Learning Online MEMS Calibration with Time-Varying and Memory-Efficient Gaussian Neural Topologies

This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 12; p. 3679
Main Authors Pau, Danilo Pietro, Tognocchi, Simone, Marcon, Marco
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25123679

Cover

Loading…
Abstract This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5–10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°.
AbstractList This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5–10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°.
This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5-10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°.This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5-10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°.
Audience Academic
Author Pau, Danilo Pietro
Tognocchi, Simone
Marcon, Marco
AuthorAffiliation 2 Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; marco.marcon@polimi.it
1 System Research and Applications, STMicroelectronics, Via C. Olivetti 2, 20864 Agrate Brianza, Italy; simone.tognocchi@st.com
AuthorAffiliation_xml – name: 2 Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; marco.marcon@polimi.it
– name: 1 System Research and Applications, STMicroelectronics, Via C. Olivetti 2, 20864 Agrate Brianza, Italy; simone.tognocchi@st.com
Author_xml – sequence: 1
  givenname: Danilo Pietro
  orcidid: 0000-0003-1585-2313
  surname: Pau
  fullname: Pau, Danilo Pietro
– sequence: 2
  givenname: Simone
  orcidid: 0009-0005-7599-8033
  surname: Tognocchi
  fullname: Tognocchi, Simone
– sequence: 3
  givenname: Marco
  orcidid: 0000-0001-6557-2120
  surname: Marcon
  fullname: Marcon, Marco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40573566$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv1DAUhSNURB-w4A-gSGzKIsWPa8dZoWo0lEozdMHA1nIcO_UosQc7AfXf42HKqEVe2Lr-fHyOfc-LEx-8KYq3GF1R2qCPiTBMKK-bF8UZBgKVIASdPFmfFucpbREilFLxqjgFxGrKOD8r2pVR0Tvfl3d-cN6U6-X6W7lQg2ujmlzw5W833ZcbN5rqh4oPe1L5rlybMcSHammt0874qbxRc0pO-fKrmaMayk3YhSH0zqTXxUurhmTePM4XxffPy83iS7W6u7ldXK8qDTWeqhoEV4J0AnfcQqNMZzHimtWtgJYhSxRCum4QqZVmGne2EQCkI7VgQLRo6UVxe9DtgtrKXXRj9iuDcvJvIcReqjg5PRgJYBuMMYAgLQAVjWBIQMeYZazFvMtanw5au7kdTadzwhzqmejzHe_uZR9-SUxww0VdZ4XLR4UYfs4mTXJ0SZthUN6EOUlKCHCgHEFG3_-HbsMcfX6rPUUbwNlspq4OVK9yAudtyBfrPDozOp0bwrpcvxbAGsqB03zg3dMMR_P_Pj8DHw6AjiGlaOwRwUjuG0seG4v-ASnuvLE
Cites_doi 10.1109/ICEEOT.2016.7754824
10.1109/ICEENG49683.2022.9782058
10.1088/1361-6501/ad67f8
10.1109/SAS60918.2024.10636625
10.3390/electronics13214278
10.1109/LRA.2019.2959507
10.1109/ICCUBEA54992.2022.10010952
10.1145/3583683
10.1109/COINS57856.2023.10189239
10.1109/CVPR.2018.00286
10.2514/6.2009-5970
10.1145/3696003
10.1109/INERTIAL53425.2022.9787758
10.1109/MetroAeroSpace.2015.7180619
10.1073/pnas.1611835114
10.1162/neco.1991.3.2.213
10.1109/TNNLS.2022.3230914
10.1016/j.knosys.2022.108632
10.1109/IOTSMS62296.2024.10710280
10.12720/ijsps.1.2.256-262
10.1109/I2MTC48687.2022.9806683
10.3389/frobt.2021.772583
10.3390/s20185430
10.1109/ICECA58529.2023.10395317
10.1145/3450494
10.1177/0278364915620033
10.1016/j.sna.2018.04.008
10.1117/12.280797
10.1109/EHB50910.2020.9280106
10.1109/MetroXRAINE58569.2023.10405784
10.1109/5.704269
10.1145/3292500.3330701
10.1162/neco.1997.9.2.461
10.1109/IAEAC54830.2022.9929688
10.1109/JSEN.2019.2963538
10.5402/2012/324194
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25123679
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_44f91114482b4438985084d55f55b16d
PMC12196877
A845936463
40573566
10_3390_s25123679
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-7486a82d81d6f49aedf106c57b84b50f2a00c79027ac5c1df98442d278542c8b3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:46 EDT 2025
Thu Aug 21 18:34:13 EDT 2025
Fri Jul 11 16:58:22 EDT 2025
Fri Jul 25 09:12:36 EDT 2025
Tue Jul 01 05:44:02 EDT 2025
Mon Jun 30 02:54:48 EDT 2025
Thu Jul 03 08:39:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords in-sensor tiny machine learning
intelligent sensor processing unit
radial basis functions
inertial sensor calibration
on-device learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-7486a82d81d6f49aedf106c57b84b50f2a00c79027ac5c1df98442d278542c8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6557-2120
0000-0003-1585-2313
0009-0005-7599-8033
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25123679
PMID 40573566
PQID 3223941911
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_44f91114482b4438985084d55f55b16d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12196877
proquest_miscellaneous_3224643604
proquest_journals_3223941911
gale_infotracacademiconefile_A845936463
pubmed_primary_40573566
crossref_primary_10_3390_s25123679
PublicationCentury 2000
PublicationDate 2025-06-12
PublicationDateYYYYMMDD 2025-06-12
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Brossard (ref_19) 2020; 5
ref_13
ref_12
ref_11
ref_10
Kohan (ref_35) 2023; 35
Rajapakse (ref_26) 2023; 55
ref_17
Hartigan (ref_43) 2018; 28
Yingwei (ref_40) 1997; 9
ref_25
ref_23
ref_22
Bayram (ref_24) 2022; 245
ref_20
Yazdi (ref_7) 1998; 86
ref_29
ref_28
Ahmad (ref_1) 2013; 1
Kirkpatrick (ref_42) 2017; 114
ref_36
ref_34
ref_33
ref_32
ref_31
ref_30
Wu (ref_39) 2012; 2012
ref_37
Platt (ref_38) 1991; 3
Burri (ref_48) 2016; 35
ref_47
Ghanipoor (ref_15) 2020; 20
ref_46
Esfahani (ref_18) 2020; 5
ref_45
ref_44
Kadar (ref_14) 1997; Volume 3068
ref_41
Huang (ref_21) 2022; 71
ref_3
ref_2
ref_49
ref_9
ref_8
ref_5
ref_4
Fontanella (ref_16) 2018; 279
Zhu (ref_27) 2024; 20
ref_6
References_xml – ident: ref_9
  doi: 10.1109/ICEEOT.2016.7754824
– ident: ref_8
  doi: 10.1109/ICEENG49683.2022.9782058
– ident: ref_32
– ident: ref_22
  doi: 10.1088/1361-6501/ad67f8
– ident: ref_41
  doi: 10.1109/SAS60918.2024.10636625
– ident: ref_23
  doi: 10.3390/electronics13214278
– volume: 5
  start-page: 399
  year: 2020
  ident: ref_18
  article-title: OriNet: Robust 3-D Orientation Estimation With a Single Particular IMU
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2959507
– ident: ref_6
  doi: 10.1109/ICCUBEA54992.2022.10010952
– ident: ref_31
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_26
  article-title: Intelligence at the Extreme Edge: A Survey on Reformable TinyML
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3583683
– ident: ref_33
  doi: 10.1109/COINS57856.2023.10189239
– ident: ref_46
  doi: 10.1109/CVPR.2018.00286
– ident: ref_45
– ident: ref_12
  doi: 10.2514/6.2009-5970
– volume: 20
  start-page: 1
  year: 2024
  ident: ref_27
  article-title: On-device Training: A First Overview on Existing Systems
  publication-title: ACM Trans. Sens. Netw.
  doi: 10.1145/3696003
– ident: ref_5
  doi: 10.1109/INERTIAL53425.2022.9787758
– ident: ref_11
  doi: 10.1109/MetroAeroSpace.2015.7180619
– ident: ref_28
– volume: 114
  start-page: 3521
  year: 2017
  ident: ref_42
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1611835114
– ident: ref_30
– volume: 3
  start-page: 213
  year: 1991
  ident: ref_38
  article-title: A Resource-Allocating Network for Function Interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.213
– volume: 35
  start-page: 8585
  year: 2023
  ident: ref_35
  article-title: Signal Propagation: The Framework for Learning and Inference in a Forward Pass
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3230914
– ident: ref_34
– ident: ref_47
– volume: 245
  start-page: 108632
  year: 2022
  ident: ref_24
  article-title: From concept drift to model degradation: An overview on performance-aware drift detectors
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108632
– ident: ref_2
  doi: 10.1109/IOTSMS62296.2024.10710280
– volume: 1
  start-page: 256
  year: 2013
  ident: ref_1
  article-title: Reviews on various Inertial Measurement Unit (IMU) sensor applications
  publication-title: Int. J. Signal Process. Syst.
  doi: 10.12720/ijsps.1.2.256-262
– ident: ref_10
  doi: 10.1109/I2MTC48687.2022.9806683
– ident: ref_20
  doi: 10.3389/frobt.2021.772583
– ident: ref_44
– ident: ref_13
  doi: 10.3390/s20185430
– ident: ref_4
  doi: 10.1109/ICECA58529.2023.10395317
– ident: ref_25
  doi: 10.1145/3450494
– volume: 35
  start-page: 1157
  year: 2016
  ident: ref_48
  article-title: The EuRoC micro aerial vehicle datasets
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364915620033
– ident: ref_50
– volume: 279
  start-page: 553
  year: 2018
  ident: ref_16
  article-title: MEMS gyros temperature calibration through artificial neural networks
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2018.04.008
– ident: ref_29
– volume: Volume 3068
  start-page: 182
  year: 1997
  ident: ref_14
  article-title: New extension of the Kalman filter to nonlinear systems
  publication-title: Proceedings of the Signal Processing, Sensor Fusion, and Target Recognition VI
  doi: 10.1117/12.280797
– ident: ref_3
  doi: 10.1109/EHB50910.2020.9280106
– ident: ref_37
  doi: 10.1109/MetroXRAINE58569.2023.10405784
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_21
  article-title: A MEMS IMU Gyroscope Calibration Method Based on Deep Learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 86
  start-page: 1640
  year: 1998
  ident: ref_7
  article-title: Micromachined inertial sensors
  publication-title: Proc. IEEE
  doi: 10.1109/5.704269
– ident: ref_49
  doi: 10.1145/3292500.3330701
– volume: 9
  start-page: 461
  year: 1997
  ident: ref_40
  article-title: A Sequential Learning Scheme for Function Approximation Using Minimal Radial Basis Function Neural Networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.2.461
– volume: 28
  start-page: 100
  year: 2018
  ident: ref_43
  article-title: A K-Means Clustering Algorithm
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
– ident: ref_17
  doi: 10.1109/IAEAC54830.2022.9929688
– volume: 20
  start-page: 4131
  year: 2020
  ident: ref_15
  article-title: Toward Calibration of Low-Precision MEMS IMU Using a Nonlinear Model and TUKF
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2963538
– ident: ref_36
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref_39
  article-title: Using Radial Basis Function Networks for Function Approximation and Classification
  publication-title: ISRN Appl. Math.
  doi: 10.5402/2012/324194
– volume: 5
  start-page: 4796
  year: 2020
  ident: ref_19
  article-title: Denoising IMU Gyroscopes With Deep Learning for Open-Loop Attitude Estimation
  publication-title: IEEE Robot. Autom. Lett.
SSID ssj0023338
Score 2.4496112
Snippet This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3679
SubjectTerms Accelerometers
Accuracy
Algorithms
Analysis
Artificial intelligence
Calibration
Datasets
Deep learning
Digital signal processors
Global positioning systems
GPS
in-sensor tiny machine learning
inertial sensor calibration
intelligent sensor processing unit
Machine learning
Microelectromechanical systems
Navigation systems
Neural networks
on-device learning
radial basis functions
Real time
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VPdFDRaGPQEGmQuIUNRuPHefYoi0V0nKhRb1ZfsTAJUXd3QP_npk4u8qKAxeusSU7MxnPfPHMNwDva92l6DlVitBFyTd7pVFRluQtpEkyxTjUVyy-6Nt7_PygHiatvjgnLNMDZ8FdIia2R0IRtUdu1W0opMCoVFLKz3Tk05d83gZMjVBLEvLKPEKSQP3lkr241JyvNfE-A0n_30fxxBft5klOHM_NczgcI0ZxlXd6BHtd_wIOJjyCL8GPLKnfRWYOFYv54qvgsiufFSz4d6vgco_ym3viyibh-igWnGb7u5wPNBK0uvjk1kuuqhTM2UGL3uUWCoSmj-H-Zn738bYcmyeUgfzNijlCtTN1pHhUJ2xdFxOhv6Aab9CrKtWuqkLTEip1QYVZTK1BrGPdGIV1MF6ewH7_2HdnIHTrQ-hC0hQeYCedq1yTUqt9hUkR5CjgYiNU-ytzZFjCFix5u5V8Adcs7u0EprUeHpCy7ahs-y9lF_CBlWXZ-EgjwY01BLRPprGyVwa5QyFqWcD5Rp92tMqlpcNLtkgIdVbAu-0w2RNfkri-e1wPc5CiNF1hAadZ_ds9c3ArKf4twOx8GDsvtTvS__wxcHaTKbTaNM2r_yGG1_Cs5jbEQwulc9hfPa27NxQbrfzbwQz-ABaLCbo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcoFDxbuBggxC4hQ1Gz_inFBbbakqLRdatDfLj7jtJdvu48C_Z8bxbneFxDW2ZMfj8cxnz3wD8LVWXQyOQqUQXZT0sldqGXiJ1oLryGMIKb9i8lNdXIvLqZzmC7dFDqtcn4npoA4zT3fkx7jxeCsQXYy-3z-UVDWKXldzCY0n8JSoyyikq5k-Ai6O-GtgE-II7Y8XZMu5oqitLRuUqPr_PZC3LNJutOSW-Tl_AQfZb2Qng6Bfwl7Xv4LnW2yCr8FlrtQbNvCHssl48otR8pUbxMzo0pVR0kf5284pv4nZPrAJBdv-KceJTAJHZz_sakG5lYyYO3DQq6GQAmLqN3B9Pr46uyhzCYXSo9VZElOosroO6JWqKFrbhYgY0MvGaeFkFWtbVb5pEZtaL_0oxFYLUYe60VLUXjv-Fvb7Wd8dAlOt877zUaGTIDpubWWbGFvlKhElAo8CvqwX1dwPTBkGEQatvNmsfAGntNybDkRunT7M5jcm64oRItIRjMCxdoKqs2v0IkWQMkrpRioU8I2EZUgFUSLe5kwCnCeRWZkTLahOoVC8gKO1PE3WzYV53EkFfN40o1bRU4ntu9kq9RHoq6lKFPBuEP9mzuTicvSCC9A7G2Pnp3Zb-rvbxNyNCtEq3TTv_z-vD_CspjLDqUTSEewv56vuI_o-S_cpbfC_HmIDPw
  priority: 102
  providerName: ProQuest
Title Learning Online MEMS Calibration with Time-Varying and Memory-Efficient Gaussian Neural Topologies
URI https://www.ncbi.nlm.nih.gov/pubmed/40573566
https://www.proquest.com/docview/3223941911
https://www.proquest.com/docview/3224643604
https://pubmed.ncbi.nlm.nih.gov/PMC12196877
https://doaj.org/article/44f91114482b4438985084d55f55b16d
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC72cdGD-Da6Dq0InqKZ9DMHkV2Z2UWYRXRH5hb6kV4Fyeg8wP33ViWZMEFPXnJIOnRS1dVVX3fXVwCvclXF4OioFKKLlHb2UiMDT9FbcBN5DKHJr5hdqou5-LiQiwPY1djsBLj-J7SjelLz1Y83v3_dvEeDf0eIEyH72zX5aK50cQjH6JA02edM9JsJOUcY1pIKDZsPXFHD2P_3vLznmIaHJve80PQu3OnCR3ba6vseHFT1fbi9Ryr4AFxHmXrNWhpRNpvMvjDKwXKtthmtvTLK_Ui_2hWlOTFbBzajM7c36aThlMDe2bndrinFkhGBB3Z61dZTQGj9EObTydWHi7SrpJB6dD4bIgxV1uQBg1MVRWGrEBEKeqmdEU5mMbdZ5nWBENV66cchFkaIPOTaSJF74_gjOKqXdfUEmCqc95WPCmMFUXFrM6tjLJTLRJSIPxJ4uRNq-bMlzCgRaJDky17yCZyRuPsGxHHd3FiursvOZEohIs3EiB9zJ6hIu8FgUgQpo5RurEICr0lZJY0N1Ii3XUIBfidxWpWnRlC5QqF4Aic7fZa7EVbiTMYLgXB1nMCL_jEaF-2Y2Lpabps2AkM2lYkEHrfq77-ZIl2OwXACZjAwBj81fFJ__9YQeKNdFMpo_fT_X30Gt3KqRNxUUTqBo81qWz3H8GjjRnCoFxqvZno-guOzyeWnz6NmqWHUmMUfxHUU7w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCcbLqeB9eHxAqkJLSuhdSlJvZh7ftxSl5CPVP8RuZ8SNNhMSt19iyN_PYmc878w3A21RVwVsqlUJ0EdPJXqyl5zFGC64DD943_RXFsRqdiG8TOdmCP30vDJVV9ntis1H7qaNv5LtoeDwXiC4GHy9-xTQ1ik5X-xEarVkcVpe_EbLNPxx8Qf2-S9P94fjzKO6mCsQON-IFkWcqo1OPiZoKIjeVDwiLnMysFlYmITVJ4rIc4Zpx0g18yLUQqU8zLUXqtOX43BtwEwNvQh6VTa4AHke817IXcZ4nu3PKHbiiKrG1mNeMBvg3AKxFwM3qzLVwt38P7nZ5KttrDes-bFX1A7izxl74EGzHzXrKWr5SVgyL74yavWxrVow-8jJqMol_mBn1UzFTe1ZQce9lPGzIK_Dt7KtZzqmXkxFTCL503A5uQAz_CE6uRbiPYbue1tVTYCq3zlUuKExKRMWNSUwWQq5sIoJEoBPBm16o5UXLzFEioiHJlyvJR_CJxL26gci0mx-ms9Oy881SiEBbPgLV1AqaBq8xaxVeyiClHSgfwXtSVkkujxpxputcwHUSeVa5pwXNRRSKR7DT67Ps9oJ5eWW5EbxeXUYvpqMZU1fTZXOPwNxQJSKCJ636V2umlJpj1h2B3jCMjT-1eaU-P2uYwtEBc6Wz7Nn_1_UKbo3GxVF5dHB8-BxupzTiuBnPtAPbi9myeoF518K-bIydwc_r9q6_isk_Lg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIxMmK4314fUCo0ISWkgqJFuW23Ye3cHFKHkL9a_w6ZmwnTYTErdfYsjfz2vm8M98AvM5VFYOjUilEFymd7KVaBp7ibsF15DGEpr9idKT2T8TnsRxvwZ9lLwyVVS5jYhOow8TTN_IeGh4vBaKLfi92ZRFf94bvz3-lNEGKTlqX4zRaEzmsLn4jfJu9O9hDXb_J8-Hg-ON-2k0YSD0G5TkRaSqr84BJm4qitFWICJG8LJwWTmYxt1nmixKhm_XS90MstRB5yAstRe614_jca3C94LJPPlaML8EeR-zXMhlxXma9GeURXFHF2Nr-14wJ-HczWNsNNys117a-4R243eWsbLc1sruwVdX34NYak-F9cB1P6xlruUvZaDD6xqjxy7UmxuiDL6OGk_S7nVJvFbN1YCMq9L1IBw2RBb6dfbKLGfV1MmINwZcet0McEM8_gJMrEe5D2K4ndfUYmCqd95WPChMUUXFrM1vEWCqXiSgR9CTwailUc96ydBhENyR5s5J8Ah9I3KsbiFi7-WEyPTOdnxohIoV_BK25EzQZXmMGK4KUUUrXVyGBt6QsQ-6PGvG262LAdRKRltnVgmYkCsUT2Fnq03RxYWYurTiBl6vL6NF0TGPrarJo7hGYJ6pMJPCoVf9qzZRec8zAE9AbhrHxpzav1D9_NKzh6Iyl0kXx5P_regE30K_Ml4Ojw6dwM6dpx82kph3Ynk8X1TNMwebueWPrDE6v2rn-AlaXQ2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Online+MEMS+Calibration+with+Time-Varying+and+Memory-Efficient+Gaussian+Neural+Topologies&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Pau%2C+Danilo+Pietro&rft.au=Tognocchi%2C+Simone&rft.au=Marcon%2C+Marco&rft.date=2025-06-12&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=12&rft_id=info:doi/10.3390%2Fs25123679&rft.externalDocID=PMC12196877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon