Efficient Support Vector Regression for Wideband DOA Estimation Using a Genetic Algorithm

High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estim...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 9; p. 2915
Main Authors Zhao, Yonghong, Zheng, Gang, Wang, Junlong, Liu, Jisong, Dong, Shuxin, Xin, Jing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.05.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods.
AbstractList High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods.
High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods.High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose an efficient support vector regression (SVR) architecture via a genetic algorithm (GA) for wideband DOA estimation, which exhibits high estimation performance and generalization performance. By adopting the two-sided correlation transformation (TCT) algorithm, the network is trained only from reference frequency data to increase the training efficiency. In order to reduce the redundant information in the array covariance matrix and lower the dimensionality of the input features, the array covariance matrix at a single frequency point is preprocessed according to its conjugate symmetry and elemental characteristics, and the dimensionality-reduced input features are obtained. Specifically, the dimensionality of the input features does not increase with the number of sub-bands when dealing with broadband signals or ultra-broadband signals, which can significantly reduce the training time of the model and the storage capacity of the system. The increased performance of the proposed algorithm is highly desirable in resource-constrained scenarios, and the experimental results demonstrate the efficiency and superiority of the proposed network compared with existing methods.
Audience Academic
Author Zhao, Yonghong
Liu, Jisong
Xin, Jing
Dong, Shuxin
Wang, Junlong
Zheng, Gang
AuthorAffiliation 1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China; zhaoyh2018@xaut.edu.cn (Y.Z.); 2230321285@stu.xaut.edu.cn (J.W.); 2230320112@stu.xaut.edu.cn (J.L.); 2220321243@stu.xaut.edu.cn (S.D.); xinj@xaut.edu.cn (J.X.)
2 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China
AuthorAffiliation_xml – name: 1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China; zhaoyh2018@xaut.edu.cn (Y.Z.); 2230321285@stu.xaut.edu.cn (J.W.); 2230320112@stu.xaut.edu.cn (J.L.); 2220321243@stu.xaut.edu.cn (S.D.); xinj@xaut.edu.cn (J.X.)
– name: 2 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China
Author_xml – sequence: 1
  givenname: Yonghong
  orcidid: 0009-0004-4229-5780
  surname: Zhao
  fullname: Zhao, Yonghong
– sequence: 2
  givenname: Gang
  surname: Zheng
  fullname: Zheng, Gang
– sequence: 3
  givenname: Junlong
  surname: Wang
  fullname: Wang, Junlong
– sequence: 4
  givenname: Jisong
  surname: Liu
  fullname: Liu, Jisong
– sequence: 5
  givenname: Shuxin
  surname: Dong
  fullname: Dong, Shuxin
– sequence: 6
  givenname: Jing
  orcidid: 0000-0002-1547-0991
  surname: Xin
  fullname: Xin, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40363351$$D View this record in MEDLINE/PubMed
BookMark eNpdklFvFCEQx4mpse3pg1_AbOKLfbgKDOyyT-ZSz9qkSRO1Gp8Ixw5bLntwhV0Tv31pr15awwMw8-c3M8wck4MQAxLyltFTgJZ-zFzSlrdMviBHTHAxV5zTgyfnQ3Kc85pSDgDqFTkUFGoAyY7I76Vz3noMY_V92m5jGqufaMeYqm_YJ8zZx1C5cv3lO1yZ0FWfrxbVMo9-Y8Z733X2oa9MdY4BR2-rxdDH5MebzWvy0pkh45vHfUauvyx_nH2dX16dX5wtLudWNGycNytaS3BoBEN0jjad6qyTxkpALkSHTHYojVFMCsdqS7tSp4AGlRHGWQMzcrHjdtGs9TaVxNJfHY3XD4aYem1SyWxAzTi3rG0dZ7USzroSk7cgG6WMZDVdFdanHWs7rTbY2fItyQzPoM89wd_oPv4pZNoIDk0hfHgkpHg7YR71xmeLw2ACxilr4BRaDgpkkb7_T7qOUwrlrx5UXDSy9GlGTneq3pQKfHCxBLZldbjxtsyB88W-UNAqWQsqyoN3T2vYJ_-v50VwshPYFHNO6PYSRvX9POn9PMEdB4-68A
Cites_doi 10.1007/978-981-13-9409-6_137
10.1109/3PGCIC.2015.91
10.3390/s25082359
10.1109/ICASSP40776.2020.9053658
10.1109/ICSIDP47821.2019.9173170
10.1109/SMARTNETS.2018.8707432
10.1109/79.526899
10.1109/TSP.2008.917364
10.1049/icp.2024.1498
10.1109/MSP.2006.1593335
10.1109/ICCT46805.2019.8947053
10.1109/TCSET64720.2024.10755857
10.1109/LSENS.2023.3241080
10.1587/transcom.2018EBP3357
10.23919/EuRAD61604.2024.10734932
10.1109/ICMCCE51767.2020.00325
10.1109/LSP.2023.3349078
10.1109/CSO.2010.201
10.1109/TASSP.1985.1164667
10.1109/ICAICA54878.2022.9844565
10.1109/TASSP.1984.1164400
10.1109/EITCE47263.2019.9094997
10.1109/ACCESS.2018.2886250
10.1109/TASSP.1987.1165085
10.1109/TVT.2007.909308
10.1109/LSP.2013.2281514
10.1109/78.365295
10.1109/GrC.2010.121
10.1109/LSP.2019.2901641
10.1109/LSP.2024.3436675
10.1016/j.sigpro.2010.05.031
10.1109/ACCESS.2023.3332991
10.23919/JSEE.2022.000070
10.1049/cp:20020337
10.1109/WSA.2011.5741912
10.1109/ICCIT51783.2020.9392663
10.1109/TSP.2021.3119768
10.1109/OCEANS47191.2022.9977187
10.23919/EuCAP51087.2021.9411354
10.1109/IWS61525.2024.10713652
10.1109/29.1655
10.1109/TWC.2025.3551144
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25092915
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_122c199f21684fcfa412935788a5160b
PMC12074237
A839856404
40363351
10_3390_s25092915
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-7b0653fea41eeff07d8dcf5ac53e244de15de5aa8154f16c0d915437e8a4afca3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:22:02 EDT 2025
Thu Aug 21 18:30:34 EDT 2025
Fri Jul 11 17:56:52 EDT 2025
Fri Jul 25 10:19:08 EDT 2025
Tue Jun 10 20:56:06 EDT 2025
Sat May 17 01:30:25 EDT 2025
Tue Jul 01 05:04:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords DOA estimation
genetic algorithm
support vector regression
machine learning
broadband signals
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-7b0653fea41eeff07d8dcf5ac53e244de15de5aa8154f16c0d915437e8a4afca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1547-0991
0009-0004-4229-5780
OpenAccessLink https://www.proquest.com/docview/3203247540?pq-origsite=%requestingapplication%
PMID 40363351
PQID 3203247540
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_122c199f21684fcfa412935788a5160b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074237
proquest_miscellaneous_3203923835
proquest_journals_3203247540
gale_infotracacademiconefile_A839856404
pubmed_primary_40363351
crossref_primary_10_3390_s25092915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-05
PublicationDateYYYYMMDD 2025-05-05
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_36) 2021; 70
ref_13
Zhu (ref_39) 2020; E103B
Wu (ref_42) 2019; 26
ref_11
ref_10
Wu (ref_14) 2022; 33
Hung (ref_34) 1988; 36
ref_19
ref_17
Zhang (ref_28) 2024; 31
ref_16
ref_38
ref_15
ref_37
Wang (ref_33) 1985; 33
Zhang (ref_30) 2010; 90
Han (ref_43) 2013; 20
Krim (ref_21) 1996; 13
Xie (ref_4) 2008; 57
Fan (ref_23) 2023; 7
ref_25
Wang (ref_27) 2024; 21
ref_24
Wax (ref_31) 1984; 32
ref_45
Xiao (ref_20) 2024; 31
ref_41
ref_40
ref_1
Xing (ref_18) 2023; 11
ref_3
ref_2
Bai (ref_32) 2019; 7
Haykin (ref_22) 2006; 23
ref_29
ref_26
ref_9
ref_8
Wang (ref_35) 1987; 35
ref_5
Valaee (ref_44) 1995; 43
ref_7
ref_6
Chen (ref_12) 2008; 56
References_xml – ident: ref_7
– ident: ref_26
  doi: 10.1007/978-981-13-9409-6_137
– ident: ref_25
  doi: 10.1109/3PGCIC.2015.91
– ident: ref_29
  doi: 10.3390/s25082359
– ident: ref_38
  doi: 10.1109/ICASSP40776.2020.9053658
– ident: ref_17
  doi: 10.1109/ICSIDP47821.2019.9173170
– ident: ref_16
  doi: 10.1109/SMARTNETS.2018.8707432
– volume: 13
  start-page: 67
  year: 1996
  ident: ref_21
  article-title: Two Decades of Array Signal Processing Research: The Parametric Approach
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.526899
– volume: 56
  start-page: 3038
  year: 2008
  ident: ref_12
  article-title: Stochastic Maximum-Likelihood DOA Estimation in the Presence of Unknown Nonuniform Noise
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.917364
– ident: ref_19
  doi: 10.1049/icp.2024.1498
– volume: 23
  start-page: 30
  year: 2006
  ident: ref_22
  article-title: Cognitive Radar: A Way of the Future
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2006.1593335
– ident: ref_40
  doi: 10.1109/ICCT46805.2019.8947053
– ident: ref_2
  doi: 10.1109/TCSET64720.2024.10755857
– volume: 7
  start-page: 1
  year: 2023
  ident: ref_23
  article-title: YOLO-DoA: A New Data-Driven Method of DoA Estimation Based on YOLO Neural Network Framework
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2023.3241080
– volume: E103B
  start-page: 148
  year: 2020
  ident: ref_39
  article-title: Broadband Direction of Arrival Estimation Based on Convolutional Neural Network
  publication-title: IEICE Trans. Commun.
  doi: 10.1587/transcom.2018EBP3357
– ident: ref_13
  doi: 10.23919/EuRAD61604.2024.10734932
– ident: ref_9
  doi: 10.1109/ICMCCE51767.2020.00325
– volume: 31
  start-page: 701
  year: 2024
  ident: ref_28
  article-title: DOA Estimation Method Based on Unsupervised Learning Network With Threshold Capon Spectrum Weighted Penalty
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2023.3349078
– ident: ref_1
  doi: 10.1109/CSO.2010.201
– volume: 33
  start-page: 823
  year: 1985
  ident: ref_33
  article-title: Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wide-Band Sources
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1985.1164667
– ident: ref_24
  doi: 10.1109/ICAICA54878.2022.9844565
– volume: 32
  start-page: 817
  year: 1984
  ident: ref_31
  article-title: Spatio-temporal spectral analysis by eigenstructure methods
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1984.1164400
– ident: ref_5
  doi: 10.1109/EITCE47263.2019.9094997
– volume: 21
  start-page: 1
  year: 2024
  ident: ref_27
  article-title: A Single Snapshot DOA Estimation Method Based on ADMM-Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 7
  start-page: 1224
  year: 2019
  ident: ref_32
  article-title: Weighted Incoherent Signal Subspace Method for DOA Estimation on Wideband Colored Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886250
– volume: 35
  start-page: 1583
  year: 1987
  ident: ref_35
  article-title: On the performance of signal-subspace processing–Part II: Coherent wide-band systems
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1987.1165085
– volume: 57
  start-page: 1985
  year: 2008
  ident: ref_4
  article-title: Fast Blind Adaptive Beamforming Algorithm With Interference Suppression
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2007.909308
– volume: 20
  start-page: 1110
  year: 2013
  ident: ref_43
  article-title: Wideband Gaussian source processing using a linear nested array
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2281514
– volume: 43
  start-page: 160
  year: 1995
  ident: ref_44
  article-title: Wideband Array Processing Using a Two-Sided Correlation Transformation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.365295
– ident: ref_45
  doi: 10.1109/GrC.2010.121
– volume: 26
  start-page: 642
  year: 2019
  ident: ref_42
  article-title: Coherent SVR Learning for Wideband Direction-of-Arrival Estimation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2901641
– volume: 31
  start-page: 2015
  year: 2024
  ident: ref_20
  article-title: Robust DOA Estimation Against Outliers via Joint Sparse Representation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2024.3436675
– ident: ref_15
– volume: 90
  start-page: 3317
  year: 2010
  ident: ref_30
  article-title: An Extended TOPS Algorithm Based on Incoherent Signal Subspace Method
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.05.031
– volume: 11
  start-page: 128736
  year: 2023
  ident: ref_18
  article-title: Direction-of-Arrival Estimation Based on Sparse Representation of Fourth-Order Cumulants
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3332991
– volume: 33
  start-page: 845
  year: 2022
  ident: ref_14
  article-title: DOA Estimation of Incoherently Distributed Sources Using Importance Sampling Maximum Likelihood
  publication-title: J. Syst. Eng. Electron.
  doi: 10.23919/JSEE.2022.000070
– ident: ref_11
  doi: 10.1049/cp:20020337
– ident: ref_6
  doi: 10.1109/WSA.2011.5741912
– ident: ref_10
  doi: 10.1109/ICCIT51783.2020.9392663
– volume: 70
  start-page: 72
  year: 2021
  ident: ref_36
  article-title: Direction-of-arrival estimation for large antenna arrays with hybrid analog and digital architectures
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3119768
– ident: ref_3
  doi: 10.1109/OCEANS47191.2022.9977187
– ident: ref_41
  doi: 10.23919/EuCAP51087.2021.9411354
– ident: ref_8
  doi: 10.1109/IWS61525.2024.10713652
– volume: 36
  start-page: 1272
  year: 1988
  ident: ref_34
  article-title: Focussing Matrices for Coherent Signal-Subspace Processing
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.1655
– ident: ref_37
  doi: 10.1109/TWC.2025.3551144
SSID ssj0023338
Score 2.446833
Snippet High-precision direction of arrival (DOA) of wideband signals is a very important technology in the field of radar and communication. In this work, we propose...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2915
SubjectTerms Accuracy
Algorithms
broadband signals
DOA estimation
Efficiency
genetic algorithm
Genetic algorithms
Machine learning
Methods
Musical performances
Neural networks
Radar
Signal processing
Spectrum allocation
support vector regression
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BggxC4rRqHH_Ee1zQVhUSHBCFcrLsxG5XKlnUbv9_3yTZVVYcuHBNHMWZ8eS9cSZviN4rma100c5CaEskKIi5yC0Bjc1ynrEIYt8O6MtXe3qmP5-b80mrL64JG-SBB8Mdy6pq5HyeK2mdzk0OmhEK68wFI20Z-e0LzNsmU2OqpZB5DTpCCkn98Q2AHjyAe99O0KcX6f_7VTzBov06yQnwnDyihyNjFIthpod0L3WP6cFER_AJ_Vr2QhC4XnCXTjBq8aPfjRff0sVQ6NoJsFPxc9WmGLpW4CnEEtE9_Lgo-sIBEQSLUOM2YnF1sb5ebS5_P6Wzk-X3T6ezsWfCrAHMbGZ1ZLHZnGCmlHIu69a1TTahMSoBydskTZtMCA7UKUvblC2solWdXNAhN0E9o4Nu3aUXJJKrZLCuihEQZjAAzDDpIKO2VUJiW9C7rS39n0EawyOlYIP7ncEL-shW3g1gNev-AHzsRx_7f_m4oA_sI88xB0c0Yfx1APNk9Sq_AMtzxupSF3S0daMfg_HGK-4Sr2tw04Le7k4jjPjbSOjS-nYYA64LPlrQ88Hruzlr_titjCzI7a2HvYfaP9OtLnupblnx3oOqX_4PM7yi-xV3H-ZyS3NEB5vr2_QalGgT3_Sr_w6IwQfu
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEFInKLG8SPeE1rQVhUSHBCF5WT5ua1UsqW7_f_MONntrpC4xo7izHg839jjbwDeCZ41N17XzsUGAxS0OU8lAZXOfJJxEvhSDujLV31yKj_P1XzccFuNaZWbNbEs1HEZaI_8SFCpb9khwPhw-aemqlF0ujqW0LgNd4i6jFK6uvlNwCUw_hrYhASG9kcrdPeIBqgC7o4PKlT9_y7IOx5pP1tyx_0cP4D7I25k00HRD-FW6h_BvR02wcfwa1boIPB9RrU6EVezH2VPnn1LiyHdtWeIUdnP85i86yPDwJDN0MaH64uspA8wx4iKGj_DphcLlMD67PcTOD2eff90Uo-VE-qAzmZdd54oZ3NykqeUc9NFE0NWLiiR0J_HxFVMyjmDACpzHZqIUpGiS8ZJl4MTT-GgX_bpObBkWu60ab1HR6awA-LDJB33UrcJw9sK3m5kaS8HggyLgQUJ3G4FXsFHkvK2A3FalwfLq4UdTcTytg18Mskt10bmkHHwiEVwRcFvct34Ct6TjixZHioiuPECAY6TOKzsFLGeUVo2soLDjRrtaJIrezOBKnizbUZjohMS16fl9dAHES-i0gqeDVrfjlnSkbdQvAKzNx_2fmq_pT8_K4TdvKUdCNG9-P-4XsLdlqoLUzqlOoSD9dV1eoWQZ-1fl3n9F4dkAL0
  priority: 102
  providerName: ProQuest
Title Efficient Support Vector Regression for Wideband DOA Estimation Using a Genetic Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/40363351
https://www.proquest.com/docview/3203247540
https://www.proquest.com/docview/3203923835
https://pubmed.ncbi.nlm.nih.gov/PMC12074237
https://doaj.org/article/122c199f21684fcfa412935788a5160b
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a2wUOiPEzY1QGIXEKxIntuAeEuqllQtqEJgrlFNmJ3VXa0q3rJPjvec9Jo0Zw4JJD4sjOs1--7_nH9wDeZtwrrq2KjakSDFDQ5yylBJTK86HHQWBDOqDTM3UyFV9mcrYDmxybrQFv_xnaUT6p6ery_a-b35_Q4T9SxIkh-4dbhHFEeTpqvoeAlJN_nopuMSHNspDQms50xYiHSSMw1H-1B0tBvf_vf_QWSPU3UG4h0uQRPGypJBs1fb8PO65-DA-2BAafwM9xUIjA9xml78SvZN_DND07d_NmB2zNkLayH4vKWVNXDGNFNka3b040srCjgBlG6tRYDRtdzperxfri6ilMJ-Nvxydxm0whLhF_1nFuSYXWOyO4c94neaWr0ktTyswhxFeOy8pJYzRyKs9VmVRoFZHlThthfGmyZ7BbL2v3ApjTKTdKp9YitkksgJTRCcOtUKnDiDeCNxtbFteNZkaBsQYZvOgMHsERWbkrQDLX4cZyNS9aryl4mpZ8OPQpV1r40mPjkZ7gTwbr5CqxEbyjPipoeGBHlKY9U4DtJFmrYoT0T0slEhHB4aYbi80gKzJKHy9yJK0RvO4eo3_Roomp3fKuKYMkGIlqBM-bXu_aLGgVPJM8At0bD72P6j-pFxdBw5unNCmR5Qf_UfFLuJ9S1mHaZikPYXe9unOvkAqt7QDu5bMcr3ryeQB7R-Ozr-eDMK0wCC7wBzQcCnU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEG8MBRYE4mTV-_DaPiAUIFVKHwfUQjgtu_ZuWqk4pUmF-FP8Rmb8SBMhcestijfxenYe33hn5wN4JXnQPHc6trZKMEFBm3NECZjqwIuASuAaOqD9Az06Up_G6XgN_vRnYaissveJjaOupiW9I9-SRPWtMgQY785-xsQaRburPYVGqxa7_vcvTNlmb3c-4vq-FmJ7ePhhFHesAnGJjngeZ47asQZvFfc-hCSr8qoMqS1T6THWVZ6nlU-tzRFcBK7LpCrwk8x8bpUNpZX4v9fgOgbehCwqG18meBLzvbZ7kZRFsjVDeIHogxh3l2JeQw3wbwBYioCr1ZlL4W77NtzqcCobtIp1B9Z8fRc2lroX3oNvw6b9BP6eETco4nj2pdkDYJ_9pC2vrRliYvb1pPLO1hXDRJQN0ae0xyVZU67ALKPW13gbNjidoMTnxz_uw9GVyPQBrNfT2j8C5nPBrc6Fcxg4UxyAeNQry53SwmM6HcHLXpbmrG3IYTCRIYGbhcAjeE9SXgygHtrNF9PzielM0nAhSl4UQXCdq1AGnDxiH_RgeE-uExfBG1ojQ5aOC1Ha7sACzpN6ZpkBYss81SpREWz2y2g6FzAzlwobwYvFZTRe2pGxtZ9etGMQYSMKjuBhu-qLOSvaYpcpjyBf0YeVh1q9Up8cNw3CuaA3HjJ7_P95PYcbo8P9PbO3c7D7BG4KYjamUs50E9bn5xf-KcKtuXvW6DiD71dtVH8B7zo_jA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIxMmK9-G1fUAo0EQthQohCulp2bV300rglCYV4q_x65jxI02ExK23KN7E69l5fOOdnQ_gueRB89zp2NoqwQQFbc4RJWCqAy8CKoFr6IA-7OudA_Vukk424E9_FobKKnuf2DjqalbSO_KBJKpvlSHAGISuLOLj9vj1yc-YGKRop7Wn02hVZM___oXp2_zV7jau9QshxqPPb3fijmEgLtEpL-LMUWvW4K3i3oeQZFVelSG1ZSo9xr3K87TyqbU5Ao3AdZlUBX6Smc-tsqG0Ev_3ElzOZMrJxrLJebInMfdrOxlJWSSDOUINRCLEvrsS_xqagH-DwUo0XK_UXAl94xtwvcOsbNgq2U3Y8PUtuLbSyfA2HI6aVhT4e0Y8oYjp2ZdmP4B98tO21LZmiI_Z1-PKO1tXDJNSNkL_0h6dZE3pArOM2mDjbdjw-xQlvjj6cQcOLkSmd2GzntX-PjCfC251LpzDIJriAMSmXlnulBYeU-sInvWyNCdtcw6DSQ0J3CwFHsEbkvJyAPXTbr6YnU5NZ56GC1HyogiC61yFMuDkEQehN8N7cp24CF7SGhmyelyI0naHF3Ce1D_LDBFn5qlWiYpgq19G07mDuTlX3gieLi-jIdPujK397Kwdg2gbEXEE99pVX85Z0XY7KlkE-Zo-rD3U-pX6-KhpFs4Fvf2Q2YP_z-sJXEFzMu939_cewlVBJMdU1Zluwebi9Mw_QuS1cI8bFWfw7aJt6i-SpUPC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Support+Vector+Regression+for+Wideband+DOA+Estimation+Using+a+Genetic+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Yonghong&rft.au=Zheng%2C+Gang&rft.au=Wang%2C+Junlong&rft.au=Liu%2C+Jisong&rft.date=2025-05-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092915&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon