Learning Online MEMS Calibration with Time-Varying and Memory-Efficient Gaussian Neural Topologies
This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 12; p. 3679 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.06.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25123679 |
Cover
Loading…
Abstract | This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5–10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°. |
---|---|
AbstractList | This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5–10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°. This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5-10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°.This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5-10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°. |
Audience | Academic |
Author | Pau, Danilo Pietro Tognocchi, Simone Marcon, Marco |
AuthorAffiliation | 2 Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; marco.marcon@polimi.it 1 System Research and Applications, STMicroelectronics, Via C. Olivetti 2, 20864 Agrate Brianza, Italy; simone.tognocchi@st.com |
AuthorAffiliation_xml | – name: 2 Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; marco.marcon@polimi.it – name: 1 System Research and Applications, STMicroelectronics, Via C. Olivetti 2, 20864 Agrate Brianza, Italy; simone.tognocchi@st.com |
Author_xml | – sequence: 1 givenname: Danilo Pietro orcidid: 0000-0003-1585-2313 surname: Pau fullname: Pau, Danilo Pietro – sequence: 2 givenname: Simone orcidid: 0009-0005-7599-8033 surname: Tognocchi fullname: Tognocchi, Simone – sequence: 3 givenname: Marco orcidid: 0000-0001-6557-2120 surname: Marcon fullname: Marcon, Marco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40573566$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktv1DAUhSNURB-w4A-gSGzKIsWPa8dZoWo0lEozdMHA1nIcO_UosQc7AfXf42HKqEVe2Lr-fHyOfc-LEx-8KYq3GF1R2qCPiTBMKK-bF8UZBgKVIASdPFmfFucpbREilFLxqjgFxGrKOD8r2pVR0Tvfl3d-cN6U6-X6W7lQg2ujmlzw5W833ZcbN5rqh4oPe1L5rlybMcSHammt0874qbxRc0pO-fKrmaMayk3YhSH0zqTXxUurhmTePM4XxffPy83iS7W6u7ldXK8qDTWeqhoEV4J0AnfcQqNMZzHimtWtgJYhSxRCum4QqZVmGne2EQCkI7VgQLRo6UVxe9DtgtrKXXRj9iuDcvJvIcReqjg5PRgJYBuMMYAgLQAVjWBIQMeYZazFvMtanw5au7kdTadzwhzqmejzHe_uZR9-SUxww0VdZ4XLR4UYfs4mTXJ0SZthUN6EOUlKCHCgHEFG3_-HbsMcfX6rPUUbwNlspq4OVK9yAudtyBfrPDozOp0bwrpcvxbAGsqB03zg3dMMR_P_Pj8DHw6AjiGlaOwRwUjuG0seG4v-ASnuvLE |
Cites_doi | 10.1109/ICEEOT.2016.7754824 10.1109/ICEENG49683.2022.9782058 10.1088/1361-6501/ad67f8 10.1109/SAS60918.2024.10636625 10.3390/electronics13214278 10.1109/LRA.2019.2959507 10.1109/ICCUBEA54992.2022.10010952 10.1145/3583683 10.1109/COINS57856.2023.10189239 10.1109/CVPR.2018.00286 10.2514/6.2009-5970 10.1145/3696003 10.1109/INERTIAL53425.2022.9787758 10.1109/MetroAeroSpace.2015.7180619 10.1073/pnas.1611835114 10.1162/neco.1991.3.2.213 10.1109/TNNLS.2022.3230914 10.1016/j.knosys.2022.108632 10.1109/IOTSMS62296.2024.10710280 10.12720/ijsps.1.2.256-262 10.1109/I2MTC48687.2022.9806683 10.3389/frobt.2021.772583 10.3390/s20185430 10.1109/ICECA58529.2023.10395317 10.1145/3450494 10.1177/0278364915620033 10.1016/j.sna.2018.04.008 10.1117/12.280797 10.1109/EHB50910.2020.9280106 10.1109/MetroXRAINE58569.2023.10405784 10.1109/5.704269 10.1145/3292500.3330701 10.1162/neco.1997.9.2.461 10.1109/IAEAC54830.2022.9929688 10.1109/JSEN.2019.2963538 10.5402/2012/324194 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25123679 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_44f91114482b4438985084d55f55b16d PMC12196877 A845936463 40573566 10_3390_s25123679 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. M48 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-7486a82d81d6f49aedf106c57b84b50f2a00c79027ac5c1df98442d278542c8b3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:46 EDT 2025 Thu Aug 21 18:34:13 EDT 2025 Fri Jul 11 16:58:22 EDT 2025 Fri Jul 25 09:12:36 EDT 2025 Tue Jul 01 05:44:02 EDT 2025 Mon Jun 30 02:54:48 EDT 2025 Thu Jul 03 08:39:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | in-sensor tiny machine learning intelligent sensor processing unit radial basis functions inertial sensor calibration on-device learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-7486a82d81d6f49aedf106c57b84b50f2a00c79027ac5c1df98442d278542c8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6557-2120 0000-0003-1585-2313 0009-0005-7599-8033 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25123679 |
PMID | 40573566 |
PQID | 3223941911 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_44f91114482b4438985084d55f55b16d pubmedcentral_primary_oai_pubmedcentral_nih_gov_12196877 proquest_miscellaneous_3224643604 proquest_journals_3223941911 gale_infotracacademiconefile_A845936463 pubmed_primary_40573566 crossref_primary_10_3390_s25123679 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-12 |
PublicationDateYYYYMMDD | 2025-06-12 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Brossard (ref_19) 2020; 5 ref_13 ref_12 ref_11 ref_10 Kohan (ref_35) 2023; 35 Rajapakse (ref_26) 2023; 55 ref_17 Hartigan (ref_43) 2018; 28 Yingwei (ref_40) 1997; 9 ref_25 ref_23 ref_22 Bayram (ref_24) 2022; 245 ref_20 Yazdi (ref_7) 1998; 86 ref_29 ref_28 Ahmad (ref_1) 2013; 1 Kirkpatrick (ref_42) 2017; 114 ref_36 ref_34 ref_33 ref_32 ref_31 ref_30 Wu (ref_39) 2012; 2012 ref_37 Platt (ref_38) 1991; 3 Burri (ref_48) 2016; 35 ref_47 Ghanipoor (ref_15) 2020; 20 ref_46 Esfahani (ref_18) 2020; 5 ref_45 ref_44 Kadar (ref_14) 1997; Volume 3068 ref_41 Huang (ref_21) 2022; 71 ref_3 ref_2 ref_49 ref_9 ref_8 ref_5 ref_4 Fontanella (ref_16) 2018; 279 Zhu (ref_27) 2024; 20 ref_6 |
References_xml | – ident: ref_9 doi: 10.1109/ICEEOT.2016.7754824 – ident: ref_8 doi: 10.1109/ICEENG49683.2022.9782058 – ident: ref_32 – ident: ref_22 doi: 10.1088/1361-6501/ad67f8 – ident: ref_41 doi: 10.1109/SAS60918.2024.10636625 – ident: ref_23 doi: 10.3390/electronics13214278 – volume: 5 start-page: 399 year: 2020 ident: ref_18 article-title: OriNet: Robust 3-D Orientation Estimation With a Single Particular IMU publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2959507 – ident: ref_6 doi: 10.1109/ICCUBEA54992.2022.10010952 – ident: ref_31 – volume: 55 start-page: 1 year: 2023 ident: ref_26 article-title: Intelligence at the Extreme Edge: A Survey on Reformable TinyML publication-title: ACM Comput. Surv. doi: 10.1145/3583683 – ident: ref_33 doi: 10.1109/COINS57856.2023.10189239 – ident: ref_46 doi: 10.1109/CVPR.2018.00286 – ident: ref_45 – ident: ref_12 doi: 10.2514/6.2009-5970 – volume: 20 start-page: 1 year: 2024 ident: ref_27 article-title: On-device Training: A First Overview on Existing Systems publication-title: ACM Trans. Sens. Netw. doi: 10.1145/3696003 – ident: ref_5 doi: 10.1109/INERTIAL53425.2022.9787758 – ident: ref_11 doi: 10.1109/MetroAeroSpace.2015.7180619 – ident: ref_28 – volume: 114 start-page: 3521 year: 2017 ident: ref_42 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611835114 – ident: ref_30 – volume: 3 start-page: 213 year: 1991 ident: ref_38 article-title: A Resource-Allocating Network for Function Interpolation publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.213 – volume: 35 start-page: 8585 year: 2023 ident: ref_35 article-title: Signal Propagation: The Framework for Learning and Inference in a Forward Pass publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3230914 – ident: ref_34 – ident: ref_47 – volume: 245 start-page: 108632 year: 2022 ident: ref_24 article-title: From concept drift to model degradation: An overview on performance-aware drift detectors publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108632 – ident: ref_2 doi: 10.1109/IOTSMS62296.2024.10710280 – volume: 1 start-page: 256 year: 2013 ident: ref_1 article-title: Reviews on various Inertial Measurement Unit (IMU) sensor applications publication-title: Int. J. Signal Process. Syst. doi: 10.12720/ijsps.1.2.256-262 – ident: ref_10 doi: 10.1109/I2MTC48687.2022.9806683 – ident: ref_20 doi: 10.3389/frobt.2021.772583 – ident: ref_44 – ident: ref_13 doi: 10.3390/s20185430 – ident: ref_4 doi: 10.1109/ICECA58529.2023.10395317 – ident: ref_25 doi: 10.1145/3450494 – volume: 35 start-page: 1157 year: 2016 ident: ref_48 article-title: The EuRoC micro aerial vehicle datasets publication-title: Int. J. Robot. Res. doi: 10.1177/0278364915620033 – ident: ref_50 – volume: 279 start-page: 553 year: 2018 ident: ref_16 article-title: MEMS gyros temperature calibration through artificial neural networks publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2018.04.008 – ident: ref_29 – volume: Volume 3068 start-page: 182 year: 1997 ident: ref_14 article-title: New extension of the Kalman filter to nonlinear systems publication-title: Proceedings of the Signal Processing, Sensor Fusion, and Target Recognition VI doi: 10.1117/12.280797 – ident: ref_3 doi: 10.1109/EHB50910.2020.9280106 – ident: ref_37 doi: 10.1109/MetroXRAINE58569.2023.10405784 – volume: 71 start-page: 1 year: 2022 ident: ref_21 article-title: A MEMS IMU Gyroscope Calibration Method Based on Deep Learning publication-title: IEEE Trans. Instrum. Meas. – volume: 86 start-page: 1640 year: 1998 ident: ref_7 article-title: Micromachined inertial sensors publication-title: Proc. IEEE doi: 10.1109/5.704269 – ident: ref_49 doi: 10.1145/3292500.3330701 – volume: 9 start-page: 461 year: 1997 ident: ref_40 article-title: A Sequential Learning Scheme for Function Approximation Using Minimal Radial Basis Function Neural Networks publication-title: Neural Comput. doi: 10.1162/neco.1997.9.2.461 – volume: 28 start-page: 100 year: 2018 ident: ref_43 article-title: A K-Means Clustering Algorithm publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. – ident: ref_17 doi: 10.1109/IAEAC54830.2022.9929688 – volume: 20 start-page: 4131 year: 2020 ident: ref_15 article-title: Toward Calibration of Low-Precision MEMS IMU Using a Nonlinear Model and TUKF publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2963538 – ident: ref_36 – volume: 2012 start-page: 1 year: 2012 ident: ref_39 article-title: Using Radial Basis Function Networks for Function Approximation and Classification publication-title: ISRN Appl. Math. doi: 10.5402/2012/324194 – volume: 5 start-page: 4796 year: 2020 ident: ref_19 article-title: Denoising IMU Gyroscopes With Deep Learning for Open-Loop Attitude Estimation publication-title: IEEE Robot. Autom. Lett. |
SSID | ssj0023338 |
Score | 2.4496112 |
Snippet | This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 3679 |
SubjectTerms | Accelerometers Accuracy Algorithms Analysis Artificial intelligence Calibration Datasets Deep learning Digital signal processors Global positioning systems GPS in-sensor tiny machine learning inertial sensor calibration intelligent sensor processing unit Machine learning Microelectromechanical systems Navigation systems Neural networks on-device learning radial basis functions Real time Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VPdFDRaGPQEGmQuIUNRuPHefYoi0V0nKhRb1ZfsTAJUXd3QP_npk4u8qKAxeusSU7MxnPfPHMNwDva92l6DlVitBFyTd7pVFRluQtpEkyxTjUVyy-6Nt7_PygHiatvjgnLNMDZ8FdIia2R0IRtUdu1W0opMCoVFLKz3Tk05d83gZMjVBLEvLKPEKSQP3lkr241JyvNfE-A0n_30fxxBft5klOHM_NczgcI0ZxlXd6BHtd_wIOJjyCL8GPLKnfRWYOFYv54qvgsiufFSz4d6vgco_ym3viyibh-igWnGb7u5wPNBK0uvjk1kuuqhTM2UGL3uUWCoSmj-H-Zn738bYcmyeUgfzNijlCtTN1pHhUJ2xdFxOhv6Aab9CrKtWuqkLTEip1QYVZTK1BrGPdGIV1MF6ewH7_2HdnIHTrQ-hC0hQeYCedq1yTUqt9hUkR5CjgYiNU-ytzZFjCFix5u5V8Adcs7u0EprUeHpCy7ahs-y9lF_CBlWXZ-EgjwY01BLRPprGyVwa5QyFqWcD5Rp92tMqlpcNLtkgIdVbAu-0w2RNfkri-e1wPc5CiNF1hAadZ_ds9c3ArKf4twOx8GDsvtTvS__wxcHaTKbTaNM2r_yGG1_Cs5jbEQwulc9hfPa27NxQbrfzbwQz-ABaLCbo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcoFDxbuBggxC4hQ1Gz_inFBbbakqLRdatDfLj7jtJdvu48C_Z8bxbneFxDW2ZMfj8cxnz3wD8LVWXQyOQqUQXZT0sldqGXiJ1oLryGMIKb9i8lNdXIvLqZzmC7dFDqtcn4npoA4zT3fkx7jxeCsQXYy-3z-UVDWKXldzCY0n8JSoyyikq5k-Ai6O-GtgE-II7Y8XZMu5oqitLRuUqPr_PZC3LNJutOSW-Tl_AQfZb2Qng6Bfwl7Xv4LnW2yCr8FlrtQbNvCHssl48otR8pUbxMzo0pVR0kf5284pv4nZPrAJBdv-KceJTAJHZz_sakG5lYyYO3DQq6GQAmLqN3B9Pr46uyhzCYXSo9VZElOosroO6JWqKFrbhYgY0MvGaeFkFWtbVb5pEZtaL_0oxFYLUYe60VLUXjv-Fvb7Wd8dAlOt877zUaGTIDpubWWbGFvlKhElAo8CvqwX1dwPTBkGEQatvNmsfAGntNybDkRunT7M5jcm64oRItIRjMCxdoKqs2v0IkWQMkrpRioU8I2EZUgFUSLe5kwCnCeRWZkTLahOoVC8gKO1PE3WzYV53EkFfN40o1bRU4ntu9kq9RHoq6lKFPBuEP9mzuTicvSCC9A7G2Pnp3Zb-rvbxNyNCtEq3TTv_z-vD_CspjLDqUTSEewv56vuI_o-S_cpbfC_HmIDPw priority: 102 providerName: ProQuest |
Title | Learning Online MEMS Calibration with Time-Varying and Memory-Efficient Gaussian Neural Topologies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40573566 https://www.proquest.com/docview/3223941911 https://www.proquest.com/docview/3224643604 https://pubmed.ncbi.nlm.nih.gov/PMC12196877 https://doaj.org/article/44f91114482b4438985084d55f55b16d |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC72cdGD-Da6Dq0InqKZ9DMHkV2Z2UWYRXRH5hb6kV4Fyeg8wP33ViWZMEFPXnJIOnRS1dVVX3fXVwCvclXF4OioFKKLlHb2UiMDT9FbcBN5DKHJr5hdqou5-LiQiwPY1djsBLj-J7SjelLz1Y83v3_dvEeDf0eIEyH72zX5aK50cQjH6JA02edM9JsJOUcY1pIKDZsPXFHD2P_3vLznmIaHJve80PQu3OnCR3ba6vseHFT1fbi9Ryr4AFxHmXrNWhpRNpvMvjDKwXKtthmtvTLK_Ui_2hWlOTFbBzajM7c36aThlMDe2bndrinFkhGBB3Z61dZTQGj9EObTydWHi7SrpJB6dD4bIgxV1uQBg1MVRWGrEBEKeqmdEU5mMbdZ5nWBENV66cchFkaIPOTaSJF74_gjOKqXdfUEmCqc95WPCmMFUXFrM6tjLJTLRJSIPxJ4uRNq-bMlzCgRaJDky17yCZyRuPsGxHHd3FiursvOZEohIs3EiB9zJ6hIu8FgUgQpo5RurEICr0lZJY0N1Ii3XUIBfidxWpWnRlC5QqF4Aic7fZa7EVbiTMYLgXB1nMCL_jEaF-2Y2Lpabps2AkM2lYkEHrfq77-ZIl2OwXACZjAwBj81fFJ__9YQeKNdFMpo_fT_X30Gt3KqRNxUUTqBo81qWz3H8GjjRnCoFxqvZno-guOzyeWnz6NmqWHUmMUfxHUU7w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCcbLqeB9eHxAqkJLSuhdSlJvZh7ftxSl5CPVP8RuZ8SNNhMSt19iyN_PYmc878w3A21RVwVsqlUJ0EdPJXqyl5zFGC64DD943_RXFsRqdiG8TOdmCP30vDJVV9ntis1H7qaNv5LtoeDwXiC4GHy9-xTQ1ik5X-xEarVkcVpe_EbLNPxx8Qf2-S9P94fjzKO6mCsQON-IFkWcqo1OPiZoKIjeVDwiLnMysFlYmITVJ4rIc4Zpx0g18yLUQqU8zLUXqtOX43BtwEwNvQh6VTa4AHke817IXcZ4nu3PKHbiiKrG1mNeMBvg3AKxFwM3qzLVwt38P7nZ5KttrDes-bFX1A7izxl74EGzHzXrKWr5SVgyL74yavWxrVow-8jJqMol_mBn1UzFTe1ZQce9lPGzIK_Dt7KtZzqmXkxFTCL503A5uQAz_CE6uRbiPYbue1tVTYCq3zlUuKExKRMWNSUwWQq5sIoJEoBPBm16o5UXLzFEioiHJlyvJR_CJxL26gci0mx-ms9Oy881SiEBbPgLV1AqaBq8xaxVeyiClHSgfwXtSVkkujxpxputcwHUSeVa5pwXNRRSKR7DT67Ps9oJ5eWW5EbxeXUYvpqMZU1fTZXOPwNxQJSKCJ636V2umlJpj1h2B3jCMjT-1eaU-P2uYwtEBc6Wz7Nn_1_UKbo3GxVF5dHB8-BxupzTiuBnPtAPbi9myeoF518K-bIydwc_r9q6_isk_Lg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIxMmK4314fUCo0ISWkgqJFuW23Ye3cHFKHkL9a_w6ZmwnTYTErdfYsjfz2vm8M98AvM5VFYOjUilEFymd7KVaBp7ibsF15DGEpr9idKT2T8TnsRxvwZ9lLwyVVS5jYhOow8TTN_IeGh4vBaKLfi92ZRFf94bvz3-lNEGKTlqX4zRaEzmsLn4jfJu9O9hDXb_J8-Hg-ON-2k0YSD0G5TkRaSqr84BJm4qitFWICJG8LJwWTmYxt1nmixKhm_XS90MstRB5yAstRe614_jca3C94LJPPlaML8EeR-zXMhlxXma9GeURXFHF2Nr-14wJ-HczWNsNNys117a-4R243eWsbLc1sruwVdX34NYak-F9cB1P6xlruUvZaDD6xqjxy7UmxuiDL6OGk_S7nVJvFbN1YCMq9L1IBw2RBb6dfbKLGfV1MmINwZcet0McEM8_gJMrEe5D2K4ndfUYmCqd95WPChMUUXFrM1vEWCqXiSgR9CTwailUc96ydBhENyR5s5J8Ah9I3KsbiFi7-WEyPTOdnxohIoV_BK25EzQZXmMGK4KUUUrXVyGBt6QsQ-6PGvG262LAdRKRltnVgmYkCsUT2Fnq03RxYWYurTiBl6vL6NF0TGPrarJo7hGYJ6pMJPCoVf9qzZRec8zAE9AbhrHxpzav1D9_NKzh6Iyl0kXx5P_regE30K_Ml4Ojw6dwM6dpx82kph3Ynk8X1TNMwebueWPrDE6v2rn-AlaXQ2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Online+MEMS+Calibration+with+Time-Varying+and+Memory-Efficient+Gaussian+Neural+Topologies&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Pau%2C+Danilo+Pietro&rft.au=Tognocchi%2C+Simone&rft.au=Marcon%2C+Marco&rft.date=2025-06-12&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=12&rft_id=info:doi/10.3390%2Fs25123679&rft.externalDocID=PMC12196877 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |