Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Transitional Memory CD8+ T Cells

Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 85; no. 4; pp. 1696 - 1705
Main Authors Killian, M. Scott, Johnson, Carl, Teque, Fernando, Fujimura, Sue, Levy, Jay A.
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.02.2011
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/JVI.01120-10

Cover

Loading…
Abstract Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8(+) cell subsets having strong CNAR activity. CD8(+) cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8(+) cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA(-) CD27(+) and PD-1(+) (CD279(+)) cells. Functional assessments of CD8(+) cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA(-) CCR7(-) CD27(+) and PD-1(+) CD8(+) cells. T cell receptor (TCR) repertoire profiles of CD8(+) cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8(+) cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8(+) cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.
HIV replication is suppressed in vitro by a CD8+ cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8+ cell subsets having strong CNAR activity. CD8+ cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naieve aviremic elite controllers (EC). CD8+ cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA- CD27+ and PD-1+ (CD279+) cells. Functional assessments of CD8+ cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA- CCR7- CD27+ and PD-1+ CD8+ cells. T cell receptor (TCR) repertoire profiles of CD8+ cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8+ cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8+ cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.
HIV replication is suppressed in vitro by a CD8 + cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8 + cell subsets having strong CNAR activity. CD8 + cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8 + cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA − CD27 + and PD-1 + (CD279 + ) cells. Functional assessments of CD8 + cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA − CCR7 − CD27 + and PD-1 + CD8 + cells. T cell receptor (TCR) repertoire profiles of CD8 + cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8 + cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8 + cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8(+) cell subsets having strong CNAR activity. CD8(+) cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8(+) cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA(-) CD27(+) and PD-1(+) (CD279(+)) cells. Functional assessments of CD8(+) cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA(-) CCR7(-) CD27(+) and PD-1(+) CD8(+) cells. T cell receptor (TCR) repertoire profiles of CD8(+) cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8(+) cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8(+) cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8(+) cell subsets having strong CNAR activity. CD8(+) cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8(+) cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA(-) CD27(+) and PD-1(+) (CD279(+)) cells. Functional assessments of CD8(+) cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA(-) CCR7(-) CD27(+) and PD-1(+) CD8(+) cells. T cell receptor (TCR) repertoire profiles of CD8(+) cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8(+) cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8(+) cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.
HIV replication is suppressed in vitro by a CD8 + cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8 + cell subsets having strong CNAR activity. CD8 + cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8 + cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA − CD27 + and PD-1 + (CD279 + ) cells. Functional assessments of CD8 + cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA − CCR7 − CD27 + and PD-1 + CD8 + cells. T cell receptor (TCR) repertoire profiles of CD8 + cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8 + cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8 + cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.
Author M. Scott Killian
Jay A. Levy
Carl Johnson
Fernando Teque
Sue Fujimura
AuthorAffiliation Department of Medicine, University of California San Francisco, San Francisco, California 94143
AuthorAffiliation_xml – name: Department of Medicine, University of California San Francisco, San Francisco, California 94143
Author_xml – sequence: 1
  givenname: M. Scott
  surname: Killian
  fullname: Killian, M. Scott
  organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143
– sequence: 2
  givenname: Carl
  surname: Johnson
  fullname: Johnson, Carl
  organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143
– sequence: 3
  givenname: Fernando
  surname: Teque
  fullname: Teque, Fernando
  organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143
– sequence: 4
  givenname: Sue
  surname: Fujimura
  fullname: Fujimura, Sue
  organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143
– sequence: 5
  givenname: Jay A.
  surname: Levy
  fullname: Levy, Jay A.
  organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23819612$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21147929$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFG2dkDqgHSPE4juNckNAW6KIWJFgqbpbjOF1XiR3sZNH-e7zdpXxIiJNHnmdevfNxhA6cdwahx0BOAah4-f5qcUpSRDIg99AMSCWyogB2gGaEUJoVufh6iI5ivCEEGOPsATqkAKysaDVD6w9qnILq8OdpGIKJ0XqHfYvPp145vOj7yfnGtFZb4_QGX9kwRbzcDAYD_mSGzmo1bksWEV-axqrRNLje4GVQLtptJklfmt6HDZ6fied4ieem6-JDdL9VXTSP9u8x-vL2zXJ-nl18fLeYv77INCthzDjosuamaDiBshQNEaCNaoUoKa0aomvSNi3heV3UvGKMFFWZA60ZF6IuNaj8GL3a6Q5T3ZtGGzemZuUQbK_CRnpl5Z8ZZ1fy2q9lTqgQgieBk71A8N8mE0fZ26hTC8oZP0VZkTTSMpn9LykYrwgFIhL55HdTd25-biUBz_aAilp1bRqmtvEXlwuoONDEvdhxOvgYg2nvECByexwyHYe8PY70k3D6F67teLu-1Lrt_lX0dFe0ster7zYYqWIvb9ZWikIyCbzi-Q_vqscq
CitedBy_id crossref_primary_10_1371_journal_pone_0032964
crossref_primary_10_1097_QAD_0b013e32834d3c4f
crossref_primary_10_3390_v10040210
crossref_primary_10_3389_fimmu_2020_572677
crossref_primary_10_1371_journal_pone_0142086
crossref_primary_10_1097_QAD_0000000000002008
crossref_primary_10_3390_v15040894
crossref_primary_10_1111_imr_12069
crossref_primary_10_1097_QAI_0b013e318221c62a
crossref_primary_10_1097_QAD_0000000000002068
crossref_primary_10_1371_journal_pone_0166496
crossref_primary_10_1111_imm_12221
crossref_primary_10_1016_j_vetimm_2015_07_011
crossref_primary_10_1128_JVI_00437_12
crossref_primary_10_1016_j_cytogfr_2012_05_011
crossref_primary_10_3389_fimmu_2017_00936
crossref_primary_10_1097_QAI_0000000000001280
crossref_primary_10_1128_MMBR_00155_20
crossref_primary_10_1146_annurev_immunol_032414_112315
crossref_primary_10_1111_j_1365_2249_2011_04379_x
crossref_primary_10_1371_journal_pone_0104235
crossref_primary_10_3389_fimmu_2014_00202
crossref_primary_10_3389_fimmu_2023_1211221
crossref_primary_10_1089_jir_2012_0067
crossref_primary_10_4049_jimmunol_1801379
crossref_primary_10_1371_journal_pone_0088884
crossref_primary_10_4161_hv_21407
crossref_primary_10_1007_s00251_017_1021_7
crossref_primary_10_1128_JVI_02439_12
crossref_primary_10_1097_QAD_0000000000002675
crossref_primary_10_1002_eji_201142082
crossref_primary_10_1128_JVI_00802_14
Cites_doi 10.1016/j.jim.2005.07.016
10.1073/pnas.98.2.597
10.1086/315089
10.1182/blood.V92.9.3105.421k46_3105_3114
10.1073/pnas.0630379100
10.1073/pnas.92.6.2308
10.4049/jimmunol.174.3.1574
10.1128/JVI.72.12.10165-10170.1998
10.1038/35065118
10.1128/jvi.65.11.5921-5927.1991
10.1016/S0140-6736(94)90459-6
10.1093/intimm/13.4.593
10.1128/JVI.01763-08
10.1089/aid.1993.9.1079
10.1182/blood.V92.1.198.413k13_198_206
10.1016/0008-8749(90)90054-U
10.4049/jimmunol.159.10.5123
10.1002/eji.1830200431
10.1084/jem.186.9.1407
10.1073/pnas.92.24.10985
10.1182/blood-2002-10-3034
10.1016/j.it.2003.10.005
10.1182/blood.V98.6.1667
10.1126/science.2431484
10.1006/clin.1993.1157
10.1073/pnas.93.23.13125
10.1016/0008-8749(91)90090-X
10.1097/00002030-200401230-00004
10.1172/JCI115153
10.1182/blood-2001-11-0078
10.1073/pnas.96.3.1030
10.1007/s10875-009-9275-y
10.1016/j.it.2006.02.001
10.1097/00002030-199706000-00006
10.1038/nm1482
10.1016/0008-8749(89)90259-1
10.1097/00002030-200001280-00018
10.1084/jem.20061496
10.4049/jimmunol.168.11.5538
10.1002/eji.1830210803
10.1097/01.aids.0000171402.00372.c2
10.1086/517378
10.1016/0042-6822(85)90135-7
10.1016/S1471-4906(02)02326-8
10.1038/44385
10.1016/S0022-1759(03)00265-5
10.1006/cimm.1994.1313
10.1128/JVI.00138-10
10.1016/0167-5699(96)10011-6
10.1093/infdis/172.4.964
10.1084/jem.192.1.63
10.1172/JCI119608
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2011, American Society for Microbiology 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2011, American Society for Microbiology 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
DOI 10.1128/JVI.01120-10
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
DatabaseTitleList MEDLINE
AIDS and Cancer Research Abstracts
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 1705
ExternalDocumentID PMC3028886
21147929
23819612
10_1128_JVI_01120_10
jvi_85_4_1696
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: 5R01AI056992-07
– fundername: NIAID NIH HHS
  grantid: R01 AI056992
– fundername: NIAID NIH HHS
  grantid: P30 AI027763
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
.55
.GJ
3O-
41~
6TJ
AAYJJ
ADXHL
AFFNX
AI.
C1A
D0S
IQODW
MVM
OHT
VH1
X7M
Y6R
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
ID FETCH-LOGICAL-c471t-61c7b6e5d601778d081ceaf887229d0cb0fdf063b5b69440597312b4688b7c1a3
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:11:44 EDT 2025
Fri Jul 11 00:01:51 EDT 2025
Thu Jul 10 18:48:02 EDT 2025
Mon Jul 21 06:04:00 EDT 2025
Mon Jul 21 09:17:05 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 00:57:49 EDT 2025
Wed May 18 15:26:02 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Virus
HIV-1 virus
Suppression
Retroviridae
Replication
Human immunodeficiency virus
Lentivirus
CD8 T lymphocyte
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-61c7b6e5d601778d081ceaf887229d0cb0fdf063b5b69440597312b4688b7c1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3028886
PMID 21147929
PQID 846902108
PQPubID 23479
PageCount 10
ParticipantIDs pascalfrancis_primary_23819612
crossref_primary_10_1128_JVI_01120_10
highwire_asm_jvi_85_4_1696
proquest_miscellaneous_846902108
pubmed_primary_21147929
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3028886
crossref_citationtrail_10_1128_JVI_01120_10
proquest_miscellaneous_904467471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2011
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
(e_1_3_2_20_2) 2002; 9
(e_1_3_2_3_2) 1997; 159
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
(e_1_3_2_15_2) 1994; 97
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
1707063 - J Clin Invest. 1991 Apr;87(4):1462-6
15905669 - AIDS. 2005 Jun 10;19(9):887-96
10515809 - J Infect Dis. 1999 Nov;180(5):1503-13
1972661 - Cell Immunol. 1990 Jul;128(2):628-34
11242051 - Nature. 2001 Mar 1;410(6824):106-11
15075532 - AIDS. 2004 Jan 23;18(2):161-70
8991383 - Immunol Today. 1996 May;17(5):217-24
20200250 - J Virol. 2010 May;84(10):4998-5006
19189205 - J Clin Immunol. 2009 May;29(3):311-8
8917555 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13125-30
9811757 - J Virol. 1998 Dec;72(12):10165-70
7479922 - Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10985-9
12023349 - J Immunol. 2002 Jun 1;168(11):5538-50
7996961 - Lancet. 1994 Dec 17;344(8938):1671-3
7994759 - Cell Immunol. 1994 Dec;159(2):271-9
7561217 - J Infect Dis. 1995 Oct;172(4):964-73
12464570 - Trends Immunol. 2002 Dec;23(12):586-91
11136234 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):597-602
14644135 - Trends Immunol. 2003 Dec;24(12):628-32
9366442 - J Immunol. 1997 Nov 15;159(10):5123-31
16129447 - J Immunol Methods. 2005 Sep;304(1-2):137-50
12624186 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3433-8
2495184 - Cell Immunol. 1989 Apr 1;119(2):470-5
12649153 - Blood. 2003 Jul 1;102(1):180-3
18945778 - J Virol. 2009 Jan;83(1):329-35
11282998 - Int Immunol. 2001 Apr;13(4):593-600
16917489 - Nat Med. 2006 Oct;12(10):1198-202
10537110 - Nature. 1999 Oct 14;401(6754):708-12
16954372 - J Exp Med. 2006 Oct 2;203(10):2281-92
15661918 - J Immunol. 2005 Feb 1;174(3):1574-9
9143605 - AIDS. 1997 May;11(6):737-46
2416116 - Virology. 1985 Dec;147(2):326-35
14580882 - J Immunol Methods. 2003 Oct 1;281(1-2):65-78
7518369 - Clin Exp Immunol. 1994 Jul;97(1):68-75
10708293 - AIDS. 2000 Jan 28;14(2):204-5
2431484 - Science. 1986 Dec 19;234(4783):1563-6
1920621 - J Virol. 1991 Nov;65(11):5921-7
9639517 - Blood. 1998 Jul 1;92(1):198-206
9466540 - J Infect Dis. 1998 Feb;177(2):470-2
9927688 - Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1030-5
8403538 - Clin Immunol Immunopathol. 1993 Oct;69(1):106-16
16500147 - Trends Immunol. 2006 Apr;27(4):195-201
8312050 - AIDS Res Hum Retroviruses. 1993 Nov;9(11):1079-86
9348298 - J Exp Med. 1997 Nov 3;186(9):1407-18
9787145 - Blood. 1998 Nov 1;92(9):3105-14
7534418 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2308-12
1680028 - Cell Immunol. 1991 Oct 15;137(2):420-8
2140790 - Eur J Immunol. 1990 Apr;20(4):927-30
12093686 - Clin Diagn Lab Immunol. 2002 Jul;9(4):858-63
1831127 - Eur J Immunol. 1991 Aug;21(8):1793-800
12010831 - Blood. 2002 Jun 1;99(11):4225-7
11535496 - Blood. 2001 Sep 15;98(6):1667-77
10880527 - J Exp Med. 2000 Jul 3;192(1):63-75
9259592 - J Clin Invest. 1997 Aug 15;100(4):921-30
References_xml – ident: e_1_3_2_22_2
  doi: 10.1016/j.jim.2005.07.016
– ident: e_1_3_2_45_2
  doi: 10.1073/pnas.98.2.597
– ident: e_1_3_2_14_2
  doi: 10.1086/315089
– volume: 97
  start-page: 68
  year: 1994
  ident: e_1_3_2_15_2
  publication-title: Clin. Exp. Immunol.
– ident: e_1_3_2_4_2
  doi: 10.1182/blood.V92.9.3105.421k46_3105_3114
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.0630379100
– ident: e_1_3_2_33_2
  doi: 10.1073/pnas.92.6.2308
– ident: e_1_3_2_12_2
  doi: 10.4049/jimmunol.174.3.1574
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.72.12.10165-10170.1998
– ident: e_1_3_2_9_2
  doi: 10.1038/35065118
– ident: e_1_3_2_51_2
  doi: 10.1128/jvi.65.11.5921-5927.1991
– ident: e_1_3_2_39_2
  doi: 10.1016/S0140-6736(94)90459-6
– ident: e_1_3_2_11_2
  doi: 10.1093/intimm/13.4.593
– ident: e_1_3_2_17_2
  doi: 10.1128/JVI.01763-08
– ident: e_1_3_2_10_2
  doi: 10.1089/aid.1993.9.1079
– ident: e_1_3_2_44_2
  doi: 10.1182/blood.V92.1.198.413k13_198_206
– ident: e_1_3_2_55_2
  doi: 10.1016/0008-8749(90)90054-U
– volume: 159
  start-page: 5123
  year: 1997
  ident: e_1_3_2_3_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.159.10.5123
– ident: e_1_3_2_31_2
  doi: 10.1002/eji.1830200431
– ident: e_1_3_2_16_2
  doi: 10.1084/jem.186.9.1407
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.92.24.10985
– ident: e_1_3_2_38_2
  doi: 10.1182/blood-2002-10-3034
– ident: e_1_3_2_27_2
  doi: 10.1016/j.it.2003.10.005
– ident: e_1_3_2_30_2
  doi: 10.1182/blood.V98.6.1667
– volume: 9
  start-page: 858
  year: 2002
  ident: e_1_3_2_20_2
  publication-title: Clin. Diagn. Lab. Immunol.
– ident: e_1_3_2_52_2
  doi: 10.1126/science.2431484
– ident: e_1_3_2_26_2
  doi: 10.1006/clin.1993.1157
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.93.23.13125
– ident: e_1_3_2_54_2
  doi: 10.1016/0008-8749(91)90090-X
– ident: e_1_3_2_21_2
  doi: 10.1097/00002030-200401230-00004
– ident: e_1_3_2_36_2
  doi: 10.1172/JCI115153
– ident: e_1_3_2_8_2
  doi: 10.1182/blood-2001-11-0078
– ident: e_1_3_2_46_2
  doi: 10.1073/pnas.96.3.1030
– ident: e_1_3_2_23_2
  doi: 10.1007/s10875-009-9275-y
– ident: e_1_3_2_41_2
  doi: 10.1016/j.it.2006.02.001
– ident: e_1_3_2_6_2
  doi: 10.1097/00002030-199706000-00006
– ident: e_1_3_2_49_2
  doi: 10.1038/nm1482
– ident: e_1_3_2_53_2
  doi: 10.1016/0008-8749(89)90259-1
– ident: e_1_3_2_37_2
  doi: 10.1097/00002030-200001280-00018
– ident: e_1_3_2_42_2
  doi: 10.1084/jem.20061496
– ident: e_1_3_2_47_2
  doi: 10.4049/jimmunol.168.11.5538
– ident: e_1_3_2_40_2
  doi: 10.1002/eji.1830210803
– ident: e_1_3_2_24_2
  doi: 10.1097/01.aids.0000171402.00372.c2
– ident: e_1_3_2_28_2
  doi: 10.1086/517378
– ident: e_1_3_2_18_2
  doi: 10.1016/0042-6822(85)90135-7
– ident: e_1_3_2_50_2
  doi: 10.1016/S1471-4906(02)02326-8
– ident: e_1_3_2_43_2
  doi: 10.1038/44385
– ident: e_1_3_2_5_2
  doi: 10.1016/S0022-1759(03)00265-5
– ident: e_1_3_2_19_2
  doi: 10.1006/cimm.1994.1313
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.00138-10
– ident: e_1_3_2_29_2
  doi: 10.1016/0167-5699(96)10011-6
– ident: e_1_3_2_48_2
  doi: 10.1093/infdis/172.4.964
– ident: e_1_3_2_2_2
  doi: 10.1084/jem.192.1.63
– ident: e_1_3_2_32_2
  doi: 10.1172/JCI119608
– reference: 10515809 - J Infect Dis. 1999 Nov;180(5):1503-13
– reference: 8403538 - Clin Immunol Immunopathol. 1993 Oct;69(1):106-16
– reference: 1707063 - J Clin Invest. 1991 Apr;87(4):1462-6
– reference: 7534418 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2308-12
– reference: 8917555 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13125-30
– reference: 9639517 - Blood. 1998 Jul 1;92(1):198-206
– reference: 7994759 - Cell Immunol. 1994 Dec;159(2):271-9
– reference: 15905669 - AIDS. 2005 Jun 10;19(9):887-96
– reference: 1831127 - Eur J Immunol. 1991 Aug;21(8):1793-800
– reference: 12649153 - Blood. 2003 Jul 1;102(1):180-3
– reference: 1680028 - Cell Immunol. 1991 Oct 15;137(2):420-8
– reference: 16129447 - J Immunol Methods. 2005 Sep;304(1-2):137-50
– reference: 11535496 - Blood. 2001 Sep 15;98(6):1667-77
– reference: 10537110 - Nature. 1999 Oct 14;401(6754):708-12
– reference: 12010831 - Blood. 2002 Jun 1;99(11):4225-7
– reference: 9927688 - Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1030-5
– reference: 2431484 - Science. 1986 Dec 19;234(4783):1563-6
– reference: 7518369 - Clin Exp Immunol. 1994 Jul;97(1):68-75
– reference: 2495184 - Cell Immunol. 1989 Apr 1;119(2):470-5
– reference: 8312050 - AIDS Res Hum Retroviruses. 1993 Nov;9(11):1079-86
– reference: 15075532 - AIDS. 2004 Jan 23;18(2):161-70
– reference: 1972661 - Cell Immunol. 1990 Jul;128(2):628-34
– reference: 7479922 - Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10985-9
– reference: 14644135 - Trends Immunol. 2003 Dec;24(12):628-32
– reference: 9787145 - Blood. 1998 Nov 1;92(9):3105-14
– reference: 9811757 - J Virol. 1998 Dec;72(12):10165-70
– reference: 14580882 - J Immunol Methods. 2003 Oct 1;281(1-2):65-78
– reference: 20200250 - J Virol. 2010 May;84(10):4998-5006
– reference: 11282998 - Int Immunol. 2001 Apr;13(4):593-600
– reference: 9143605 - AIDS. 1997 May;11(6):737-46
– reference: 12093686 - Clin Diagn Lab Immunol. 2002 Jul;9(4):858-63
– reference: 18945778 - J Virol. 2009 Jan;83(1):329-35
– reference: 1920621 - J Virol. 1991 Nov;65(11):5921-7
– reference: 8991383 - Immunol Today. 1996 May;17(5):217-24
– reference: 2140790 - Eur J Immunol. 1990 Apr;20(4):927-30
– reference: 19189205 - J Clin Immunol. 2009 May;29(3):311-8
– reference: 16500147 - Trends Immunol. 2006 Apr;27(4):195-201
– reference: 9466540 - J Infect Dis. 1998 Feb;177(2):470-2
– reference: 12464570 - Trends Immunol. 2002 Dec;23(12):586-91
– reference: 9366442 - J Immunol. 1997 Nov 15;159(10):5123-31
– reference: 7996961 - Lancet. 1994 Dec 17;344(8938):1671-3
– reference: 15661918 - J Immunol. 2005 Feb 1;174(3):1574-9
– reference: 16954372 - J Exp Med. 2006 Oct 2;203(10):2281-92
– reference: 10708293 - AIDS. 2000 Jan 28;14(2):204-5
– reference: 2416116 - Virology. 1985 Dec;147(2):326-35
– reference: 10880527 - J Exp Med. 2000 Jul 3;192(1):63-75
– reference: 9259592 - J Clin Invest. 1997 Aug 15;100(4):921-30
– reference: 16917489 - Nat Med. 2006 Oct;12(10):1198-202
– reference: 12023349 - J Immunol. 2002 Jun 1;168(11):5538-50
– reference: 11136234 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):597-602
– reference: 9348298 - J Exp Med. 1997 Nov 3;186(9):1407-18
– reference: 7561217 - J Infect Dis. 1995 Oct;172(4):964-73
– reference: 11242051 - Nature. 2001 Mar 1;410(6824):106-11
– reference: 12624186 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3433-8
SSID ssj0014464
Score 2.1770122
Snippet Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
HIV replication is suppressed in vitro by a CD8 + cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical...
HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical...
HIV replication is suppressed in vitro by a CD8+ cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1696
SubjectTerms Adult
Antigens, CD - metabolism
Apoptosis Regulatory Proteins - metabolism
Biological and medical sciences
CD8-Positive T-Lymphocytes - immunology
Female
Fundamental and applied biological sciences. Psychology
HIV Infections - immunology
HIV Infections - virology
HIV-1 - immunology
HIV-1 - physiology
Human immunodeficiency virus 1
Humans
Immunologic Memory - immunology
Lymphocyte Activation
Male
Microbiology
Middle Aged
Miscellaneous
Pathogenesis and Immunity
Programmed Cell Death 1 Receptor
T-Lymphocyte Subsets - immunology
Viral Load
Virology
Virus Replication - immunology
Title Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Transitional Memory CD8+ T Cells
URI http://jvi.asm.org/content/85/4/1696.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21147929
https://www.proquest.com/docview/846902108
https://www.proquest.com/docview/904467471
https://pubmed.ncbi.nlm.nih.gov/PMC3028886
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5tAEF25qSr1UqXfJG20h-ZkkcKywHLsd5qqOTmVb4iFRSWqjRXAavrrO7O7YJzGUtsLsmABifcYZsZvZgh5xcNQFmVUuImXBy588T03y1jpxnkSeImQgVRY7_z1PDq94GfzcD6Z_ByplrpWnuS_bq0r-R9UYR_gilWy_4DscFHYAb8BX9gCwrD9K4zPM9M1o-lWVs9qnD-dmK-w8qMuFLaI0PWV6-qqa0zO1cf_Cvp0Hc401wUkrfVG8fNV2RzhApW4YDbei2P2djqbYqK_2eHRYsncOEn_RedyjFgYjEjdDhIbO5fLKk42Ig_UdWt32mS364Fd3WW16PRIJDB1apyqwNzrIPtQxrxi91L00cb214zssTzjI2PqR2bY7Z9WnmHlwtm3zydwEwh_jTB2BPhqoRGH4JbHic2obHfV7g_dIXcZBBho0j_NB3EQBsm8L5Ng4vX4Vrp9tDl525fp-0ujvDZr4A0rzWiU22KXmxLckU8z2ycPLHT0jWHWQzJRy0fknhlPev2YrC2_6IhftC6p5he9yS-q-UWRX9SnI37RqqE9v6i8pmN-UcMvCvya0hnV7HpCLj5-mL07de2cDjcH16Z1Iz-PZaTCAoL7OBYFeJm5ykr4fDGWFF4uvbIowRWWoYwSDhECjktjkkdCyDj3s-Ap2VvWS_Wc0MyPixLOLWVS8IBD9C4LlRdhlMiSJxlzyLR_4mlum9jjLJUfqQ5mmUgBqlRDBXsccjysXpnmLTvWHfTgpVmzSC_XVSrClKfIQIccbcE5XEknOyBAcAjt8U3BNuOTypaq7ppUYO6J-Z7YvSRBQQUmhhzyzDBic33LMofEW1wZFmBn-O0jy-q77hAfQNQgRHSw85qH5P7mBX1B9tqrTr0E77qVR_pF-A3owtR5
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+suppression+of+human+immunodeficiency+virus+type+1+replication+is+mediated+by+transitional+memory+CD8%2B+T+cells&rft.jtitle=Journal+of+virology&rft.au=Killian%2C+M+Scott&rft.au=Johnson%2C+Carl&rft.au=Teque%2C+Fernando&rft.au=Fujimura%2C+Sue&rft.date=2011-02-01&rft.eissn=1098-5514&rft.volume=85&rft.issue=4&rft.spage=1696&rft_id=info:doi/10.1128%2FJVI.01120-10&rft_id=info%3Apmid%2F21147929&rft.externalDocID=21147929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon