Wavelength-Switchable Ytterbium-Doped Mode-Locked Fiber Laser Based on a Vernier Effect Filter
A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach–Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier...
Saved in:
Published in | Micromachines (Basel) Vol. 15; no. 11; p. 1289 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.10.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2072-666X 2072-666X |
DOI | 10.3390/mi15111289 |
Cover
Loading…
Abstract | A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach–Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized. When the 3 dB bandwidth of the Vernier effect filter is set to be 5.31 nm around 1073.42 nm, stable dissipative solitons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses can be switched among 1073.42 nm, 1055.38 nm, and 1036.22 nm, with a total tunable central wavelength range of 37.2 nm. When the 3 dB bandwidth of the Vernier effect filter is set to be 4.07 nm, stable amplifier similaritons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses are switchable among 1072.71 nm, 1060.15 nm, 1048.92 nm, and 1037.26 nm, with a total tunable central wavelength range of 35.15 nm. Compared with traditional fiber interference filters, the Vernier effect filter has a higher sensitivity, making wavelength switching more convenient and providing a wider tuning range for the ytterbium-doped mode-locked fiber laser. |
---|---|
AbstractList | A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach–Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized. When the 3 dB bandwidth of the Vernier effect filter is set to be 5.31 nm around 1073.42 nm, stable dissipative solitons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses can be switched among 1073.42 nm, 1055.38 nm, and 1036.22 nm, with a total tunable central wavelength range of 37.2 nm. When the 3 dB bandwidth of the Vernier effect filter is set to be 4.07 nm, stable amplifier similaritons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses are switchable among 1072.71 nm, 1060.15 nm, 1048.92 nm, and 1037.26 nm, with a total tunable central wavelength range of 35.15 nm. Compared with traditional fiber interference filters, the Vernier effect filter has a higher sensitivity, making wavelength switching more convenient and providing a wider tuning range for the ytterbium-doped mode-locked fiber laser. A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach-Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized. When the 3 dB bandwidth of the Vernier effect filter is set to be 5.31 nm around 1073.42 nm, stable dissipative solitons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses can be switched among 1073.42 nm, 1055.38 nm, and 1036.22 nm, with a total tunable central wavelength range of 37.2 nm. When the 3 dB bandwidth of the Vernier effect filter is set to be 4.07 nm, stable amplifier similaritons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses are switchable among 1072.71 nm, 1060.15 nm, 1048.92 nm, and 1037.26 nm, with a total tunable central wavelength range of 35.15 nm. Compared with traditional fiber interference filters, the Vernier effect filter has a higher sensitivity, making wavelength switching more convenient and providing a wider tuning range for the ytterbium-doped mode-locked fiber laser.A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach-Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized. When the 3 dB bandwidth of the Vernier effect filter is set to be 5.31 nm around 1073.42 nm, stable dissipative solitons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses can be switched among 1073.42 nm, 1055.38 nm, and 1036.22 nm, with a total tunable central wavelength range of 37.2 nm. When the 3 dB bandwidth of the Vernier effect filter is set to be 4.07 nm, stable amplifier similaritons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses are switchable among 1072.71 nm, 1060.15 nm, 1048.92 nm, and 1037.26 nm, with a total tunable central wavelength range of 35.15 nm. Compared with traditional fiber interference filters, the Vernier effect filter has a higher sensitivity, making wavelength switching more convenient and providing a wider tuning range for the ytterbium-doped mode-locked fiber laser. |
Audience | Academic |
Author | Li, Xiangdong Zhang, Liqiang Liu, Yuanzhen Wang, Minghong Li, Jiaxin Xu, Hailong Yao, Yicun |
AuthorAffiliation | School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China; 2220110605@stu.lcu.edu.cn (H.X.); 2310110404@stu.lcu.edu.cn (X.L.); 2320110604@stu.lcu.edu.cn (J.L.); 2320110606@stu.lcu.edu.cn (Y.L.); yaoyicun@lcu.edu.cn (Y.Y.) |
AuthorAffiliation_xml | – name: School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China; 2220110605@stu.lcu.edu.cn (H.X.); 2310110404@stu.lcu.edu.cn (X.L.); 2320110604@stu.lcu.edu.cn (J.L.); 2320110606@stu.lcu.edu.cn (Y.L.); yaoyicun@lcu.edu.cn (Y.Y.) |
Author_xml | – sequence: 1 givenname: Hailong surname: Xu fullname: Xu, Hailong – sequence: 2 givenname: Liqiang orcidid: 0000-0003-1854-5837 surname: Zhang fullname: Zhang, Liqiang – sequence: 3 givenname: Xiangdong surname: Li fullname: Li, Xiangdong – sequence: 4 givenname: Jiaxin surname: Li fullname: Li, Jiaxin – sequence: 5 givenname: Yuanzhen orcidid: 0009-0004-6643-4626 surname: Liu fullname: Liu, Yuanzhen – sequence: 6 givenname: Yicun orcidid: 0000-0001-7345-3404 surname: Yao fullname: Yao, Yicun – sequence: 7 givenname: Minghong surname: Wang fullname: Wang, Minghong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39597103$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktv1DAQxy1URB_0wgdAkbggpBQ7Tvw4oba0UGkRB94XLMcZ73pJ7MVJWvHtGbqltNjSeDT--e8Ze_bJTkwRCHnC6BHnmr4cAmsYY5XSD8heRWVVCiG-7tzxd8nhOK4pDik1mkdkl-tGS0b5Hvn-xV5CD3E5rcoPV2FyK9v2UHybJshtmIfyddpAV7xLHZSL5H6gfx5ayMXCjmhP0HZFioUtPkOOAUNn3oObkOpR4jF56G0_wuHNekA-nZ99PH1bLt6_uTg9XpSulmwqhVfANbcdVLrxVLWylbqlTEnlXQVVLSpdUc25qLX03vNa10KyxnlGaw-UH5CLrW6X7Npschhs_mWSDeY6kPLS2DwF14NRtaRaSOup47WrvGZSdo3QzgMwkAK1Xm21NnM7QOcgTtn290Tv78SwMst0aRhrNCaoUOH5jUJOP2cYJzOE0UHf2whpHg1nnNeNEqpB9Nl_6DrNOeJbXVMMP5BypI621NJiBSH6hBc7nB0MwWFD-IDxY8UUr2lDJR54ereG2-T_fjwCL7aAy2kcM_hbhFHzp7HMv8bivwFkJrzr |
Cites_doi | 10.1002/adom.202202945 10.1109/JLT.2020.2971666 10.1364/OE.20.007088 10.1109/LPT.2011.2146766 10.1016/j.optlastec.2021.106923 10.1016/j.optlastec.2016.12.012 10.1364/OL.40.004329 10.1364/OE.518087 10.1016/j.yofte.2024.103757 10.1364/OL.460051 10.1364/AO.420137 10.1109/JLT.2019.2904980 10.1016/j.infrared.2022.104409 10.1016/j.optlastec.2024.111082 10.1002/lpor.202000588 10.1109/JSEN.2024.3378713 10.1016/j.optlastec.2024.110825 10.1364/OL.37.003828 10.1016/j.optlastec.2021.107764 10.1016/j.rinp.2022.106035 10.1016/j.optlastec.2020.106889 10.1016/j.optcom.2016.11.039 10.3788/COL202321.041401 10.1109/JSEN.2024.3389745 10.1364/OE.22.011417 10.1364/OE.415857 10.1142/S0217984922500543 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.3390/mi15111289 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Collection (ProQuest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_8470967af0c34c2f9177d569cfee1e76 PMC11596498 A818340507 39597103 10_3390_mi15111289 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Liaocheng University grantid: 318052199 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2022MF258 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS NPM PMFND 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-6f8e393ade295f08b7b79b01878fc2e24629209336497fff34946715cf104fe03 |
IEDL.DBID | BENPR |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:26:14 EDT 2025 Thu Aug 21 18:35:28 EDT 2025 Fri Jul 11 11:21:45 EDT 2025 Fri Jul 25 11:57:25 EDT 2025 Tue Jun 10 21:03:55 EDT 2025 Wed Feb 19 02:03:53 EST 2025 Tue Jul 01 03:41:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Vernier effect Mach–Zehnder interferometer nonlinear polarization rotation passively mode-locked fiber laser wavelength switchable |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-6f8e393ade295f08b7b79b01878fc2e24629209336497fff34946715cf104fe03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0004-6643-4626 0000-0001-7345-3404 0000-0003-1854-5837 |
OpenAccessLink | https://www.proquest.com/docview/3133166603?pq-origsite=%requestingapplication% |
PMID | 39597103 |
PQID | 3133166603 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8470967af0c34c2f9177d569cfee1e76 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11596498 proquest_miscellaneous_3133458685 proquest_journals_3133166603 gale_infotracacademiconefile_A818340507 pubmed_primary_39597103 crossref_primary_10_3390_mi15111289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241023 |
PublicationDateYYYYMMDD | 2024-10-23 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241023 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationTitleAlternate | Micromachines (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Huang (ref_9) 2014; 22 Zhao (ref_12) 2022; 148 Naku (ref_27) 2024; 24 Michalska (ref_7) 2021; 138 Harun (ref_22) 2024; 84 Ahmad (ref_30) 2017; 387 Zhang (ref_29) 2012; 37 Wang (ref_21) 2024; 32 Wen (ref_6) 2022; 12478 Zhao (ref_25) 2021; 29 Zou (ref_10) 2017; 92 Zhu (ref_13) 2011; 23 Yang (ref_18) 2023; 21 Li (ref_1) 2021; 138 Fan (ref_2) 2023; 11 Zhang (ref_28) 2020; 38 Wang (ref_8) 2022; 47 Thulasi (ref_15) 2022; 127 Fu (ref_26) 2024; 175 Zheng (ref_5) 2022; 36 Wang (ref_14) 2015; 40 Gomes (ref_20) 2021; 15 Liu (ref_3) 2012; 20 Luo (ref_4) 2010; 3 Ridha (ref_16) 2021; 60 Huang (ref_19) 2022; 42 Yang (ref_23) 2024; 177 Guo (ref_11) 2019; 37 Merza (ref_17) 2024; 63 Cheng (ref_24) 2024; 24 |
References_xml | – volume: 11 start-page: 2202945 year: 2023 ident: ref_2 article-title: Advances of mode-locking fiber lasers in neural imaging publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202202945 – volume: 38 start-page: 1966 year: 2020 ident: ref_28 article-title: Room-temperature power-stabilized narrow-linewidth tunable erbium-doped fiber ring laser based on cascaded Mach-Zehnder interferometers with different free spectral range for strain sensing publication-title: J. Light. Technol. doi: 10.1109/JLT.2020.2971666 – volume: 20 start-page: 7088 year: 2012 ident: ref_3 article-title: Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF publication-title: Opt. Express doi: 10.1364/OE.20.007088 – volume: 23 start-page: 956 year: 2011 ident: ref_13 article-title: Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2011.2146766 – volume: 138 start-page: 106923 year: 2021 ident: ref_7 article-title: Dispersion managed thulium-doped fiber laser mode-locked by the nonlinear loop mirror publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2021.106923 – volume: 92 start-page: 133 year: 2017 ident: ref_10 article-title: Widely tunable all-fiber SESAM mode-locked ytterbium laser with a linear cavity publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2016.12.012 – volume: 40 start-page: 4329 year: 2015 ident: ref_14 article-title: Widely tunable mode-locked fiber laser using carbon nanotube and LPG W-shaped filter publication-title: Opt. Lett. doi: 10.1364/OL.40.004329 – volume: 32 start-page: 14582 year: 2024 ident: ref_21 article-title: Ultra-sensitive pressure sensor with low-temperature crosstalk based on the Vernier effect and helical structure publication-title: Opt. Express doi: 10.1364/OE.518087 – volume: 84 start-page: 103757 year: 2024 ident: ref_22 article-title: Vernier effect based on cascading two Mach–Zehnder interferometers for selectable comb filter and saturable absorber applications in erbium-doped fiber laser publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2024.103757 – volume: 47 start-page: 2698 year: 2022 ident: ref_8 article-title: Wavelength and bandwidth tunable filter and its application in a dissipative soliton fiber laser publication-title: Opt. Lett. doi: 10.1364/OL.460051 – volume: 60 start-page: 3290 year: 2021 ident: ref_16 article-title: Stable evanescent wave mode-locked laser based on a photonic-crystal-fiber-induced Mach–Zehnder filter as a gain-tilt equalizer publication-title: Appl. Opt. doi: 10.1364/AO.420137 – volume: 37 start-page: 2370 year: 2019 ident: ref_11 article-title: Tunable ytterbium-doped mode-locked fiber laser based on single-walled carbon nanotubes publication-title: J. Light. Technol. doi: 10.1109/JLT.2019.2904980 – volume: 127 start-page: 104409 year: 2022 ident: ref_15 article-title: Dual wavelength generation and wavelength tunability in Yb-doped mode-locked laser using few-mode fiber as a saturable absorber publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104409 – volume: 177 start-page: 111082 year: 2024 ident: ref_23 article-title: Ultrasensitive RI and temperature sensor based on cascaded microfiber MZIs with Vernier effect publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2024.111082 – volume: 15 start-page: 2000588 year: 2021 ident: ref_20 article-title: Optical Vernier effect: Recent advances and developments publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202000588 – volume: 24 start-page: 13758 year: 2024 ident: ref_27 article-title: Optical fiber sensors based on advanced vernier Effect-A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3378713 – volume: 175 start-page: 110825 year: 2024 ident: ref_26 article-title: Highly sensitive fiber force sensor based on cascaded Fabry-Perot cavities and Vernier effect publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2024.110825 – volume: 63 start-page: 046104 year: 2024 ident: ref_17 article-title: Switchable mode-locked ytterbium-doped fiber laser based on macrobending loss tuning of figure-eight knot fiber structure publication-title: Opt. Eng. – volume: 37 start-page: 3828 year: 2012 ident: ref_29 article-title: Tunable all-fiber dissipative-soliton laser with a multimode interference filter publication-title: Opt. Lett. doi: 10.1364/OL.37.003828 – volume: 3 start-page: 64 year: 2010 ident: ref_4 article-title: Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter publication-title: IEEE Photonics J. – volume: 148 start-page: 107764 year: 2022 ident: ref_12 article-title: Tunable ytterbium fiber laser mode-locked with a nonlinear amplifying loop mirror publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2021.107764 – volume: 42 start-page: 106035 year: 2022 ident: ref_19 article-title: Generation of dissipative solitons and self-similar pulses by a mode-locked fiber laser using a bandwidth tunable Mach-Zehnder interferometer filter publication-title: Results Phys. doi: 10.1016/j.rinp.2022.106035 – volume: 138 start-page: 106889 year: 2021 ident: ref_1 article-title: A feasibility study on high-power fiber laser cutting of thick CFRP laminates using single-pass strategy publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106889 – volume: 387 start-page: 84 year: 2017 ident: ref_30 article-title: Sub-nanometer tuning of mode-locked pulse by mechanical strain on tapered fiber publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.11.039 – volume: 21 start-page: 041401 year: 2023 ident: ref_18 article-title: Wavelength-tunable mode-locked fiber laser based on an all-fiber Mach–Zehnder interferometer filter publication-title: Chin. Opt. Lett. doi: 10.3788/COL202321.041401 – volume: 24 start-page: 19090 year: 2024 ident: ref_24 article-title: Multi-parameter sensing of the vernier effect based on cascaded Sagnac and Fabry-Perot interferometers publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3389745 – volume: 22 start-page: 11417 year: 2014 ident: ref_9 article-title: Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser publication-title: Opt. Express doi: 10.1364/OE.22.011417 – volume: 12478 start-page: 1247810 year: 2022 ident: ref_6 article-title: Passively Q-switched erbium-doped fiber laser based on carbon nanotube saturable absorber publication-title: Proceeding SPIE – volume: 29 start-page: 1090 year: 2021 ident: ref_25 article-title: Ultrasensitive temperature sensor with Vernier-effect improved fiber Michelson interferometer publication-title: Opt. Express doi: 10.1364/OE.415857 – volume: 36 start-page: 2250054 year: 2022 ident: ref_5 article-title: Performance tunable passively Q-switched fiber laser based on single wall carbon nanotube publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984922500543 |
SSID | ssj0000779007 |
Score | 2.3127356 |
Snippet | A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach–Zehnder interferometers (MZIs, denoted as MZI1, MZI2)... A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach-Zehnder interferometers (MZIs, denoted as MZI1, MZI2)... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1289 |
SubjectTerms | Bandwidths Equipment and supplies Fiber lasers Fiber optics Laser applications Laser mode locking Lasers Mach-Zehnder interferometers Mach–Zehnder interferometer nonlinear polarization rotation passively mode-locked fiber laser Sensors Solitary waves Stretching Vernier effect wavelength switchable Wavelengths Ytterbium |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMoyAgkTlbj2PHj2AKrChUuUCgXLNtr0z00W2131b_PTJIuWXHgwiWKYkdyZjLzzWjsbwDeBCeSyUVxgwktV0ZpHpWsOboFKVshQ05U0f30WR-fqo9n7dmk1RftCRvogQfBHaD3xCjbhFInqVJTML0w81a7VHIW2fRk24h5k2Sq98FEo1ebgY9UYl5_cLFAbMPggvq5TxCoJ-r_2x1P8Gh3r-QEfGb34O4YNbLDYbX34VbuHsCdCZfgQ_j5PVAPie7X-px_uV6gMuhQFPtBp3XiYnPB3y8v85xR7zN-gk4Q72e0W4SdII6t2BFe52zZscC-5VWHYMkGYmOcRQX1R3A6-_D13TEfmyfwhHiz5rrYLJ0M89y4ttQ2mmhcpBZ8tqQmN0pTnyonpVbOlFKIpkYb0aaCCVrJtXwMe92yy0-B6aSEdSGKJIrCYSuSjlFF4VTKsegKXt8I1F8OHBkecwsSu_8j9gqOSNbbGcRr3T9AbftR2_5f2q7gLWnKk_WhOlIYDxHgQonHyh9i_CExBq1NBfs3yvSjWV55iT8g1UlrWcGr7TAaFFVJQpeXm2GOaq22bQVPBt1v1ywd5l-C3rY7f8XOR-2OdIvznrQbI2-HorbP_ocYnsPtBoMrwtBG7sPeerXJLzA4WseXvR38Bmo0C8o priority: 102 providerName: Directory of Open Access Journals |
Title | Wavelength-Switchable Ytterbium-Doped Mode-Locked Fiber Laser Based on a Vernier Effect Filter |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39597103 https://www.proquest.com/docview/3133166603 https://www.proquest.com/docview/3133458685 https://pubmed.ncbi.nlm.nih.gov/PMC11596498 https://doaj.org/article/8470967af0c34c2f9177d569cfee1e76 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY9wIPaOMzbKuMQOLJWhw7_nhCK1uZ0JgQMBgvRLFjb31YUrpW_PvcJWnXahIvVVU7qnNn3-_OZ_-OkLel5V6HKJmGgJZJLRVzUqQMzIIQORdl8JjR_XyuTi_kp8v8st9wu-2PVS5tYmuoq8bjHvmhgGcxxZWK99M_DKtGYXa1L6GxRbbBBJt8QLZHJ-dfvq52WVKk00t1x0sqIL4_vJkAxoGTgXXd15CoJey_b5bXcGnzzOQaCI13yOPee6RHnbp3yYNQPyGP1jgFn5LfP0usJVFfza_Zt78TUApejqK_8NaOmyxu2HEzDRXFGmjsDIwhfB_jqRF6Bng2oyP4rGhT05L-CLMaQJN2BMfQCxPrz8jF-OT7h1PWF1FgHnBnzlQ0QVhRViGzeUyN005bh6X4TPRZyKTCelVWCCWtjjEiXY3SPPcRArUYUvGcDOqmDi8JVV5yY0vHPY8Smg33yjnpuJU-uKgS8mYp0GLacWUUEGOg2Is7sSdkhLJe9UB-6_aHZnZV9MulAMyE2EqXMfVC-ixCUKmrXFkfQ-BBw1-9Q00VuApBHb7sLxPAQJHPqjgCP0SAL5rqhOwvlVn0y_O2uJtMCXm9aoaFhdmSsg7Nousjc6NMnpAXne5XYxYW4jCOT5uNWbHxUpst9eS6Je8GD9yCqM2r_49rjzzMwH1ClMzEPhnMZ4twAO7P3A3Jlhl_HPYzfdhuIvwDqAEGig |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGdgAOiG8CA4wAcbIWx44dHxBa2aqOdRWCjY0LIXbsrYclpWs18U_xN_Jek3atkLjtUkW1k7rv6_denv0eIW8Kw532QTINAS2TWipmpYgZmAUhUi4K7zCjezBQvSP56SQ9WSN_5mdhcFvl3CbODHVZO3xHviXgXkxxxeLD6BfDrlGYXZ230GjEYt__voSQ7eL93g7w922SdHcPP_ZY21WAOTDEE6ZC5oURRekTk4Y4s9pqY7E3XRZc4hOpsIETxPlKGh1CwPotSvPUBYhcgo8FPPcG2QA3w4AWbXR2B5-_LN7qxFi-L9ZNHVQhTLx1PgRMBacG-8gvId-sQcC_MLCEg6t7NJdAr3uX3Gm9VbrdiNc9suar--T2Ug3DB-THcYG9K6rTyRn7ejkEIcDDWPQ7nhKyw-k526lHvqTYc431wfjCdRd3qdA-4OeYduCzpHVFC_rNjysAadoUVIZZmMh_SI6uhbyPyHpVV_4JocpJnpnCcseDhOGMO2WttNxI521QEXk9J2g-ampz5BDTINnzK7JHpIO0XszAetqzL-rxad6qZw4YDbGcLkLshHRJgCBWl6kyLnjPvYafeoecylHrgR2uaA8vwEKxfla-DX6PAN831hHZnDMzb83BRX4lvBF5tRgGRcbsTFH5etrMkWmmsjQijxveL9YsDMR9HO_OVqRi5U-tjlTDs1mxcPD4DZA6e_r_db0kN3uHB_28vzfYf0ZuJeC6IUInYpOsT8ZT_xxcr4l90co7JT-vW8X-AtcEP8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkLwgPhPYYARIJ6sJrFjxw8IrXTVxso0AYPxQohde-vDktK1mvhqfDrumrRrhcTbXqIodhLn7ny_u5x9B_CqMLHTPkiu0aHlUkvFrRQRR7UgRBqLwjuK6H48ULtH8sNxerwBfxZ7YWhZ5UInzhX1sHL0j7wj8F4KcUWiE5plEYe9_rvxL04VpCjSuiinUYvIvv99ge7b-du9HvL6dZL0d7683-VNhQHuUClPuQqZF0YUQ5-YNESZ1VYbS3XqsuASn0hFxZzQ51fS6BAC5XJROk5dQC8m-Ejgc6_BpkZUzFqw2d05OPy0_MMTUSq_SNc5UYUwUedshPiKBg7VlF9BwXmxgH8hYQUT19drrgBg_zbcaixXtl2L2h3Y8OVduLmSz_Ae_PhWUB2L8mR6yj9fjFAgaGMW-047huxodsZ71dgPGdVf4wNUxHjepxUrbIBYOmFdPA5ZVbKCffWTEgGb1cmVsRcF9e_D0ZWQ9wG0yqr0j4ApJ-PMFDZ2cZDYnMVOWSttbKTzNqg2vFwQNB_XeTpy9G-I7Pkl2dvQJVove1Bu7fmFanKSN1M1R7xGv04XIXJCuiSgQ6uHqTIueB97ja96Q5zKSQMgO1zRbGTAgVIurXwbbSCBdnCk27C1YGbeqIbz_FKQ2_Bi2YyTmiI1RemrWd1HppnK0jY8rHm_HLMw6APGdHe2JhVrH7XeUo5O54nD0fo3SOrs8f_H9Ryu49TKB3sH-0_gRoJWHIF1IragNZ3M_FO0wqb2WSPuDH5e9Qz7C5nwQ_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelength-Switchable+Ytterbium-Doped+Mode-Locked+Fiber+Laser+Based+on+a+Vernier+Effect+Filter&rft.jtitle=Micromachines+%28Basel%29&rft.au=Xu%2C+Hailong&rft.au=Zhang%2C+Liqiang&rft.au=Li%2C+Xiangdong&rft.au=Li%2C+Jiaxin&rft.date=2024-10-23&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=15&rft.issue=11&rft.spage=1289&rft_id=info:doi/10.3390%2Fmi15111289&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |