Role of in vivo imaging in Head and Neck cancer management
Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the...
Saved in:
Published in | Oral oncology Vol. 146; p. 106575 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities. |
---|---|
AbstractList | Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities. Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities. AbstractIntravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities. |
ArticleNumber | 106575 |
Author | Mali, Shrikant B |
Author_xml | – sequence: 1 givenname: Shrikant B surname: Mali fullname: Mali, Shrikant B email: shrikantmali@gmail.com organization: Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India |
BookMark | eNqNkU1r3DAQQEVJoEna_2B66sXbkWzJ2hxK27RJCiGFfpyFPB4v2milVPIu7L-vzPYQAoE9zQyaeYzenLOTEAMx9o7DggNXH9aLmKyPAaOPq_1CgGjKg5KdfMXOuO6WNchlc1LyRulaN518zc5zXgOA5BLO2OXP6KmKY-VCtXO7WLmNXbmwmutbskNlw1DdEz5UaANSqjY22BVtKExv2Olofaa3_-MF-3P97ffVbX334-b71ee7GtuOT7VslVRcCeJKSwTFl8T7npPsxTD0YkTQWpVc235o9DCO2IFeYte2gIKgay7Y-wP3McW_W8qT2biM5L0NFLfZCK00F61seWm9PLRiijknGs1jKh9Ke8PBzMLM2jwVZmZh5iCsDH96NoxuspOLYUrW-eMQXw8IKj52jpLJ6Kh4G1winMwQ3XGYj88w6F1waP0D7Smv4zaFYtxwk4UB82s-7nxb0QCIjjcF8OVlwLFb_ANnqL1t |
CitedBy_id | crossref_primary_10_3390_jcm13195822 crossref_primary_10_1016_j_bios_2025_117255 |
Cites_doi | 10.1016/j.oraloncology.2016.01.003 10.1016/j.trecan.2020.01.008 10.1088/0031-9155/60/10/R211 10.5483/BMBRep.2020.53.7.069 10.1002/advs.202200064 10.1080/21659087.2015.1055430 10.1111/jmi.12880 10.18632/oncotarget.24957 10.3390/app7070687 10.2196/15677 10.1073/pnas.1406658111 10.1016/j.addr.2016.05.023 10.1117/1.JBO.27.4.040601 10.1038/ncomms15845 10.15252/embr.201949195 10.1016/j.cbpa.2014.05.007 10.1016/j.oraloncology.2013.01.009 10.1038/ncomms10684 10.1038/nchembio.2096 10.1038/nmeth.1483 10.1016/j.oraloncology.2008.02.002 10.1177/0023677217695852 10.1101/pdb.top071795 10.1021/acs.nanolett.8b05005 10.1101/2023.04.20.537750 10.3390/cells10030499 10.1021/acs.chemrev.6b00073 10.1016/j.ymeth.2017.04.017 10.1016/j.cbpa.2021.02.005 10.1007/s11307-021-01662-5 10.1186/s12951-019-0453-7 10.3109/01913123.2013.776656 10.1007/978-1-4939-7701-7_14 10.1117/1.JBO.17.5.056009 10.3390/cancers14061549 10.1007/s00259-021-05243-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.oraloncology.2023.106575 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Dentistry |
EISSN | 1879-0593 |
EndPage | 106575 |
ExternalDocumentID | 10_1016_j_oraloncology_2023_106575 S1368837523002713 1_s2_0_S1368837523002713 |
Genre | Correspondence |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 3O- 4.4 457 4CK 4G. 53G 5RE 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K X7M XPP Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c471t-54656162e1685c0619e1bb1e5b2ddb2fc0886b2d8abd38dffc7089c7440c2e073 |
IEDL.DBID | .~1 |
ISSN | 1368-8375 1879-0593 |
IngestDate | Fri Jul 11 03:32:12 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 04:17:35 EDT 2025 Tue Dec 03 03:45:03 EST 2024 Tue Feb 25 20:02:42 EST 2025 Tue Aug 26 17:06:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Intravital microscopy Optical imaging Confocal microscopy Multi photon microscopy Optical coherence imaging In vivo imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-54656162e1685c0619e1bb1e5b2ddb2fc0886b2d8abd38dffc7089c7440c2e073 |
Notes | content type line 23 SourceType-Scholarly Journals-1 ObjectType-Correspondence-1 |
PQID | 2868124541 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2868124541 crossref_primary_10_1016_j_oraloncology_2023_106575 crossref_citationtrail_10_1016_j_oraloncology_2023_106575 elsevier_sciencedirect_doi_10_1016_j_oraloncology_2023_106575 elsevier_clinicalkeyesjournals_1_s2_0_S1368837523002713 elsevier_clinicalkey_doi_10_1016_j_oraloncology_2023_106575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Oral oncology |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bishop, Maitland, Rajadhyaksha, Liu (b0105) 2022 Apr; 27 Gabriel, Fisher, Evans, Takabe, Skitzki (b0120) 2018 Apr 13; 9 Ko J, Lucas K, Kohler R, Halabi EA, Wilkovitsch M, Carlson JCT, Weissleder R. In Vivo Click Chemistry Enables Multiplexed Intravital Microscopy. Adv Sci (Weinh). 2022 Aug;9(24):e2200064. doi: 10.1002/advs.202200064. Epub 2022 Jun 24. PMID: 35750648; PMCID: PMC9405492. Hunter P. Illuminating human disease: The potential of in Si, Honkala, de la Zerda, Smith (b0050) 2020 Mar; 6 Choo, Jeong, Jung (b0005) 2020 Jul; 53 Zheng R, Wu R, Liu Y, Sun Z, Bagheri Y, Xue Z, Mi L, Tian Q, Pho R, Siddiqui S, Ren K, You M. Multiplexed Sequential Imaging in Living Cells with Orthogonal Fluorogenic RNA Aptamer/Dye Pairs. bioRxiv [Preprint]. 2023 Apr 21:2023.04.20.537750. doi: 10.1101/2023.04.20.537750. PMID: 37131625; PMCID: PMC10153257. Beckmann, Kaltashov, Windhorst (b0030) 2017 Jan; 3 Weigelin, Bakker, Friedl (b0065) 2016 Jan 15; 129 Fisher, Muhitch, Kim, Doyen, Bogner, Evans (b0115) 2016 Feb; 17 Kuo, Chueh, Chen (b0100) 2019 Feb 6; 17 Smith, Gambhir (b0175) 2017 Feb 8; 117 Sanderson MJ, Smith I, Parker I and Bootman MD (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014, pdb top071795. vivo imaging for preclinical research and diagnostics. EMBO Rep. 2019 Oct 4;20(10):e49195. doi: 10.15252/embr.201949195. Epub 2019 Sep 16. PMID: 31523923; PMCID: PMC6776895. Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 2008 Nov;44(11):1059-66. doi: 10.1016/j.oraloncology.2008.02.002. Epub 2008 Apr 8. PMID: 18396445; PMCID: PMC2673342. Maher, Collgros, Uribe, Ch'ng, Rajadhyaksha, Guitera (b0130) 2016 Mar; 54 Kaufmann R, Hagen C, Grünewald K. Fluorescence cryo-microscopy: current challenges and prospects. Curr Opin Chem Biol. 2014 Jun;20(100):86-91. doi: 10.1016/j.cbpa.2014.05.007. Epub 2014 Jun 19. PMID: 24951858; PMCID: PMC4094034. Nussbaum, Shoukry, Ashary, Kasbi, Baksh, Gabriel (b0075) 2022 Mar 18; 14 Ntziachristos (b0125) 2010 Aug; 7 Liba, Lew, SoRelle, Dutta, Sen, Moshfeghi (b0180) 2017 Jun; 20 Thong, Tandjung, Movania, Chiew, Olivo, Bhuvaneswari (b0150) 2012 May; 17 Dutta, Liba, SoRelle, Winetraub, Ramani, Jeffrey (b0185) 2019 Apr 10; 19 Lauber, Fülöp, Kovács, Szigeti, Máthé, Szijártó (b0020) 2017 Oct; 51 Bayarmagnai, Perrin, Esmaeili Pourfarhangi, Gligorijevic (b0085) 2018; 1749 Zambito, Chawda, Mezzanotte (b0165) 2021 Aug; 63 Contaldo, Agozzino, Moscarella, Esposito, Serpico, Ardigò (b0140) 2013 Apr; 37 Jorch, Deppermann (b0015) 2021 Feb; 11 Greenberg ML, Weinger JG, Matheu MP, Carbajal KS, Parker I, Macklin WB, Lane TE, Cahalan MD. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2349-55. doi: 10.1073/pnas.1406658111. Epub 2014 May 19. PMID: 24843159; PMCID: PMC4050611. El Hallani S, Poh CF, Macaulay CE, Follen M, Guillaud M, Lane P. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions. Oral Oncol. 2013 Jun;49(6):582-90. doi: 10.1016/j.oraloncology.2013.01.009. Epub 2013 Feb 12. PMID: 23415144; PMCID: PMC3646971. Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev. 2017 Apr;113:61-86. doi: 10.1016/j.addr.2016.05.023. Epub 2016 Jun 4. PMID: 27266447; PMCID: PMC5136524. Chawda C, McMorrow R, Gaspar N, Zambito G, Mezzanotte L. Monitoring Immune Cell Function Through Optical Imaging: a Review Highlighting Transgenic Mouse Models. Mol Imaging Biol. 2022 Apr;24(2):250-263. doi: 10.1007/s11307-021-01662-5. Epub 2021 Nov 4. PMID: 34735680; PMCID: PMC8983637. Zhu J, Merkle CW, Bernucci MT, Chong SP, Srinivasan VJ. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? Appl Sci (Basel). 2017 Jul;7(7):687. doi: 10.3390/app7070687. Epub 2017 Jul 4. PMID: 30009045; PMCID: PMC6042878. Maeda, Kowada, Kikuta, Furuya, Shirazaki, Mizukami (b0060) 2016 Aug; 12 Gaustad JV, Simonsen TG, Hansem LMK, Rofstad EK. Intravital microscopy of tumor vessel morphology and function using a standard fluorescence microscope. Eur J Nucl Med Mol Imaging. 2021 Sep;48(10):3089-3100. doi: 10.1007/s00259-021-05243-0. Epub 2021 Feb 19. PMID: 33606081; PMCID: PMC8426228. Liu, Gammon, Piwnica-Worms (b0035) 2021 Feb 26; 10 Lee, Downes, Chau, Serrels, Hastie, Elfick (b0070) 2015 Jun 8; 4 Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol. 2015 May 21;60(10):R211-37. doi: 10.1088/0031-9155/60/10/R211. Epub 2015 May 8. PMID: 25951836; PMCID: PMC4448140. Winfree S, Hato T, Day RN. Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods. 2017 Sep 1;128:95-104. doi: 10.1016/j.ymeth.2017.04.017. Epub 2017 Apr 21. PMID: 28434902; PMCID: PMC5776661. Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc. 2020 Apr;278(1):3-17. doi: 10.1111/jmi.12880. Epub 2020 Mar 5. PMID: 32072642; PMCID: PMC7187339. Trumbull, Lemini, Bagaria, Elli, Colibaseanu, Wallace (b0090) 2020 Oct 9; 9 10.1016/j.oraloncology.2023.106575_b0160 10.1016/j.oraloncology.2023.106575_b0040 Bishop (10.1016/j.oraloncology.2023.106575_b0105) 2022; 27 Jorch (10.1016/j.oraloncology.2023.106575_b0015) 2021; 11 Dutta (10.1016/j.oraloncology.2023.106575_b0185) 2019; 19 10.1016/j.oraloncology.2023.106575_b0045 Beckmann (10.1016/j.oraloncology.2023.106575_b0030) 2017; 3 Thong (10.1016/j.oraloncology.2023.106575_b0150) 2012; 17 Kuo (10.1016/j.oraloncology.2023.106575_b0100) 2019; 17 Liba (10.1016/j.oraloncology.2023.106575_b0180) 2017; 20 Choo (10.1016/j.oraloncology.2023.106575_b0005) 2020; 53 Ntziachristos (10.1016/j.oraloncology.2023.106575_b0125) 2010; 7 Liu (10.1016/j.oraloncology.2023.106575_b0035) 2021; 10 10.1016/j.oraloncology.2023.106575_b0080 Maher (10.1016/j.oraloncology.2023.106575_b0130) 2016; 54 Maeda (10.1016/j.oraloncology.2023.106575_b0060) 2016; 12 10.1016/j.oraloncology.2023.106575_b0025 Weigelin (10.1016/j.oraloncology.2023.106575_b0065) 2016; 129 10.1016/j.oraloncology.2023.106575_b0145 Zambito (10.1016/j.oraloncology.2023.106575_b0165) 2021; 63 10.1016/j.oraloncology.2023.106575_b0170 Fisher (10.1016/j.oraloncology.2023.106575_b0115) 2016; 17 10.1016/j.oraloncology.2023.106575_b0195 10.1016/j.oraloncology.2023.106575_b0095 Gabriel (10.1016/j.oraloncology.2023.106575_b0120) 2018; 9 10.1016/j.oraloncology.2023.106575_b0010 10.1016/j.oraloncology.2023.106575_b0155 10.1016/j.oraloncology.2023.106575_b0055 10.1016/j.oraloncology.2023.106575_b0110 Nussbaum (10.1016/j.oraloncology.2023.106575_b0075) 2022; 14 Bayarmagnai (10.1016/j.oraloncology.2023.106575_b0085) 2018; 1749 Smith (10.1016/j.oraloncology.2023.106575_b0175) 2017; 117 10.1016/j.oraloncology.2023.106575_b0190 Lauber (10.1016/j.oraloncology.2023.106575_b0020) 2017; 51 Trumbull (10.1016/j.oraloncology.2023.106575_b0090) 2020; 9 Contaldo (10.1016/j.oraloncology.2023.106575_b0140) 2013; 37 Si (10.1016/j.oraloncology.2023.106575_b0050) 2020; 6 10.1016/j.oraloncology.2023.106575_b0135 Lee (10.1016/j.oraloncology.2023.106575_b0070) 2015; 4 |
References_xml | – volume: 9 year: 2020 Oct 9 ident: b0090 article-title: Intravital microscopy (IVM) in human solid tumors: Novel protocol to examine tumor-associated vessels publication-title: JMIR Res Protoc – volume: 17 year: 2012 May ident: b0150 article-title: Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing publication-title: J Biomed Opt – volume: 6 start-page: 205 year: 2020 Mar end-page: 222 ident: b0050 article-title: Optical microscopy and coherence tomography of cancer in living subjects publication-title: Trends Cancer – volume: 12 start-page: 579 year: 2016 Aug end-page: 585 ident: b0060 article-title: Real-time intravital imaging of pH variation associated with osteoclast activity publication-title: Nat Chem Biol – reference: Zheng R, Wu R, Liu Y, Sun Z, Bagheri Y, Xue Z, Mi L, Tian Q, Pho R, Siddiqui S, Ren K, You M. Multiplexed Sequential Imaging in Living Cells with Orthogonal Fluorogenic RNA Aptamer/Dye Pairs. bioRxiv [Preprint]. 2023 Apr 21:2023.04.20.537750. doi: 10.1101/2023.04.20.537750. PMID: 37131625; PMCID: PMC10153257. – volume: 17 start-page: 26 year: 2019 Feb 6 ident: b0100 article-title: Real-time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots publication-title: J Nanobiotechnol – reference: Gaustad JV, Simonsen TG, Hansem LMK, Rofstad EK. Intravital microscopy of tumor vessel morphology and function using a standard fluorescence microscope. Eur J Nucl Med Mol Imaging. 2021 Sep;48(10):3089-3100. doi: 10.1007/s00259-021-05243-0. Epub 2021 Feb 19. PMID: 33606081; PMCID: PMC8426228. – volume: 7 start-page: 603 year: 2010 Aug end-page: 614 ident: b0125 article-title: Going deeper than microscopy: the optical imaging frontier in biology publication-title: Nat Methods – reference: Ko J, Lucas K, Kohler R, Halabi EA, Wilkovitsch M, Carlson JCT, Weissleder R. In Vivo Click Chemistry Enables Multiplexed Intravital Microscopy. Adv Sci (Weinh). 2022 Aug;9(24):e2200064. doi: 10.1002/advs.202200064. Epub 2022 Jun 24. PMID: 35750648; PMCID: PMC9405492. – reference: Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev. 2017 Apr;113:61-86. doi: 10.1016/j.addr.2016.05.023. Epub 2016 Jun 4. PMID: 27266447; PMCID: PMC5136524. – volume: 54 start-page: 28 year: 2016 Mar end-page: 35 ident: b0130 article-title: In vivo confocal microscopy for the oral cavity: Current state of the field and future potential publication-title: Oral Oncol – volume: 10 start-page: 499 year: 2021 Feb 26 ident: b0035 article-title: Multi-modal multi-spectral intravital microscopic imaging of signaling dynamics in real-time during tumor-immuneinteractions publication-title: Cells – volume: 53 start-page: 357 year: 2020 Jul end-page: 366 ident: b0005 article-title: Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo publication-title: BMB Rep – reference: Chawda C, McMorrow R, Gaspar N, Zambito G, Mezzanotte L. Monitoring Immune Cell Function Through Optical Imaging: a Review Highlighting Transgenic Mouse Models. Mol Imaging Biol. 2022 Apr;24(2):250-263. doi: 10.1007/s11307-021-01662-5. Epub 2021 Nov 4. PMID: 34735680; PMCID: PMC8983637. – volume: 4 start-page: e1055430 year: 2015 Jun 8 ident: b0070 article-title: In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy publication-title: Intravital – volume: 19 start-page: 2334 year: 2019 Apr 10 end-page: 2342 ident: b0185 article-title: Real-time detection of circulating tumor cells in living animals using functionalized large gold nanorods publication-title: Nano Lett – reference: vivo imaging for preclinical research and diagnostics. EMBO Rep. 2019 Oct 4;20(10):e49195. doi: 10.15252/embr.201949195. Epub 2019 Sep 16. PMID: 31523923; PMCID: PMC6776895. – volume: 9 start-page: 20165 year: 2018 Apr 13 end-page: 20178 ident: b0120 article-title: Intravital microscopy in the study of the tumor microenvironment: from bench to human application publication-title: Oncotarget – reference: El Hallani S, Poh CF, Macaulay CE, Follen M, Guillaud M, Lane P. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions. Oral Oncol. 2013 Jun;49(6):582-90. doi: 10.1016/j.oraloncology.2013.01.009. Epub 2013 Feb 12. PMID: 23415144; PMCID: PMC3646971. – reference: Zhu J, Merkle CW, Bernucci MT, Chong SP, Srinivasan VJ. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? Appl Sci (Basel). 2017 Jul;7(7):687. doi: 10.3390/app7070687. Epub 2017 Jul 4. PMID: 30009045; PMCID: PMC6042878. – volume: 17 start-page: 10684 year: 2016 Feb ident: b0115 article-title: Intraoperative intravital microscopy permits the study of human tumour vessels publication-title: Nat Commun – reference: Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc. 2020 Apr;278(1):3-17. doi: 10.1111/jmi.12880. Epub 2020 Mar 5. PMID: 32072642; PMCID: PMC7187339. – volume: 37 start-page: 151 year: 2013 Apr end-page: 158 ident: b0140 article-title: In vivo characterization of healthy oral mucosa by reflectance confocal microscopy: a translational research for optical biopsy publication-title: Ultrastruct Pathol – reference: Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol. 2015 May 21;60(10):R211-37. doi: 10.1088/0031-9155/60/10/R211. Epub 2015 May 8. PMID: 25951836; PMCID: PMC4448140. – reference: Hunter P. Illuminating human disease: The potential of in – reference: Greenberg ML, Weinger JG, Matheu MP, Carbajal KS, Parker I, Macklin WB, Lane TE, Cahalan MD. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2349-55. doi: 10.1073/pnas.1406658111. Epub 2014 May 19. PMID: 24843159; PMCID: PMC4050611. – reference: Sanderson MJ, Smith I, Parker I and Bootman MD (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014, pdb top071795. – reference: Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 2008 Nov;44(11):1059-66. doi: 10.1016/j.oraloncology.2008.02.002. Epub 2008 Apr 8. PMID: 18396445; PMCID: PMC2673342. – volume: 51 start-page: 465 year: 2017 Oct end-page: 478 ident: b0020 article-title: State of the art in vivo imaging techniques for laboratory animals publication-title: Lab Anim – volume: 117 start-page: 901 year: 2017 Feb 8 end-page: 986 ident: b0175 article-title: Nanomaterials for in vivo imaging publication-title: Chem Rev – volume: 3 start-page: 511 year: 2017 Jan ident: b0030 article-title: Editorial: In vivo imaging in pharmacological research publication-title: Front Pharmacol – volume: 129 start-page: 245 year: 2016 Jan 15 end-page: 255 ident: b0065 article-title: Third harmonic generation microscopy of cells and tissue organization publication-title: J Cell Sci – volume: 1749 start-page: 175 year: 2018 end-page: 193 ident: b0085 article-title: Intravital imaging of tumor cell motility in the tumor microenvironment context publication-title: Methods Mol Biol – volume: 63 start-page: 86 year: 2021 Aug end-page: 94 ident: b0165 article-title: Emerging tools for bioluminescence imaging publication-title: Curr Opin Chem Biol – reference: Winfree S, Hato T, Day RN. Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods. 2017 Sep 1;128:95-104. doi: 10.1016/j.ymeth.2017.04.017. Epub 2017 Apr 21. PMID: 28434902; PMCID: PMC5776661. – volume: 11 year: 2021 Feb ident: b0015 article-title: Intravital imaging allows organ-specific insights into immune functions publication-title: Front Cell Dev Biol – volume: 27 year: 2022 Apr ident: b0105 article-title: In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment publication-title: J Biomed Opt – volume: 20 start-page: 15845 year: 2017 Jun ident: b0180 article-title: Speckle-modulating optical coherence tomography in living mice and humans publication-title: Nat Commun – reference: Kaufmann R, Hagen C, Grünewald K. Fluorescence cryo-microscopy: current challenges and prospects. Curr Opin Chem Biol. 2014 Jun;20(100):86-91. doi: 10.1016/j.cbpa.2014.05.007. Epub 2014 Jun 19. PMID: 24951858; PMCID: PMC4094034. – volume: 14 start-page: 1549 year: 2022 Mar 18 ident: b0075 article-title: Advanced tumor imaging approaches in human tumors publication-title: Cancers (Basel) – volume: 54 start-page: 28 year: 2016 ident: 10.1016/j.oraloncology.2023.106575_b0130 article-title: In vivo confocal microscopy for the oral cavity: Current state of the field and future potential publication-title: Oral Oncol doi: 10.1016/j.oraloncology.2016.01.003 – volume: 6 start-page: 205 issue: 3 year: 2020 ident: 10.1016/j.oraloncology.2023.106575_b0050 article-title: Optical microscopy and coherence tomography of cancer in living subjects publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.01.008 – ident: 10.1016/j.oraloncology.2023.106575_b0170 doi: 10.1088/0031-9155/60/10/R211 – volume: 53 start-page: 357 issue: 7 year: 2020 ident: 10.1016/j.oraloncology.2023.106575_b0005 article-title: Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo publication-title: BMB Rep doi: 10.5483/BMBRep.2020.53.7.069 – ident: 10.1016/j.oraloncology.2023.106575_b0045 doi: 10.1002/advs.202200064 – volume: 4 start-page: e1055430 issue: 1 year: 2015 ident: 10.1016/j.oraloncology.2023.106575_b0070 article-title: In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy publication-title: Intravital doi: 10.1080/21659087.2015.1055430 – volume: 3 start-page: 511 issue: 7 year: 2017 ident: 10.1016/j.oraloncology.2023.106575_b0030 article-title: Editorial: In vivo imaging in pharmacological research publication-title: Front Pharmacol – ident: 10.1016/j.oraloncology.2023.106575_b0040 doi: 10.1111/jmi.12880 – volume: 9 start-page: 20165 issue: 28 year: 2018 ident: 10.1016/j.oraloncology.2023.106575_b0120 article-title: Intravital microscopy in the study of the tumor microenvironment: from bench to human application publication-title: Oncotarget doi: 10.18632/oncotarget.24957 – ident: 10.1016/j.oraloncology.2023.106575_b0190 doi: 10.3390/app7070687 – volume: 9 issue: 10 year: 2020 ident: 10.1016/j.oraloncology.2023.106575_b0090 article-title: Intravital microscopy (IVM) in human solid tumors: Novel protocol to examine tumor-associated vessels publication-title: JMIR Res Protoc doi: 10.2196/15677 – ident: 10.1016/j.oraloncology.2023.106575_b0160 doi: 10.1073/pnas.1406658111 – volume: 129 start-page: 245 issue: 2 year: 2016 ident: 10.1016/j.oraloncology.2023.106575_b0065 article-title: Third harmonic generation microscopy of cells and tissue organization publication-title: J Cell Sci – ident: 10.1016/j.oraloncology.2023.106575_b0080 doi: 10.1016/j.addr.2016.05.023 – volume: 27 issue: 4 year: 2022 ident: 10.1016/j.oraloncology.2023.106575_b0105 article-title: In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment publication-title: J Biomed Opt doi: 10.1117/1.JBO.27.4.040601 – volume: 20 start-page: 15845 issue: 8 year: 2017 ident: 10.1016/j.oraloncology.2023.106575_b0180 article-title: Speckle-modulating optical coherence tomography in living mice and humans publication-title: Nat Commun doi: 10.1038/ncomms15845 – ident: 10.1016/j.oraloncology.2023.106575_b0025 doi: 10.15252/embr.201949195 – ident: 10.1016/j.oraloncology.2023.106575_b0195 doi: 10.1016/j.cbpa.2014.05.007 – ident: 10.1016/j.oraloncology.2023.106575_b0135 doi: 10.1016/j.oraloncology.2013.01.009 – volume: 17 start-page: 10684 issue: 7 year: 2016 ident: 10.1016/j.oraloncology.2023.106575_b0115 article-title: Intraoperative intravital microscopy permits the study of human tumour vessels publication-title: Nat Commun doi: 10.1038/ncomms10684 – volume: 12 start-page: 579 issue: 8 year: 2016 ident: 10.1016/j.oraloncology.2023.106575_b0060 article-title: Real-time intravital imaging of pH variation associated with osteoclast activity publication-title: Nat Chem Biol doi: 10.1038/nchembio.2096 – volume: 7 start-page: 603 issue: 8 year: 2010 ident: 10.1016/j.oraloncology.2023.106575_b0125 article-title: Going deeper than microscopy: the optical imaging frontier in biology publication-title: Nat Methods doi: 10.1038/nmeth.1483 – ident: 10.1016/j.oraloncology.2023.106575_b0145 doi: 10.1016/j.oraloncology.2008.02.002 – volume: 51 start-page: 465 issue: 5 year: 2017 ident: 10.1016/j.oraloncology.2023.106575_b0020 article-title: State of the art in vivo imaging techniques for laboratory animals publication-title: Lab Anim doi: 10.1177/0023677217695852 – ident: 10.1016/j.oraloncology.2023.106575_b0155 doi: 10.1101/pdb.top071795 – volume: 19 start-page: 2334 issue: 4 year: 2019 ident: 10.1016/j.oraloncology.2023.106575_b0185 article-title: Real-time detection of circulating tumor cells in living animals using functionalized large gold nanorods publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b05005 – ident: 10.1016/j.oraloncology.2023.106575_b0055 doi: 10.1101/2023.04.20.537750 – volume: 10 start-page: 499 issue: 3 year: 2021 ident: 10.1016/j.oraloncology.2023.106575_b0035 article-title: Multi-modal multi-spectral intravital microscopic imaging of signaling dynamics in real-time during tumor-immuneinteractions publication-title: Cells doi: 10.3390/cells10030499 – volume: 117 start-page: 901 issue: 3 year: 2017 ident: 10.1016/j.oraloncology.2023.106575_b0175 article-title: Nanomaterials for in vivo imaging publication-title: Chem Rev doi: 10.1021/acs.chemrev.6b00073 – volume: 11 issue: 9 year: 2021 ident: 10.1016/j.oraloncology.2023.106575_b0015 article-title: Intravital imaging allows organ-specific insights into immune functions publication-title: Front Cell Dev Biol – ident: 10.1016/j.oraloncology.2023.106575_b0110 doi: 10.1016/j.ymeth.2017.04.017 – volume: 63 start-page: 86 year: 2021 ident: 10.1016/j.oraloncology.2023.106575_b0165 article-title: Emerging tools for bioluminescence imaging publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2021.02.005 – ident: 10.1016/j.oraloncology.2023.106575_b0010 doi: 10.1007/s11307-021-01662-5 – volume: 17 start-page: 26 issue: 1 year: 2019 ident: 10.1016/j.oraloncology.2023.106575_b0100 article-title: Real-time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots publication-title: J Nanobiotechnol doi: 10.1186/s12951-019-0453-7 – volume: 37 start-page: 151 issue: 2 year: 2013 ident: 10.1016/j.oraloncology.2023.106575_b0140 article-title: In vivo characterization of healthy oral mucosa by reflectance confocal microscopy: a translational research for optical biopsy publication-title: Ultrastruct Pathol doi: 10.3109/01913123.2013.776656 – volume: 1749 start-page: 175 year: 2018 ident: 10.1016/j.oraloncology.2023.106575_b0085 article-title: Intravital imaging of tumor cell motility in the tumor microenvironment context publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-7701-7_14 – volume: 17 issue: 5 year: 2012 ident: 10.1016/j.oraloncology.2023.106575_b0150 article-title: Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing publication-title: J Biomed Opt doi: 10.1117/1.JBO.17.5.056009 – volume: 14 start-page: 1549 issue: 6 year: 2022 ident: 10.1016/j.oraloncology.2023.106575_b0075 article-title: Advanced tumor imaging approaches in human tumors publication-title: Cancers (Basel) doi: 10.3390/cancers14061549 – ident: 10.1016/j.oraloncology.2023.106575_b0095 doi: 10.1007/s00259-021-05243-0 |
SSID | ssj0005150 |
Score | 2.4046838 |
Snippet | Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities... AbstractIntravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106575 |
SubjectTerms | Confocal microscopy Hematology, Oncology, and Palliative Medicine In vivo imaging Intravital microscopy Multi photon microscopy Optical coherence imaging Optical imaging Otolaryngology |
Title | Role of in vivo imaging in Head and Neck cancer management |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1368837523002713 https://www.clinicalkey.es/playcontent/1-s2.0-S1368837523002713 https://dx.doi.org/10.1016/j.oraloncology.2023.106575 https://www.proquest.com/docview/2868124541 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9sw9FE6WHcZW9eybGvRYFc3kSxLzkYPoWvJVprD1kJvQpJlcJfapUkDu_S39z1_hK4fENjNsv2QeJ960vsA-OISrXHbkUd5bmUkA_qsQxtEpAbaKRGU1JbOO04manwmf54n52tw0OXCUFhlq_sbnV5r6_ZNv8Vm_6oo-r95rFJ0r-hYE32runOtlJq4fO_2XpgHT5pMYZVG9HdXeLSO8aIk-Kqsy0P_3aNG4viBbiKeM1IP1HVtg47ewOt288hGzfrewlooN2HjOwX8UM-2TXh50l6Vv4Ovv6ppYFXOipItikXFisu6IRGNx0hYZsuMTYL_wzwR_ppdLgNhtuDs6PD0YBy1jRIij7ZlHlFDc8URtVyliUcLPQzcOR4SJ7LMidyjKlH4nFqXxWmW514P0qGn2oBeBBTybVgvqzK8B2a5FRq9nEFAOqlYWyccEjCOdSat52kPhh1mjG-riFMzi6npwsUuzH2sGsKqabDag3gJe9XU0lgJ6ltHANNli6J-M6jyV4LWT0GHWSuqM8PNTJiBecROPdhfQv7DkSvP_LnjFoMiS_cwtgzVzcyIlIq-yUTyD_85x0d4RaMmN_ITrM-vb8IObpLmbreWgl14MfpxPJ7cARyaEXk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISKBHuZNrZp3acn7TVr7SR2umkPiA2FQfuwgcSbZTuOlA0SRAvS_v3uEqfAAKkSb0msk6P79Pm-AD7aVCk8dpRRWZokSjz6rBPjRSTHykrhZaIM3XdMZzI_Sn4cp8drsNPXwlBaZdD9nU5vtXX4MgrYHJ1V1egXj2WG7hVda6JvRZNr16k7VTqA9e29_Xx2lenB065YWGYRAfS9R9s0L6qDb-q2Q_TfTzRLHBcoGHGfnfpPY7dmaPcJPA7nR7bd_eJTWPP1Fmx-o5wfGtu2BRvTEC1_Bp9_NieeNSWranZZXTasOm1nEtF7jrRlpi7YzLs_zBHtz9npMhfmORztfj_cyaMwKyFyaF4WEc00lxyxy2WWOjTSE8-t5T61oiisKB1qE4nPmbFFnBVl6dQ4mzhqD-iERzl_AYO6qf1LYIYbodDRGXsklYyVscIiDeNYFYlxPBvCpMeMdqGROM2zONF9xthvfR2rmrCqO6wOIV7CnnXtNFaC-tITQPcFo6jiNGr9laDVXdB-HqR1rrmeCz3WtzhqCF-XkDeYcuWdP_TcolFqKRRjat9czLXIqO8bsit_9cA93sNmfjg90Ad7s_3X8IhWulLJNzBYnF_4t3hmWth3QSb-AW0zFCo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+in+vivo+imaging+in+Head+and+Neck+cancer+management&rft.jtitle=Oral+oncology&rft.au=Mali%2C+Shrikant+B&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=1368-8375&rft.volume=146&rft_id=info:doi/10.1016%2Fj.oraloncology.2023.106575&rft.externalDocID=S1368837523002713 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13688375%2FS1368837523X00104%2Fcov150h.gif |