Task-Independent Cognitive Workload Discrimination Based on EEG with Stacked Graph Attention Convolutional Networks
In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessmen...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 8; p. 2390 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
09.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios. |
---|---|
AbstractList | In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios. In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios.In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios. |
Audience | Academic |
Author | Zhao, Xuewen Wei, Chenyu Liu, Yi Song, Yu |
AuthorAffiliation | 2 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China 1 Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China; wei@stud.tjut.edu.cn (C.W.); sy@email.tjut.edu.cn (Y.S.) |
AuthorAffiliation_xml | – name: 2 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China – name: 1 Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China; wei@stud.tjut.edu.cn (C.W.); sy@email.tjut.edu.cn (Y.S.) |
Author_xml | – sequence: 1 givenname: Chenyu surname: Wei fullname: Wei, Chenyu – sequence: 2 givenname: Xuewen surname: Zhao fullname: Zhao, Xuewen – sequence: 3 givenname: Yu orcidid: 0000-0002-9295-7795 surname: Song fullname: Song, Yu – sequence: 4 givenname: Yi orcidid: 0000-0003-0947-8126 surname: Liu fullname: Liu, Yi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285080$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vEzEQhleoiH7AgT-AVuIChxR_7cZ7QiGkIVIFB4o4Wl7vOHGysYPtpOLfd5KUqEWW7PH4mdd-rbksznzwUBRvKbnmvCGfEquIZBi9KC6oYGIgGSNnT-Lz4jKlJSGMcy5fFeeCMIkl5KJIdzqtBjPfwQZw8rkch7l32e2g_B3iqg-6K7-6ZKJbO6-zC778ohN0JQaTybS8d3lR_szarDA3jXqzKEc5o9CeHAe_C_12H-u-_A75HiXT6-Kl1X2CN4_rVfHrZnI3_ja4_TGdjUe3AyOGNA8qaHira96Izmqgtca5s6YWVrZSSEGkbWujOdSaWtxzK4DXNWmq1hhmBL8qZkfdLuil2qADHf-qoJ06JEKcKx2zMz0o1kpJW8Nt01WCNyC1ZZUZQtNUlWHQotbno9Zm266hM2gw6v6Z6PMT7xZqHnaKMsIpJRUqfHhUiOHPFlJWa_xW6HvtIWyT4rSphuiikYi-_w9dhm3ELzxQohakPlDXR2qu0YHzNuDFBkcHa2ewQ6zD_EhyWUvKJMWCd089nB7_rxsQ-HgETAwpRbAnhBK17zR16jT-AJeNxjU |
Cites_doi | 10.1016/j.sbi.2023.102538 10.1109/ICRCICN50933.2020.9296150 10.1016/j.neuroimage.2011.07.047 10.1016/j.ijpsycho.2015.10.004 10.1088/1741-2552/abbc27 10.3390/s21206710 10.1016/j.neuroimage.2009.10.003 10.1016/j.tics.2020.01.008 10.1016/j.cmpb.2023.107352 10.1109/TNSRE.2022.3140456 10.1109/TNSRE.2018.2884641 10.1109/TNSRE.2023.3277867 10.1007/s11071-024-10729-1 10.1207/s15516709cog1202_4 10.1016/j.compbiomed.2019.04.034 10.1109/TIM.2024.3488147 10.1109/EMBC46164.2021.9630107 10.1016/j.bspc.2019.101760 10.1109/TNSRE.2022.3156546 10.1007/978-981-99-8138-0_25 10.1111/mbe.12342 10.3390/math11051189 10.3390/s20216285 10.3390/s22197300 10.3390/app13042129 10.1007/s11571-020-09626-1 10.1186/s40649-019-0069-y 10.1109/TNSRE.2017.2701002 10.1016/j.bspc.2021.102819 10.1109/BCI48061.2020.9061639 10.3389/fninf.2022.861967 10.1007/s12021-022-09579-2 10.1016/j.ijhcs.2020.102580 10.1109/ACCESS.2019.2945059 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25082390 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2b881bc3f9d5439e8af25c7e9955c2eb PMC12031105 A838681281 40285080 10_3390_s25082390 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62103299 – fundername: Teaching Fund Projects Tianjin University of Technology grantid: TJ23-03 – fundername: Fundamental Research Funds for the Central Universities grantid: 3072024CFJ0704; 3072024WD0704 – fundername: Tianjin University of Technology Student’s Innovation and Entrepreneurship training program grantid: 202410060053 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-5e93ba6394dfae16afaedfc64f8b848408fb6ca3e6a1f4843f4e366095bcc2c43 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:56:38 EDT 2025 Thu Aug 21 18:26:55 EDT 2025 Fri Jul 11 18:30:58 EDT 2025 Fri Jul 25 19:54:52 EDT 2025 Tue Jun 10 20:53:35 EDT 2025 Mon Jul 21 05:46:11 EDT 2025 Sun Jul 06 05:02:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | cognitive workload functional connect graph neural network graph theory electroencephalogram |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-5e93ba6394dfae16afaedfc64f8b848408fb6ca3e6a1f4843f4e366095bcc2c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0947-8126 0000-0002-9295-7795 |
OpenAccessLink | https://www.proquest.com/docview/3194640698?pq-origsite=%requestingapplication% |
PMID | 40285080 |
PQID | 3194640698 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2b881bc3f9d5439e8af25c7e9955c2eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031105 proquest_miscellaneous_3195784398 proquest_journals_3194640698 gale_infotracacademiconefile_A838681281 pubmed_primary_40285080 crossref_primary_10_3390_s25082390 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-09 |
PublicationDateYYYYMMDD | 2025-04-09 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wang (ref_10) 2024; 73 Ke (ref_36) 2015; 98 Guan (ref_37) 2023; 31 Bagheri (ref_3) 2020; 17 ref_12 ref_11 Baldwin (ref_33) 2012; 59 ref_32 ref_31 ref_30 Liu (ref_24) 2019; 7 ref_19 (ref_26) 2022; 20 ref_17 (ref_22) 2019; 2019 ref_16 Guan (ref_15) 2022; 30 Dimitrakopoulos (ref_35) 2017; 25 Rubinov (ref_23) 2010; 52 Naseri (ref_14) 2025; 113 Midha (ref_4) 2021; 147 ref_25 Markello (ref_13) 2020; 24 ref_21 ref_20 Zhang (ref_28) 2019; 6 Zhang (ref_34) 2019; 27 Yang (ref_8) 2019; 109 Zhou (ref_18) 2022; 30 Sweller (ref_1) 1988; 12 ref_29 ref_27 ref_5 Skulmowski (ref_2) 2023; 17 ref_7 ref_6 Gao (ref_9) 2021; 15 |
References_xml | – ident: ref_27 doi: 10.1016/j.sbi.2023.102538 – ident: ref_30 doi: 10.1109/ICRCICN50933.2020.9296150 – volume: 59 start-page: 48 year: 2012 ident: ref_33 article-title: Adaptive Training Using an Artificial Neural Network and EEG Metrics for Within- and Cross-Task Workload Classification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.047 – volume: 98 start-page: 157 year: 2015 ident: ref_36 article-title: Towards an Effective Cross-task Mental Workload Recognition Model Using Electroencephalography Based on Feature Selection and Support Vector Machine Regression publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2015.10.004 – volume: 17 start-page: 056015 year: 2020 ident: ref_3 article-title: EEG-based detection of mental workload level and stress: The effect of variation in each state on classification of the other publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abbc27 – ident: ref_19 doi: 10.3390/s21206710 – volume: 2019 start-page: 5075671 year: 2019 ident: ref_22 article-title: A survey on the electric vehicle routing problem: Variants and solution approaches publication-title: J. Adv. Transp. – volume: 52 start-page: 1059 year: 2010 ident: ref_23 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 24 start-page: 302 year: 2020 ident: ref_13 article-title: Linking structure and function in macroscale brain networks publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2020.01.008 – ident: ref_16 doi: 10.1016/j.cmpb.2023.107352 – volume: 30 start-page: 50 year: 2022 ident: ref_18 article-title: Cross-task cognitive workload recognition based on EEG and domain adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3140456 – volume: 27 start-page: 31 year: 2019 ident: ref_34 article-title: Learning Spatial–Spectral–Temporal EEG Features with Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. (TNSRE) doi: 10.1109/TNSRE.2018.2884641 – volume: 31 start-page: 2632 year: 2023 ident: ref_37 article-title: Cross-Task Mental Workload Recognition Based on EEG Tensor Representation and Transfer Learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. (TNSRE) doi: 10.1109/TNSRE.2023.3277867 – volume: 113 start-page: 7243 year: 2025 ident: ref_14 article-title: Synchronization levels in EEG connectivity during cognitive workloads while driving publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-10729-1 – volume: 12 start-page: 257 year: 1988 ident: ref_1 article-title: Cognitive Load During Problem Solving: Effects on Learning publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1202_4 – volume: 109 start-page: 159 year: 2019 ident: ref_8 article-title: Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.034 – ident: ref_6 – volume: 73 start-page: 1 year: 2024 ident: ref_10 article-title: ARFN: An attention-based recurrent fuzzy network for EEG mental workload assessment publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3488147 – ident: ref_12 doi: 10.1109/EMBC46164.2021.9630107 – ident: ref_25 doi: 10.1016/j.bspc.2019.101760 – volume: 30 start-page: 632 year: 2022 ident: ref_15 article-title: EEG based dynamic functional connectivity analysis in mental workload tasks with different types of information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3156546 – ident: ref_29 – ident: ref_31 doi: 10.1007/978-981-99-8138-0_25 – volume: 17 start-page: 20 year: 2023 ident: ref_2 article-title: Guidelines for Choosing Cognitive Load Measures in Perceptually Rich Environments publication-title: Mind Brain Educ. doi: 10.1111/mbe.12342 – ident: ref_20 doi: 10.3390/math11051189 – ident: ref_21 doi: 10.3390/s20216285 – ident: ref_5 doi: 10.3390/s22197300 – ident: ref_17 doi: 10.3390/app13042129 – volume: 15 start-page: 369 year: 2021 ident: ref_9 article-title: Complex networks and deep learning for EEG signal analysis publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09626-1 – volume: 6 start-page: 1 year: 2019 ident: ref_28 article-title: Graph convolutional networks: A comprehensive review publication-title: Comput. Soc. Netw. doi: 10.1186/s40649-019-0069-y – volume: 25 start-page: 1940 year: 2017 ident: ref_35 article-title: Task-Independent Mental Workload Classification Based Upon Common Multiband EEG Cortical Connectivity publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. (TNSRE) doi: 10.1109/TNSRE.2017.2701002 – ident: ref_7 doi: 10.1016/j.bspc.2021.102819 – ident: ref_11 doi: 10.1109/BCI48061.2020.9061639 – ident: ref_32 doi: 10.3389/fninf.2022.861967 – volume: 20 start-page: 863 year: 2022 ident: ref_26 article-title: Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures publication-title: Neuroinformatics doi: 10.1007/s12021-022-09579-2 – volume: 147 start-page: 102580 year: 2021 ident: ref_4 article-title: Measuring mental workload variations in office work tasks using fNIRS publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2020.102580 – volume: 7 start-page: 143293 year: 2019 ident: ref_24 article-title: Emotion recognition and dynamic functional connectivity analysis based on EEG publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2945059 |
SSID | ssj0023338 |
Score | 2.4443521 |
Snippet | In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2390 |
SubjectTerms | Accuracy Adult Attention - physiology Brain - physiology Brain research Classification Cognition - physiology cognitive workload Deep learning electroencephalogram Electroencephalography Electroencephalography - methods Experiments Female functional connect graph neural network graph theory Humans Male Neural networks Neural Networks, Computer Physiology Workload Workloads Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWKTO1Q9Ltqk4IJCnQSYpEUTY1O6nwBzZQA2QiKH2jQQi4qpb8_7yRZkNGhSxfDtgiL5OPdu5OPj4x91n65UMvkcxVlzFUVUm5EqPJUyoXX5VIWgjY4f7vWF7fq6q68mx31RTVhgzzwMHHHojaIrLxMVShBntG4JEq_jFVVll7EmrwvOG-bTI2plkTmNegISST1xy2I3ghJjnfGPr1I_9-ueMZFu3WSM-I5e8GejxEjXw09fcmexOYVezbTEXzN2hvX_sgvpxNtO366rQri9DT858YF_vWePARVvhAW_AT0FTjerNfnnJ7GcsSdMOnAz0nDmq-6bqiExG81f8YFin5cD3Xj7Rt2e7a-Ob3Ix9MUcg8C6vIyVrJ2CEhUSC4W2uE1JK9VMrVRyPNMqrV3MmpXJHyWCfBp0qOrvRdeybdsr9k08T3jDsTvpCiCpJxWLEwEHDrUvnCLWviUsaPtLNtfg2iGRbJBUNgJioyd0PxPDUjnuv8C6NsRffsv9DP2hdCzZI2AyLtxUwH6SbpWdmWkIYU1U2RsfwuwHc20tfA_StPeX5Oxw-kyDIz-NXFN3Dz0beDVcHO0eTesh6nPSL4NhoOxmJ2VsjOo3SvN_fdexLsQcKcIbj_8j2n4yJ4KOpeYKoqqfbbX_X6IBwiWuvpTbxePbUMWBg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLZKucABsZNSkEFInAIT20mcA0LTMm1Bak8dqbfI8QIVVYZOUgT_nu8lmWgiEJcoixUvb0-ev8fYm8zmM5UHGysvfawKF2ItXBGHVM5sluYyEbTB-fQsO1mqLxfpxQ7b1NgcFrD5Z2hH9aSW66t3v65_f4TAf6CIEyH7-wZmXAuc3WK3YZByks9TNf5MEBJhWA8qNG0-MUUdYv_fennLME2TJres0NF9dm9wH_m8p_cDtuPrh-zuFqjgI9acm-Z7_Hksb9vyw02KEKdP41cr4_inS1IXlAZDhOEHsGWO42SxOOb0aZbDCYV8O35MgNZ83rZ9WiTeVf8cuBXjOOuTyJvHbHm0OD88iYfSCrGFNWrj1BeyMvBOlAvGJ5nB0QWbqaArrRD06VBl1kifmSTgWgbQMiNwuspaYZV8wnbrVe2fMW7gBRgpEicpwBUz7T1iKFfZxMwqYUPEXm9WufzRI2iUiDyIFOVIiogd0PqPDQj0uruxWn8tBxkqRaXhZFsZCpfCj_LaBJHaHN2lqRW-ithbol5JzAISWTPsMMA4CeSqnGupCW5NJxHb3xC43LBcCWWkMtoIrCP2anwMaaNfKKb2q5uuDVQcOkebpz0_jGNGJK4xHcxFTzhlMqnpk_ryW4fonQjoVni6e_8f13N2R1D5YUocKvbZbru-8S_gE7XVy47j_wBoig5V priority: 102 providerName: Scholars Portal |
Title | Task-Independent Cognitive Workload Discrimination Based on EEG with Stacked Graph Attention Convolutional Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40285080 https://www.proquest.com/docview/3194640698 https://www.proquest.com/docview/3195784398 https://pubmed.ncbi.nlm.nih.gov/PMC12031105 https://doaj.org/article/2b881bc3f9d5439e8af25c7e9955c2eb |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgu8AB8U1gVAYhcbLW2I7jnFA72g6kVQhtUm-R448xgZKxZPz9vJe4WSskLlbbWI2d9_3y_HuEfFA2n8o8WCa98EwWLjDNXcFCJqZWZblIOR5wPlur0wv5dZNtYsKtjWWVW53YK2rXWMyRHwOrSIXHNPWn698Mu0bh29XYQuM-OUToMizpyjd3AZeA-GtAExIQ2h-3YO41F6h-d2xQD9X_r0LesUj71ZI75mf5mDyKfiOdDYR-Qu75-il5uIMm-Iy056b9yb6MfW07erKtDaKYE__VGEc_X6GewPoXpAidgxFzFD4sFiuKOVkK3icItqMrRLKms64b6iHhv-o_kU1hHeuherx9Ti6Wi_OTUxZ7KjALZqhjmS9EZcAtkS4YnyoDowtWyaArLSHa06FS1givTBrguwhARIWodJW13ErxghzUTe1fEWrA_BvBUycwsuVT7T0ET66yqZlW3IaEvN8-5fJ6gM4oIeRAUpQjKRIyx-c_TkC06_6H5uayjMJT8kqDd21FKFwGDpTXJvDM5nC7LLPcVwn5iNQrUSaBRNbEowWwTkS3KmdaaMRZ02lCjrYELqOwtuUdayXk3XgZxAzfnZjaN7f9HNBtcHOY83Lgh3HNEIJr2A7sRe9xyt6m9q_UVz96KO-Ug1IFF_f1_9f1hjzg2HcYK4aKI3LQ3dz6t-AMddWk53gY9XI1IYfzxfrb90mfWIDxTOq_iSERRg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBQwCcYqa2Hk4B4S27ba7tN3TVtpbcPyAqigpTQriT_Ebmcljuyskbr1EeViJ7Zn5ZsYZzwC8S3QaRKnTfmSF9aPMOF9yk_kuFoFO4lSEnDY4n8ySyWn0eREvNuDPsBeGwioHTGyB2lSa1sh3kFWihLZpyk8XP3yqGkV_V4cSGh1bHNnfv9Blqz9O95G-7zk_GM_3Jn5fVcDXCMSNH9tMFAoVc2ScsmGi8GicTiInCxmhvyNdkWglbKJCh9fC4TASystWaM11JPC9t-A2Kt6AJCpdXDt4Av29LnuREFmwU6N5IbkguF_ReW1pgH8VwIoGXI_OXFF3B_fhXm-nslHHWA9gw5YPYWsle-EjqOeqPvenyzq6DdsbYpEYrcF_r5Rh-2eESxRvQxzAdlFpGoYn4_EhozVghtYuAolhh5Q5m42apou_xHeVP3uxwH7Mumj1-jGc3shsP4HNsirtM2AKzQ0leGgEedI8kNais2YKHaqg4Np58HaY5fyiS9WRo4tDpMiXpPBgl-Z_2YCya7c3qsuveS-sOS8kWvNauMzEaLBZqRyPdYqfi2PNbeHBB6JeThiAJNKq38qA_aRsWvlICkl53WTowfZA4LwHhzq_ZmUP3iwfo1jTvxpV2uqqbYNYih_HNk87flj2GV1-icPBscg1Tlkb1PqT8uxbmzo85AjiaFI__3-_XsOdyfzkOD-ezo5ewF1ONY8pWinbhs3m8sq-REOsKV613M_gy02L21__xkuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgE4hRtYufhHBDadnfbpbDi0Ep7Sx0_oAIlpUlB_DV-HTN5bHeFxK2XKA8rsT0z38w44xmA14lOgyh12o-ssH6UGedLbjLfxSLQSZyKkNMG50-L5OA4-rCMl1vwZ9gLQ2GVAya2QG0qTWvkI2SVKKFtmnLk-rCIz5PZ-7MfPlWQoj-tQzmNjkUO7e9f6L7V7-YTpPUbzmfTo70Dv68w4GsE5caPbSYKhUo6Mk7ZMFF4NE4nkZOFjND3ka5ItBI2UaHDa-FwSAnlaCu05joS-N5rcD0VcUgyli4vnT2Bvl-XyUiILBjVaGpILgj61_RfWybgX2Wwpg03IzXXVN_sDtzubVY27pjsLmzZ8h7cWstkeB_qI1V_8-ermroN2xvikhitx3-vlGGTU8Ioir0hbmC7qEANw5PpdJ_RejBDyxdBxbB9yqLNxk3TxWLiu8qfvYhgPxZd5Hr9AI6vZLYfwnZZlfYxMIWmhxI8NIK8ah5Ia9FxM4UOVVBw7Tx4Ncxyftal7cjR3SFS5CtSeLBL879qQJm22xvV-Ze8F9ycFxItey1cZmI03qxUjsc6xc_Fsea28OAtUS8nPEASadVva8B-UmatfCyFpBxvMvRgZyBw3gNFnV-ytQcvV49RxOm_jSptddG2QVzFj2ObRx0_rPqM7r_E4eBY5AanbAxq80l5-rVNIx5yBHQ0r5_8v18v4AYKWv5xvjh8Cjc5lT-mwKVsB7ab8wv7DG2ypnjeMj-Dk6uWtr8U0E_G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task-Independent+Cognitive+Workload+Discrimination+Based+on+EEG+with+Stacked+Graph+Attention+Convolutional+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei+Chenyu&rft.au=Zhao%2C+Xuewen&rft.au=Song%2C+Yu&rft.au=Liu%2C+Yi&rft.date=2025-04-09&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft.spage=2390&rft_id=info:doi/10.3390%2Fs25082390&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |