_43 article-title: Wideband Gaussian source processing using a linear nested array publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2013.2281514 – volume: 43 start-page: 160 year: 1995 ident: ref_44 article-title: Wideband Array Processing Using a Two-Sided Correlation Transformation publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.365295 – ident: ref_45 doi: 10.1109/GrC.2010.121 – volume: 26 start-page: 642 year: 2019 ident: ref_42 article-title: Coherent SVR Learning for Wideband Direction-of-Arrival Estimation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2901641 – volume: 31 start-page: 2015 year: 2024 ident: ref_20 article-title: Robust DOA Estimation Against Outliers via Joint Sparse Representation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2024.3436675 – ident: ref_15 – volume: 90 start-page: 3317 year: 2010 ident: ref_30 article-title: An Extended TOPS Algorithm Based on Incoherent Signal Subspace Method publication-title: Signal Process. doi: 10.1016/j.sigpro.2010.05.031 – volume: 11 start-page: 128736 year: 2023 ident: ref_18 article-title: Direction-of-Arrival Estimation Based on Sparse Representation of Fourth-Order Cumulants publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3332991 – volume: 33 start-page: 845 year: 2022 ident: ref_14 article-title: DOA Estimation of Incoherently Distributed Sources Using Importance Sampling Maximum Likelihood publication-title: J. Syst. Eng. Electron. doi: 10.23919/JSEE.2022.000070 – ident: ref_11 doi: 10.1049/cp:20020337 – ident: ref_6 doi: 10.1109/WSA.2011.5741912 – ident: ref_10 doi: 10.1109/ICCIT51783.2020.9392663 – volume: 70 start-page: 72 year: 2021 ident: ref_36 article-title: Direction-of-arrival estimation for large antenna arrays with hybrid analog and digital architectures publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3119768 – ident: ref_3 doi: 10.1109/OCEANS47191.2022.9977187 – ident: ref_41 doi: 10.23919/EuCAP51087.2021.9411354 – ident: ref_8 doi: 10.1109/IWS61525.2024.10713652 – volume: 36 start-page: 1272 year: 1988 ident: ref_34 article-title: Focussing Matrices for Coherent Signal-Subspace Processing publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.1655 – ident: ref_37 doi: 10.1109/TWC.2025.3551144 |
SSID | ssj0023338 |
Score | 2.446833 |
Snippet | High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2915 |
SubjectTerms | Accuracy Algorithms broadband signals DOA estimation Efficiency genetic algorithm Genetic algorithms Machine learning Methods Musical performances Neural networks Radar Signal processing Spectrum allocation support vector regression |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BggxC4rRqHH_Ee1zQVhUSHBCFcrLsxG5XKlnUbv9_3yTZVVYcuHBNHMWZ8eS9cSZviN4rma100c5CaEskKIi5yC0Bjc1ynrEIYt8O6MtXe3qmP5-b80mrL64JG-SBB8Mdy6pq5HyeK2mdzk0OmhEK68wFI20Z-e0LzNsmU2OqpZB5DTpCCkn98Q2AHjyAe99O0KcX6f_7VTzBov06yQnwnDyihyNjFIthpod0L3WP6cFER_AJ_Vr2QhC4XnCXTjBq8aPfjRff0sVQ6NoJsFPxc9WmGLpW4CnEEtE9_Lgo-sIBEQSLUOM2YnF1sb5ebS5_P6Wzk-X3T6ezsWfCrAHMbGZ1ZLHZnGCmlHIu69a1TTahMSoBydskTZtMCA7UKUvblC2solWdXNAhN0E9o4Nu3aUXJJKrZLCuihEQZjAAzDDpIKO2VUJiW9C7rS39n0EawyOlYIP7ncEL-shW3g1gNev-AHzsRx_7f_m4oA_sI88xB0c0Yfx1APNk9Sq_AMtzxupSF3S0daMfg_HGK-4Sr2tw04Le7k4jjPjbSOjS-nYYA64LPlrQ88Hruzlr_titjCzI7a2HvYfaP9OtLnupblnx3oOqX_4PM7yi-xV3H-ZyS3NEB5vr2_QalGgT3_Sr_w6IwQfu priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEFInKLG8SPeE1rQVhUSHBCF5WT5ua1UsqW7_f_MONntrpC4xo7izHg839jjbwDeCZ41N17XzsUGAxS0OU8lAZXOfJJxEvhSDujLV31yKj_P1XzccFuNaZWbNbEs1HEZaI_8SFCpb9khwPhw-aemqlF0ujqW0LgNd4i6jFK6uvlNwCUw_hrYhASG9kcrdPeIBqgC7o4PKlT9_y7IOx5pP1tyx_0cP4D7I25k00HRD-FW6h_BvR02wcfwa1boIPB9RrU6EVezH2VPnn1LiyHdtWeIUdnP85i86yPDwJDN0MaH64uspA8wx4iKGj_DphcLlMD67PcTOD2eff90Uo-VE-qAzmZdd54oZ3NykqeUc9NFE0NWLiiR0J_HxFVMyjmDACpzHZqIUpGiS8ZJl4MTT-GgX_bpObBkWu60ab1HR6awA-LDJB33UrcJw9sK3m5kaS8HggyLgQUJ3G4FXsFHkvK2A3FalwfLq4UdTcTytg18Mskt10bmkHHwiEVwRcFvct34Ct6TjixZHioiuPECAY6TOKzsFLGeUVo2soLDjRrtaJIrezOBKnizbUZjohMS16fl9dAHES-i0gqeDVrfjlnSkbdQvAKzNx_2fmq_pT8_K4TdvKUdCNG9-P-4XsLdlqoLUzqlOoSD9dV1eoWQZ-1fl3n9F4dkAL0 priority: 102 providerName: ProQuest |
Title | Efficient Support Vector Regression for Wideband DOA Estimation Using a Genetic Algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40363351 https://www.proquest.com/docview/3203247540 https://www.proquest.com/docview/3203923835 https://pubmed.ncbi.nlm.nih.gov/PMC12074237 https://doaj.org/article/122c199f21684fcfa412935788a5160b |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a2wUOiPEzY1QGIXEKxIntuAeEuqllQtqEJgrlFNmJ3VXa0q3rJPjvec9Jo0Zw4JJD4sjOs1--7_nH9wDeZtwrrq2KjakSDFDQ5yylBJTK86HHQWBDOqDTM3UyFV9mcrYDmxybrQFv_xnaUT6p6ery_a-b35_Q4T9SxIkh-4dbhHFEeTpqvoeAlJN_nopuMSHNspDQms50xYiHSSMw1H-1B0tBvf_vf_QWSPU3UG4h0uQRPGypJBs1fb8PO65-DA-2BAafwM9xUIjA9xml78SvZN_DND07d_NmB2zNkLayH4vKWVNXDGNFNka3b040srCjgBlG6tRYDRtdzperxfri6ilMJ-Nvxydxm0whLhF_1nFuSYXWOyO4c94neaWr0ktTyswhxFeOy8pJYzRyKs9VmVRoFZHlThthfGmyZ7BbL2v3ApjTKTdKp9YitkksgJTRCcOtUKnDiDeCNxtbFteNZkaBsQYZvOgMHsERWbkrQDLX4cZyNS9aryl4mpZ8OPQpV1r40mPjkZ7gTwbr5CqxEbyjPipoeGBHlKY9U4DtJFmrYoT0T0slEhHB4aYbi80gKzJKHy9yJK0RvO4eo3_Roomp3fKuKYMkGIlqBM-bXu_aLGgVPJM8At0bD72P6j-pFxdBw5unNCmR5Qf_UfFLuJ9S1mHaZikPYXe9unOvkAqt7QDu5bMcr3ryeQB7R-Ozr-eDMK0wCC7wBzQcCnU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEG8MBRYE4mTV-_DaPiAUIFVKHwfUQjgtu_ZuWqk4pUmF-FP8Rmb8SBMhcestijfxenYe33hn5wN4JXnQPHc6trZKMEFBm3NECZjqwIuASuAaOqD9Az06Up_G6XgN_vRnYaissveJjaOupiW9I9-SRPWtMgQY785-xsQaRburPYVGqxa7_vcvTNlmb3c-4vq-FmJ7ePhhFHesAnGJjngeZ47asQZvFfc-hCSr8qoMqS1T6THWVZ6nlU-tzRFcBK7LpCrwk8x8bpUNpZX4v9fgOgbehCwqG18meBLzvbZ7kZRFsjVDeIHogxh3l2JeQw3wbwBYioCr1ZlL4W77NtzqcCobtIp1B9Z8fRc2lroX3oNvw6b9BP6eETco4nj2pdkDYJ_9pC2vrRliYvb1pPLO1hXDRJQN0ae0xyVZU67ALKPW13gbNjidoMTnxz_uw9GVyPQBrNfT2j8C5nPBrc6Fcxg4UxyAeNQry53SwmM6HcHLXpbmrG3IYTCRIYGbhcAjeE9SXgygHtrNF9PzielM0nAhSl4UQXCdq1AGnDxiH_RgeE-uExfBG1ojQ5aOC1Ha7sACzpN6ZpkBYss81SpREWz2y2g6FzAzlwobwYvFZTRe2pGxtZ9etGMQYSMKjuBhu-qLOSvaYpcpjyBf0YeVh1q9Up8cNw3CuaA3HjJ7_P95PYcbo8P9PbO3c7D7BG4KYjamUs50E9bn5xf-KcKtuXvW6DiD71dtVH8B7zo_jA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIxMmK9-G1fUAo0EQthQohCulp2bV300rglCYV4q_x65jxI02ExK23KN7E69l5fOOdnQ_gueRB89zp2NoqwQQFbc4RJWCqAy8CKoFr6IA-7OudA_Vukk424E9_FobKKnuf2DjqalbSO_KBJKpvlSHAGISuLOLj9vj1yc-YGKRop7Wn02hVZM___oXp2_zV7jau9QshxqPPb3fijmEgLtEpL-LMUWvW4K3i3oeQZFVelSG1ZSo9xr3K87TyqbU5Ao3AdZlUBX6Smc-tsqG0Ev_3ElzOZMrJxrLJebInMfdrOxlJWSSDOUINRCLEvrsS_xqagH-DwUo0XK_UXAl94xtwvcOsbNgq2U3Y8PUtuLbSyfA2HI6aVhT4e0Y8oYjp2ZdmP4B98tO21LZmiI_Z1-PKO1tXDJNSNkL_0h6dZE3pArOM2mDjbdjw-xQlvjj6cQcOLkSmd2GzntX-PjCfC251LpzDIJriAMSmXlnulBYeU-sInvWyNCdtcw6DSQ0J3CwFHsEbkvJyAPXTbr6YnU5NZ56GC1HyogiC61yFMuDkEQehN8N7cp24CF7SGhmyelyI0naHF3Ce1D_LDBFn5qlWiYpgq19G07mDuTlX3gieLi-jIdPujK397Kwdg2gbEXEE99pVX85Z0XY7KlkE-Zo-rD3U-pX6-KhpFs4Fvf2Q2YP_z-sJXEFzMu939_cewlVBJMdU1Zluwebi9Mw_QuS1cI8bFWfw7aJt6i-SpUPC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Support+Vector+Regression+for+Wideband+DOA+Estimation+Using+a+Genetic+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Yonghong&rft.au=Zheng%2C+Gang&rft.au=Wang%2C+Junlong&rft.au=Liu%2C+Jisong&rft.date=2025-05-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092915&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |