Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Transitional Memory CD8+ T Cells
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Journal of Virology Vol. 85; no. 4; pp. 1696 - 1705 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.02.2011
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
ISSN | 0022-538X 1098-5514 1098-5514 |
DOI | 10.1128/JVI.01120-10 |
Cover
Loading…
Abstract | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8(+) cell subsets having strong CNAR activity. CD8(+) cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8(+) cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA(-) CD27(+) and PD-1(+) (CD279(+)) cells. Functional assessments of CD8(+) cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA(-) CCR7(-) CD27(+) and PD-1(+) CD8(+) cells. T cell receptor (TCR) repertoire profiles of CD8(+) cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8(+) cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8(+) cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development. HIV replication is suppressed in vitro by a CD8+ cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8+ cell subsets having strong CNAR activity. CD8+ cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naieve aviremic elite controllers (EC). CD8+ cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA- CD27+ and PD-1+ (CD279+) cells. Functional assessments of CD8+ cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA- CCR7- CD27+ and PD-1+ CD8+ cells. T cell receptor (TCR) repertoire profiles of CD8+ cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8+ cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8+ cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development. HIV replication is suppressed in vitro by a CD8 + cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8 + cell subsets having strong CNAR activity. CD8 + cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8 + cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA − CD27 + and PD-1 + (CD279 + ) cells. Functional assessments of CD8 + cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA − CCR7 − CD27 + and PD-1 + CD8 + cells. T cell receptor (TCR) repertoire profiles of CD8 + cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8 + cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8 + cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development. Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JVI .asm.org, visit: JVI HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8(+) cell subsets having strong CNAR activity. CD8(+) cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8(+) cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA(-) CD27(+) and PD-1(+) (CD279(+)) cells. Functional assessments of CD8(+) cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA(-) CCR7(-) CD27(+) and PD-1(+) CD8(+) cells. T cell receptor (TCR) repertoire profiles of CD8(+) cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8(+) cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8(+) cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8(+) cell subsets having strong CNAR activity. CD8(+) cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8(+) cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA(-) CD27(+) and PD-1(+) (CD279(+)) cells. Functional assessments of CD8(+) cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA(-) CCR7(-) CD27(+) and PD-1(+) CD8(+) cells. T cell receptor (TCR) repertoire profiles of CD8(+) cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8(+) cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8(+) cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development. HIV replication is suppressed in vitro by a CD8 + cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8 + cell subsets having strong CNAR activity. CD8 + cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8 + cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA − CD27 + and PD-1 + (CD279 + ) cells. Functional assessments of CD8 + cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA − CCR7 − CD27 + and PD-1 + CD8 + cells. T cell receptor (TCR) repertoire profiles of CD8 + cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8 + cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8 + cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development. |
Author | M. Scott Killian Jay A. Levy Carl Johnson Fernando Teque Sue Fujimura |
AuthorAffiliation | Department of Medicine, University of California San Francisco, San Francisco, California 94143 |
AuthorAffiliation_xml | – name: Department of Medicine, University of California San Francisco, San Francisco, California 94143 |
Author_xml | – sequence: 1 givenname: M. Scott surname: Killian fullname: Killian, M. Scott organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143 – sequence: 2 givenname: Carl surname: Johnson fullname: Johnson, Carl organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143 – sequence: 3 givenname: Fernando surname: Teque fullname: Teque, Fernando organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143 – sequence: 4 givenname: Sue surname: Fujimura fullname: Fujimura, Sue organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143 – sequence: 5 givenname: Jay A. surname: Levy fullname: Levy, Jay A. organization: Department of Medicine, University of California San Francisco, San Francisco, California 94143 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23819612$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21147929$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFG2dkDqgHSPE4juNckNAW6KIWJFgqbpbjOF1XiR3sZNH-e7zdpXxIiJNHnmdevfNxhA6cdwahx0BOAah4-f5qcUpSRDIg99AMSCWyogB2gGaEUJoVufh6iI5ivCEEGOPsATqkAKysaDVD6w9qnILq8OdpGIKJ0XqHfYvPp145vOj7yfnGtFZb4_QGX9kwRbzcDAYD_mSGzmo1bksWEV-axqrRNLje4GVQLtptJklfmt6HDZ6fied4ieem6-JDdL9VXTSP9u8x-vL2zXJ-nl18fLeYv77INCthzDjosuamaDiBshQNEaCNaoUoKa0aomvSNi3heV3UvGKMFFWZA60ZF6IuNaj8GL3a6Q5T3ZtGGzemZuUQbK_CRnpl5Z8ZZ1fy2q9lTqgQgieBk71A8N8mE0fZ26hTC8oZP0VZkTTSMpn9LykYrwgFIhL55HdTd25-biUBz_aAilp1bRqmtvEXlwuoONDEvdhxOvgYg2nvECByexwyHYe8PY70k3D6F67teLu-1Lrt_lX0dFe0ster7zYYqWIvb9ZWikIyCbzi-Q_vqscq |
CitedBy_id | crossref_primary_10_1371_journal_pone_0032964 crossref_primary_10_1097_QAD_0b013e32834d3c4f crossref_primary_10_3390_v10040210 crossref_primary_10_3389_fimmu_2020_572677 crossref_primary_10_1371_journal_pone_0142086 crossref_primary_10_1097_QAD_0000000000002008 crossref_primary_10_3390_v15040894 crossref_primary_10_1111_imr_12069 crossref_primary_10_1097_QAI_0b013e318221c62a crossref_primary_10_1097_QAD_0000000000002068 crossref_primary_10_1371_journal_pone_0166496 crossref_primary_10_1111_imm_12221 crossref_primary_10_1016_j_vetimm_2015_07_011 crossref_primary_10_1128_JVI_00437_12 crossref_primary_10_1016_j_cytogfr_2012_05_011 crossref_primary_10_3389_fimmu_2017_00936 crossref_primary_10_1097_QAI_0000000000001280 crossref_primary_10_1128_MMBR_00155_20 crossref_primary_10_1146_annurev_immunol_032414_112315 crossref_primary_10_1111_j_1365_2249_2011_04379_x crossref_primary_10_1371_journal_pone_0104235 crossref_primary_10_3389_fimmu_2014_00202 crossref_primary_10_3389_fimmu_2023_1211221 crossref_primary_10_1089_jir_2012_0067 crossref_primary_10_4049_jimmunol_1801379 crossref_primary_10_1371_journal_pone_0088884 crossref_primary_10_4161_hv_21407 crossref_primary_10_1007_s00251_017_1021_7 crossref_primary_10_1128_JVI_02439_12 crossref_primary_10_1097_QAD_0000000000002675 crossref_primary_10_1002_eji_201142082 crossref_primary_10_1128_JVI_00802_14 |
Cites_doi | 10.1016/j.jim.2005.07.016 10.1073/pnas.98.2.597 10.1086/315089 10.1182/blood.V92.9.3105.421k46_3105_3114 10.1073/pnas.0630379100 10.1073/pnas.92.6.2308 10.4049/jimmunol.174.3.1574 10.1128/JVI.72.12.10165-10170.1998 10.1038/35065118 10.1128/jvi.65.11.5921-5927.1991 10.1016/S0140-6736(94)90459-6 10.1093/intimm/13.4.593 10.1128/JVI.01763-08 10.1089/aid.1993.9.1079 10.1182/blood.V92.1.198.413k13_198_206 10.1016/0008-8749(90)90054-U 10.4049/jimmunol.159.10.5123 10.1002/eji.1830200431 10.1084/jem.186.9.1407 10.1073/pnas.92.24.10985 10.1182/blood-2002-10-3034 10.1016/j.it.2003.10.005 10.1182/blood.V98.6.1667 10.1126/science.2431484 10.1006/clin.1993.1157 10.1073/pnas.93.23.13125 10.1016/0008-8749(91)90090-X 10.1097/00002030-200401230-00004 10.1172/JCI115153 10.1182/blood-2001-11-0078 10.1073/pnas.96.3.1030 10.1007/s10875-009-9275-y 10.1016/j.it.2006.02.001 10.1097/00002030-199706000-00006 10.1038/nm1482 10.1016/0008-8749(89)90259-1 10.1097/00002030-200001280-00018 10.1084/jem.20061496 10.4049/jimmunol.168.11.5538 10.1002/eji.1830210803 10.1097/01.aids.0000171402.00372.c2 10.1086/517378 10.1016/0042-6822(85)90135-7 10.1016/S1471-4906(02)02326-8 10.1038/44385 10.1016/S0022-1759(03)00265-5 10.1006/cimm.1994.1313 10.1128/JVI.00138-10 10.1016/0167-5699(96)10011-6 10.1093/infdis/172.4.964 10.1084/jem.192.1.63 10.1172/JCI119608 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © 2011, American Society for Microbiology 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © 2011, American Society for Microbiology 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
DOI | 10.1128/JVI.01120-10 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 1705 |
ExternalDocumentID | PMC3028886 21147929 23819612 10_1128_JVI_01120_10 jvi_85_4_1696 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: 5R01AI056992-07 – fundername: NIAID NIH HHS grantid: R01 AI056992 – fundername: NIAID NIH HHS grantid: P30 AI027763 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM .55 .GJ 3O- 41~ 6TJ AAYJJ ADXHL AFFNX AI. C1A D0S IQODW MVM OHT VH1 X7M Y6R ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
ID | FETCH-LOGICAL-c471t-61c7b6e5d601778d081ceaf887229d0cb0fdf063b5b69440597312b4688b7c1a3 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:11:44 EDT 2025 Fri Jul 11 00:01:51 EDT 2025 Thu Jul 10 18:48:02 EDT 2025 Mon Jul 21 06:04:00 EDT 2025 Mon Jul 21 09:17:05 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 00:57:49 EDT 2025 Wed May 18 15:26:02 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Virus HIV-1 virus Suppression Retroviridae Replication Human immunodeficiency virus Lentivirus CD8 T lymphocyte |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-61c7b6e5d601778d081ceaf887229d0cb0fdf063b5b69440597312b4688b7c1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3028886 |
PMID | 21147929 |
PQID | 846902108 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_23819612 crossref_primary_10_1128_JVI_01120_10 highwire_asm_jvi_85_4_1696 proquest_miscellaneous_846902108 pubmed_primary_21147929 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3028886 crossref_citationtrail_10_1128_JVI_01120_10 proquest_miscellaneous_904467471 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2011 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 (e_1_3_2_20_2) 2002; 9 (e_1_3_2_3_2) 1997; 159 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 (e_1_3_2_15_2) 1994; 97 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 1707063 - J Clin Invest. 1991 Apr;87(4):1462-6 15905669 - AIDS. 2005 Jun 10;19(9):887-96 10515809 - J Infect Dis. 1999 Nov;180(5):1503-13 1972661 - Cell Immunol. 1990 Jul;128(2):628-34 11242051 - Nature. 2001 Mar 1;410(6824):106-11 15075532 - AIDS. 2004 Jan 23;18(2):161-70 8991383 - Immunol Today. 1996 May;17(5):217-24 20200250 - J Virol. 2010 May;84(10):4998-5006 19189205 - J Clin Immunol. 2009 May;29(3):311-8 8917555 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13125-30 9811757 - J Virol. 1998 Dec;72(12):10165-70 7479922 - Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10985-9 12023349 - J Immunol. 2002 Jun 1;168(11):5538-50 7996961 - Lancet. 1994 Dec 17;344(8938):1671-3 7994759 - Cell Immunol. 1994 Dec;159(2):271-9 7561217 - J Infect Dis. 1995 Oct;172(4):964-73 12464570 - Trends Immunol. 2002 Dec;23(12):586-91 11136234 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):597-602 14644135 - Trends Immunol. 2003 Dec;24(12):628-32 9366442 - J Immunol. 1997 Nov 15;159(10):5123-31 16129447 - J Immunol Methods. 2005 Sep;304(1-2):137-50 12624186 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3433-8 2495184 - Cell Immunol. 1989 Apr 1;119(2):470-5 12649153 - Blood. 2003 Jul 1;102(1):180-3 18945778 - J Virol. 2009 Jan;83(1):329-35 11282998 - Int Immunol. 2001 Apr;13(4):593-600 16917489 - Nat Med. 2006 Oct;12(10):1198-202 10537110 - Nature. 1999 Oct 14;401(6754):708-12 16954372 - J Exp Med. 2006 Oct 2;203(10):2281-92 15661918 - J Immunol. 2005 Feb 1;174(3):1574-9 9143605 - AIDS. 1997 May;11(6):737-46 2416116 - Virology. 1985 Dec;147(2):326-35 14580882 - J Immunol Methods. 2003 Oct 1;281(1-2):65-78 7518369 - Clin Exp Immunol. 1994 Jul;97(1):68-75 10708293 - AIDS. 2000 Jan 28;14(2):204-5 2431484 - Science. 1986 Dec 19;234(4783):1563-6 1920621 - J Virol. 1991 Nov;65(11):5921-7 9639517 - Blood. 1998 Jul 1;92(1):198-206 9466540 - J Infect Dis. 1998 Feb;177(2):470-2 9927688 - Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1030-5 8403538 - Clin Immunol Immunopathol. 1993 Oct;69(1):106-16 16500147 - Trends Immunol. 2006 Apr;27(4):195-201 8312050 - AIDS Res Hum Retroviruses. 1993 Nov;9(11):1079-86 9348298 - J Exp Med. 1997 Nov 3;186(9):1407-18 9787145 - Blood. 1998 Nov 1;92(9):3105-14 7534418 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2308-12 1680028 - Cell Immunol. 1991 Oct 15;137(2):420-8 2140790 - Eur J Immunol. 1990 Apr;20(4):927-30 12093686 - Clin Diagn Lab Immunol. 2002 Jul;9(4):858-63 1831127 - Eur J Immunol. 1991 Aug;21(8):1793-800 12010831 - Blood. 2002 Jun 1;99(11):4225-7 11535496 - Blood. 2001 Sep 15;98(6):1667-77 10880527 - J Exp Med. 2000 Jul 3;192(1):63-75 9259592 - J Clin Invest. 1997 Aug 15;100(4):921-30 |
References_xml | – ident: e_1_3_2_22_2 doi: 10.1016/j.jim.2005.07.016 – ident: e_1_3_2_45_2 doi: 10.1073/pnas.98.2.597 – ident: e_1_3_2_14_2 doi: 10.1086/315089 – volume: 97 start-page: 68 year: 1994 ident: e_1_3_2_15_2 publication-title: Clin. Exp. Immunol. – ident: e_1_3_2_4_2 doi: 10.1182/blood.V92.9.3105.421k46_3105_3114 – ident: e_1_3_2_34_2 doi: 10.1073/pnas.0630379100 – ident: e_1_3_2_33_2 doi: 10.1073/pnas.92.6.2308 – ident: e_1_3_2_12_2 doi: 10.4049/jimmunol.174.3.1574 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.72.12.10165-10170.1998 – ident: e_1_3_2_9_2 doi: 10.1038/35065118 – ident: e_1_3_2_51_2 doi: 10.1128/jvi.65.11.5921-5927.1991 – ident: e_1_3_2_39_2 doi: 10.1016/S0140-6736(94)90459-6 – ident: e_1_3_2_11_2 doi: 10.1093/intimm/13.4.593 – ident: e_1_3_2_17_2 doi: 10.1128/JVI.01763-08 – ident: e_1_3_2_10_2 doi: 10.1089/aid.1993.9.1079 – ident: e_1_3_2_44_2 doi: 10.1182/blood.V92.1.198.413k13_198_206 – ident: e_1_3_2_55_2 doi: 10.1016/0008-8749(90)90054-U – volume: 159 start-page: 5123 year: 1997 ident: e_1_3_2_3_2 publication-title: J. Immunol. doi: 10.4049/jimmunol.159.10.5123 – ident: e_1_3_2_31_2 doi: 10.1002/eji.1830200431 – ident: e_1_3_2_16_2 doi: 10.1084/jem.186.9.1407 – ident: e_1_3_2_25_2 doi: 10.1073/pnas.92.24.10985 – ident: e_1_3_2_38_2 doi: 10.1182/blood-2002-10-3034 – ident: e_1_3_2_27_2 doi: 10.1016/j.it.2003.10.005 – ident: e_1_3_2_30_2 doi: 10.1182/blood.V98.6.1667 – volume: 9 start-page: 858 year: 2002 ident: e_1_3_2_20_2 publication-title: Clin. Diagn. Lab. Immunol. – ident: e_1_3_2_52_2 doi: 10.1126/science.2431484 – ident: e_1_3_2_26_2 doi: 10.1006/clin.1993.1157 – ident: e_1_3_2_7_2 doi: 10.1073/pnas.93.23.13125 – ident: e_1_3_2_54_2 doi: 10.1016/0008-8749(91)90090-X – ident: e_1_3_2_21_2 doi: 10.1097/00002030-200401230-00004 – ident: e_1_3_2_36_2 doi: 10.1172/JCI115153 – ident: e_1_3_2_8_2 doi: 10.1182/blood-2001-11-0078 – ident: e_1_3_2_46_2 doi: 10.1073/pnas.96.3.1030 – ident: e_1_3_2_23_2 doi: 10.1007/s10875-009-9275-y – ident: e_1_3_2_41_2 doi: 10.1016/j.it.2006.02.001 – ident: e_1_3_2_6_2 doi: 10.1097/00002030-199706000-00006 – ident: e_1_3_2_49_2 doi: 10.1038/nm1482 – ident: e_1_3_2_53_2 doi: 10.1016/0008-8749(89)90259-1 – ident: e_1_3_2_37_2 doi: 10.1097/00002030-200001280-00018 – ident: e_1_3_2_42_2 doi: 10.1084/jem.20061496 – ident: e_1_3_2_47_2 doi: 10.4049/jimmunol.168.11.5538 – ident: e_1_3_2_40_2 doi: 10.1002/eji.1830210803 – ident: e_1_3_2_24_2 doi: 10.1097/01.aids.0000171402.00372.c2 – ident: e_1_3_2_28_2 doi: 10.1086/517378 – ident: e_1_3_2_18_2 doi: 10.1016/0042-6822(85)90135-7 – ident: e_1_3_2_50_2 doi: 10.1016/S1471-4906(02)02326-8 – ident: e_1_3_2_43_2 doi: 10.1038/44385 – ident: e_1_3_2_5_2 doi: 10.1016/S0022-1759(03)00265-5 – ident: e_1_3_2_19_2 doi: 10.1006/cimm.1994.1313 – ident: e_1_3_2_13_2 doi: 10.1128/JVI.00138-10 – ident: e_1_3_2_29_2 doi: 10.1016/0167-5699(96)10011-6 – ident: e_1_3_2_48_2 doi: 10.1093/infdis/172.4.964 – ident: e_1_3_2_2_2 doi: 10.1084/jem.192.1.63 – ident: e_1_3_2_32_2 doi: 10.1172/JCI119608 – reference: 10515809 - J Infect Dis. 1999 Nov;180(5):1503-13 – reference: 8403538 - Clin Immunol Immunopathol. 1993 Oct;69(1):106-16 – reference: 1707063 - J Clin Invest. 1991 Apr;87(4):1462-6 – reference: 7534418 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2308-12 – reference: 8917555 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13125-30 – reference: 9639517 - Blood. 1998 Jul 1;92(1):198-206 – reference: 7994759 - Cell Immunol. 1994 Dec;159(2):271-9 – reference: 15905669 - AIDS. 2005 Jun 10;19(9):887-96 – reference: 1831127 - Eur J Immunol. 1991 Aug;21(8):1793-800 – reference: 12649153 - Blood. 2003 Jul 1;102(1):180-3 – reference: 1680028 - Cell Immunol. 1991 Oct 15;137(2):420-8 – reference: 16129447 - J Immunol Methods. 2005 Sep;304(1-2):137-50 – reference: 11535496 - Blood. 2001 Sep 15;98(6):1667-77 – reference: 10537110 - Nature. 1999 Oct 14;401(6754):708-12 – reference: 12010831 - Blood. 2002 Jun 1;99(11):4225-7 – reference: 9927688 - Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1030-5 – reference: 2431484 - Science. 1986 Dec 19;234(4783):1563-6 – reference: 7518369 - Clin Exp Immunol. 1994 Jul;97(1):68-75 – reference: 2495184 - Cell Immunol. 1989 Apr 1;119(2):470-5 – reference: 8312050 - AIDS Res Hum Retroviruses. 1993 Nov;9(11):1079-86 – reference: 15075532 - AIDS. 2004 Jan 23;18(2):161-70 – reference: 1972661 - Cell Immunol. 1990 Jul;128(2):628-34 – reference: 7479922 - Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10985-9 – reference: 14644135 - Trends Immunol. 2003 Dec;24(12):628-32 – reference: 9787145 - Blood. 1998 Nov 1;92(9):3105-14 – reference: 9811757 - J Virol. 1998 Dec;72(12):10165-70 – reference: 14580882 - J Immunol Methods. 2003 Oct 1;281(1-2):65-78 – reference: 20200250 - J Virol. 2010 May;84(10):4998-5006 – reference: 11282998 - Int Immunol. 2001 Apr;13(4):593-600 – reference: 9143605 - AIDS. 1997 May;11(6):737-46 – reference: 12093686 - Clin Diagn Lab Immunol. 2002 Jul;9(4):858-63 – reference: 18945778 - J Virol. 2009 Jan;83(1):329-35 – reference: 1920621 - J Virol. 1991 Nov;65(11):5921-7 – reference: 8991383 - Immunol Today. 1996 May;17(5):217-24 – reference: 2140790 - Eur J Immunol. 1990 Apr;20(4):927-30 – reference: 19189205 - J Clin Immunol. 2009 May;29(3):311-8 – reference: 16500147 - Trends Immunol. 2006 Apr;27(4):195-201 – reference: 9466540 - J Infect Dis. 1998 Feb;177(2):470-2 – reference: 12464570 - Trends Immunol. 2002 Dec;23(12):586-91 – reference: 9366442 - J Immunol. 1997 Nov 15;159(10):5123-31 – reference: 7996961 - Lancet. 1994 Dec 17;344(8938):1671-3 – reference: 15661918 - J Immunol. 2005 Feb 1;174(3):1574-9 – reference: 16954372 - J Exp Med. 2006 Oct 2;203(10):2281-92 – reference: 10708293 - AIDS. 2000 Jan 28;14(2):204-5 – reference: 2416116 - Virology. 1985 Dec;147(2):326-35 – reference: 10880527 - J Exp Med. 2000 Jul 3;192(1):63-75 – reference: 9259592 - J Clin Invest. 1997 Aug 15;100(4):921-30 – reference: 16917489 - Nat Med. 2006 Oct;12(10):1198-202 – reference: 12023349 - J Immunol. 2002 Jun 1;168(11):5538-50 – reference: 11136234 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):597-602 – reference: 9348298 - J Exp Med. 1997 Nov 3;186(9):1407-18 – reference: 7561217 - J Infect Dis. 1995 Oct;172(4):964-73 – reference: 11242051 - Nature. 2001 Mar 1;410(6824):106-11 – reference: 12624186 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3433-8 |
SSID | ssj0014464 |
Score | 2.1770122 |
Snippet | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... HIV replication is suppressed in vitro by a CD8 + cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical... HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical... HIV replication is suppressed in vitro by a CD8+ cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1696 |
SubjectTerms | Adult Antigens, CD - metabolism Apoptosis Regulatory Proteins - metabolism Biological and medical sciences CD8-Positive T-Lymphocytes - immunology Female Fundamental and applied biological sciences. Psychology HIV Infections - immunology HIV Infections - virology HIV-1 - immunology HIV-1 - physiology Human immunodeficiency virus 1 Humans Immunologic Memory - immunology Lymphocyte Activation Male Microbiology Middle Aged Miscellaneous Pathogenesis and Immunity Programmed Cell Death 1 Receptor T-Lymphocyte Subsets - immunology Viral Load Virology Virus Replication - immunology |
Title | Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Transitional Memory CD8+ T Cells |
URI | http://jvi.asm.org/content/85/4/1696.abstract https://www.ncbi.nlm.nih.gov/pubmed/21147929 https://www.proquest.com/docview/846902108 https://www.proquest.com/docview/904467471 https://pubmed.ncbi.nlm.nih.gov/PMC3028886 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5tAEF25qSr1UqXfJG20h-ZkkcKywHLsd5qqOTmVb4iFRSWqjRXAavrrO7O7YJzGUtsLsmABifcYZsZvZgh5xcNQFmVUuImXBy588T03y1jpxnkSeImQgVRY7_z1PDq94GfzcD6Z_ByplrpWnuS_bq0r-R9UYR_gilWy_4DscFHYAb8BX9gCwrD9K4zPM9M1o-lWVs9qnD-dmK-w8qMuFLaI0PWV6-qqa0zO1cf_Cvp0Hc401wUkrfVG8fNV2RzhApW4YDbei2P2djqbYqK_2eHRYsncOEn_RedyjFgYjEjdDhIbO5fLKk42Ig_UdWt32mS364Fd3WW16PRIJDB1apyqwNzrIPtQxrxi91L00cb214zssTzjI2PqR2bY7Z9WnmHlwtm3zydwEwh_jTB2BPhqoRGH4JbHic2obHfV7g_dIXcZBBho0j_NB3EQBsm8L5Ng4vX4Vrp9tDl525fp-0ujvDZr4A0rzWiU22KXmxLckU8z2ycPLHT0jWHWQzJRy0fknhlPev2YrC2_6IhftC6p5he9yS-q-UWRX9SnI37RqqE9v6i8pmN-UcMvCvya0hnV7HpCLj5-mL07de2cDjcH16Z1Iz-PZaTCAoL7OBYFeJm5ykr4fDGWFF4uvbIowRWWoYwSDhECjktjkkdCyDj3s-Ap2VvWS_Wc0MyPixLOLWVS8IBD9C4LlRdhlMiSJxlzyLR_4mlum9jjLJUfqQ5mmUgBqlRDBXsccjysXpnmLTvWHfTgpVmzSC_XVSrClKfIQIccbcE5XEknOyBAcAjt8U3BNuOTypaq7ppUYO6J-Z7YvSRBQQUmhhzyzDBic33LMofEW1wZFmBn-O0jy-q77hAfQNQgRHSw85qH5P7mBX1B9tqrTr0E77qVR_pF-A3owtR5 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+suppression+of+human+immunodeficiency+virus+type+1+replication+is+mediated+by+transitional+memory+CD8%2B+T+cells&rft.jtitle=Journal+of+virology&rft.au=Killian%2C+M+Scott&rft.au=Johnson%2C+Carl&rft.au=Teque%2C+Fernando&rft.au=Fujimura%2C+Sue&rft.date=2011-02-01&rft.eissn=1098-5514&rft.volume=85&rft.issue=4&rft.spage=1696&rft_id=info:doi/10.1128%2FJVI.01120-10&rft_id=info%3Apmid%2F21147929&rft.externalDocID=21147929 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |