Role of in vivo imaging in Head and Neck cancer management

Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the...

Full description

Saved in:
Bibliographic Details
Published inOral oncology Vol. 146; p. 106575
Main Author Mali, Shrikant B
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.
AbstractList Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.
Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.
AbstractIntravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.
ArticleNumber 106575
Author Mali, Shrikant B
Author_xml – sequence: 1
  givenname: Shrikant B
  surname: Mali
  fullname: Mali, Shrikant B
  email: shrikantmali@gmail.com
  organization: Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India
BookMark eNqNkU1r3DAQQEVJoEna_2B66sXbkWzJ2hxK27RJCiGFfpyFPB4v2milVPIu7L-vzPYQAoE9zQyaeYzenLOTEAMx9o7DggNXH9aLmKyPAaOPq_1CgGjKg5KdfMXOuO6WNchlc1LyRulaN518zc5zXgOA5BLO2OXP6KmKY-VCtXO7WLmNXbmwmutbskNlw1DdEz5UaANSqjY22BVtKExv2Olofaa3_-MF-3P97ffVbX334-b71ee7GtuOT7VslVRcCeJKSwTFl8T7npPsxTD0YkTQWpVc235o9DCO2IFeYte2gIKgay7Y-wP3McW_W8qT2biM5L0NFLfZCK00F61seWm9PLRiijknGs1jKh9Ke8PBzMLM2jwVZmZh5iCsDH96NoxuspOLYUrW-eMQXw8IKj52jpLJ6Kh4G1winMwQ3XGYj88w6F1waP0D7Smv4zaFYtxwk4UB82s-7nxb0QCIjjcF8OVlwLFb_ANnqL1t
CitedBy_id crossref_primary_10_3390_jcm13195822
crossref_primary_10_1016_j_bios_2025_117255
Cites_doi 10.1016/j.oraloncology.2016.01.003
10.1016/j.trecan.2020.01.008
10.1088/0031-9155/60/10/R211
10.5483/BMBRep.2020.53.7.069
10.1002/advs.202200064
10.1080/21659087.2015.1055430
10.1111/jmi.12880
10.18632/oncotarget.24957
10.3390/app7070687
10.2196/15677
10.1073/pnas.1406658111
10.1016/j.addr.2016.05.023
10.1117/1.JBO.27.4.040601
10.1038/ncomms15845
10.15252/embr.201949195
10.1016/j.cbpa.2014.05.007
10.1016/j.oraloncology.2013.01.009
10.1038/ncomms10684
10.1038/nchembio.2096
10.1038/nmeth.1483
10.1016/j.oraloncology.2008.02.002
10.1177/0023677217695852
10.1101/pdb.top071795
10.1021/acs.nanolett.8b05005
10.1101/2023.04.20.537750
10.3390/cells10030499
10.1021/acs.chemrev.6b00073
10.1016/j.ymeth.2017.04.017
10.1016/j.cbpa.2021.02.005
10.1007/s11307-021-01662-5
10.1186/s12951-019-0453-7
10.3109/01913123.2013.776656
10.1007/978-1-4939-7701-7_14
10.1117/1.JBO.17.5.056009
10.3390/cancers14061549
10.1007/s00259-021-05243-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.oraloncology.2023.106575
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
EISSN 1879-0593
EndPage 106575
ExternalDocumentID 10_1016_j_oraloncology_2023_106575
S1368837523002713
1_s2_0_S1368837523002713
Genre Correspondence
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
3O-
4.4
457
4CK
4G.
53G
5RE
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
X7M
XPP
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c471t-54656162e1685c0619e1bb1e5b2ddb2fc0886b2d8abd38dffc7089c7440c2e073
IEDL.DBID .~1
ISSN 1368-8375
1879-0593
IngestDate Fri Jul 11 03:32:12 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 04:17:35 EDT 2025
Tue Dec 03 03:45:03 EST 2024
Tue Feb 25 20:02:42 EST 2025
Tue Aug 26 17:06:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Intravital microscopy
Optical imaging
Confocal microscopy
Multi photon microscopy
Optical coherence imaging
In vivo imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-54656162e1685c0619e1bb1e5b2ddb2fc0886b2d8abd38dffc7089c7440c2e073
Notes content type line 23
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
PQID 2868124541
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2868124541
crossref_primary_10_1016_j_oraloncology_2023_106575
crossref_citationtrail_10_1016_j_oraloncology_2023_106575
elsevier_sciencedirect_doi_10_1016_j_oraloncology_2023_106575
elsevier_clinicalkeyesjournals_1_s2_0_S1368837523002713
elsevier_clinicalkey_doi_10_1016_j_oraloncology_2023_106575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Oral oncology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bishop, Maitland, Rajadhyaksha, Liu (b0105) 2022 Apr; 27
Gabriel, Fisher, Evans, Takabe, Skitzki (b0120) 2018 Apr 13; 9
Ko J, Lucas K, Kohler R, Halabi EA, Wilkovitsch M, Carlson JCT, Weissleder R. In Vivo Click Chemistry Enables Multiplexed Intravital Microscopy. Adv Sci (Weinh). 2022 Aug;9(24):e2200064. doi: 10.1002/advs.202200064. Epub 2022 Jun 24. PMID: 35750648; PMCID: PMC9405492.
Hunter P. Illuminating human disease: The potential of in
Si, Honkala, de la Zerda, Smith (b0050) 2020 Mar; 6
Choo, Jeong, Jung (b0005) 2020 Jul; 53
Zheng R, Wu R, Liu Y, Sun Z, Bagheri Y, Xue Z, Mi L, Tian Q, Pho R, Siddiqui S, Ren K, You M. Multiplexed Sequential Imaging in Living Cells with Orthogonal Fluorogenic RNA Aptamer/Dye Pairs. bioRxiv [Preprint]. 2023 Apr 21:2023.04.20.537750. doi: 10.1101/2023.04.20.537750. PMID: 37131625; PMCID: PMC10153257.
Beckmann, Kaltashov, Windhorst (b0030) 2017 Jan; 3
Weigelin, Bakker, Friedl (b0065) 2016 Jan 15; 129
Fisher, Muhitch, Kim, Doyen, Bogner, Evans (b0115) 2016 Feb; 17
Kuo, Chueh, Chen (b0100) 2019 Feb 6; 17
Smith, Gambhir (b0175) 2017 Feb 8; 117
Sanderson MJ, Smith I, Parker I and Bootman MD (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014, pdb top071795.
vivo imaging for preclinical research and diagnostics. EMBO Rep. 2019 Oct 4;20(10):e49195. doi: 10.15252/embr.201949195. Epub 2019 Sep 16. PMID: 31523923; PMCID: PMC6776895.
Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 2008 Nov;44(11):1059-66. doi: 10.1016/j.oraloncology.2008.02.002. Epub 2008 Apr 8. PMID: 18396445; PMCID: PMC2673342.
Maher, Collgros, Uribe, Ch'ng, Rajadhyaksha, Guitera (b0130) 2016 Mar; 54
Kaufmann R, Hagen C, Grünewald K. Fluorescence cryo-microscopy: current challenges and prospects. Curr Opin Chem Biol. 2014 Jun;20(100):86-91. doi: 10.1016/j.cbpa.2014.05.007. Epub 2014 Jun 19. PMID: 24951858; PMCID: PMC4094034.
Nussbaum, Shoukry, Ashary, Kasbi, Baksh, Gabriel (b0075) 2022 Mar 18; 14
Ntziachristos (b0125) 2010 Aug; 7
Liba, Lew, SoRelle, Dutta, Sen, Moshfeghi (b0180) 2017 Jun; 20
Thong, Tandjung, Movania, Chiew, Olivo, Bhuvaneswari (b0150) 2012 May; 17
Dutta, Liba, SoRelle, Winetraub, Ramani, Jeffrey (b0185) 2019 Apr 10; 19
Lauber, Fülöp, Kovács, Szigeti, Máthé, Szijártó (b0020) 2017 Oct; 51
Bayarmagnai, Perrin, Esmaeili Pourfarhangi, Gligorijevic (b0085) 2018; 1749
Zambito, Chawda, Mezzanotte (b0165) 2021 Aug; 63
Contaldo, Agozzino, Moscarella, Esposito, Serpico, Ardigò (b0140) 2013 Apr; 37
Jorch, Deppermann (b0015) 2021 Feb; 11
Greenberg ML, Weinger JG, Matheu MP, Carbajal KS, Parker I, Macklin WB, Lane TE, Cahalan MD. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2349-55. doi: 10.1073/pnas.1406658111. Epub 2014 May 19. PMID: 24843159; PMCID: PMC4050611.
El Hallani S, Poh CF, Macaulay CE, Follen M, Guillaud M, Lane P. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions. Oral Oncol. 2013 Jun;49(6):582-90. doi: 10.1016/j.oraloncology.2013.01.009. Epub 2013 Feb 12. PMID: 23415144; PMCID: PMC3646971.
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev. 2017 Apr;113:61-86. doi: 10.1016/j.addr.2016.05.023. Epub 2016 Jun 4. PMID: 27266447; PMCID: PMC5136524.
Chawda C, McMorrow R, Gaspar N, Zambito G, Mezzanotte L. Monitoring Immune Cell Function Through Optical Imaging: a Review Highlighting Transgenic Mouse Models. Mol Imaging Biol. 2022 Apr;24(2):250-263. doi: 10.1007/s11307-021-01662-5. Epub 2021 Nov 4. PMID: 34735680; PMCID: PMC8983637.
Zhu J, Merkle CW, Bernucci MT, Chong SP, Srinivasan VJ. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? Appl Sci (Basel). 2017 Jul;7(7):687. doi: 10.3390/app7070687. Epub 2017 Jul 4. PMID: 30009045; PMCID: PMC6042878.
Maeda, Kowada, Kikuta, Furuya, Shirazaki, Mizukami (b0060) 2016 Aug; 12
Gaustad JV, Simonsen TG, Hansem LMK, Rofstad EK. Intravital microscopy of tumor vessel morphology and function using a standard fluorescence microscope. Eur J Nucl Med Mol Imaging. 2021 Sep;48(10):3089-3100. doi: 10.1007/s00259-021-05243-0. Epub 2021 Feb 19. PMID: 33606081; PMCID: PMC8426228.
Liu, Gammon, Piwnica-Worms (b0035) 2021 Feb 26; 10
Lee, Downes, Chau, Serrels, Hastie, Elfick (b0070) 2015 Jun 8; 4
Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol. 2015 May 21;60(10):R211-37. doi: 10.1088/0031-9155/60/10/R211. Epub 2015 May 8. PMID: 25951836; PMCID: PMC4448140.
Winfree S, Hato T, Day RN. Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods. 2017 Sep 1;128:95-104. doi: 10.1016/j.ymeth.2017.04.017. Epub 2017 Apr 21. PMID: 28434902; PMCID: PMC5776661.
Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc. 2020 Apr;278(1):3-17. doi: 10.1111/jmi.12880. Epub 2020 Mar 5. PMID: 32072642; PMCID: PMC7187339.
Trumbull, Lemini, Bagaria, Elli, Colibaseanu, Wallace (b0090) 2020 Oct 9; 9
10.1016/j.oraloncology.2023.106575_b0160
10.1016/j.oraloncology.2023.106575_b0040
Bishop (10.1016/j.oraloncology.2023.106575_b0105) 2022; 27
Jorch (10.1016/j.oraloncology.2023.106575_b0015) 2021; 11
Dutta (10.1016/j.oraloncology.2023.106575_b0185) 2019; 19
10.1016/j.oraloncology.2023.106575_b0045
Beckmann (10.1016/j.oraloncology.2023.106575_b0030) 2017; 3
Thong (10.1016/j.oraloncology.2023.106575_b0150) 2012; 17
Kuo (10.1016/j.oraloncology.2023.106575_b0100) 2019; 17
Liba (10.1016/j.oraloncology.2023.106575_b0180) 2017; 20
Choo (10.1016/j.oraloncology.2023.106575_b0005) 2020; 53
Ntziachristos (10.1016/j.oraloncology.2023.106575_b0125) 2010; 7
Liu (10.1016/j.oraloncology.2023.106575_b0035) 2021; 10
10.1016/j.oraloncology.2023.106575_b0080
Maher (10.1016/j.oraloncology.2023.106575_b0130) 2016; 54
Maeda (10.1016/j.oraloncology.2023.106575_b0060) 2016; 12
10.1016/j.oraloncology.2023.106575_b0025
Weigelin (10.1016/j.oraloncology.2023.106575_b0065) 2016; 129
10.1016/j.oraloncology.2023.106575_b0145
Zambito (10.1016/j.oraloncology.2023.106575_b0165) 2021; 63
10.1016/j.oraloncology.2023.106575_b0170
Fisher (10.1016/j.oraloncology.2023.106575_b0115) 2016; 17
10.1016/j.oraloncology.2023.106575_b0195
10.1016/j.oraloncology.2023.106575_b0095
Gabriel (10.1016/j.oraloncology.2023.106575_b0120) 2018; 9
10.1016/j.oraloncology.2023.106575_b0010
10.1016/j.oraloncology.2023.106575_b0155
10.1016/j.oraloncology.2023.106575_b0055
10.1016/j.oraloncology.2023.106575_b0110
Nussbaum (10.1016/j.oraloncology.2023.106575_b0075) 2022; 14
Bayarmagnai (10.1016/j.oraloncology.2023.106575_b0085) 2018; 1749
Smith (10.1016/j.oraloncology.2023.106575_b0175) 2017; 117
10.1016/j.oraloncology.2023.106575_b0190
Lauber (10.1016/j.oraloncology.2023.106575_b0020) 2017; 51
Trumbull (10.1016/j.oraloncology.2023.106575_b0090) 2020; 9
Contaldo (10.1016/j.oraloncology.2023.106575_b0140) 2013; 37
Si (10.1016/j.oraloncology.2023.106575_b0050) 2020; 6
10.1016/j.oraloncology.2023.106575_b0135
Lee (10.1016/j.oraloncology.2023.106575_b0070) 2015; 4
References_xml – volume: 9
  year: 2020 Oct 9
  ident: b0090
  article-title: Intravital microscopy (IVM) in human solid tumors: Novel protocol to examine tumor-associated vessels
  publication-title: JMIR Res Protoc
– volume: 17
  year: 2012 May
  ident: b0150
  article-title: Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing
  publication-title: J Biomed Opt
– volume: 6
  start-page: 205
  year: 2020 Mar
  end-page: 222
  ident: b0050
  article-title: Optical microscopy and coherence tomography of cancer in living subjects
  publication-title: Trends Cancer
– volume: 12
  start-page: 579
  year: 2016 Aug
  end-page: 585
  ident: b0060
  article-title: Real-time intravital imaging of pH variation associated with osteoclast activity
  publication-title: Nat Chem Biol
– reference: Zheng R, Wu R, Liu Y, Sun Z, Bagheri Y, Xue Z, Mi L, Tian Q, Pho R, Siddiqui S, Ren K, You M. Multiplexed Sequential Imaging in Living Cells with Orthogonal Fluorogenic RNA Aptamer/Dye Pairs. bioRxiv [Preprint]. 2023 Apr 21:2023.04.20.537750. doi: 10.1101/2023.04.20.537750. PMID: 37131625; PMCID: PMC10153257.
– volume: 17
  start-page: 26
  year: 2019 Feb 6
  ident: b0100
  article-title: Real-time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots
  publication-title: J Nanobiotechnol
– reference: Gaustad JV, Simonsen TG, Hansem LMK, Rofstad EK. Intravital microscopy of tumor vessel morphology and function using a standard fluorescence microscope. Eur J Nucl Med Mol Imaging. 2021 Sep;48(10):3089-3100. doi: 10.1007/s00259-021-05243-0. Epub 2021 Feb 19. PMID: 33606081; PMCID: PMC8426228.
– volume: 7
  start-page: 603
  year: 2010 Aug
  end-page: 614
  ident: b0125
  article-title: Going deeper than microscopy: the optical imaging frontier in biology
  publication-title: Nat Methods
– reference: Ko J, Lucas K, Kohler R, Halabi EA, Wilkovitsch M, Carlson JCT, Weissleder R. In Vivo Click Chemistry Enables Multiplexed Intravital Microscopy. Adv Sci (Weinh). 2022 Aug;9(24):e2200064. doi: 10.1002/advs.202200064. Epub 2022 Jun 24. PMID: 35750648; PMCID: PMC9405492.
– reference: Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev. 2017 Apr;113:61-86. doi: 10.1016/j.addr.2016.05.023. Epub 2016 Jun 4. PMID: 27266447; PMCID: PMC5136524.
– volume: 54
  start-page: 28
  year: 2016 Mar
  end-page: 35
  ident: b0130
  article-title: In vivo confocal microscopy for the oral cavity: Current state of the field and future potential
  publication-title: Oral Oncol
– volume: 10
  start-page: 499
  year: 2021 Feb 26
  ident: b0035
  article-title: Multi-modal multi-spectral intravital microscopic imaging of signaling dynamics in real-time during tumor-immuneinteractions
  publication-title: Cells
– volume: 53
  start-page: 357
  year: 2020 Jul
  end-page: 366
  ident: b0005
  article-title: Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo
  publication-title: BMB Rep
– reference: Chawda C, McMorrow R, Gaspar N, Zambito G, Mezzanotte L. Monitoring Immune Cell Function Through Optical Imaging: a Review Highlighting Transgenic Mouse Models. Mol Imaging Biol. 2022 Apr;24(2):250-263. doi: 10.1007/s11307-021-01662-5. Epub 2021 Nov 4. PMID: 34735680; PMCID: PMC8983637.
– volume: 4
  start-page: e1055430
  year: 2015 Jun 8
  ident: b0070
  article-title: In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy
  publication-title: Intravital
– volume: 19
  start-page: 2334
  year: 2019 Apr 10
  end-page: 2342
  ident: b0185
  article-title: Real-time detection of circulating tumor cells in living animals using functionalized large gold nanorods
  publication-title: Nano Lett
– reference: vivo imaging for preclinical research and diagnostics. EMBO Rep. 2019 Oct 4;20(10):e49195. doi: 10.15252/embr.201949195. Epub 2019 Sep 16. PMID: 31523923; PMCID: PMC6776895.
– volume: 9
  start-page: 20165
  year: 2018 Apr 13
  end-page: 20178
  ident: b0120
  article-title: Intravital microscopy in the study of the tumor microenvironment: from bench to human application
  publication-title: Oncotarget
– reference: El Hallani S, Poh CF, Macaulay CE, Follen M, Guillaud M, Lane P. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions. Oral Oncol. 2013 Jun;49(6):582-90. doi: 10.1016/j.oraloncology.2013.01.009. Epub 2013 Feb 12. PMID: 23415144; PMCID: PMC3646971.
– reference: Zhu J, Merkle CW, Bernucci MT, Chong SP, Srinivasan VJ. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? Appl Sci (Basel). 2017 Jul;7(7):687. doi: 10.3390/app7070687. Epub 2017 Jul 4. PMID: 30009045; PMCID: PMC6042878.
– volume: 17
  start-page: 10684
  year: 2016 Feb
  ident: b0115
  article-title: Intraoperative intravital microscopy permits the study of human tumour vessels
  publication-title: Nat Commun
– reference: Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc. 2020 Apr;278(1):3-17. doi: 10.1111/jmi.12880. Epub 2020 Mar 5. PMID: 32072642; PMCID: PMC7187339.
– volume: 37
  start-page: 151
  year: 2013 Apr
  end-page: 158
  ident: b0140
  article-title: In vivo characterization of healthy oral mucosa by reflectance confocal microscopy: a translational research for optical biopsy
  publication-title: Ultrastruct Pathol
– reference: Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol. 2015 May 21;60(10):R211-37. doi: 10.1088/0031-9155/60/10/R211. Epub 2015 May 8. PMID: 25951836; PMCID: PMC4448140.
– reference: Hunter P. Illuminating human disease: The potential of in
– reference: Greenberg ML, Weinger JG, Matheu MP, Carbajal KS, Parker I, Macklin WB, Lane TE, Cahalan MD. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2349-55. doi: 10.1073/pnas.1406658111. Epub 2014 May 19. PMID: 24843159; PMCID: PMC4050611.
– reference: Sanderson MJ, Smith I, Parker I and Bootman MD (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014, pdb top071795.
– reference: Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 2008 Nov;44(11):1059-66. doi: 10.1016/j.oraloncology.2008.02.002. Epub 2008 Apr 8. PMID: 18396445; PMCID: PMC2673342.
– volume: 51
  start-page: 465
  year: 2017 Oct
  end-page: 478
  ident: b0020
  article-title: State of the art in vivo imaging techniques for laboratory animals
  publication-title: Lab Anim
– volume: 117
  start-page: 901
  year: 2017 Feb 8
  end-page: 986
  ident: b0175
  article-title: Nanomaterials for in vivo imaging
  publication-title: Chem Rev
– volume: 3
  start-page: 511
  year: 2017 Jan
  ident: b0030
  article-title: Editorial: In vivo imaging in pharmacological research
  publication-title: Front Pharmacol
– volume: 129
  start-page: 245
  year: 2016 Jan 15
  end-page: 255
  ident: b0065
  article-title: Third harmonic generation microscopy of cells and tissue organization
  publication-title: J Cell Sci
– volume: 1749
  start-page: 175
  year: 2018
  end-page: 193
  ident: b0085
  article-title: Intravital imaging of tumor cell motility in the tumor microenvironment context
  publication-title: Methods Mol Biol
– volume: 63
  start-page: 86
  year: 2021 Aug
  end-page: 94
  ident: b0165
  article-title: Emerging tools for bioluminescence imaging
  publication-title: Curr Opin Chem Biol
– reference: Winfree S, Hato T, Day RN. Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods. 2017 Sep 1;128:95-104. doi: 10.1016/j.ymeth.2017.04.017. Epub 2017 Apr 21. PMID: 28434902; PMCID: PMC5776661.
– volume: 11
  year: 2021 Feb
  ident: b0015
  article-title: Intravital imaging allows organ-specific insights into immune functions
  publication-title: Front Cell Dev Biol
– volume: 27
  year: 2022 Apr
  ident: b0105
  article-title: In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment
  publication-title: J Biomed Opt
– volume: 20
  start-page: 15845
  year: 2017 Jun
  ident: b0180
  article-title: Speckle-modulating optical coherence tomography in living mice and humans
  publication-title: Nat Commun
– reference: Kaufmann R, Hagen C, Grünewald K. Fluorescence cryo-microscopy: current challenges and prospects. Curr Opin Chem Biol. 2014 Jun;20(100):86-91. doi: 10.1016/j.cbpa.2014.05.007. Epub 2014 Jun 19. PMID: 24951858; PMCID: PMC4094034.
– volume: 14
  start-page: 1549
  year: 2022 Mar 18
  ident: b0075
  article-title: Advanced tumor imaging approaches in human tumors
  publication-title: Cancers (Basel)
– volume: 54
  start-page: 28
  year: 2016
  ident: 10.1016/j.oraloncology.2023.106575_b0130
  article-title: In vivo confocal microscopy for the oral cavity: Current state of the field and future potential
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2016.01.003
– volume: 6
  start-page: 205
  issue: 3
  year: 2020
  ident: 10.1016/j.oraloncology.2023.106575_b0050
  article-title: Optical microscopy and coherence tomography of cancer in living subjects
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.01.008
– ident: 10.1016/j.oraloncology.2023.106575_b0170
  doi: 10.1088/0031-9155/60/10/R211
– volume: 53
  start-page: 357
  issue: 7
  year: 2020
  ident: 10.1016/j.oraloncology.2023.106575_b0005
  article-title: Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo
  publication-title: BMB Rep
  doi: 10.5483/BMBRep.2020.53.7.069
– ident: 10.1016/j.oraloncology.2023.106575_b0045
  doi: 10.1002/advs.202200064
– volume: 4
  start-page: e1055430
  issue: 1
  year: 2015
  ident: 10.1016/j.oraloncology.2023.106575_b0070
  article-title: In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy
  publication-title: Intravital
  doi: 10.1080/21659087.2015.1055430
– volume: 3
  start-page: 511
  issue: 7
  year: 2017
  ident: 10.1016/j.oraloncology.2023.106575_b0030
  article-title: Editorial: In vivo imaging in pharmacological research
  publication-title: Front Pharmacol
– ident: 10.1016/j.oraloncology.2023.106575_b0040
  doi: 10.1111/jmi.12880
– volume: 9
  start-page: 20165
  issue: 28
  year: 2018
  ident: 10.1016/j.oraloncology.2023.106575_b0120
  article-title: Intravital microscopy in the study of the tumor microenvironment: from bench to human application
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24957
– ident: 10.1016/j.oraloncology.2023.106575_b0190
  doi: 10.3390/app7070687
– volume: 9
  issue: 10
  year: 2020
  ident: 10.1016/j.oraloncology.2023.106575_b0090
  article-title: Intravital microscopy (IVM) in human solid tumors: Novel protocol to examine tumor-associated vessels
  publication-title: JMIR Res Protoc
  doi: 10.2196/15677
– ident: 10.1016/j.oraloncology.2023.106575_b0160
  doi: 10.1073/pnas.1406658111
– volume: 129
  start-page: 245
  issue: 2
  year: 2016
  ident: 10.1016/j.oraloncology.2023.106575_b0065
  article-title: Third harmonic generation microscopy of cells and tissue organization
  publication-title: J Cell Sci
– ident: 10.1016/j.oraloncology.2023.106575_b0080
  doi: 10.1016/j.addr.2016.05.023
– volume: 27
  issue: 4
  year: 2022
  ident: 10.1016/j.oraloncology.2023.106575_b0105
  article-title: In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.27.4.040601
– volume: 20
  start-page: 15845
  issue: 8
  year: 2017
  ident: 10.1016/j.oraloncology.2023.106575_b0180
  article-title: Speckle-modulating optical coherence tomography in living mice and humans
  publication-title: Nat Commun
  doi: 10.1038/ncomms15845
– ident: 10.1016/j.oraloncology.2023.106575_b0025
  doi: 10.15252/embr.201949195
– ident: 10.1016/j.oraloncology.2023.106575_b0195
  doi: 10.1016/j.cbpa.2014.05.007
– ident: 10.1016/j.oraloncology.2023.106575_b0135
  doi: 10.1016/j.oraloncology.2013.01.009
– volume: 17
  start-page: 10684
  issue: 7
  year: 2016
  ident: 10.1016/j.oraloncology.2023.106575_b0115
  article-title: Intraoperative intravital microscopy permits the study of human tumour vessels
  publication-title: Nat Commun
  doi: 10.1038/ncomms10684
– volume: 12
  start-page: 579
  issue: 8
  year: 2016
  ident: 10.1016/j.oraloncology.2023.106575_b0060
  article-title: Real-time intravital imaging of pH variation associated with osteoclast activity
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2096
– volume: 7
  start-page: 603
  issue: 8
  year: 2010
  ident: 10.1016/j.oraloncology.2023.106575_b0125
  article-title: Going deeper than microscopy: the optical imaging frontier in biology
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1483
– ident: 10.1016/j.oraloncology.2023.106575_b0145
  doi: 10.1016/j.oraloncology.2008.02.002
– volume: 51
  start-page: 465
  issue: 5
  year: 2017
  ident: 10.1016/j.oraloncology.2023.106575_b0020
  article-title: State of the art in vivo imaging techniques for laboratory animals
  publication-title: Lab Anim
  doi: 10.1177/0023677217695852
– ident: 10.1016/j.oraloncology.2023.106575_b0155
  doi: 10.1101/pdb.top071795
– volume: 19
  start-page: 2334
  issue: 4
  year: 2019
  ident: 10.1016/j.oraloncology.2023.106575_b0185
  article-title: Real-time detection of circulating tumor cells in living animals using functionalized large gold nanorods
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b05005
– ident: 10.1016/j.oraloncology.2023.106575_b0055
  doi: 10.1101/2023.04.20.537750
– volume: 10
  start-page: 499
  issue: 3
  year: 2021
  ident: 10.1016/j.oraloncology.2023.106575_b0035
  article-title: Multi-modal multi-spectral intravital microscopic imaging of signaling dynamics in real-time during tumor-immuneinteractions
  publication-title: Cells
  doi: 10.3390/cells10030499
– volume: 117
  start-page: 901
  issue: 3
  year: 2017
  ident: 10.1016/j.oraloncology.2023.106575_b0175
  article-title: Nanomaterials for in vivo imaging
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.6b00073
– volume: 11
  issue: 9
  year: 2021
  ident: 10.1016/j.oraloncology.2023.106575_b0015
  article-title: Intravital imaging allows organ-specific insights into immune functions
  publication-title: Front Cell Dev Biol
– ident: 10.1016/j.oraloncology.2023.106575_b0110
  doi: 10.1016/j.ymeth.2017.04.017
– volume: 63
  start-page: 86
  year: 2021
  ident: 10.1016/j.oraloncology.2023.106575_b0165
  article-title: Emerging tools for bioluminescence imaging
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2021.02.005
– ident: 10.1016/j.oraloncology.2023.106575_b0010
  doi: 10.1007/s11307-021-01662-5
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.oraloncology.2023.106575_b0100
  article-title: Real-time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-019-0453-7
– volume: 37
  start-page: 151
  issue: 2
  year: 2013
  ident: 10.1016/j.oraloncology.2023.106575_b0140
  article-title: In vivo characterization of healthy oral mucosa by reflectance confocal microscopy: a translational research for optical biopsy
  publication-title: Ultrastruct Pathol
  doi: 10.3109/01913123.2013.776656
– volume: 1749
  start-page: 175
  year: 2018
  ident: 10.1016/j.oraloncology.2023.106575_b0085
  article-title: Intravital imaging of tumor cell motility in the tumor microenvironment context
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-7701-7_14
– volume: 17
  issue: 5
  year: 2012
  ident: 10.1016/j.oraloncology.2023.106575_b0150
  article-title: Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.17.5.056009
– volume: 14
  start-page: 1549
  issue: 6
  year: 2022
  ident: 10.1016/j.oraloncology.2023.106575_b0075
  article-title: Advanced tumor imaging approaches in human tumors
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14061549
– ident: 10.1016/j.oraloncology.2023.106575_b0095
  doi: 10.1007/s00259-021-05243-0
SSID ssj0005150
Score 2.4046838
Snippet Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities...
AbstractIntravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106575
SubjectTerms Confocal microscopy
Hematology, Oncology, and Palliative Medicine
In vivo imaging
Intravital microscopy
Multi photon microscopy
Optical coherence imaging
Optical imaging
Otolaryngology
Title Role of in vivo imaging in Head and Neck cancer management
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1368837523002713
https://www.clinicalkey.es/playcontent/1-s2.0-S1368837523002713
https://dx.doi.org/10.1016/j.oraloncology.2023.106575
https://www.proquest.com/docview/2868124541
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9sw9FE6WHcZW9eybGvRYFc3kSxLzkYPoWvJVprD1kJvQpJlcJfapUkDu_S39z1_hK4fENjNsv2QeJ960vsA-OISrXHbkUd5bmUkA_qsQxtEpAbaKRGU1JbOO04manwmf54n52tw0OXCUFhlq_sbnV5r6_ZNv8Vm_6oo-r95rFJ0r-hYE32runOtlJq4fO_2XpgHT5pMYZVG9HdXeLSO8aIk-Kqsy0P_3aNG4viBbiKeM1IP1HVtg47ewOt288hGzfrewlooN2HjOwX8UM-2TXh50l6Vv4Ovv6ppYFXOipItikXFisu6IRGNx0hYZsuMTYL_wzwR_ppdLgNhtuDs6PD0YBy1jRIij7ZlHlFDc8URtVyliUcLPQzcOR4SJ7LMidyjKlH4nFqXxWmW514P0qGn2oBeBBTybVgvqzK8B2a5FRq9nEFAOqlYWyccEjCOdSat52kPhh1mjG-riFMzi6npwsUuzH2sGsKqabDag3gJe9XU0lgJ6ltHANNli6J-M6jyV4LWT0GHWSuqM8PNTJiBecROPdhfQv7DkSvP_LnjFoMiS_cwtgzVzcyIlIq-yUTyD_85x0d4RaMmN_ITrM-vb8IObpLmbreWgl14MfpxPJ7cARyaEXk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISKBHuZNrZp3acn7TVr7SR2umkPiA2FQfuwgcSbZTuOlA0SRAvS_v3uEqfAAKkSb0msk6P79Pm-AD7aVCk8dpRRWZokSjz6rBPjRSTHykrhZaIM3XdMZzI_Sn4cp8drsNPXwlBaZdD9nU5vtXX4MgrYHJ1V1egXj2WG7hVda6JvRZNr16k7VTqA9e29_Xx2lenB065YWGYRAfS9R9s0L6qDb-q2Q_TfTzRLHBcoGHGfnfpPY7dmaPcJPA7nR7bd_eJTWPP1Fmx-o5wfGtu2BRvTEC1_Bp9_NieeNSWranZZXTasOm1nEtF7jrRlpi7YzLs_zBHtz9npMhfmORztfj_cyaMwKyFyaF4WEc00lxyxy2WWOjTSE8-t5T61oiisKB1qE4nPmbFFnBVl6dQ4mzhqD-iERzl_AYO6qf1LYIYbodDRGXsklYyVscIiDeNYFYlxPBvCpMeMdqGROM2zONF9xthvfR2rmrCqO6wOIV7CnnXtNFaC-tITQPcFo6jiNGr9laDVXdB-HqR1rrmeCz3WtzhqCF-XkDeYcuWdP_TcolFqKRRjat9czLXIqO8bsit_9cA93sNmfjg90Ad7s_3X8IhWulLJNzBYnF_4t3hmWth3QSb-AW0zFCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+in+vivo+imaging+in+Head+and+Neck+cancer+management&rft.jtitle=Oral+oncology&rft.au=Mali%2C+Shrikant+B&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=1368-8375&rft.volume=146&rft_id=info:doi/10.1016%2Fj.oraloncology.2023.106575&rft.externalDocID=S1368837523002713
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13688375%2FS1368837523X00104%2Fcov150h.gif