Training adaptations in magnetomyography
Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the...
Saved in:
Published in | Journal of electromyography and kinesiology Vol. 82; p. 103012 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring. |
---|---|
AbstractList | Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring. AbstractMuscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring. Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring.Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure the neuromuscular system via contactless magnetomyography (MMG) using miniaturized quantum sensors (optically pumped magnetometer, OPM), the question arises whether MMG detects similar neuromuscular adaptations compared to EMG. Therefore, we developed an experimental design and a multimodal setup for the simultaneous measurement of EMG, triaxial OPM-MMG, and vigorimetry. As a proof of concept, right biceps brachii muscle activity was recorded during maximal voluntary contraction (MVC) and a 40 % MVC muscle fatigue paradigm over 3 min in 12 healthy, untrained subjects. Measurements were taken before and after a 30-day strength training program, with six subjects undergoing training and six serving as controls. EMG and MMG showed a similar increase in RMS during MVC and fatigue after training (r > 0.9). However, the MMG increase varied by vector component, with the magnetic flux signal along the muscle fibers showing the highest RMS increase. Furthermore, these MMG findings can be visualized three-dimensionally using one OPM, which is not possible with bipolar EMG. This is the first longitudinal MMG study to demonstrate the feasibility of monitoring strength training-induced adaptations over 4 weeks, which highlights the opportunities and challenges of OPM-MMG for contactless neuromuscular monitoring. |
ArticleNumber | 103012 |
Author | Marquetand, Justus Braun, Christoph Lu, Hongyu Baier, Lukas Brümmer, Tim Siegel, Markus Yang, Haodi |
Author_xml | – sequence: 1 givenname: Tim surname: Brümmer fullname: Brümmer, Tim organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – sequence: 2 givenname: Hongyu surname: Lu fullname: Lu, Hongyu organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – sequence: 3 givenname: Haodi surname: Yang fullname: Yang, Haodi organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – sequence: 4 givenname: Lukas surname: Baier fullname: Baier, Lukas organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – sequence: 5 givenname: Christoph surname: Braun fullname: Braun, Christoph organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – sequence: 6 givenname: Markus surname: Siegel fullname: Siegel, Markus organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – sequence: 7 givenname: Justus orcidid: 0000-0002-2039-5498 surname: Marquetand fullname: Marquetand, Justus organization: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40344791$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rGzEQxUVIaf71IzT4mMu6M6uV5T00oYQkLRhyiHMWY-3Y1WZXcqV1wd8-MnZ6KIT2pEG8eTPvN2fi2AfPQnxGGCPg5Es7brnjF-fHJZQq_0nA8kic4lTLQmnE41yDgmJSIZ6Is5RaANQwhY_ipAJZVbrGU3E1j-S886sRNbQeaHDBp5Hzo55WnofQb8Mq0vrn9kJ8WFKX-NPhPRfP93fz2-_F7PHhx-23WWErjUOhoWFGZjmxjSKUNTZ5LCvJC7sAYKtJA5O2pbVqaQlrXoCcWoV1TUQsz8XV3ncdw68Np8H0LlnuOvIcNsnIHFfWtVYqSy8P0s2i58aso-spbs1buixQe4GNIaXIyz8SBLOjaFpzoGh2FM2eYu672fdxDvrbcTTJOvaWGxfZDqYJ7p8O13852C5jttS98JZTGzbRZ4oGTSoNmKfdpXaHKhVAxgHZ4Ov7Bv-xwCuBH6Xe |
Cites_doi | 10.3389/fphys.2021.724755 10.1007/s00421-018-3918-8 10.1109/TBME.2008.919734 10.3389/fnins.2023.1154572 10.1152/jappl.1996.81.5.2173 10.1249/00005768-198315060-00003 10.1016/j.clinph.2021.06.009 10.1093/gerona/53A.6.B415 10.1093/ptj/73.12.830 10.1109/TBME.2002.807641 10.1016/j.neuroimage.2018.07.028 10.1016/S0166-2236(84)80210-6 10.1016/j.neuroimage.2021.118834 10.1186/s12891-017-1397-4 10.1088/1741-2552/ace7f7 10.1038/nature01484 10.1063/1.1654294 10.5772/50639 10.1016/S1050-6411(00)00025-0 10.1007/s00221-012-3137-1 10.1109/10.634647 10.1088/1361-6579/ab057e 10.1007/BF02388334 10.1007/s00421-003-0930-3 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) The Author(s) Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2025 The Author(s) – notice: The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jelekin.2025.103012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-5711 |
EndPage | 103012 |
ExternalDocumentID | 40344791 10_1016_j_jelekin_2025_103012 S1050641125000380 1_s2_0_S1050641125000380 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TWZ UPT WUQ YQT Z5R ~G- AFCTW AGRNS RIG 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c471t-70dee1ee36cd5a1391d001e53ebcb00ec7a70ea7c2cc5fca19eb038c5199aaae3 |
IEDL.DBID | .~1 |
ISSN | 1050-6411 1873-5711 |
IngestDate | Wed Jul 02 04:25:10 EDT 2025 Tue May 27 01:35:10 EDT 2025 Sun Jul 06 05:08:04 EDT 2025 Sat Jun 21 16:54:10 EDT 2025 Thu Jun 12 23:09:31 EDT 2025 Tue Aug 26 19:57:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Training Training adaptations Force Quantum sensor MMG Muscle Biceps OPM EMG |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-70dee1ee36cd5a1391d001e53ebcb00ec7a70ea7c2cc5fca19eb038c5199aaae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2039-5498 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1050641125000380 |
PMID | 40344791 |
PQID | 3202399755 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3202399755 pubmed_primary_40344791 crossref_primary_10_1016_j_jelekin_2025_103012 elsevier_sciencedirect_doi_10_1016_j_jelekin_2025_103012 elsevier_clinicalkeyesjournals_1_s2_0_S1050641125000380 elsevier_clinicalkey_doi_10_1016_j_jelekin_2025_103012 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of electromyography and kinesiology |
PublicationTitleAlternate | J Electromyogr Kinesiol |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hill, Housh, Keller, Smith, Schmidt, Johnson (b0085) Sep. 2018; 118 Enoka, Stuart (b0030) 1984; 7 Kominis, Kornack, Allred, Romalis (b0060) 2003; 422 K. Häkkinen Rader, Naimo, Ensey, Baker (b0150) 2017; 18 S. 195–220, 2012. J. Marquetand R. A. Seymour A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, und C. Limsakul, „The usefulness of mean and median frequencies in electromyography analysis Häkkinen, Komi (b0140) 1983; 15 Clamann (b0025) 1993; 73 A. Verdonck, M. Wiek, und C. Wilke, „Testverfahren“, in Cohen, Givler (b0045) Aug. 1972; 21 D. Sometti Dal Maso, Longcamp, Amarantini (b0145) 2012; 220 Bd. 12, S. 2310, 2021. Doi: 10.3389/fphys.2021.724755. Bd. 44, Nr. 10, S. 948–957, Okt. 1997. Doi: 10.1109/10.634647. Oostenveld, Fries, Maris, Schoffelen (b0095) 2011; S. 156869 Muscle Fatigue Revisited – Insights From Optically Pumped Magnetometers Georgakis, Stergioulas, Giakas (b0105) Feb. 2003; 50 McBride, Blaak, Triplett-McBride (b0015) Nov. 2003; 90 Bd. 3, I. Froböse, G. Nellessen, und C. Wilke, Hrsg., Jena: Elsevier Urban & Fischer Verlag, 2010. Optically pumped magnetometers reveal fasciculations non-invasively Bd. 58, Nr. 3, S. 115–130, Juni 1979. Bd. 81, Nr. 5, S. 2173–2181, Nov. 1996. Doi: 10.1152/jappl.1996.81.5.2173. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men Narici, Roi, Landoni, Minetti, Cerretelli (b0020) 1989; 59 N. Holmes Bd. 40, Nr. 2, S. 025009, März 2019. Doi: 10.1088/1361-6579/ab057e. Alignment of magnetic sensing and clinical magnetomyography D. Farina und R. Merletti, „Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions Bd. 247, S. 118834, Feb. 2022. Doi: 10.1016/j.neuroimage.2021.118834. Haas, Schmidtbleicher (b0010) 2011 Bd. 17, 2023, Zugegriffen: 13. Juli 2023. [Online]. Verfügbar unter: https://www.frontiersin.org/articles/10.3389/fnins.2023.1154572. Interference suppression techniques for OPM-based MEG: Opportunities and challenges T. Moritani und H. A. deVries, „Neural factors versus hypertrophy in the time course of muscle strength gain Bd. 181, S. 760–774, Nov. 2018. Doi: 10.1016/j.neuroimage.2018.07.028. Bd. 10, Nr. 5, S. 337–349, Okt. 2000. Doi: 10.1016/S1050-6411(00)00025-0. N. Ghahremani Arekhloo E. C. Hill, T. J. Housh, J. L. Keller, C. M. Smith, R. J. Schmidt, und G. O. Johnson, „The validity of the EMG and MMG techniques to examine muscle hypertrophy E. J. Higbie, K. J. Cureton, G. L. Warren, und B. M. Prior, „Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation Freiwald, Baumgart, Konrad (b0005) 2007 Klotz, Lehmann, Negro, Röhrle (b0055) 2023 A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography Bd. 53, Nr. 6, S. B415-423, Nov. 1998. Doi: 10.1093/gerona/53a.6.b415. Du, Vuskovic (b0110) 2004 K. K. Parker und J. P. Wikswo, „A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle S. S1388-2457(21)00630–1, Juli 2021. Doi: 10.1016/j.clinph.2021.06.009. Oskoei, Hu (b0115) Aug. 2008; 55 Freiwald (10.1016/j.jelekin.2025.103012_b0005) 2007 10.1016/j.jelekin.2025.103012_b0125 10.1016/j.jelekin.2025.103012_b0100 10.1016/j.jelekin.2025.103012_b0065 Hill (10.1016/j.jelekin.2025.103012_b0085) 2018; 118 10.1016/j.jelekin.2025.103012_b0120 10.1016/j.jelekin.2025.103012_b0040 10.1016/j.jelekin.2025.103012_b0080 Dal Maso (10.1016/j.jelekin.2025.103012_b0145) 2012; 220 10.1016/j.jelekin.2025.103012_b0135 10.1016/j.jelekin.2025.103012_b0035 McBride (10.1016/j.jelekin.2025.103012_b0015) 2003; 90 Kominis (10.1016/j.jelekin.2025.103012_b0060) 2003; 422 Häkkinen (10.1016/j.jelekin.2025.103012_b0140) 1983; 15 10.1016/j.jelekin.2025.103012_b0075 10.1016/j.jelekin.2025.103012_b0130 10.1016/j.jelekin.2025.103012_b0050 Oskoei (10.1016/j.jelekin.2025.103012_b0115) 2008; 55 10.1016/j.jelekin.2025.103012_b0070 10.1016/j.jelekin.2025.103012_b0090 Rader (10.1016/j.jelekin.2025.103012_b0150) 2017; 18 Haas (10.1016/j.jelekin.2025.103012_b0010) 2011 Oostenveld (10.1016/j.jelekin.2025.103012_b0095) 2011; S. 156869 Enoka (10.1016/j.jelekin.2025.103012_b0030) 1984; 7 Du (10.1016/j.jelekin.2025.103012_b0110) 2004 Georgakis (10.1016/j.jelekin.2025.103012_b0105) 2003; 50 Clamann (10.1016/j.jelekin.2025.103012_b0025) 1993; 73 Klotz (10.1016/j.jelekin.2025.103012_b0055) 2023 Narici (10.1016/j.jelekin.2025.103012_b0020) 1989; 59 Cohen (10.1016/j.jelekin.2025.103012_b0045) 1972; 21 |
References_xml | – reference: , Bd. 181, S. 760–774, Nov. 2018. Doi: 10.1016/j.neuroimage.2018.07.028. – reference: R. A. Seymour – volume: 422 start-page: 596 year: 2003 end-page: 599 ident: b0060 article-title: A subfemtotesla multichannel atomic magnetometer – reference: K. K. Parker und J. P. Wikswo, „A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle“, – reference: , S. S1388-2457(21)00630–1, Juli 2021. Doi: 10.1016/j.clinph.2021.06.009. – volume: 59 start-page: 310 year: 1989 end-page: 319 ident: b0020 article-title: Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps – reference: , „Interference suppression techniques for OPM-based MEG: Opportunities and challenges“, – reference: , Bd. 247, S. 118834, Feb. 2022. Doi: 10.1016/j.neuroimage.2021.118834. – volume: 90 start-page: 626 year: Nov. 2003 end-page: 632 ident: b0015 article-title: Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition – reference: , Bd. 81, Nr. 5, S. 2173–2181, Nov. 1996. Doi: 10.1152/jappl.1996.81.5.2173. – reference: D. Sometti – reference: , Bd. 40, Nr. 2, S. 025009, März 2019. Doi: 10.1088/1361-6579/ab057e. – reference: , Bd. 58, Nr. 3, S. 115–130, Juni 1979. – reference: , Bd. 44, Nr. 10, S. 948–957, Okt. 1997. Doi: 10.1109/10.634647. – reference: , S. 195–220, 2012. – start-page: 183 year: 2011 end-page: 228 ident: b0010 article-title: „Training von Kraft, Ausdauer und Schnelligkeit“, in – reference: A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, und C. Limsakul, „The usefulness of mean and median frequencies in electromyography analysis“, – volume: 7 start-page: 226 year: 1984 end-page: 228 ident: b0030 article-title: Henneman’s ‘size principle’: current issues – reference: A. Verdonck, M. Wiek, und C. Wilke, „Testverfahren“, in – reference: , Bd. 12, S. 2310, 2021. Doi: 10.3389/fphys.2021.724755. – reference: , Bd. 10, Nr. 5, S. 337–349, Okt. 2000. Doi: 10.1016/S1050-6411(00)00025-0. – volume: S. 156869 start-page: 2011 year: 2011 ident: b0095 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data – reference: , „Optically pumped magnetometers reveal fasciculations non-invasively“, – reference: T. Moritani und H. A. deVries, „Neural factors versus hypertrophy in the time course of muscle strength gain“, – year: 2023 ident: b0055 article-title: High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study publication-title: , – reference: E. C. Hill, T. J. Housh, J. L. Keller, C. M. Smith, R. J. Schmidt, und G. O. Johnson, „The validity of the EMG and MMG techniques to examine muscle hypertrophy“, – reference: E. J. Higbie, K. J. Cureton, G. L. Warren, und B. M. Prior, „Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation“, – volume: 21 start-page: 114 year: Aug. 1972 end-page: 116 ident: b0045 article-title: Magnetomyography: magnetic fields around the human body produced by skeletal muscles publication-title: , – volume: 55 start-page: 1956 year: Aug. 2008 end-page: 1965 ident: b0115 article-title: Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb – reference: , Bd. 53, Nr. 6, S. B415-423, Nov. 1998. Doi: 10.1093/gerona/53a.6.b415. – reference: K. Häkkinen – reference: , „Alignment of magnetic sensing and clinical magnetomyography“, – reference: J. Marquetand – volume: 118 start-page: 1831 year: Sep. 2018 end-page: 1843 ident: b0085 article-title: Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training – start-page: 344 year: 2004 end-page: 350 ident: b0110 article-title: Temporal vs. spectral approach to feature extraction from prehensile EMG signals publication-title: In – year: 2007 ident: b0005 – reference: , Bd. 17, 2023, Zugegriffen: 13. Juli 2023. [Online]. Verfügbar unter: https://www.frontiersin.org/articles/10.3389/fnins.2023.1154572. – reference: , „A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography“, – volume: 220 start-page: 287 year: 2012 end-page: 295 ident: b0145 article-title: Training-related decrease in antagonist muscles activation is associated with increased motor cortex activation: evidence of central mechanisms for control of antagonist muscles – volume: 50 start-page: 262 year: Feb. 2003 end-page: 265 ident: b0105 article-title: Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency – volume: 15 start-page: 455 year: 1983 end-page: 460 ident: b0140 article-title: Electromyographic changes during strength training and detraining – volume: 18 start-page: 1 year: 2017 end-page: 15 ident: b0150 article-title: Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training – reference: N. Ghahremani Arekhloo – reference: , „Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men“, – reference: , „Muscle Fatigue Revisited – Insights From Optically Pumped Magnetometers“, – volume: 73 start-page: 830 year: 1993 end-page: 843 ident: b0025 article-title: Motor unit recruitment and the gradation of muscle force – reference: , Bd. 3, I. Froböse, G. Nellessen, und C. Wilke, Hrsg., Jena: Elsevier Urban & Fischer Verlag, 2010. – reference: D. Farina und R. Merletti, „Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions“, – reference: N. Holmes – ident: 10.1016/j.jelekin.2025.103012_b0040 doi: 10.3389/fphys.2021.724755 – volume: 118 start-page: 1831 issue: 9 year: 2018 ident: 10.1016/j.jelekin.2025.103012_b0085 article-title: Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training publication-title: Eur J Appl Physiol doi: 10.1007/s00421-018-3918-8 – volume: 55 start-page: 1956 issue: 8 year: 2008 ident: 10.1016/j.jelekin.2025.103012_b0115 article-title: Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.919734 – start-page: 344 year: 2004 ident: 10.1016/j.jelekin.2025.103012_b0110 article-title: Temporal vs. spectral approach to feature extraction from prehensile EMG signals – ident: 10.1016/j.jelekin.2025.103012_b0035 doi: 10.3389/fnins.2023.1154572 – ident: 10.1016/j.jelekin.2025.103012_b0130 doi: 10.1152/jappl.1996.81.5.2173 – volume: 15 start-page: 455 issue: 6 year: 1983 ident: 10.1016/j.jelekin.2025.103012_b0140 article-title: Electromyographic changes during strength training and detraining publication-title: Med Sci Sports Exerc doi: 10.1249/00005768-198315060-00003 – ident: 10.1016/j.jelekin.2025.103012_b0070 doi: 10.1016/j.clinph.2021.06.009 – ident: 10.1016/j.jelekin.2025.103012_b0065 – ident: 10.1016/j.jelekin.2025.103012_b0125 doi: 10.1093/gerona/53A.6.B415 – volume: 73 start-page: 830 issue: 12 year: 1993 ident: 10.1016/j.jelekin.2025.103012_b0025 article-title: Motor unit recruitment and the gradation of muscle force publication-title: Physical Therapy doi: 10.1093/ptj/73.12.830 – year: 2007 ident: 10.1016/j.jelekin.2025.103012_b0005 – volume: 50 start-page: 262 issue: 2 year: 2003 ident: 10.1016/j.jelekin.2025.103012_b0105 article-title: Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2002.807641 – volume: S. 156869 start-page: 2011 year: 2011 ident: 10.1016/j.jelekin.2025.103012_b0095 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput Intell Neurosci – ident: 10.1016/j.jelekin.2025.103012_b0135 – ident: 10.1016/j.jelekin.2025.103012_b0075 doi: 10.1016/j.neuroimage.2018.07.028 – volume: 7 start-page: 226 issue: 7 year: 1984 ident: 10.1016/j.jelekin.2025.103012_b0030 article-title: Henneman’s ‘size principle’: current issues publication-title: Trends in Neurosciences doi: 10.1016/S0166-2236(84)80210-6 – ident: 10.1016/j.jelekin.2025.103012_b0080 doi: 10.1016/j.neuroimage.2021.118834 – start-page: 183 year: 2011 ident: 10.1016/j.jelekin.2025.103012_b0010 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.jelekin.2025.103012_b0150 article-title: Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training publication-title: BMC Musculoskeletal Disorders doi: 10.1186/s12891-017-1397-4 – year: 2023 ident: 10.1016/j.jelekin.2025.103012_b0055 article-title: High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study publication-title: J. Neural Eng., doi: 10.1088/1741-2552/ace7f7 – volume: 422 start-page: 596 issue: 6932 year: 2003 ident: 10.1016/j.jelekin.2025.103012_b0060 article-title: A subfemtotesla multichannel atomic magnetometer publication-title: Nature doi: 10.1038/nature01484 – volume: 21 start-page: 114 issue: 3 year: 1972 ident: 10.1016/j.jelekin.2025.103012_b0045 article-title: Magnetomyography: magnetic fields around the human body produced by skeletal muscles publication-title: Appl. Phys. Lett., doi: 10.1063/1.1654294 – ident: 10.1016/j.jelekin.2025.103012_b0120 doi: 10.5772/50639 – ident: 10.1016/j.jelekin.2025.103012_b0100 doi: 10.1016/S1050-6411(00)00025-0 – volume: 220 start-page: 287 year: 2012 ident: 10.1016/j.jelekin.2025.103012_b0145 article-title: Training-related decrease in antagonist muscles activation is associated with increased motor cortex activation: evidence of central mechanisms for control of antagonist muscles publication-title: Experimental Brain Research doi: 10.1007/s00221-012-3137-1 – ident: 10.1016/j.jelekin.2025.103012_b0050 doi: 10.1109/10.634647 – ident: 10.1016/j.jelekin.2025.103012_b0090 doi: 10.1088/1361-6579/ab057e – volume: 59 start-page: 310 issue: 4 year: 1989 ident: 10.1016/j.jelekin.2025.103012_b0020 article-title: Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps publication-title: Eur J Appl Physiol Occup Physiol doi: 10.1007/BF02388334 – volume: 90 start-page: 626 issue: 5–6 year: 2003 ident: 10.1016/j.jelekin.2025.103012_b0015 article-title: Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition publication-title: Eur J Appl Physiol doi: 10.1007/s00421-003-0930-3 |
SSID | ssj0017080 |
Score | 2.4304488 |
Snippet | Muscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to measure... AbstractMuscle strength training leads to neuromuscular adaptations that can be monitored by electromyography (EMG). In view of new technical possibilities to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 103012 |
SubjectTerms | Adaptation, Physiological - physiology Adult Biceps Electromyography - methods EMG Female Force Humans Magnetometry - instrumentation Magnetometry - methods Male MMG Muscle Muscle Contraction - physiology Muscle Fatigue - physiology Muscle, Skeletal - physiology Myography - instrumentation Myography - methods OPM Physical Medicine and Rehabilitation Quantum sensor Resistance Training - methods Training Training adaptations Young Adult |
Title | Training adaptations in magnetomyography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1050641125000380 https://www.clinicalkey.es/playcontent/1-s2.0-S1050641125000380 https://dx.doi.org/10.1016/j.jelekin.2025.103012 https://www.ncbi.nlm.nih.gov/pubmed/40344791 https://www.proquest.com/docview/3202399755 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6iFy_ib-cvKoh46dq0zbIex3BMxV3cwFt4Td9kk3XDbgcv_u2-tOlEdCgeW_pI-yV535fmvRfGLuOUWFMjuBwB3QiDxG1CmLjDQDfSeAjEMiZ3-KHX6A6iuyfxtMbaVS6MCau0vr_06YW3tnc8i6Y3G428R1IGxKekF0Sxv2XW7VEkzSivvy_DPLj0m2VFAkHLJHr6M4vHG9fH5NpfRqYMaiBM-rnPg1X8tEp_FjzU2WZbVkA6rfIdd9gaZrtsr5XR4nny5lw5RUhn8a98j1337QEQDqQwKzfdc2eUORN4ztAY2ILV-2zQuem3u649GsHVxCZzV_opIkcMGzoVQCqOp_StKEJMNE0k1BKkjyB1oLUYauAxJoSRJr0WAwCGB2w9m2Z4xJwoREgSnnBT_AqFhqEkFSBTTInfgkjUWL0CRM3KChiqCg0bK4ugMgiqEsEaa1SwqSq9kxySIh_9m6H8yRBzO61yxVUeKF996_oaay4tv4yevzR6UfWsoplltksgw-kiV8XJ8nEsBUFwWHb5EoCoqJQY8-P_N3zCNs1VGXZ2ytbnrws8I4EzT86LEXzONlq3993eB_J_-hc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBvCnPICHEkjZO4rgZK0RVoGWhSGzWxbmiFhEq0g4s_HbOiVOEAIFYk5ycfPbdfY7vwdhJnJLX1AguR0A3RD9xWxAk7tDXURoPgbyMyR3u30Tdu_DqXtzX2HmVC2PCKq3tL216Ya3tlaZFszkZjZq3xAzInxJfEMX5Fu3bF0NSX9PGoPE2j_Pg0muVJQkE7ZPo8Y80nua4MSbb_jgydVB9YfLPPe7_5KB-IqCFI-qsshXLIJ12-ZJrrIbZOttoZ7R7fnp1Tp0iprP4Wb7Bzga2A4QDKUzKU_fcGWXOEzxkaARsxepNdte5GJx3XdsbwdXkTqau9FJEjhhEOhVANI6n9K0oAkw0aRJqCdJDkNrXWgw18BgTAkkTYYsBAIMttpA9Z7jDnDBASBKecFP9CoWGoSQaIFNMycH5oaizRgWImpQlMFQVGzZWFkFlEFQlgnUWVbCpKr-TLJIiI_2boPxOEHOrV7niKveVp77MfZ215pKfls9fBj2uZlaRapnzEsjweZarorV8HEtBEGyXUz4HICxKJcZ89_8DH7Gl7qDfU73Lm-s9tmzulDFo-2xh-jLDA2I70-SwWM3voub7pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+adaptations+in+magnetomyography&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Br%C3%BCmmer%2C+Tim&rft.au=Lu%2C+Hongyu&rft.au=Yang%2C+Haodi&rft.au=Baier%2C+Lukas&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=1050-6411&rft.volume=82&rft_id=info:doi/10.1016%2Fj.jelekin.2025.103012&rft.externalDocID=S1050641125000380 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10506411%2FS1050641125X00031%2Fcov150h.gif |