Training adaptations in magnetomyography

Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the...

Full description

Saved in:
Bibliographic Details
Published inJournal of electromyography and kinesiology Vol. 82; p. 103012
Main Authors Brümmer, Tim, Lu, Hongyu, Yang, Haodi, Baier, Lukas, Braun, Christoph, Siegel, Markus, Marquetand, Justus
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring.
AbstractList Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring.
AbstractMuscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring.
Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring.Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring.
ArticleNumber 103012
Author Marquetand, Justus
Braun, Christoph
Lu, Hongyu
Baier, Lukas
Brümmer, Tim
Siegel, Markus
Yang, Haodi
Author_xml – sequence: 1
  givenname: Tim
  surname: Brümmer
  fullname: Brümmer, Tim
  organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– sequence: 2
  givenname: Hongyu
  surname: Lu
  fullname: Lu, Hongyu
  organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– sequence: 3
  givenname: Haodi
  surname: Yang
  fullname: Yang, Haodi
  organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– sequence: 4
  givenname: Lukas
  surname: Baier
  fullname: Baier, Lukas
  organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– sequence: 5
  givenname: Christoph
  surname: Braun
  fullname: Braun, Christoph
  organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– sequence: 6
  givenname: Markus
  surname: Siegel
  fullname: Siegel, Markus
  organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– sequence: 7
  givenname: Justus
  orcidid: 0000-0002-2039-5498
  surname: Marquetand
  fullname: Marquetand, Justus
  organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40344791$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rGzEQxUVIaf71IzT4mMu6M6uV5T00oYQkLRhyiHMWY-3Y1WZXcqV1wd8-MnZ6KIT2pEG8eTPvN2fi2AfPQnxGGCPg5Es7brnjF-fHJZQq_0nA8kic4lTLQmnE41yDgmJSIZ6Is5RaANQwhY_ipAJZVbrGU3E1j-S886sRNbQeaHDBp5Hzo55WnofQb8Mq0vrn9kJ8WFKX-NPhPRfP93fz2-_F7PHhx-23WWErjUOhoWFGZjmxjSKUNTZ5LCvJC7sAYKtJA5O2pbVqaQlrXoCcWoV1TUQsz8XV3ncdw68Np8H0LlnuOvIcNsnIHFfWtVYqSy8P0s2i58aso-spbs1buixQe4GNIaXIyz8SBLOjaFpzoGh2FM2eYu672fdxDvrbcTTJOvaWGxfZDqYJ7p8O13852C5jttS98JZTGzbRZ4oGTSoNmKfdpXaHKhVAxgHZ4Ov7Bv-xwCuBH6Xe
Cites_doi 10.3389/fphys.2021.724755
10.1007/s00421-018-3918-8
10.1109/TBME.2008.919734
10.3389/fnins.2023.1154572
10.1152/jappl.1996.81.5.2173
10.1249/00005768-198315060-00003
10.1016/j.clinph.2021.06.009
10.1093/gerona/53A.6.B415
10.1093/ptj/73.12.830
10.1109/TBME.2002.807641
10.1016/j.neuroimage.2018.07.028
10.1016/S0166-2236(84)80210-6
10.1016/j.neuroimage.2021.118834
10.1186/s12891-017-1397-4
10.1088/1741-2552/ace7f7
10.1038/nature01484
10.1063/1.1654294
10.5772/50639
10.1016/S1050-6411(00)00025-0
10.1007/s00221-012-3137-1
10.1109/10.634647
10.1088/1361-6579/ab057e
10.1007/BF02388334
10.1007/s00421-003-0930-3
ContentType Journal Article
Copyright 2025 The Author(s)
The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2025 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jelekin.2025.103012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-5711
EndPage 103012
ExternalDocumentID 40344791
10_1016_j_jelekin_2025_103012
S1050641125000380
1_s2_0_S1050641125000380
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TWZ
UPT
WUQ
YQT
Z5R
~G-
AFCTW
AGRNS
RIG
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c471t-70dee1ee36cd5a1391d001e53ebcb00ec7a70ea7c2cc5fca19eb038c5199aaae3
IEDL.DBID .~1
ISSN 1050-6411
1873-5711
IngestDate Wed Jul 02 04:25:10 EDT 2025
Tue May 27 01:35:10 EDT 2025
Sun Jul 06 05:08:04 EDT 2025
Sat Jun 21 16:54:10 EDT 2025
Thu Jun 12 23:09:31 EDT 2025
Tue Aug 26 19:57:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Training
Training adaptations
Force
Quantum sensor
MMG
Muscle
Biceps
OPM
EMG
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-70dee1ee36cd5a1391d001e53ebcb00ec7a70ea7c2cc5fca19eb038c5199aaae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2039-5498
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1050641125000380
PMID 40344791
PQID 3202399755
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3202399755
pubmed_primary_40344791
crossref_primary_10_1016_j_jelekin_2025_103012
elsevier_sciencedirect_doi_10_1016_j_jelekin_2025_103012
elsevier_clinicalkeyesjournals_1_s2_0_S1050641125000380
elsevier_clinicalkey_doi_10_1016_j_jelekin_2025_103012
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of electromyography and kinesiology
PublicationTitleAlternate J Electromyogr Kinesiol
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hill, Housh, Keller, Smith, Schmidt, Johnson (b0085) Sep. 2018; 118
Enoka, Stuart (b0030) 1984; 7
Kominis, Kornack, Allred, Romalis (b0060) 2003; 422
K. Häkkinen
Rader, Naimo, Ensey, Baker (b0150) 2017; 18
S. 195–220, 2012.
J. Marquetand
R. A. Seymour
A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, und C. Limsakul, „The usefulness of mean and median frequencies in electromyography analysis
Häkkinen, Komi (b0140) 1983; 15
Clamann (b0025) 1993; 73
A. Verdonck, M. Wiek, und C. Wilke, „Testverfahren“, in
Cohen, Givler (b0045) Aug. 1972; 21
D. Sometti
Dal Maso, Longcamp, Amarantini (b0145) 2012; 220
Bd. 12, S. 2310, 2021. Doi: 10.3389/fphys.2021.724755.
Bd. 44, Nr. 10, S. 948–957, Okt. 1997. Doi: 10.1109/10.634647.
Oostenveld, Fries, Maris, Schoffelen (b0095) 2011; S. 156869
Muscle Fatigue Revisited – Insights From Optically Pumped Magnetometers
Georgakis, Stergioulas, Giakas (b0105) Feb. 2003; 50
McBride, Blaak, Triplett-McBride (b0015) Nov. 2003; 90
Bd. 3, I. Froböse, G. Nellessen, und C. Wilke, Hrsg., Jena: Elsevier Urban & Fischer Verlag, 2010.
Optically pumped magnetometers reveal fasciculations non-invasively
Bd. 58, Nr. 3, S. 115–130, Juni 1979.
Bd. 81, Nr. 5, S. 2173–2181, Nov. 1996. Doi: 10.1152/jappl.1996.81.5.2173.
Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men
Narici, Roi, Landoni, Minetti, Cerretelli (b0020) 1989; 59
N. Holmes
Bd. 40, Nr. 2, S. 025009, März 2019. Doi: 10.1088/1361-6579/ab057e.
Alignment of magnetic sensing and clinical magnetomyography
D. Farina und R. Merletti, „Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions
Bd. 247, S. 118834, Feb. 2022. Doi: 10.1016/j.neuroimage.2021.118834.
Haas, Schmidtbleicher (b0010) 2011
Bd. 17, 2023, Zugegriffen: 13. Juli 2023. [Online]. Verfügbar unter: https://www.frontiersin.org/articles/10.3389/fnins.2023.1154572.
Interference suppression techniques for OPM-based MEG: Opportunities and challenges
T. Moritani und H. A. deVries, „Neural factors versus hypertrophy in the time course of muscle strength gain
Bd. 181, S. 760–774, Nov. 2018. Doi: 10.1016/j.neuroimage.2018.07.028.
Bd. 10, Nr. 5, S. 337–349, Okt. 2000. Doi: 10.1016/S1050-6411(00)00025-0.
N. Ghahremani Arekhloo
E. C. Hill, T. J. Housh, J. L. Keller, C. M. Smith, R. J. Schmidt, und G. O. Johnson, „The validity of the EMG and MMG techniques to examine muscle hypertrophy
E. J. Higbie, K. J. Cureton, G. L. Warren, und B. M. Prior, „Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation
Freiwald, Baumgart, Konrad (b0005) 2007
Klotz, Lehmann, Negro, Röhrle (b0055) 2023
A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
Bd. 53, Nr. 6, S. B415-423, Nov. 1998. Doi: 10.1093/gerona/53a.6.b415.
Du, Vuskovic (b0110) 2004
K. K. Parker und J. P. Wikswo, „A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle
S. S1388-2457(21)00630–1, Juli 2021. Doi: 10.1016/j.clinph.2021.06.009.
Oskoei, Hu (b0115) Aug. 2008; 55
Freiwald (10.1016/j.jelekin.2025.103012_b0005) 2007
10.1016/j.jelekin.2025.103012_b0125
10.1016/j.jelekin.2025.103012_b0100
10.1016/j.jelekin.2025.103012_b0065
Hill (10.1016/j.jelekin.2025.103012_b0085) 2018; 118
10.1016/j.jelekin.2025.103012_b0120
10.1016/j.jelekin.2025.103012_b0040
10.1016/j.jelekin.2025.103012_b0080
Dal Maso (10.1016/j.jelekin.2025.103012_b0145) 2012; 220
10.1016/j.jelekin.2025.103012_b0135
10.1016/j.jelekin.2025.103012_b0035
McBride (10.1016/j.jelekin.2025.103012_b0015) 2003; 90
Kominis (10.1016/j.jelekin.2025.103012_b0060) 2003; 422
Häkkinen (10.1016/j.jelekin.2025.103012_b0140) 1983; 15
10.1016/j.jelekin.2025.103012_b0075
10.1016/j.jelekin.2025.103012_b0130
10.1016/j.jelekin.2025.103012_b0050
Oskoei (10.1016/j.jelekin.2025.103012_b0115) 2008; 55
10.1016/j.jelekin.2025.103012_b0070
10.1016/j.jelekin.2025.103012_b0090
Rader (10.1016/j.jelekin.2025.103012_b0150) 2017; 18
Haas (10.1016/j.jelekin.2025.103012_b0010) 2011
Oostenveld (10.1016/j.jelekin.2025.103012_b0095) 2011; S. 156869
Enoka (10.1016/j.jelekin.2025.103012_b0030) 1984; 7
Du (10.1016/j.jelekin.2025.103012_b0110) 2004
Georgakis (10.1016/j.jelekin.2025.103012_b0105) 2003; 50
Clamann (10.1016/j.jelekin.2025.103012_b0025) 1993; 73
Klotz (10.1016/j.jelekin.2025.103012_b0055) 2023
Narici (10.1016/j.jelekin.2025.103012_b0020) 1989; 59
Cohen (10.1016/j.jelekin.2025.103012_b0045) 1972; 21
References_xml – reference: , Bd. 181, S. 760–774, Nov. 2018. Doi: 10.1016/j.neuroimage.2018.07.028.
– reference: R. A. Seymour
– volume: 422
  start-page: 596
  year: 2003
  end-page: 599
  ident: b0060
  article-title: A subfemtotesla multichannel atomic magnetometer
– reference: K. K. Parker und J. P. Wikswo, „A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle“,
– reference: , S. S1388-2457(21)00630–1, Juli 2021. Doi: 10.1016/j.clinph.2021.06.009.
– volume: 59
  start-page: 310
  year: 1989
  end-page: 319
  ident: b0020
  article-title: Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps
– reference: , „Interference suppression techniques for OPM-based MEG: Opportunities and challenges“,
– reference: , Bd. 247, S. 118834, Feb. 2022. Doi: 10.1016/j.neuroimage.2021.118834.
– volume: 90
  start-page: 626
  year: Nov. 2003
  end-page: 632
  ident: b0015
  article-title: Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition
– reference: , Bd. 81, Nr. 5, S. 2173–2181, Nov. 1996. Doi: 10.1152/jappl.1996.81.5.2173.
– reference: D. Sometti
– reference: , Bd. 40, Nr. 2, S. 025009, März 2019. Doi: 10.1088/1361-6579/ab057e.
– reference: , Bd. 58, Nr. 3, S. 115–130, Juni 1979.
– reference: , Bd. 44, Nr. 10, S. 948–957, Okt. 1997. Doi: 10.1109/10.634647.
– reference: , S. 195–220, 2012.
– start-page: 183
  year: 2011
  end-page: 228
  ident: b0010
  article-title: „Training von Kraft, Ausdauer und Schnelligkeit“, in
– reference: A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, und C. Limsakul, „The usefulness of mean and median frequencies in electromyography analysis“,
– volume: 7
  start-page: 226
  year: 1984
  end-page: 228
  ident: b0030
  article-title: Henneman’s ‘size principle’: current issues
– reference: A. Verdonck, M. Wiek, und C. Wilke, „Testverfahren“, in
– reference: , Bd. 12, S. 2310, 2021. Doi: 10.3389/fphys.2021.724755.
– reference: , Bd. 10, Nr. 5, S. 337–349, Okt. 2000. Doi: 10.1016/S1050-6411(00)00025-0.
– volume: S. 156869
  start-page: 2011
  year: 2011
  ident: b0095
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
– reference: , „Optically pumped magnetometers reveal fasciculations non-invasively“,
– reference: T. Moritani und H. A. deVries, „Neural factors versus hypertrophy in the time course of muscle strength gain“,
– year: 2023
  ident: b0055
  article-title: High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study
  publication-title: ,
– reference: E. C. Hill, T. J. Housh, J. L. Keller, C. M. Smith, R. J. Schmidt, und G. O. Johnson, „The validity of the EMG and MMG techniques to examine muscle hypertrophy“,
– reference: E. J. Higbie, K. J. Cureton, G. L. Warren, und B. M. Prior, „Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation“,
– volume: 21
  start-page: 114
  year: Aug. 1972
  end-page: 116
  ident: b0045
  article-title: Magnetomyography: magnetic fields around the human body produced by skeletal muscles
  publication-title: ,
– volume: 55
  start-page: 1956
  year: Aug. 2008
  end-page: 1965
  ident: b0115
  article-title: Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb
– reference: , Bd. 53, Nr. 6, S. B415-423, Nov. 1998. Doi: 10.1093/gerona/53a.6.b415.
– reference: K. Häkkinen
– reference: , „Alignment of magnetic sensing and clinical magnetomyography“,
– reference: J. Marquetand
– volume: 118
  start-page: 1831
  year: Sep. 2018
  end-page: 1843
  ident: b0085
  article-title: Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training
– start-page: 344
  year: 2004
  end-page: 350
  ident: b0110
  article-title: Temporal vs. spectral approach to feature extraction from prehensile EMG signals
  publication-title: In
– year: 2007
  ident: b0005
– reference: , Bd. 17, 2023, Zugegriffen: 13. Juli 2023. [Online]. Verfügbar unter: https://www.frontiersin.org/articles/10.3389/fnins.2023.1154572.
– reference: , „A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography“,
– volume: 220
  start-page: 287
  year: 2012
  end-page: 295
  ident: b0145
  article-title: Training-related decrease in antagonist muscles activation is associated with increased motor cortex activation: evidence of central mechanisms for control of antagonist muscles
– volume: 50
  start-page: 262
  year: Feb. 2003
  end-page: 265
  ident: b0105
  article-title: Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency
– volume: 15
  start-page: 455
  year: 1983
  end-page: 460
  ident: b0140
  article-title: Electromyographic changes during strength training and detraining
– volume: 18
  start-page: 1
  year: 2017
  end-page: 15
  ident: b0150
  article-title: Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training
– reference: N. Ghahremani Arekhloo
– reference: , „Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men“,
– reference: , „Muscle Fatigue Revisited – Insights From Optically Pumped Magnetometers“,
– volume: 73
  start-page: 830
  year: 1993
  end-page: 843
  ident: b0025
  article-title: Motor unit recruitment and the gradation of muscle force
– reference: , Bd. 3, I. Froböse, G. Nellessen, und C. Wilke, Hrsg., Jena: Elsevier Urban & Fischer Verlag, 2010.
– reference: D. Farina und R. Merletti, „Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions“,
– reference: N. Holmes
– ident: 10.1016/j.jelekin.2025.103012_b0040
  doi: 10.3389/fphys.2021.724755
– volume: 118
  start-page: 1831
  issue: 9
  year: 2018
  ident: 10.1016/j.jelekin.2025.103012_b0085
  article-title: Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-018-3918-8
– volume: 55
  start-page: 1956
  issue: 8
  year: 2008
  ident: 10.1016/j.jelekin.2025.103012_b0115
  article-title: Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.919734
– start-page: 344
  year: 2004
  ident: 10.1016/j.jelekin.2025.103012_b0110
  article-title: Temporal vs. spectral approach to feature extraction from prehensile EMG signals
– ident: 10.1016/j.jelekin.2025.103012_b0035
  doi: 10.3389/fnins.2023.1154572
– ident: 10.1016/j.jelekin.2025.103012_b0130
  doi: 10.1152/jappl.1996.81.5.2173
– volume: 15
  start-page: 455
  issue: 6
  year: 1983
  ident: 10.1016/j.jelekin.2025.103012_b0140
  article-title: Electromyographic changes during strength training and detraining
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/00005768-198315060-00003
– ident: 10.1016/j.jelekin.2025.103012_b0070
  doi: 10.1016/j.clinph.2021.06.009
– ident: 10.1016/j.jelekin.2025.103012_b0065
– ident: 10.1016/j.jelekin.2025.103012_b0125
  doi: 10.1093/gerona/53A.6.B415
– volume: 73
  start-page: 830
  issue: 12
  year: 1993
  ident: 10.1016/j.jelekin.2025.103012_b0025
  article-title: Motor unit recruitment and the gradation of muscle force
  publication-title: Physical Therapy
  doi: 10.1093/ptj/73.12.830
– year: 2007
  ident: 10.1016/j.jelekin.2025.103012_b0005
– volume: 50
  start-page: 262
  issue: 2
  year: 2003
  ident: 10.1016/j.jelekin.2025.103012_b0105
  article-title: Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2002.807641
– volume: S. 156869
  start-page: 2011
  year: 2011
  ident: 10.1016/j.jelekin.2025.103012_b0095
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput Intell Neurosci
– ident: 10.1016/j.jelekin.2025.103012_b0135
– ident: 10.1016/j.jelekin.2025.103012_b0075
  doi: 10.1016/j.neuroimage.2018.07.028
– volume: 7
  start-page: 226
  issue: 7
  year: 1984
  ident: 10.1016/j.jelekin.2025.103012_b0030
  article-title: Henneman’s ‘size principle’: current issues
  publication-title: Trends in Neurosciences
  doi: 10.1016/S0166-2236(84)80210-6
– ident: 10.1016/j.jelekin.2025.103012_b0080
  doi: 10.1016/j.neuroimage.2021.118834
– start-page: 183
  year: 2011
  ident: 10.1016/j.jelekin.2025.103012_b0010
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jelekin.2025.103012_b0150
  article-title: Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training
  publication-title: BMC Musculoskeletal Disorders
  doi: 10.1186/s12891-017-1397-4
– year: 2023
  ident: 10.1016/j.jelekin.2025.103012_b0055
  article-title: High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study
  publication-title: J. Neural Eng.,
  doi: 10.1088/1741-2552/ace7f7
– volume: 422
  start-page: 596
  issue: 6932
  year: 2003
  ident: 10.1016/j.jelekin.2025.103012_b0060
  article-title: A subfemtotesla multichannel atomic magnetometer
  publication-title: Nature
  doi: 10.1038/nature01484
– volume: 21
  start-page: 114
  issue: 3
  year: 1972
  ident: 10.1016/j.jelekin.2025.103012_b0045
  article-title: Magnetomyography: magnetic fields around the human body produced by skeletal muscles
  publication-title: Appl. Phys. Lett.,
  doi: 10.1063/1.1654294
– ident: 10.1016/j.jelekin.2025.103012_b0120
  doi: 10.5772/50639
– ident: 10.1016/j.jelekin.2025.103012_b0100
  doi: 10.1016/S1050-6411(00)00025-0
– volume: 220
  start-page: 287
  year: 2012
  ident: 10.1016/j.jelekin.2025.103012_b0145
  article-title: Training-related decrease in antagonist muscles activation is associated with increased motor cortex activation: evidence of central mechanisms for control of antagonist muscles
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-012-3137-1
– ident: 10.1016/j.jelekin.2025.103012_b0050
  doi: 10.1109/10.634647
– ident: 10.1016/j.jelekin.2025.103012_b0090
  doi: 10.1088/1361-6579/ab057e
– volume: 59
  start-page: 310
  issue: 4
  year: 1989
  ident: 10.1016/j.jelekin.2025.103012_b0020
  article-title: Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps
  publication-title: Eur J Appl Physiol Occup Physiol
  doi: 10.1007/BF02388334
– volume: 90
  start-page: 626
  issue: 5–6
  year: 2003
  ident: 10.1016/j.jelekin.2025.103012_b0015
  article-title: Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-003-0930-3
SSID ssj0017080
Score 2.4304488
Snippet Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure...
AbstractMuscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 103012
SubjectTerms Adaptation, Physiological - physiology
Adult
Biceps
Electromyography - methods
EMG
Female
Force
Humans
Magnetometry - instrumentation
Magnetometry - methods
Male
MMG
Muscle
Muscle Contraction - physiology
Muscle Fatigue - physiology
Muscle, Skeletal - physiology
Myography - instrumentation
Myography - methods
OPM
Physical Medicine and Rehabilitation
Quantum sensor
Resistance Training - methods
Training
Training adaptations
Young Adult
Title Training adaptations in magnetomyography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1050641125000380
https://www.clinicalkey.es/playcontent/1-s2.0-S1050641125000380
https://dx.doi.org/10.1016/j.jelekin.2025.103012
https://www.ncbi.nlm.nih.gov/pubmed/40344791
https://www.proquest.com/docview/3202399755
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6iFy_ib-cvKoh46dq0zbIex3BMxV3cwFt4Td9kk3XDbgcv_u2-tOlEdCgeW_pI-yV535fmvRfGLuOUWFMjuBwB3QiDxG1CmLjDQDfSeAjEMiZ3-KHX6A6iuyfxtMbaVS6MCau0vr_06YW3tnc8i6Y3G428R1IGxKekF0Sxv2XW7VEkzSivvy_DPLj0m2VFAkHLJHr6M4vHG9fH5NpfRqYMaiBM-rnPg1X8tEp_FjzU2WZbVkA6rfIdd9gaZrtsr5XR4nny5lw5RUhn8a98j1337QEQDqQwKzfdc2eUORN4ztAY2ILV-2zQuem3u649GsHVxCZzV_opIkcMGzoVQCqOp_StKEJMNE0k1BKkjyB1oLUYauAxJoSRJr0WAwCGB2w9m2Z4xJwoREgSnnBT_AqFhqEkFSBTTInfgkjUWL0CRM3KChiqCg0bK4ugMgiqEsEaa1SwqSq9kxySIh_9m6H8yRBzO61yxVUeKF996_oaay4tv4yevzR6UfWsoplltksgw-kiV8XJ8nEsBUFwWHb5EoCoqJQY8-P_N3zCNs1VGXZ2ytbnrws8I4EzT86LEXzONlq3993eB_J_-hc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBvCnPICHEkjZO4rgZK0RVoGWhSGzWxbmiFhEq0g4s_HbOiVOEAIFYk5ycfPbdfY7vwdhJnJLX1AguR0A3RD9xWxAk7tDXURoPgbyMyR3u30Tdu_DqXtzX2HmVC2PCKq3tL216Ya3tlaZFszkZjZq3xAzInxJfEMX5Fu3bF0NSX9PGoPE2j_Pg0muVJQkE7ZPo8Y80nua4MSbb_jgydVB9YfLPPe7_5KB-IqCFI-qsshXLIJ12-ZJrrIbZOttoZ7R7fnp1Tp0iprP4Wb7Bzga2A4QDKUzKU_fcGWXOEzxkaARsxepNdte5GJx3XdsbwdXkTqau9FJEjhhEOhVANI6n9K0oAkw0aRJqCdJDkNrXWgw18BgTAkkTYYsBAIMttpA9Z7jDnDBASBKecFP9CoWGoSQaIFNMycH5oaizRgWImpQlMFQVGzZWFkFlEFQlgnUWVbCpKr-TLJIiI_2boPxOEHOrV7niKveVp77MfZ215pKfls9fBj2uZlaRapnzEsjweZarorV8HEtBEGyXUz4HICxKJcZ89_8DH7Gl7qDfU73Lm-s9tmzulDFo-2xh-jLDA2I70-SwWM3voub7pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+adaptations+in+magnetomyography&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Br%C3%BCmmer%2C+Tim&rft.au=Lu%2C+Hongyu&rft.au=Yang%2C+Haodi&rft.au=Baier%2C+Lukas&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=1050-6411&rft.volume=82&rft_id=info:doi/10.1016%2Fj.jelekin.2025.103012&rft.externalDocID=S1050641125000380
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10506411%2FS1050641125X00031%2Fcov150h.gif