Boosting the Activation of Molecular Oxygen and the Degradation of Rhodamine B in Polar-Functional-Group-Modified g-C3N4

Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was s...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 16; p. 3836
Main Authors Chen, Jing, Yang, Minghua, Zhang, Hongjiao, Chen, Yuxin, Ji, Yujie, Yu, Ruohan, Liu, Zhenguo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.08.2024
MDPI
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules29163836

Cover

Loading…
Abstract Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C3N4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min−1, surpassing most other g-C3N4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C3N4 to enhance efficient molecular oxygen activation.
AbstractList Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C3N4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min−1, surpassing most other g-C3N4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C3N4 to enhance efficient molecular oxygen activation.
Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C 3 N 4 ) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C 3 N 4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min −1 , surpassing most other g-C 3 N 4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C 3 N 4 to enhance efficient molecular oxygen activation.
Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C3N4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min-1, surpassing most other g-C3N4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C3N4 to enhance efficient molecular oxygen activation.Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C3N4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min-1, surpassing most other g-C3N4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C3N4 to enhance efficient molecular oxygen activation.
Author Liu, Zhenguo
Chen, Yuxin
Yu, Ruohan
Yang, Minghua
Ji, Yujie
Zhang, Hongjiao
Chen, Jing
AuthorAffiliation 4 School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou 450046, China
1 Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
3 Department of Chemistry, Lishui University, 1 Xueyuan Road, Lishui 323000, China; chenyuxin@lsu.edu.cn (Y.C.); jiyujie@lsu.edu.cn (Y.J.); yuruohan@lsu.edu.cn (R.Y.)
2 Department of Chemical and Material Engineering, Quzhou College of Technology, Quzhou 324002, China; yangmh@qzct.edu.cn (M.Y.); zhanghongjiao@qzct.edu.cn (H.Z.)
AuthorAffiliation_xml – name: 3 Department of Chemistry, Lishui University, 1 Xueyuan Road, Lishui 323000, China; chenyuxin@lsu.edu.cn (Y.C.); jiyujie@lsu.edu.cn (Y.J.); yuruohan@lsu.edu.cn (R.Y.)
– name: 1 Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
– name: 2 Department of Chemical and Material Engineering, Quzhou College of Technology, Quzhou 324002, China; yangmh@qzct.edu.cn (M.Y.); zhanghongjiao@qzct.edu.cn (H.Z.)
– name: 4 School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou 450046, China
Author_xml – sequence: 1
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
– sequence: 2
  givenname: Minghua
  orcidid: 0009-0007-9734-4780
  surname: Yang
  fullname: Yang, Minghua
– sequence: 3
  givenname: Hongjiao
  surname: Zhang
  fullname: Zhang, Hongjiao
– sequence: 4
  givenname: Yuxin
  surname: Chen
  fullname: Chen, Yuxin
– sequence: 5
  givenname: Yujie
  surname: Ji
  fullname: Ji, Yujie
– sequence: 6
  givenname: Ruohan
  surname: Yu
  fullname: Yu, Ruohan
– sequence: 7
  givenname: Zhenguo
  surname: Liu
  fullname: Liu, Zhenguo
BookMark eNp1kktv3CAURq0qlZqk_QHdIXXTjRPggm1WVTJtHlLSVFWyRpiHh5ENU7Cj5N_HM5NWTaquQHC-A1zuQbEXYrBF8ZHgIwCBj4fYWz31NlNBKmigelPsE0ZxCZiJvb_m74qDnFcYU8II3y8eTmPMow8dGpcWnejR36vRx4CiQ9c7p0ro5uGxswGpYLbYV9slZf5wP5fRqMEHi06RD-hHnCPl2RT0BlB9eZ7itC6vo_HOW4O6cgHf2fvirVN9th-ex8Pi7uzb7eKivLo5v1ycXJWa1WQsuW4qbRnmlcMtGNpQV_HaEi0IIUpZ4WpemxaAcAYYHChnWsxaYJqaijVwWFzuvCaqlVwnP6j0KKPycrsQUydVGr3urayVozVlHABvTmyEc5hRMDAXTwtTz64vO9d6agdrtA1jUv0L6cud4Jeyi_eSEOBVI-hs-PxsSPHXZPMoB5-17XsVbJyyBCxELRghfEY_vUJXcUpzPbdUgznlFGaq3lE6xZyTdVL7cfsz8wV8LwmWm_6Q__THnCSvkr_f8f_MEwhfwqE
CitedBy_id crossref_primary_10_1016_j_greeac_2025_100230
Cites_doi 10.1021/acscatal.6b03334
10.1016/j.apcatb.2017.02.083
10.1021/acsami.2c19906
10.1016/j.apsusc.2017.07.282
10.1016/j.envres.2024.119484
10.1016/j.cej.2020.126978
10.1016/j.chemosphere.2020.127675
10.1002/adma.202107668
10.1016/j.jcis.2013.03.034
10.1016/j.apcatb.2015.08.002
10.1016/j.apsusc.2021.151140
10.1016/j.cej.2021.133927
10.1016/j.wri.2023.100220
10.1016/j.apsusc.2020.148132
10.1039/c1jm12620b
10.1016/j.cej.2019.05.175
10.1016/j.jelechem.2024.118072
10.1007/s43630-021-00019-9
10.1016/j.clay.2022.106432
10.1016/j.bios.2013.12.039
10.1016/j.jpcs.2020.109900
10.1007/s10876-022-02402-7
10.1016/j.apcatb.2022.121329
10.1002/adma.201503448
10.1016/j.apsusc.2015.03.086
10.1039/C5TA05128B
10.1016/j.nanoen.2018.05.053
10.1021/acsami.6b10516
10.1002/adfm.202001502
10.1016/j.seppur.2020.116618
10.1016/j.nanoen.2021.105869
10.1002/adfm.201503221
10.1039/C4CP05020G
10.1016/j.apcatb.2019.118581
10.1016/j.jece.2024.112547
10.1016/j.jclepro.2021.130039
10.1039/D3GC04163H
10.1016/j.apcatb.2018.10.057
10.1021/ja4092903
10.1021/la900923z
10.1016/j.cej.2021.129915
10.1016/j.solener.2024.112316
10.1016/j.cej.2023.144521
10.3390/polym12091963
10.1016/j.apcatb.2012.09.031
10.1016/j.colsurfa.2023.132624
10.1002/anie.202111769
10.1016/j.apcatb.2022.121611
10.1021/ar500412p
10.1016/j.flatc.2021.100277
10.1016/j.apcatb.2020.119637
10.1039/C4TA04041D
10.1002/smll.202300109
10.1038/s41467-020-20521-5
10.1016/j.electacta.2016.12.077
10.1039/D1CS00242B
10.1002/adfm.202102315
10.1016/j.cej.2022.139191
10.1016/j.apcatb.2020.119742
10.1002/smll.201603938
10.1021/jp200953k
10.1007/s10311-018-0814-8
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules29163836
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_7af27245330e40589ff0423d3142c9d7
PMC11356892
10_3390_molecules29163836
GrantInformation_xml – fundername: Fundamental Research Funds of Lishui
  grantid: 2023GYX46
– fundername: Key Research and Development Projects of Quzhou
  grantid: 2023K259
– fundername: “Pioneer” and “Leading Goose” R&D programs of Zhejiang
  grantid: 2024C01251(SD2)
– fundername: Key R&D Special Project of He’nan
  grantid: 231111232500
– fundername: MIIT Dedicated Program
  grantid: TC220A04A-206
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-5c86ce4056f0b3d282f657e1c9111aae9f757db33154303f3afdb04b34c2d6483
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:10:20 EDT 2025
Thu Aug 21 18:32:10 EDT 2025
Fri Jul 11 11:34:52 EDT 2025
Sat Jul 26 02:35:50 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Tue Jul 01 03:59:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-5c86ce4056f0b3d282f657e1c9111aae9f757db33154303f3afdb04b34c2d6483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-9734-4780
OpenAccessLink https://www.proquest.com/docview/3098052523?pq-origsite=%requestingapplication%
PQID 3098052523
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_7af27245330e40589ff0423d3142c9d7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356892
proquest_miscellaneous_3099794115
proquest_journals_3098052523
crossref_citationtrail_10_3390_molecules29163836
crossref_primary_10_3390_molecules29163836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240813
PublicationDateYYYYMMDD 2024-08-13
PublicationDate_xml – month: 8
  year: 2024
  text: 20240813
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yu (ref_9) 2023; 25
Ali (ref_61) 2021; 570
Chen (ref_60) 2022; 218
Sun (ref_20) 2023; 15
ref_58
Yan (ref_40) 2009; 25
(ref_4) 2021; 405
Liu (ref_41) 2011; 21
Liu (ref_53) 2020; 244
Sharmoukh (ref_5) 2023; 34
Li (ref_15) 2021; 421
Tan (ref_22) 2021; 262
Yu (ref_27) 2018; 50
Xie (ref_45) 2020; 265
Zhao (ref_12) 2013; 135
Li (ref_32) 2014; 55
Ming (ref_34) 2014; 2
Wang (ref_33) 2017; 224
Zhang (ref_48) 2022; 34
Mohod (ref_1) 2023; 30
Johnson (ref_51) 2016; 181
Liang (ref_47) 2015; 25
Huang (ref_57) 2021; 538
Huang (ref_50) 2019; 374
Li (ref_19) 2021; 283
Luo (ref_37) 2021; 284
Zanaty (ref_7) 2024; 12
Xiang (ref_43) 2011; 115
Wang (ref_6) 2024; 956
You (ref_36) 2022; 431
Anglada (ref_13) 2015; 48
Ma (ref_55) 2018; 430
Dong (ref_42) 2013; 401
Kumar (ref_17) 2018; 17
Wang (ref_24) 2023; 19
Tran (ref_56) 2021; 151
Bu (ref_30) 2016; 8
Moon (ref_35) 2017; 7
Merschjann (ref_38) 2015; 27
Zhan (ref_11) 2022; 310
Meng (ref_54) 2017; 210
Wang (ref_21) 2023; 471
Li (ref_26) 2016; 4
Teo (ref_2) 2022; 332
Feng (ref_44) 2020; 30
Ghanbari (ref_62) 2024; 268
Zhang (ref_16) 2024; 680
Che (ref_25) 2021; 60
Zhu (ref_39) 2015; 344
Ben (ref_14) 2021; 31
Che (ref_18) 2022; 316
Li (ref_28) 2023; 452
Yang (ref_49) 2019; 243
She (ref_29) 2021; 84
Li (ref_31) 2015; 17
Shi (ref_52) 2021; 20
Fu (ref_46) 2017; 13
Li (ref_8) 2013; 129
Ajiboye (ref_3) 2021; 29
Tang (ref_10) 2021; 50
Huang (ref_23) 2021; 12
Dharani (ref_59) 2024; 258
References_xml – volume: 7
  start-page: 2886
  year: 2017
  ident: ref_35
  article-title: Eco-Friendly Photochemical Production of H2O2 through O2 Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03334
– volume: 210
  start-page: 160
  year: 2017
  ident: ref_54
  article-title: MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.02.083
– volume: 15
  start-page: 12957
  year: 2023
  ident: ref_20
  article-title: Engineering Z-Scheme FeOOH/PCN with Fast Photoelectron Transfer and Surface Redox Kinetics for Efficient Solar-Driven CO2 Reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c19906
– volume: 430
  start-page: 263
  year: 2018
  ident: ref_55
  article-title: Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.282
– volume: 258
  start-page: 119484
  year: 2024
  ident: ref_59
  article-title: Photodegrading rhodamine B dye with cobalt ferrite-graphitic carbon nitride (CoFe2O4/g-C3N4) composite
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2024.119484
– volume: 405
  start-page: 126978
  year: 2021
  ident: ref_4
  article-title: Use of modified flotation cell as ozonation reactor to minimize mass transfer limitations
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126978
– volume: 262
  start-page: 127675
  year: 2021
  ident: ref_22
  article-title: Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: A review on materials design and mechanisms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127675
– volume: 34
  start-page: e2107668
  year: 2022
  ident: ref_48
  article-title: Emerging S-Scheme Photocatalyst
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107668
– volume: 401
  start-page: 70
  year: 2013
  ident: ref_42
  article-title: Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.03.034
– volume: 181
  start-page: 517
  year: 2016
  ident: ref_51
  article-title: Comparing the degradation of acetochlor to RhB using BiOBr under visible light: A significantly different rate-catalyst dose relationship
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.08.002
– volume: 570
  start-page: 151140
  year: 2021
  ident: ref_61
  article-title: Synergetic performance of systematically designed g-C3N4/rGO/SnO2 nanocomposite for photodegradation of Rhodamine-B dye
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151140
– volume: 431
  start-page: 133927
  year: 2022
  ident: ref_36
  article-title: Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133927
– volume: 30
  start-page: 100220
  year: 2023
  ident: ref_1
  article-title: Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs)—Focus on cavitation and photocatalysis—A critical review
  publication-title: Water Resour. Ind.
  doi: 10.1016/j.wri.2023.100220
– volume: 538
  start-page: 148132
  year: 2021
  ident: ref_57
  article-title: In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148132
– volume: 21
  start-page: 14398
  year: 2011
  ident: ref_41
  article-title: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12620b
– volume: 374
  start-page: 242
  year: 2019
  ident: ref_50
  article-title: An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.175
– volume: 956
  start-page: 118072
  year: 2024
  ident: ref_6
  article-title: CuCO2O4/CF cathode with bifunctional and dual reaction centers exhibits high RhB degradation in electro-Fenton systems
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2024.118072
– volume: 20
  start-page: 303
  year: 2021
  ident: ref_52
  article-title: pH-controlled mechanism of photocatalytic RhB degradation over g-C3N4 under sunlight irradiation
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1007/s43630-021-00019-9
– volume: 218
  start-page: 106432
  year: 2022
  ident: ref_60
  article-title: Montmorillonite induced assembly of multi-element doped g-C3N4 nanosheets with enhanced activity for Rhodamine B photodegradation
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2022.106432
– volume: 55
  start-page: 330
  year: 2014
  ident: ref_32
  article-title: Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated g-C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.12.039
– volume: 151
  start-page: 109900
  year: 2021
  ident: ref_56
  article-title: One-step synthesis of oxygen doped g-C3N4 for enhanced visible-light photodegradation of Rhodamine B
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2020.109900
– volume: 34
  start-page: 2509
  year: 2023
  ident: ref_5
  article-title: Fenton-like Cerium Metal—Organic Frameworks (Ce-MOFs) for Catalytic Oxidation of Olefins, Alcohol, and Dyes Degradation
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-022-02402-7
– volume: 310
  start-page: 121329
  year: 2022
  ident: ref_11
  article-title: Photocatalytic O2 activation and reactive oxygen species evolution by surface B-N bond for organic pollutants degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.121329
– volume: 27
  start-page: 7993
  year: 2015
  ident: ref_38
  article-title: Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503448
– volume: 344
  start-page: 188
  year: 2015
  ident: ref_39
  article-title: Isoelectric point and adsorption activity of porous g-C3N4
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.086
– volume: 4
  start-page: 2943
  year: 2016
  ident: ref_26
  article-title: In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visible-light irradiation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05128B
– volume: 50
  start-page: 383
  year: 2018
  ident: ref_27
  article-title: Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.053
– volume: 8
  start-page: 31419
  year: 2016
  ident: ref_30
  article-title: Surface Modification of C3N4 through Oxygen-Plasma Treatment: A Simple Way toward Excellent Hydrophilicity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10516
– volume: 30
  start-page: 2001502
  year: 2020
  ident: ref_44
  article-title: Large-Scale Synthesis of a New Polymeric Carbon Nitride—C3N3 with Good Photoelectrochemical Performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001502
– volume: 244
  start-page: 116618
  year: 2020
  ident: ref_53
  article-title: Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116618
– volume: 84
  start-page: 105869
  year: 2021
  ident: ref_29
  article-title: Grain-boundary surface terminations incorporating oxygen vacancies for selectively boosting CO2 photoreduction activity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105869
– volume: 25
  start-page: 6885
  year: 2015
  ident: ref_47
  article-title: Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503221
– volume: 17
  start-page: 3309
  year: 2015
  ident: ref_31
  article-title: Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05020G
– volume: 265
  start-page: 118581
  year: 2020
  ident: ref_45
  article-title: Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118581
– volume: 12
  start-page: 112547
  year: 2024
  ident: ref_7
  article-title: Zeolitic imidazolate framework@hydrogen titanate nanotubes for efficient adsorption and catalytic oxidation of organic dyes and microplastics
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.112547
– volume: 332
  start-page: 130039
  year: 2022
  ident: ref_2
  article-title: Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.130039
– volume: 25
  start-page: 10530
  year: 2023
  ident: ref_9
  article-title: Cu and Ni dual-doped ZnO nanostructures templated by cellulose nanofibrils for the boosted visible-light photocatalytic degradation of wastewater pollutants
  publication-title: Green Chem.
  doi: 10.1039/D3GC04163H
– volume: 243
  start-page: 513
  year: 2019
  ident: ref_49
  article-title: Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.10.057
– volume: 135
  start-page: 15750
  year: 2013
  ident: ref_12
  article-title: Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4092903
– volume: 25
  start-page: 10397
  year: 2009
  ident: ref_40
  article-title: Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine
  publication-title: Langmuir
  doi: 10.1021/la900923z
– volume: 421
  start-page: 129915
  year: 2021
  ident: ref_15
  article-title: Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129915
– volume: 268
  start-page: 112316
  year: 2024
  ident: ref_62
  article-title: Facile preparation and characterization of Zn2Ti3O8/g-C3N4 nanocomposites for degradation of rhodamine B under simulated sunlight
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2024.112316
– volume: 471
  start-page: 144521
  year: 2023
  ident: ref_21
  article-title: Mechanism insights into visible light-induced crystalline carbon nitride activating periodate for highly efficient ciprofloxacin removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144521
– ident: ref_58
  doi: 10.3390/polym12091963
– volume: 129
  start-page: 255
  year: 2013
  ident: ref_8
  article-title: Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.09.031
– volume: 680
  start-page: 132624
  year: 2024
  ident: ref_16
  article-title: Defect engineering in 0D/2D TiO2/g-C3N4 heterojunction for boosting photocatalytic degradation of tetracycline in a tetracycline/Cu2+ combined system
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.132624
– volume: 60
  start-page: 25546
  year: 2021
  ident: ref_25
  article-title: Iodide-Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for High-Performance Quasi-Homogeneous Photocatalytic H2O2 Production
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202111769
– volume: 316
  start-page: 121611
  year: 2022
  ident: ref_18
  article-title: Rational design of donor-acceptor conjugated polymers with high performance on peroxydisulfate activation for pollutants degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.121611
– volume: 48
  start-page: 575
  year: 2015
  ident: ref_13
  article-title: Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500412p
– volume: 29
  start-page: 100277
  year: 2021
  ident: ref_3
  article-title: Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials
  publication-title: FlatChem
  doi: 10.1016/j.flatc.2021.100277
– volume: 283
  start-page: 119637
  year: 2021
  ident: ref_19
  article-title: A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119637
– volume: 2
  start-page: 19145
  year: 2014
  ident: ref_34
  article-title: Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04041D
– volume: 19
  start-page: e2300109
  year: 2023
  ident: ref_24
  article-title: Effect of Functional Group Modifications on the Photocatalytic Performance of g-C3N4
  publication-title: Small
  doi: 10.1002/smll.202300109
– volume: 12
  start-page: 320
  year: 2021
  ident: ref_23
  article-title: Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20521-5
– volume: 224
  start-page: 194
  year: 2017
  ident: ref_33
  article-title: Ultrasensitive electrochemiluminescence biosensor for organophosphate pesticides detection based on carboxylated graphitic carbon nitride-poly(ethylenimine) and acetylcholinesterase
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.077
– volume: 50
  start-page: 8067
  year: 2021
  ident: ref_10
  article-title: Molecular oxygen-mediated oxygenation reactions involving radicals
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00242B
– volume: 31
  start-page: 202102315
  year: 2021
  ident: ref_14
  article-title: Diffusion-Controlled Z-Scheme-Steered Charge Separation across PDI/BiOI Heterointerface for Ultraviolet, Visible, and Infrared Light-Driven Photocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102315
– volume: 452
  start-page: 139191
  year: 2023
  ident: ref_28
  article-title: Interfacial bonding of hydroxyl-modified g-C3N4 and Bi2O2CO3 toward boosted CO2 photoreduction: Insights into the key role of OH groups
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139191
– volume: 284
  start-page: 119742
  year: 2021
  ident: ref_37
  article-title: Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119742
– volume: 13
  start-page: 1603938
  year: 2017
  ident: ref_46
  article-title: Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity
  publication-title: Small
  doi: 10.1002/smll.201603938
– volume: 115
  start-page: 7355
  year: 2011
  ident: ref_43
  article-title: Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200953k
– volume: 17
  start-page: 655
  year: 2018
  ident: ref_17
  article-title: Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-018-0814-8
SSID ssj0021415
Score 2.4251552
Snippet Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3836
SubjectTerms Adsorption
Contact angle
degradation
Efficiency
Energy consumption
g-C3N4
Oxidation
Photocatalysis
polar functional group
Pollutants
Spectrum analysis
visible-light photocatalysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF5KX-yLWKsY28oKfRKWJtnNJnnsXT2KcFXEQt_C_pr2oE3Eu0L9753ZJGeDoC--Ziew2ZnsfN9mMh9jJ9KaNBRIUy0OC5UZLwxmIuFrwCspVKmjA_3lpb64Up-ui-snUl9UE9a3B-4X7rQ0kJe5oiLIoEgDD4BKObzMVO5qH_8jx5w3kqmBamWYl_pvmBJJ_el9LzUb1nlN-CP2Y_6dhWKz_gnCnNZHPkk4ixfs-YAU-Vk_w322E9qX7Nl8FGg7YI-zrltT1TJHEMfP3ChUxjvgy1H1ln9-_Ikxwk3ro9k5NYfwW7uvt50394g0-YyvWv6FiK5YYK7rjwhFPJoSy86vALEqvxFzealesavFx2_zCzEIKQiHuWcjCldpR6unIbXSI8sCXZQhc7TTGRNqKIvSWykRT2FKA2nA21RZqVzutarka7bbdm14w3hpwanaGkAapcDoCgpT6uCBUqDXIWHpuLCNG7qMk9jFXYNsg3zR_OGLhH3Y3vK9b7HxN-MZeWtrSN2x4wWMmWaImeZfMZOwo9HXzfDKrhuZ1iTvgMQ8Ye-3w-hS-oJi2tA9RJsaNzBE0QmrJjEymdB0pF3dxrbdWSYLXdX52__xCIdsL0d4RafbmTxiu5sfD-EY4dHGvotvwi-TGxCI
  priority: 102
  providerName: Directory of Open Access Journals
Title Boosting the Activation of Molecular Oxygen and the Degradation of Rhodamine B in Polar-Functional-Group-Modified g-C3N4
URI https://www.proquest.com/docview/3098052523
https://www.proquest.com/docview/3099794115
https://pubmed.ncbi.nlm.nih.gov/PMC11356892
https://doaj.org/article/7af27245330e40589ff0423d3142c9d7
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmgvJX1RN8miQk8FEduSX6eS3WYTArsNoYG9GT2ThcZKsxtI_n1nZHu3ppCLD9YYP0bWfN9o-IaQr1zJ2GZAUxUMM5FIwyREImYqB2diV8YaE_qzeX52Jc4X2aJLuK26ssp-TQwLtfEac-RHPK5QfR940_e7Pwy7RuHuatdC4yXZRekyJF_FYku4EohO7U4mB2p_dNs2nLWrtEIUElSZt7EoSPYPcOawSvKfsDPdI286vEiPWwe_JS9s8468mvRt2t6Tx7H3K6xdpgDl6LHu25VR7-is731Lfz4-wUyhsjHB7AdKRJiN3eWNN_IW8CYd02VDL5DusilEvDZRyEKCis28WTpArPSaTfhcfCBX05NfkzPWtVNgGiLQmmW6zLUFgJa7WHEDXMvlWWETjeudlLZyRVYYxTmgKghsjktnVCwUFzo1uSj5R7LT-MZ-IrRQTotKSQdkSjiZly6TRW6Nw0BochuRuP-wte60xrHlxe8aOAf6ov7PFxH5trnkrhXaeM54jN7aGKJGdjjh76_r7perC-nSIhVYPotvXVbOYRGQ4YlIdWWKiBz0vq67H3dVb6dZRL5shsGluI8iG-sfgk0Fyxhg6YiUgzkyeKDhSLO8CeLdScKzvKzSz8_ffZ-8TgE-YfY64QdkZ33_YA8B_qzVKMxxOJbT0xHZHZ_MLy5HIZXwF41jDN8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXxFMYCiwSXJBWtb3r1wGhJiWktAkItVJvZr2PNhK1S5OK9k_xG5nxq1hIvfXqnTiJZ3bmm9nxfABvRaF8G2GaWuAyl4EyXGEk4iZzeMV3qa-poD-bx9ND-eUoOlqDP927MNRW2fnE2lGbSlONfEv4GU3fx7zp49kvTqxRdLraUWg0ZrFnr35jyrb8sLuD-n0XhpNPB-Mpb1kFuEZHvOKRTmNtEafEzi-EwZTDxVFiA03bXimbuSRKTCEEggv0704oZwpfFkLq0MQyFXjfO3BXCpFRC2E6-dwneAFGw-bkFBf9rdOG4NYuw4xQTz0F-jr21RQBA1w77Mr8J8xNHsD9Fp-y7cagHsKaLR_BxrijhXsMl6OqWlKvNEPoyLZ1R4_GKsdmHdcu-3p5hZbJVGlqsR0aSWF6ue8nlVGniG_ZiC1K9o3Saz7BCNsUJnldEOOzyiwcImR2zMdiLp_A4a086KewXlalfQYsKZyWWaEcJm_SqTh1kUpiaxwFXhNbD_zuwea6nW1OFBs_c8xxSBf5f7rw4H3_kbNmsMdNwiPSVi9IM7nrC9X5cd5u8TxRLkxCSe269K_TzDlqOjIikKHOTOLBZqfrvHUUy_zarD140y-jSuncRpW2uqhlMnSbiN09SAc2MvhBw5VycVIPCw8CEcVpFj6_-dtfw8b0YLaf7-_O917AvRChG1XOA7EJ66vzC_sSodeqeFXbO4Mft73B_gJFp0WY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxFMYCiwSXJBWsb1rr_eAUJMQtZSEClEpN7PeRxuJ2qVJRfvX-HXM-JFgIfXWq3fiJJ7ZmW9mx_MR8pYXOnQJpKkFLDMRacs0RCJmlYcroc9CgwX96SzdOxKf58l8i_zp3oXBtsrOJ9aO2lYGa-QDHiqcvg9508C3bRGH48nHs18MGaTwpLWj02hM5MBd_Yb0bflhfwy6fhfHk0_fR3usZRhgBpzyiiUmS40DzJL6sOAW0g-fJtJFBl2A1k55mUhbcA5AA3y959rbIhQFFya2qcg43PcWuS05hE3YS3K-SfYiiIzNKSrnKhycNmS3bhkrRED1ROhNHKzpAnoYt9-h-U_Imzwg91usSncb43pItlz5iNwddRRxj8nlsKqW2DdNAUbSXdNRpdHK02nHu0u_Xl6BlVJd2lpsjOMp7Fru20ll9SlgXTqki5IeYqrNJhBtmyIlq4tjbFrZhQe0TI_ZiM_EE3J0Iw_6Kdkuq9I9I1QW3ghVaA-JnPA6zXyiZeqsxyBsUxeQsHuwuWnnnCPdxs8c8h3URf6fLgLyfv2Rs2bIx3XCQ9TWWhDnc9cXqvPjvN3uudQ-lrHA1l3815nyHhuQLI9EbJSVAdnpdJ23TmOZb0w8IG_Wy6BSPMPRpasuahkFLhRwfECyno30flB_pVyc1IPDo4gnaabi59d_-2tyB7ZW_mV_dvCC3IsBxWERPeI7ZHt1fuFeAgpbFa9qc6fkx03vr78I_EnF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+the+Activation+of+Molecular+Oxygen+and+the+Degradation+of+Rhodamine+B+in+Polar-Functional-Group-Modified+g-C3N4&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Jing&rft.au=Yang%2C+Minghua&rft.au=Zhang%2C+Hongjiao&rft.au=Chen%2C+Yuxin&rft.date=2024-08-13&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=29&rft.issue=16&rft.spage=3836&rft_id=info:doi/10.3390%2Fmolecules29163836&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon