Task-Independent Cognitive Workload Discrimination Based on EEG with Stacked Graph Attention Convolutional Networks

In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessmen...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 8; p. 2390
Main Authors Wei, Chenyu, Zhao, Xuewen, Song, Yu, Liu, Yi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios.
AbstractList In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios.
In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios.In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios.
Audience Academic
Author Zhao, Xuewen
Wei, Chenyu
Liu, Yi
Song, Yu
AuthorAffiliation 2 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
1 Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China; wei@stud.tjut.edu.cn (C.W.); sy@email.tjut.edu.cn (Y.S.)
AuthorAffiliation_xml – name: 2 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
– name: 1 Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China; wei@stud.tjut.edu.cn (C.W.); sy@email.tjut.edu.cn (Y.S.)
Author_xml – sequence: 1
  givenname: Chenyu
  surname: Wei
  fullname: Wei, Chenyu
– sequence: 2
  givenname: Xuewen
  surname: Zhao
  fullname: Zhao, Xuewen
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-9295-7795
  surname: Song
  fullname: Song, Yu
– sequence: 4
  givenname: Yi
  orcidid: 0000-0003-0947-8126
  surname: Liu
  fullname: Liu, Yi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285080$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1vEzEQhleoiH7AgT-AVuIChxR_7cZ7QiGkIVIFB4o4Wl7vOHGysYPtpOLfd5KUqEWW7PH4mdd-rbksznzwUBRvKbnmvCGfEquIZBi9KC6oYGIgGSNnT-Lz4jKlJSGMcy5fFeeCMIkl5KJIdzqtBjPfwQZw8rkch7l32e2g_B3iqg-6K7-6ZKJbO6-zC778ohN0JQaTybS8d3lR_szarDA3jXqzKEc5o9CeHAe_C_12H-u-_A75HiXT6-Kl1X2CN4_rVfHrZnI3_ja4_TGdjUe3AyOGNA8qaHira96Izmqgtca5s6YWVrZSSEGkbWujOdSaWtxzK4DXNWmq1hhmBL8qZkfdLuil2qADHf-qoJ06JEKcKx2zMz0o1kpJW8Nt01WCNyC1ZZUZQtNUlWHQotbno9Zm266hM2gw6v6Z6PMT7xZqHnaKMsIpJRUqfHhUiOHPFlJWa_xW6HvtIWyT4rSphuiikYi-_w9dhm3ELzxQohakPlDXR2qu0YHzNuDFBkcHa2ewQ6zD_EhyWUvKJMWCd089nB7_rxsQ-HgETAwpRbAnhBK17zR16jT-AJeNxjU
Cites_doi 10.1016/j.sbi.2023.102538
10.1109/ICRCICN50933.2020.9296150
10.1016/j.neuroimage.2011.07.047
10.1016/j.ijpsycho.2015.10.004
10.1088/1741-2552/abbc27
10.3390/s21206710
10.1016/j.neuroimage.2009.10.003
10.1016/j.tics.2020.01.008
10.1016/j.cmpb.2023.107352
10.1109/TNSRE.2022.3140456
10.1109/TNSRE.2018.2884641
10.1109/TNSRE.2023.3277867
10.1007/s11071-024-10729-1
10.1207/s15516709cog1202_4
10.1016/j.compbiomed.2019.04.034
10.1109/TIM.2024.3488147
10.1109/EMBC46164.2021.9630107
10.1016/j.bspc.2019.101760
10.1109/TNSRE.2022.3156546
10.1007/978-981-99-8138-0_25
10.1111/mbe.12342
10.3390/math11051189
10.3390/s20216285
10.3390/s22197300
10.3390/app13042129
10.1007/s11571-020-09626-1
10.1186/s40649-019-0069-y
10.1109/TNSRE.2017.2701002
10.1016/j.bspc.2021.102819
10.1109/BCI48061.2020.9061639
10.3389/fninf.2022.861967
10.1007/s12021-022-09579-2
10.1016/j.ijhcs.2020.102580
10.1109/ACCESS.2019.2945059
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25082390
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2b881bc3f9d5439e8af25c7e9955c2eb
PMC12031105
A838681281
40285080
10_3390_s25082390
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62103299
– fundername: Teaching Fund Projects Tianjin University of Technology
  grantid: TJ23-03
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3072024CFJ0704; 3072024WD0704
– fundername: Tianjin University of Technology Student’s Innovation and Entrepreneurship training program
  grantid: 202410060053
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-5e93ba6394dfae16afaedfc64f8b848408fb6ca3e6a1f4843f4e366095bcc2c43
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 00:56:38 EDT 2025
Thu Aug 21 18:26:55 EDT 2025
Fri Jul 11 18:30:58 EDT 2025
Fri Jul 25 19:54:52 EDT 2025
Tue Jun 10 20:53:35 EDT 2025
Mon Jul 21 05:46:11 EDT 2025
Sun Jul 06 05:02:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords cognitive workload
functional connect
graph neural network
graph theory
electroencephalogram
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-5e93ba6394dfae16afaedfc64f8b848408fb6ca3e6a1f4843f4e366095bcc2c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0947-8126
0000-0002-9295-7795
OpenAccessLink https://www.proquest.com/docview/3194640698?pq-origsite=%requestingapplication%
PMID 40285080
PQID 3194640698
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2b881bc3f9d5439e8af25c7e9955c2eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031105
proquest_miscellaneous_3195784398
proquest_journals_3194640698
gale_infotracacademiconefile_A838681281
pubmed_primary_40285080
crossref_primary_10_3390_s25082390
PublicationCentury 2000
PublicationDate 2025-04-09
PublicationDateYYYYMMDD 2025-04-09
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_10) 2024; 73
Ke (ref_36) 2015; 98
Guan (ref_37) 2023; 31
Bagheri (ref_3) 2020; 17
ref_12
ref_11
Baldwin (ref_33) 2012; 59
ref_32
ref_31
ref_30
Liu (ref_24) 2019; 7
ref_19
(ref_26) 2022; 20
ref_17
(ref_22) 2019; 2019
ref_16
Guan (ref_15) 2022; 30
Dimitrakopoulos (ref_35) 2017; 25
Rubinov (ref_23) 2010; 52
Naseri (ref_14) 2025; 113
Midha (ref_4) 2021; 147
ref_25
Markello (ref_13) 2020; 24
ref_21
ref_20
Zhang (ref_28) 2019; 6
Zhang (ref_34) 2019; 27
Yang (ref_8) 2019; 109
Zhou (ref_18) 2022; 30
Sweller (ref_1) 1988; 12
ref_29
ref_27
ref_5
Skulmowski (ref_2) 2023; 17
ref_7
ref_6
Gao (ref_9) 2021; 15
References_xml – ident: ref_27
  doi: 10.1016/j.sbi.2023.102538
– ident: ref_30
  doi: 10.1109/ICRCICN50933.2020.9296150
– volume: 59
  start-page: 48
  year: 2012
  ident: ref_33
  article-title: Adaptive Training Using an Artificial Neural Network and EEG Metrics for Within- and Cross-Task Workload Classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.047
– volume: 98
  start-page: 157
  year: 2015
  ident: ref_36
  article-title: Towards an Effective Cross-task Mental Workload Recognition Model Using Electroencephalography Based on Feature Selection and Support Vector Machine Regression
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2015.10.004
– volume: 17
  start-page: 056015
  year: 2020
  ident: ref_3
  article-title: EEG-based detection of mental workload level and stress: The effect of variation in each state on classification of the other
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abbc27
– ident: ref_19
  doi: 10.3390/s21206710
– volume: 2019
  start-page: 5075671
  year: 2019
  ident: ref_22
  article-title: A survey on the electric vehicle routing problem: Variants and solution approaches
  publication-title: J. Adv. Transp.
– volume: 52
  start-page: 1059
  year: 2010
  ident: ref_23
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 24
  start-page: 302
  year: 2020
  ident: ref_13
  article-title: Linking structure and function in macroscale brain networks
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2020.01.008
– ident: ref_16
  doi: 10.1016/j.cmpb.2023.107352
– volume: 30
  start-page: 50
  year: 2022
  ident: ref_18
  article-title: Cross-task cognitive workload recognition based on EEG and domain adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3140456
– volume: 27
  start-page: 31
  year: 2019
  ident: ref_34
  article-title: Learning Spatial–Spectral–Temporal EEG Features with Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. (TNSRE)
  doi: 10.1109/TNSRE.2018.2884641
– volume: 31
  start-page: 2632
  year: 2023
  ident: ref_37
  article-title: Cross-Task Mental Workload Recognition Based on EEG Tensor Representation and Transfer Learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. (TNSRE)
  doi: 10.1109/TNSRE.2023.3277867
– volume: 113
  start-page: 7243
  year: 2025
  ident: ref_14
  article-title: Synchronization levels in EEG connectivity during cognitive workloads while driving
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-10729-1
– volume: 12
  start-page: 257
  year: 1988
  ident: ref_1
  article-title: Cognitive Load During Problem Solving: Effects on Learning
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1202_4
– volume: 109
  start-page: 159
  year: 2019
  ident: ref_8
  article-title: Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.034
– ident: ref_6
– volume: 73
  start-page: 1
  year: 2024
  ident: ref_10
  article-title: ARFN: An attention-based recurrent fuzzy network for EEG mental workload assessment
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3488147
– ident: ref_12
  doi: 10.1109/EMBC46164.2021.9630107
– ident: ref_25
  doi: 10.1016/j.bspc.2019.101760
– volume: 30
  start-page: 632
  year: 2022
  ident: ref_15
  article-title: EEG based dynamic functional connectivity analysis in mental workload tasks with different types of information
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3156546
– ident: ref_29
– ident: ref_31
  doi: 10.1007/978-981-99-8138-0_25
– volume: 17
  start-page: 20
  year: 2023
  ident: ref_2
  article-title: Guidelines for Choosing Cognitive Load Measures in Perceptually Rich Environments
  publication-title: Mind Brain Educ.
  doi: 10.1111/mbe.12342
– ident: ref_20
  doi: 10.3390/math11051189
– ident: ref_21
  doi: 10.3390/s20216285
– ident: ref_5
  doi: 10.3390/s22197300
– ident: ref_17
  doi: 10.3390/app13042129
– volume: 15
  start-page: 369
  year: 2021
  ident: ref_9
  article-title: Complex networks and deep learning for EEG signal analysis
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-020-09626-1
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_28
  article-title: Graph convolutional networks: A comprehensive review
  publication-title: Comput. Soc. Netw.
  doi: 10.1186/s40649-019-0069-y
– volume: 25
  start-page: 1940
  year: 2017
  ident: ref_35
  article-title: Task-Independent Mental Workload Classification Based Upon Common Multiband EEG Cortical Connectivity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. (TNSRE)
  doi: 10.1109/TNSRE.2017.2701002
– ident: ref_7
  doi: 10.1016/j.bspc.2021.102819
– ident: ref_11
  doi: 10.1109/BCI48061.2020.9061639
– ident: ref_32
  doi: 10.3389/fninf.2022.861967
– volume: 20
  start-page: 863
  year: 2022
  ident: ref_26
  article-title: Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-022-09579-2
– volume: 147
  start-page: 102580
  year: 2021
  ident: ref_4
  article-title: Measuring mental workload variations in office work tasks using fNIRS
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2020.102580
– volume: 7
  start-page: 143293
  year: 2019
  ident: ref_24
  article-title: Emotion recognition and dynamic functional connectivity analysis based on EEG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2945059
SSID ssj0023338
Score 2.4443521
Snippet In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2390
SubjectTerms Accuracy
Adult
Attention - physiology
Brain - physiology
Brain research
Classification
Cognition - physiology
cognitive workload
Deep learning
electroencephalogram
Electroencephalography
Electroencephalography - methods
Experiments
Female
functional connect
graph neural network
graph theory
Humans
Male
Neural networks
Neural Networks, Computer
Physiology
Workload
Workloads
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWKTO1Q9Ltqk4IJCnQSYpEUTY1O6nwBzZQA2QiKH2jQQi4qpb8_7yRZkNGhSxfDtgiL5OPdu5OPj4x91n65UMvkcxVlzFUVUm5EqPJUyoXX5VIWgjY4f7vWF7fq6q68mx31RTVhgzzwMHHHojaIrLxMVShBntG4JEq_jFVVll7EmrwvOG-bTI2plkTmNegISST1xy2I3ghJjnfGPr1I_9-ueMZFu3WSM-I5e8GejxEjXw09fcmexOYVezbTEXzN2hvX_sgvpxNtO366rQri9DT858YF_vWePARVvhAW_AT0FTjerNfnnJ7GcsSdMOnAz0nDmq-6bqiExG81f8YFin5cD3Xj7Rt2e7a-Ob3Ix9MUcg8C6vIyVrJ2CEhUSC4W2uE1JK9VMrVRyPNMqrV3MmpXJHyWCfBp0qOrvRdeybdsr9k08T3jDsTvpCiCpJxWLEwEHDrUvnCLWviUsaPtLNtfg2iGRbJBUNgJioyd0PxPDUjnuv8C6NsRffsv9DP2hdCzZI2AyLtxUwH6SbpWdmWkIYU1U2RsfwuwHc20tfA_StPeX5Oxw-kyDIz-NXFN3Dz0beDVcHO0eTesh6nPSL4NhoOxmJ2VsjOo3SvN_fdexLsQcKcIbj_8j2n4yJ4KOpeYKoqqfbbX_X6IBwiWuvpTbxePbUMWBg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLZKucABsZNSkEFInAIT20mcA0LTMm1Bak8dqbfI8QIVVYZOUgT_nu8lmWgiEJcoixUvb0-ev8fYm8zmM5UHGysvfawKF2ItXBGHVM5sluYyEbTB-fQsO1mqLxfpxQ7b1NgcFrD5Z2hH9aSW66t3v65_f4TAf6CIEyH7-wZmXAuc3WK3YZByks9TNf5MEBJhWA8qNG0-MUUdYv_fennLME2TJres0NF9dm9wH_m8p_cDtuPrh-zuFqjgI9acm-Z7_Hksb9vyw02KEKdP41cr4_inS1IXlAZDhOEHsGWO42SxOOb0aZbDCYV8O35MgNZ83rZ9WiTeVf8cuBXjOOuTyJvHbHm0OD88iYfSCrGFNWrj1BeyMvBOlAvGJ5nB0QWbqaArrRD06VBl1kifmSTgWgbQMiNwuspaYZV8wnbrVe2fMW7gBRgpEicpwBUz7T1iKFfZxMwqYUPEXm9WufzRI2iUiDyIFOVIiogd0PqPDQj0uruxWn8tBxkqRaXhZFsZCpfCj_LaBJHaHN2lqRW-ithbol5JzAISWTPsMMA4CeSqnGupCW5NJxHb3xC43LBcCWWkMtoIrCP2anwMaaNfKKb2q5uuDVQcOkebpz0_jGNGJK4xHcxFTzhlMqnpk_ryW4fonQjoVni6e_8f13N2R1D5YUocKvbZbru-8S_gE7XVy47j_wBoig5V
  priority: 102
  providerName: Scholars Portal
Title Task-Independent Cognitive Workload Discrimination Based on EEG with Stacked Graph Attention Convolutional Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/40285080
https://www.proquest.com/docview/3194640698
https://www.proquest.com/docview/3195784398
https://pubmed.ncbi.nlm.nih.gov/PMC12031105
https://doaj.org/article/2b881bc3f9d5439e8af25c7e9955c2eb
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgu8AB8U1gVAYhcbLW2I7jnFA72g6kVQhtUm-R448xgZKxZPz9vJe4WSskLlbbWI2d9_3y_HuEfFA2n8o8WCa98EwWLjDNXcFCJqZWZblIOR5wPlur0wv5dZNtYsKtjWWVW53YK2rXWMyRHwOrSIXHNPWn698Mu0bh29XYQuM-OUToMizpyjd3AZeA-GtAExIQ2h-3YO41F6h-d2xQD9X_r0LesUj71ZI75mf5mDyKfiOdDYR-Qu75-il5uIMm-Iy056b9yb6MfW07erKtDaKYE__VGEc_X6GewPoXpAidgxFzFD4sFiuKOVkK3icItqMrRLKms64b6iHhv-o_kU1hHeuherx9Ti6Wi_OTUxZ7KjALZqhjmS9EZcAtkS4YnyoDowtWyaArLSHa06FS1givTBrguwhARIWodJW13ErxghzUTe1fEWrA_BvBUycwsuVT7T0ET66yqZlW3IaEvN8-5fJ6gM4oIeRAUpQjKRIyx-c_TkC06_6H5uayjMJT8kqDd21FKFwGDpTXJvDM5nC7LLPcVwn5iNQrUSaBRNbEowWwTkS3KmdaaMRZ02lCjrYELqOwtuUdayXk3XgZxAzfnZjaN7f9HNBtcHOY83Lgh3HNEIJr2A7sRe9xyt6m9q_UVz96KO-Ug1IFF_f1_9f1hjzg2HcYK4aKI3LQ3dz6t-AMddWk53gY9XI1IYfzxfrb90mfWIDxTOq_iSERRg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBQwCcYqa2Hk4B4S27ba7tN3TVtpbcPyAqigpTQriT_Ebmcljuyskbr1EeViJ7Zn5ZsYZzwC8S3QaRKnTfmSF9aPMOF9yk_kuFoFO4lSEnDY4n8ySyWn0eREvNuDPsBeGwioHTGyB2lSa1sh3kFWihLZpyk8XP3yqGkV_V4cSGh1bHNnfv9Blqz9O95G-7zk_GM_3Jn5fVcDXCMSNH9tMFAoVc2ScsmGi8GicTiInCxmhvyNdkWglbKJCh9fC4TASystWaM11JPC9t-A2Kt6AJCpdXDt4Av29LnuREFmwU6N5IbkguF_ReW1pgH8VwIoGXI_OXFF3B_fhXm-nslHHWA9gw5YPYWsle-EjqOeqPvenyzq6DdsbYpEYrcF_r5Rh-2eESxRvQxzAdlFpGoYn4_EhozVghtYuAolhh5Q5m42apou_xHeVP3uxwH7Mumj1-jGc3shsP4HNsirtM2AKzQ0leGgEedI8kNais2YKHaqg4Np58HaY5fyiS9WRo4tDpMiXpPBgl-Z_2YCya7c3qsuveS-sOS8kWvNauMzEaLBZqRyPdYqfi2PNbeHBB6JeThiAJNKq38qA_aRsWvlICkl53WTowfZA4LwHhzq_ZmUP3iwfo1jTvxpV2uqqbYNYih_HNk87flj2GV1-icPBscg1Tlkb1PqT8uxbmzo85AjiaFI__3-_XsOdyfzkOD-ezo5ewF1ONY8pWinbhs3m8sq-REOsKV613M_gy02L21__xkuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgE4hRtYufhHBDadnfbpbDi0Ep7Sx0_oAIlpUlB_DV-HTN5bHeFxK2XKA8rsT0z38w44xmA14lOgyh12o-ssH6UGedLbjLfxSLQSZyKkNMG50-L5OA4-rCMl1vwZ9gLQ2GVAya2QG0qTWvkI2SVKKFtmnLk-rCIz5PZ-7MfPlWQoj-tQzmNjkUO7e9f6L7V7-YTpPUbzmfTo70Dv68w4GsE5caPbSYKhUo6Mk7ZMFF4NE4nkZOFjND3ka5ItBI2UaHDa-FwSAnlaCu05joS-N5rcD0VcUgyli4vnT2Bvl-XyUiILBjVaGpILgj61_RfWybgX2Wwpg03IzXXVN_sDtzubVY27pjsLmzZ8h7cWstkeB_qI1V_8-ermroN2xvikhitx3-vlGGTU8Ioir0hbmC7qEANw5PpdJ_RejBDyxdBxbB9yqLNxk3TxWLiu8qfvYhgPxZd5Hr9AI6vZLYfwnZZlfYxMIWmhxI8NIK8ah5Ia9FxM4UOVVBw7Tx4Ncxyftal7cjR3SFS5CtSeLBL879qQJm22xvV-Ze8F9ycFxItey1cZmI03qxUjsc6xc_Fsea28OAtUS8nPEASadVva8B-UmatfCyFpBxvMvRgZyBw3gNFnV-ytQcvV49RxOm_jSptddG2QVzFj2ObRx0_rPqM7r_E4eBY5AanbAxq80l5-rVNIx5yBHQ0r5_8v18v4AYKWv5xvjh8Cjc5lT-mwKVsB7ab8wv7DG2ypnjeMj-Dk6uWtr8U0E_G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task-Independent+Cognitive+Workload+Discrimination+Based+on+EEG+with+Stacked+Graph+Attention+Convolutional+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei+Chenyu&rft.au=Zhao%2C+Xuewen&rft.au=Song%2C+Yu&rft.au=Liu%2C+Yi&rft.date=2025-04-09&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft.spage=2390&rft_id=info:doi/10.3390%2Fs25082390&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon