Novel 3D UAV Path Planning for IoT Services Based on Interactive Cylindrical Vector Teaching–Learning Optimization Algorithm
In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where communication demands and terrain constraints are balanced through intelligent trajectory optimization. The innovation of this paper lies in the prop...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 8; p. 2407 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25082407 |
Cover
Abstract | In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where communication demands and terrain constraints are balanced through intelligent trajectory optimization. The innovation of this paper lies in the proposal of an interactive cylinder vector teaching–learning-based optimization (ICVTLBO) algorithm, where UAV trajectory points are represented in cylindrical coordinates, and targeted interactive strategies are proposed during the teacher and learner phases to address uncertainty challenges, such as terrain elevation fluctuations and communication link instability caused by obstacles in static environments. The ICVTLBO is compared with other classical and novel algorithms on the CEC2022 benchmark function suite, demonstrating its effectiveness and reliability in solving complex optimization problems. Subsequently, real digital elevation model (DEM) maps are utilized to establish nine diverse terrain scenarios for the simulation of 3D UAV path planning challenges, and experimental results show that the ICVTLBO outperforms other methods, providing high-quality paths for UAVs in complex environments. |
---|---|
AbstractList | In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where communication demands and terrain constraints are balanced through intelligent trajectory optimization. The innovation of this paper lies in the proposal of an interactive cylinder vector teaching-learning-based optimization (ICVTLBO) algorithm, where UAV trajectory points are represented in cylindrical coordinates, and targeted interactive strategies are proposed during the teacher and learner phases to address uncertainty challenges, such as terrain elevation fluctuations and communication link instability caused by obstacles in static environments. The ICVTLBO is compared with other classical and novel algorithms on the CEC2022 benchmark function suite, demonstrating its effectiveness and reliability in solving complex optimization problems. Subsequently, real digital elevation model (DEM) maps are utilized to establish nine diverse terrain scenarios for the simulation of 3D UAV path planning challenges, and experimental results show that the ICVTLBO outperforms other methods, providing high-quality paths for UAVs in complex environments. In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where communication demands and terrain constraints are balanced through intelligent trajectory optimization. The innovation of this paper lies in the proposal of an interactive cylinder vector teaching-learning-based optimization (ICVTLBO) algorithm, where UAV trajectory points are represented in cylindrical coordinates, and targeted interactive strategies are proposed during the teacher and learner phases to address uncertainty challenges, such as terrain elevation fluctuations and communication link instability caused by obstacles in static environments. The ICVTLBO is compared with other classical and novel algorithms on the CEC2022 benchmark function suite, demonstrating its effectiveness and reliability in solving complex optimization problems. Subsequently, real digital elevation model (DEM) maps are utilized to establish nine diverse terrain scenarios for the simulation of 3D UAV path planning challenges, and experimental results show that the ICVTLBO outperforms other methods, providing high-quality paths for UAVs in complex environments.In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where communication demands and terrain constraints are balanced through intelligent trajectory optimization. The innovation of this paper lies in the proposal of an interactive cylinder vector teaching-learning-based optimization (ICVTLBO) algorithm, where UAV trajectory points are represented in cylindrical coordinates, and targeted interactive strategies are proposed during the teacher and learner phases to address uncertainty challenges, such as terrain elevation fluctuations and communication link instability caused by obstacles in static environments. The ICVTLBO is compared with other classical and novel algorithms on the CEC2022 benchmark function suite, demonstrating its effectiveness and reliability in solving complex optimization problems. Subsequently, real digital elevation model (DEM) maps are utilized to establish nine diverse terrain scenarios for the simulation of 3D UAV path planning challenges, and experimental results show that the ICVTLBO outperforms other methods, providing high-quality paths for UAVs in complex environments. |
Audience | Academic |
Author | Wu, Xuanyu Xiao, Xi Jiang, Xinghe Hong, Zhaoxi Feng, Yixiong Zhang, Zhifeng |
AuthorAffiliation | 5 Ocean College, Zhejiang University, Hangzhou 310027, China; prana@zju.edu.cn 1 State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China; jiagxh0716@163.com 4 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; hzhx@zju.edu.cn 2 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China 3 School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; zhzhfeng@zju.edu.cn |
AuthorAffiliation_xml | – name: 4 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; hzhx@zju.edu.cn – name: 5 Ocean College, Zhejiang University, Hangzhou 310027, China; prana@zju.edu.cn – name: 2 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China – name: 1 State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China; jiagxh0716@163.com – name: 3 School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; zhzhfeng@zju.edu.cn |
Author_xml | – sequence: 1 givenname: Xinghe orcidid: 0009-0001-7552-5288 surname: Jiang fullname: Jiang, Xinghe – sequence: 2 givenname: Xuanyu surname: Wu fullname: Wu, Xuanyu – sequence: 3 givenname: Zhifeng surname: Zhang fullname: Zhang, Zhifeng – sequence: 4 givenname: Zhaoxi surname: Hong fullname: Hong, Zhaoxi – sequence: 5 givenname: Xi surname: Xiao fullname: Xiao, Xi – sequence: 6 givenname: Yixiong orcidid: 0000-0001-7397-2482 surname: Feng fullname: Feng, Yixiong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285098$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstuEzEUhkeoiF5gwQsgS2xgkeLbjD0rFMItUkQrkXY7OmOfSRzN2KlnEqksEO_AG_IkOE2JWuSFreP_fOei_zQ78sFjlr1k9FyIkr7reU41l1Q9yU6Y5HKkOadHD97H2WnfryjlQgj9LDuWlOuclvok-_ktbLEl4iO5Gl-TSxiW5LIF751fkCZEMg1z8h3j1hnsyQfo0ZLgydQPGMEMbotkcts6b6Mz0JJrNENKmiOYZSL8-fV7hhDvYBfrwXXuBwwu5Y_bRYhuWHbPs6cNtD2-uL_PsqvPn-aTr6PZxZfpZDwbGanYMMprVTBA4KWUSgEX1CpOlbVFbq3GHKAAXohaUVYLKHVTN9aUyCxnaHMsxFk23XNtgFW1jq6DeFsFcNVdIMRFBXFwpsUKm6KgmjUssWSZF7UE3qAwtqwLKRqRWO_3rPWm7tAa9EOE9hH08Y93y2oRthXjVDCpZSK8uSfEcLPBfqg61xts0-IxbPpKsDJXWspiV-z1f9JV2ESfdrVTyUIyJlhSne9VC0gTON-EVNikY7FzJpmlcSk-1kKpUmu-28erhzMcmv9njCR4uxeYGPo-YnOQMFrtTFcdTCf-AoyTyXc |
Cites_doi | 10.1109/ACCESS.2019.2960388 10.1007/978-3-030-99666-6_107 10.1016/j.aej.2025.01.023 10.1016/j.advengsoft.2022.103185 10.1109/CSCI54926.2021.00146 10.1016/j.adhoc.2022.103068 10.1016/j.asoc.2023.111212 10.1109/JIOT.2024.3364230 10.1016/j.eng.2021.06.027 10.3390/su151511535 10.1109/TRO.2020.3032171 10.1007/s40747-023-01074-8 10.1016/j.cad.2010.12.015 10.1007/s00521-024-10817-8 10.1007/s10462-012-9328-0 10.1109/TITS.2023.3248841 10.1016/j.aei.2023.102210 10.1109/ACCESS.2025.3543175 10.1016/j.knosys.2023.110252 10.1109/TITS.2024.3375893 10.1109/TVT.2024.3461333 10.1007/s00202-017-0508-4 10.1002/dac.5641 10.1109/TVT.2024.3402740 10.1080/15325008.2021.1971331 10.1016/j.cie.2023.109206 10.3390/drones6100284 10.1016/j.eswa.2023.120904 10.1109/KBEI.2019.8734963 10.1007/s00202-024-02566-7 10.1016/j.engappai.2020.103731 10.1186/s12859-017-1486-2 10.1016/j.engappai.2023.106778 10.1016/j.knosys.2022.110011 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25082407 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ef66081f101b4956b4a2fe3cd9b643f3 PMC12031484 A837798826 40285098 10_3390_s25082407 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key Research and Development Program of Zhejiang Province grantid: 2023C01214 – fundername: National Natural Science Foundation of China grantid: 52105281 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2024C01029 – fundername: National Natural Science Foundation of China grantid: 52130501 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2022C03028; 2023C01214; 2024C01029 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c471t-5b761aea294477a230d7207dd65dd8e5aa6a263b701b3a98fbfdc9e1d21ed5e63 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:24 EDT 2025 Thu Aug 21 18:26:58 EDT 2025 Fri Sep 05 17:22:16 EDT 2025 Fri Jul 25 20:42:08 EDT 2025 Tue Jun 10 20:55:53 EDT 2025 Mon Jul 21 05:46:11 EDT 2025 Tue Jul 01 04:58:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | integrates interactive method teaching–learning cylinder vector UAV 3D path planning IoT services |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-5b761aea294477a230d7207dd65dd8e5aa6a263b701b3a98fbfdc9e1d21ed5e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7397-2482 0009-0001-7552-5288 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25082407 |
PMID | 40285098 |
PQID | 3194641131 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ef66081f101b4956b4a2fe3cd9b643f3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031484 proquest_miscellaneous_3195784463 proquest_journals_3194641131 gale_infotracacademiconefile_A837798826 pubmed_primary_40285098 crossref_primary_10_3390_s25082407 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-10 |
PublicationDateYYYYMMDD | 2025-04-10 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Rao (ref_14) 2011; 43 Wang (ref_17) 2025; 117 Long (ref_6) 2024; 73 Cao (ref_12) 2025; 37 Zuowen (ref_26) 2023; 9 Akbari (ref_37) 2022; 49 Karaboga (ref_34) 2014; 42 ref_13 ref_33 ref_32 Lei (ref_27) 2023; 263 Su (ref_39) 1989; 23 Fu (ref_35) 2023; 233 Fatehi (ref_29) 2023; 126 Hong (ref_16) 2023; 22 ref_38 Xue (ref_15) 2020; 8 Liu (ref_7) 2024; 74 Chowdhury (ref_8) 2023; 140 Javed (ref_2) 2024; 11 Hari (ref_10) 2021; 37 ref_25 Houssein (ref_30) 2020; 94 Dehghani (ref_36) 2023; 259 ref_22 Reddy (ref_23) 2018; 100 ref_21 Meena (ref_18) 2025; 7 Kundu (ref_19) 2022; 172 Jeshvaghani (ref_24) 2023; 179 ref_40 ref_3 Rezaee (ref_4) 2024; 25 Hu (ref_31) 2023; 58 Valsalan (ref_1) 2024; 19 Javaid (ref_5) 2023; 24 Li (ref_11) 2025; 13 Zhang (ref_28) 2024; 152 Kumar (ref_9) 2024; 37 Duong (ref_20) 2025; 107 |
References_xml | – volume: 8 start-page: 1062 year: 2020 ident: ref_15 article-title: A Survey of Application and Classification on Teaching-Learning-Based Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960388 – ident: ref_13 doi: 10.1007/978-3-030-99666-6_107 – ident: ref_32 – volume: 117 start-page: 325 year: 2025 ident: ref_17 article-title: Dynamic opposition learning-based rank-driven teaching learning optimizer for parameter extraction of photovoltaic models publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2025.01.023 – volume: 172 start-page: 103185 year: 2022 ident: ref_19 article-title: LSMA-TLBO: A hybrid SMA-TLBO algorithm with lévy flight based mutation for numerical optimization and engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103185 – ident: ref_25 doi: 10.1109/CSCI54926.2021.00146 – volume: 140 start-page: 103068 year: 2023 ident: ref_8 article-title: RGSO-UAV: Reverse Glowworm Swarm Optimization inspired UAV path-planning in a 3D dynamic environment publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2022.103068 – volume: 152 start-page: 111212 year: 2024 ident: ref_28 article-title: A hierarchical surrogate assisted optimization algorithm using teaching-learning-based optimization and differential evolution for high-dimensional expensive problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.111212 – volume: 11 start-page: 19023 year: 2024 ident: ref_2 article-title: State-of-the-art and future research challenges in uav swarms publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2024.3364230 – volume: 22 start-page: 71 year: 2023 ident: ref_16 article-title: Reliability topology optimization of collaborative design for complex products under uncertainties based on the TLBO algorithm publication-title: Engineering doi: 10.1016/j.eng.2021.06.027 – ident: ref_22 doi: 10.3390/su151511535 – ident: ref_40 – volume: 37 start-page: 550 year: 2021 ident: ref_10 article-title: Optimal UAV Route Planning for Persistent Monitoring Missions publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2020.3032171 – volume: 9 start-page: 6593 year: 2023 ident: ref_26 article-title: Multi-population cooperative teaching–learning-based optimization for nonlinear equation systems publication-title: Complex Intell. Syst. doi: 10.1007/s40747-023-01074-8 – volume: 7 start-page: 2501024 year: 2025 ident: ref_18 article-title: Stability Analysis of Optimized PMU Placement using Hybrid and Individual TLBO-PSO Techniques publication-title: Adv. Sustain. Sci. Eng. Technol. – volume: 43 start-page: 303 year: 2011 ident: ref_14 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 37 start-page: 3343 year: 2025 ident: ref_12 article-title: Simulation investigation of autonomous route planning for unmanned aerial vehicles based on an improved genetic algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-10817-8 – volume: 42 start-page: 21 year: 2014 ident: ref_34 article-title: A comprehensive survey: Artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – volume: 24 start-page: 5719 year: 2023 ident: ref_5 article-title: Communication and control in collaborative UAVs: Recent advances and future trends publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3248841 – volume: 58 start-page: 102210 year: 2023 ident: ref_31 article-title: Genghis Khan shark optimizer: A novel nature-inspired algorithm for engineering optimization publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102210 – volume: 13 start-page: 36637 year: 2025 ident: ref_11 article-title: 3D Flight Path Planning for UAV Based on Improved Particle Swarm Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3543175 – volume: 263 start-page: 110252 year: 2023 ident: ref_27 article-title: A multi-class teaching–learning-based optimization for multi-objective distributed hybrid flow shop scheduling publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110252 – volume: 25 start-page: 6397 year: 2024 ident: ref_4 article-title: Comprehensive review of drones collision avoidance schemes: Challenges and open issues publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2024.3375893 – volume: 74 start-page: 1035 year: 2024 ident: ref_7 article-title: AoI-minimal clustering, transmission and trajectory co-design for UAV-assisted WPCNs publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2024.3461333 – volume: 100 start-page: 333 year: 2018 ident: ref_23 article-title: Clustered adaptive teaching–learning-based optimization algorithm for solving the optimal generation scheduling problem publication-title: Electr. Eng. doi: 10.1007/s00202-017-0508-4 – volume: 19 start-page: 523 year: 2024 ident: ref_1 article-title: Unleashing the Potential: The Joint of 5G and 6G Technologies in Enabling Advanced IoT Communication and Sensing Systems: A Comprehensive Review and Future Prospects publication-title: J. Commun. – ident: ref_33 – volume: 37 start-page: e5641 year: 2024 ident: ref_9 article-title: Robust Q-learning-based multi-objective sheep flock optimizer with a Cauchy operator for effective path planning in unmanned aerial vehicles publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5641 – volume: 73 start-page: 15440 year: 2024 ident: ref_6 article-title: AoI-aware sensing scheduling and trajectory optimization for multi-UAV-assisted wireless backscatter networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2024.3402740 – volume: 49 start-page: 584 year: 2022 ident: ref_37 article-title: Optimal Power Flow via Teaching-Learning-Studying-Based Optimization Algorithm publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325008.2021.1971331 – volume: 179 start-page: 109206 year: 2023 ident: ref_24 article-title: A robust possibilistic multi-echelon multi-product multi-period production-inventory-routing problem considering internal operations of cross-docks: Case study of FMCG supply chain publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109206 – ident: ref_3 doi: 10.3390/drones6100284 – volume: 233 start-page: 120904 year: 2023 ident: ref_35 article-title: Improved dwarf mongoose optimization algorithm using novel nonlinear control and exploration strategies publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120904 – ident: ref_21 doi: 10.1109/KBEI.2019.8734963 – volume: 107 start-page: 987 year: 2025 ident: ref_20 article-title: A four-stage strategy for solving AC transmission expansion planning problem in large power system based on differential evolution algorithm and teaching–learning-based optimization algorithm publication-title: Electr. Eng. doi: 10.1007/s00202-024-02566-7 – volume: 94 start-page: 103731 year: 2020 ident: ref_30 article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – ident: ref_38 doi: 10.1186/s12859-017-1486-2 – volume: 126 start-page: 106778 year: 2023 ident: ref_29 article-title: Robust optimization of the design of monopropellant propulsion control systems using an advanced teaching-learning-based optimization method publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106778 – volume: 259 start-page: 110011 year: 2023 ident: ref_36 article-title: Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.110011 – volume: 23 start-page: 274 year: 1989 ident: ref_39 article-title: Rank transformations—The connection between nonparametric and parametric statistics publication-title: Zhonghua Yu Fang Yi Xue Za Zhi [Chin. J. Prev. Med.] |
SSID | ssj0023338 |
Score | 2.4451456 |
Snippet | In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2407 |
SubjectTerms | 3D path planning Accuracy Algorithms Cognition & reasoning Communication cylinder vector Data collection Data transmission Design Drones Education Efficiency Energy consumption Genetic algorithms integrates interactive method Internet of Things IoT services Mathematical optimization Methods Mutation Optimization algorithms Planning Sensors Smart cities Teachers Teaching teaching–learning UAV Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL1CXZUF4k2gIIOQWEVNbMdOltNCVZAoLGaq7iw7tttKbYLaaaVuEP_QP-yX9NpxRhOxYMM2jhLnvo9jnwvwkXmvjW9c7qVnOTfC54YbnkvvBJemaXgbzjt_PxD7C_7tqDpaa_UV9oQN9MCD4LadFwLTlkfTMaGYN1xT71hrG4PJ1Eeez6IpRjCVoBZD5DXwCDEE9duXmOjrgF0m2SeS9P8ditdy0XSf5Fri2XsMj1LFSGbDTJ_AA9c9hYdrPILP4PdBf-3OCPtMFrND8hOLOjI2IyJYlJKv_ZyMQYHsYN6ypO9IXAzUMd6R3RssN22kCyGHcSGfzNM-y7s_t4mE9Zj8wABznk5uktnZcX9xujw5fw6LvS_z3f08NVbIW8xFy7wyUpTaadpwLqVGFGIlLaS1orK2dpXWQlPBjESZM93U3njbNq60tHS2coK9gI2u79wrIOjenhvmMFY5LgvE6QU1QuIjS1Mw6jL4MApc_Rr4MxTijqAVtdJKBjtBFasbAuV1vICGoJIhqH8ZQgafgiJVcEzUVqvT-QKcZ6C4UrM6cCsioBAZbI26VsljLxWGIi54WbIyg_erYfS18ANFd66_ivdggEMAjS97OZjGas6Iw2ssvuoM6onRTD5qOtKdnkQ-75KGHgI1f_0_xPAGNmloURzoKIst2FheXLm3WDctzbvoIvcf3RlT priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOCAyndoQQYhcYoaf8ROTmhbqAoShcNutTfLju1tpTYp3W2lXqr-B_4hv4Sx19luhMQ1iRInM_NmnmO_QegD814bX7vcS89yboTPDTc8l94JLk1d8ybsd_5-KA4m_Nu0nKYJt3laVtljYgRq2zVhjnwHXIULTggjn85_5aFrVPi7mlpo3EcPonQZ-LOc3hEuBvxrqSbEgNrvzCHdV4HBDHJQlOr_F5DXMtJwteRa-tnfRI9T3YhHS0M_Qfdc-xQ9WlMTfIZuDrsrd4rZZzwZHeGfUNrhviURhtIUf-3GuIcGvAvZy-KuxXFKUEfUw3vXUHTaKBqCj-J0Ph6n1ZZ_bn8nKdYZ_gEwc5b2b-LR6Qw-0-L47Dma7H8Z7x3kqb1C3kBGWuSlkYJop2nNuZQauIiVtJDWitLaypVaC00FM7Ighum68sbbpnbEUuJs6QR7gTbarnWvEIYg99wwB4jluCyArRfUCAm3JKZg1GXoff_B1flSRUMB-whWUSurZGg3mGJ1QRC-jge6i5lKcaScFwKqGA9IYgK3M1xT71hjawO1lWcZ-hgMqUJ4grUanXYZwDiD0JUaVUFhEWiFyNB2b2uV4nau7rwsQ-9WpyHiwm8U3bruMl4DMAc0Gh72cukaqzEDG6-gBKsyVA2cZvBSwzPtyXFU9SY0dBKo-Ov_j2sLPaShBXGQmyy20cbi4tK9gbpoYd5G5_8LBj0Qqw priority: 102 providerName: ProQuest |
Title | Novel 3D UAV Path Planning for IoT Services Based on Interactive Cylindrical Vector Teaching–Learning Optimization Algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40285098 https://www.proquest.com/docview/3194641131 https://www.proquest.com/docview/3195784463 https://pubmed.ncbi.nlm.nih.gov/PMC12031484 https://doaj.org/article/ef66081f101b4956b4a2fe3cd9b643f3 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH7ajwscEIwfC4zKICROgSR27OSAUDtWBtLKhNqpt8iO7W5Sl0DXIXZB_A_8h_wlPLtJ1QgOXHJInMTxs7_3Psf-HsALaq1UNjehFZaGTHEbKqZYKKzhTKg8Z6Xb73wy4scT9nGaTregzbHZNODVP6mdyyc1Wcxfff968xYH_BvHOJGyv75CN545ZrINu-iQuONgJ2z9MyGh1Ce0dnu6QvSH0UpgqHtrxy159f6_MXrDSXUXUG54pOFduNOEkqS_sv092DLVnsvC3KzY2IPbG2KD9-HHqP5m5oS-I5P-GTnFyI-0GYsIRq7kQz0mLXKQATo3TeqK-BlD6UGRHN5gTKq9pgg587P9ZNwsxvz981ej1DojnxCFLpvtnaQ_n9WLi-X55QOYDI_Gh8dhk30hLNFhLcNUCR5LI5OcMSEkUhUtkkhozVOtM5NKyWXCqRJRrKjMM6usLnMT6yQ2OjWcPoSdqq7MPhDEAMsUNQhohokIyXyUKC7wkbGKaGICeN42fvFlJbJRIDlxFirWFgpg4MyyLuB0sf2JejErmmFWGMs5BjkWgUY56qeYTKyhpc4Vhl6WBvDSGbVw_QktV8pmEwLW0-lgFf3MCTAi6-ABHLR2L9peWSBeMc7imMYBPFtfxgHp_rLIytTXvgyiILJsfNmjVTdZ1xnJeoYRWhZA1ulAnY_qXqkuzr3od5y4RAMZe_zfX_AEbiUuWbETpowOYGe5uDZPMYJaqh5si6nAYzZ834PdwdHo9HPPz0b0_Mj5A3GyIEU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QE4IP4JFDAIxClqYnud5FCh3f5ol7ZLhXar3lI7trdIbVK6W1AviHfgfXgYnoRx1ll2hcSt1yRKnMz4m29izzcAb5i1UtnMhDaxLORK2FBxxcPEGsETlWW8cPXO-wPRG_EPR-2jFfjV1MK4bZUNJtZAravC_SNfR1fhgscxi9-ffwld1yi3utq00JC-tYLeqCXGfGHHrrn6hincZKO_hfZ-S-nO9nCzF_ouA2GBwDwN2wozeWkkzThPEomUXCc0SrQWba1T05ZSSCqYSqJYMZmlVlldZCbWNDa6bQTD-96AVe4qXFuw2t0eHHyap3wMM8CZnhFjWbQ-QcKRuhxqKQrWzQL-DQkLMXF5v-ZCANy5C3c8cyWdmavdgxVT3ofbC3qGD-D7oPpqTgnbIqPOITlAckmapkgEyTHpV0PSgBPpYvzUpCpJ_VNS1rhLNq-Q9upatoQc1gsKZOj3e_7-8dOLwY7JRwS6M19BSjqnYzTU9OTsIYyu5dM_glZZleYJEIQZyxUziJmGJ5FRNKJKJHjLWEWMmgBeNx88P5_peOSY_zir5HOrBNB1pphf4KS36wPVxTj3Mzk3VgjkURaxTLnsUnFJrWGFzhSyO8sCeOcMmTuAQGsV0tc54Did1FbeSZ3GIyY2IoC1xta5R45J_tfPA3g1P41z3i3kyNJUl_U1CLSYyOPDHs9cYz5mjoQRSWAaQLrkNEsvtXym_HxS64rH1PUySPnT_4_rJdzsDff38r3-YPcZ3KKuIbITv4zWoDW9uDTPkaVN1Qs_FQgcX_fs-wNJF1UB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZGJyG4QPwTGGAQiKuoie3YycWE2nXVyqBUqJ12l9mx3SFtyVg70G4Q78Bb8Rg8CcepU1ohcbfbJEqcnHO-853Y_g5Cr6i1UtnMhFZYGjLFbaiYYqGwhjOhsowVbr_zhyHfm7B3h8nhBvrV7IVxyyobTKyBWleF-0feBldhnMUxjdvWL4sY9fpvz76EroOUm2lt2mlI32ZBb9dyY36Tx765_Abl3Gx70APbvyakvzve2Qt9x4GwAJCeh4mCql4aSTLGhJBAz7UgkdCaJ1qnJpGSS8KpElGsqMxSq6wuMhNrEhudGE7hvtfQpoAsyVpos7s7HH1aln8UqsGFthGlWdSeAflIXT21lhHrxgH_poeV_Li-dnMlGfZvo1uexeLOwu3uoA1T3kU3V7QN76Hvw-qrOcG0hyedAzwCoombBkkYiDIeVGPcABXuQi7VuCpx_YNS1hiMdy6BAutawgQf1JMLeOzXfv7-8dMLw07xRwC9U7-bFHdOpmCo-fHpfTS5kk__ALXKqjSPEAbIsUxRA_hpmIiMIhFRXMAtYxVRYgL0svng-dlC0yOHWshZJV9aJUBdZ4rlBU6Guz5QnU9zH9W5sZwDp7KAa8pVmopJYg0tdKaA6VkaoDfOkLkDC7BWIf2eBxink93KO6nTe4Qihwdoq7F17lFklv_1-QC9WJ6G-HeTOrI01UV9DYAuFPXwsIcL11iOmQF5BEKYBihdc5q1l1o_U34-rjXGY-L6GqTs8f_H9RxdhyjM3w-G-0_QDeJ6IzsdzGgLtebnF-YpELa5euYjAaOjqw6-P8y6WS0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+3D+UAV+Path+Planning+for+IoT+Services+Based+on+Interactive+Cylindrical+Vector+Teaching%E2%80%93Learning+Optimization+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Xinghe&rft.au=Wu%2C+Xuanyu&rft.au=Zhang%2C+Zhifeng&rft.au=Hong%2C+Zhaoxi&rft.date=2025-04-10&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fs25082407&rft.externalDocID=A837798826 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |