Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect
Conversion of plant residues to biochar is an attractive strategy for mitigation of atmospheric carbon dioxide (CO2) emission and enhancement of carbon (C) storage in soil. However, the effect of biochar application on the decomposition of soil organic C (SOC) as well as its mechanisms is not well u...
Saved in:
Published in | Soil biology & biochemistry Vol. 76; pp. 12 - 21 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.09.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conversion of plant residues to biochar is an attractive strategy for mitigation of atmospheric carbon dioxide (CO2) emission and enhancement of carbon (C) storage in soil. However, the effect of biochar application on the decomposition of soil organic C (SOC) as well as its mechanisms is not well understood in the sandy loam soil of North China Plain. We investigated how biochar affected the decomposition of native SOC, using stable δ13C isotope analyses by applying biochar produced from corn straw (a C4 plant, δ13C = −11.9‰) to a sandy loam soil (δ13C of SOC = −24.5‰) under a long-term C3 crop rotation. The incubation experiment included four treatments: no amendment (Control), biochar amendment (BC, 0.5% of soil mass), inorganic nitrogen (N) amendment (IN, 100 mg N kg−1) and combined biochar and N amendments (BN). Compared with Control, N amendment significantly (P < 0.05) increased total soil CO2 emission, even when combined with biochar amendment. In contrast, biochar alone amendment did not affect total soil CO2 emission significantly. However biochar, even when combined with N amendment, significantly (P < 0.05) reduced CO2 emission from native SOC by 64.9–68.8%, indicating that biochar inhibited the decomposition of native SOC and the stimulation effect of inorganic N on native SOC degradation, a negative priming effect. N addition immediately stimulated the growth of microorganisms and altered microbial community structure by increasing Gram-positive bacteria compared to Control as measured by phospholipid fatty acid. Biochar amendment did not alter microbial biomass during the 720-h incubation period except at 168 and 720 h, but significantly (P < 0.05) lowered dissolved organic C (DOC) content in soil, primarily due to sorption of DOC by the biochar. Our study suggested that biochar application could effectively reduce the decomposition of native organic C and a potential effective measure for C sequestration in the test soil of the North China Plain.
•N stimulated the decomposition of native SOC.•Biochar suppressed the decomposition of native SOC and N stimulation effect.•Biochar did not alter soil microbial biomass and community structure.•Biochar effectively adsorbed DOC derived from soil. |
---|---|
AbstractList | Conversion of plant residues to biochar is an attractive strategy for mitigation of atmospheric carbon dioxide (CO2) emission and enhancement of carbon (C) storage in soil. However, the effect of biochar application on the decomposition of soil organic C (SOC) as well as its mechanisms is not well understood in the sandy loam soil of North China Plain. We investigated how biochar affected the decomposition of native SOC, using stable δ13C isotope analyses by applying biochar produced from corn straw (a C4 plant, δ13C = −11.9‰) to a sandy loam soil (δ13C of SOC = −24.5‰) under a long-term C3 crop rotation. The incubation experiment included four treatments: no amendment (Control), biochar amendment (BC, 0.5% of soil mass), inorganic nitrogen (N) amendment (IN, 100 mg N kg−1) and combined biochar and N amendments (BN). Compared with Control, N amendment significantly (P < 0.05) increased total soil CO2 emission, even when combined with biochar amendment. In contrast, biochar alone amendment did not affect total soil CO2 emission significantly. However biochar, even when combined with N amendment, significantly (P < 0.05) reduced CO2 emission from native SOC by 64.9–68.8%, indicating that biochar inhibited the decomposition of native SOC and the stimulation effect of inorganic N on native SOC degradation, a negative priming effect. N addition immediately stimulated the growth of microorganisms and altered microbial community structure by increasing Gram-positive bacteria compared to Control as measured by phospholipid fatty acid. Biochar amendment did not alter microbial biomass during the 720-h incubation period except at 168 and 720 h, but significantly (P < 0.05) lowered dissolved organic C (DOC) content in soil, primarily due to sorption of DOC by the biochar. Our study suggested that biochar application could effectively reduce the decomposition of native organic C and a potential effective measure for C sequestration in the test soil of the North China Plain. Conversion of plant residues to biochar is an attractive strategy for mitigation of atmospheric carbon dioxide (CO sub(2)) emission and enhancement of carbon (C) storage in soil. However, the effect of biochar application on the decomposition of soil organic C (SOC) as well as its mechanisms is not well understood in the sandy loam soil of North China Plain. We investigated how biochar affected the decomposition of native SOC, using stable delta super(13)C isotope analyses by applying biochar produced from corn straw (a C sub(4) plant, delta super(13)C = -11.9ppt) to a sandy loam soil ( delta super(13)C of SOC = -24.5ppt) under a long-term C sub(3) crop rotation. The incubation experiment included four treatments: no amendment (Control), biochar amendment (BC, 0.5% of soil mass), inorganic nitrogen (N) amendment (IN, 100 mg N kg super(-1)) and combined biochar and N amendments (BN). Compared with Control, N amendment significantly (P < 0.05) increased total soil CO sub(2) emission, even when combined with biochar amendment. In contrast, biochar alone amendment did not affect total soil CO sub(2) emission significantly. However biochar, even when combined with N amendment, significantly (P < 0.05) reduced CO sub(2) emission from native SOC by 64.9-68.8%, indicating that biochar inhibited the decomposition of native SOC and the stimulation effect of inorganic N on native SOC degradation, a negative priming effect. N addition immediately stimulated the growth of microorganisms and altered microbial community structure by increasing Gram-positive bacteria compared to Control as measured by phospholipid fatty acid. Biochar amendment did not alter microbial biomass during the 720-h incubation period except at 168 and 720 h, but significantly (P < 0.05) lowered dissolved organic C (DOC) content in soil, primarily due to sorption of DOC by the biochar. Our study suggested that biochar application could effectively reduce the decomposition of native organic C and a potential effective measure for C sequestration in the test soil of the North China Plain. Conversion of plant residues to biochar is an attractive strategy for mitigation of atmospheric carbon dioxide (CO2) emission and enhancement of carbon (C) storage in soil. However, the effect of biochar application on the decomposition of soil organic C (SOC) as well as its mechanisms is not well understood in the sandy loam soil of North China Plain. We investigated how biochar affected the decomposition of native SOC, using stable δ13C isotope analyses by applying biochar produced from corn straw (a C4 plant, δ13C = −11.9‰) to a sandy loam soil (δ13C of SOC = −24.5‰) under a long-term C3 crop rotation. The incubation experiment included four treatments: no amendment (Control), biochar amendment (BC, 0.5% of soil mass), inorganic nitrogen (N) amendment (IN, 100 mg N kg−1) and combined biochar and N amendments (BN). Compared with Control, N amendment significantly (P < 0.05) increased total soil CO2 emission, even when combined with biochar amendment. In contrast, biochar alone amendment did not affect total soil CO2 emission significantly. However biochar, even when combined with N amendment, significantly (P < 0.05) reduced CO2 emission from native SOC by 64.9–68.8%, indicating that biochar inhibited the decomposition of native SOC and the stimulation effect of inorganic N on native SOC degradation, a negative priming effect. N addition immediately stimulated the growth of microorganisms and altered microbial community structure by increasing Gram-positive bacteria compared to Control as measured by phospholipid fatty acid. Biochar amendment did not alter microbial biomass during the 720-h incubation period except at 168 and 720 h, but significantly (P < 0.05) lowered dissolved organic C (DOC) content in soil, primarily due to sorption of DOC by the biochar. Our study suggested that biochar application could effectively reduce the decomposition of native organic C and a potential effective measure for C sequestration in the test soil of the North China Plain. •N stimulated the decomposition of native SOC.•Biochar suppressed the decomposition of native SOC and N stimulation effect.•Biochar did not alter soil microbial biomass and community structure.•Biochar effectively adsorbed DOC derived from soil. |
Author | Zhang, Junhua Ding, Weixin Lu, Weiwei Luo, Jiafa Xie, Zubin Li, Yi Bolan, Nanthi |
Author_xml | – sequence: 1 givenname: Weiwei surname: Lu fullname: Lu, Weiwei organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 2 givenname: Weixin surname: Ding fullname: Ding, Weixin email: wxding@mail.issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 3 givenname: Junhua surname: Zhang fullname: Zhang, Junhua organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 4 givenname: Yi surname: Li fullname: Li, Yi organization: Agriculture, Food and Environment Solution, PO Box 28098, Hamilton 3256, New Zealand – sequence: 5 givenname: Jiafa surname: Luo fullname: Luo, Jiafa organization: Land and Environment, AgResearch, Hamilton 3240, New Zealand – sequence: 6 givenname: Nanthi surname: Bolan fullname: Bolan, Nanthi organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, SA 5095, Australia – sequence: 7 givenname: Zubin surname: Xie fullname: Xie, Zubin organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28597069$$DView record in Pascal Francis |
BookMark | eNqFkU2LHCEQhiVsILOb_ISAl0AuPbFsbe3kEDZLvmAhl-QstpazDj3aqz0L--_TzQw55DJQIOjzFGW91-Qq5YSEvAW2BQbdh_225jgOMW85A7FlS_H-BdmAVn3TCq6vyIaxVjdMgXpFrmvdM8a4hHZDHr_E7B5sofU4TQVrRU_nB6QeXT5MucY55kRzoLnsbIqOOluG5SYmaqk7jnN8svPiVJv8Mx2zPdB1mI_0libc2eUZ6VTiIaYdxRDQza_Jy2DHim_O5w358-3r77sfzf2v7z_vbu8bJxTMjeRW-6B9z7kUooUAXuMA2gsfpB9AWRhUNwgI3YAaFQSutLdBC9F72Q7tDXl_6juV_HjEOptDrA7H0SbMx2pAt10nJGh-GZUSOq44hwV9d0ZtdXYMxSYXq1m_aMuz4Vr2inX9wskT50qutWD4hwAza2pmb86pmTU1w5biq_fpP8_F2a4hzMXG8aL9-WTjstiniMVUFzE59LEsqzc-xwsd_gJ2yboW |
CODEN | SBIOAH |
CitedBy_id | crossref_primary_10_1007_s00374_018_1333_2 crossref_primary_10_1016_j_jclepro_2020_121921 crossref_primary_10_1371_journal_pone_0161694 crossref_primary_10_1016_j_scs_2020_102310 crossref_primary_10_1007_s42773_024_00391_6 crossref_primary_10_1016_S2095_3119_16_61338_2 crossref_primary_10_1016_j_jenvman_2022_114954 crossref_primary_10_1016_S1002_0160_19_60813_1 crossref_primary_10_1186_s40562_023_00285_8 crossref_primary_10_1186_s40538_023_00422_7 crossref_primary_10_3389_fenvs_2024_1411122 crossref_primary_10_3390_f14040853 crossref_primary_10_1007_s11368_015_1242_z crossref_primary_10_1007_s42729_024_01679_z crossref_primary_10_1007_s11368_018_1994_3 crossref_primary_10_1007_s11356_017_8500_0 crossref_primary_10_1007_s11273_016_9506_y crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1016_j_scitotenv_2016_03_010 crossref_primary_10_1016_j_geoderma_2020_114184 crossref_primary_10_1016_j_scitotenv_2016_08_190 crossref_primary_10_1016_j_apgeochem_2019_02_011 crossref_primary_10_1016_j_jclepro_2020_122462 crossref_primary_10_1007_s11368_022_03277_x crossref_primary_10_3390_su141710922 crossref_primary_10_3390_agronomy11020271 crossref_primary_10_1007_s13399_024_05789_7 crossref_primary_10_1038_s41598_019_40908_9 crossref_primary_10_1111_gcbb_12265 crossref_primary_10_1007_s00374_021_01542_8 crossref_primary_10_1016_j_heliyon_2023_e15896 crossref_primary_10_3389_fvets_2019_00308 crossref_primary_10_1016_j_gexplo_2016_11_016 crossref_primary_10_1016_j_soilbio_2016_05_020 crossref_primary_10_1016_j_ecolind_2019_105644 crossref_primary_10_1016_j_jenvman_2022_115356 crossref_primary_10_1038_s41598_024_75771_w crossref_primary_10_1016_j_biortech_2023_128903 crossref_primary_10_3390_agronomy13071801 crossref_primary_10_1016_j_apsoil_2020_103758 crossref_primary_10_1007_s12517_022_10157_8 crossref_primary_10_1016_j_envpol_2021_118751 crossref_primary_10_1016_j_apsoil_2017_01_006 crossref_primary_10_1007_s00374_017_1253_6 crossref_primary_10_1016_j_scitotenv_2021_150239 crossref_primary_10_3390_su12020621 crossref_primary_10_3390_w14213563 crossref_primary_10_1016_j_biombioe_2018_04_002 crossref_primary_10_3390_land12091769 crossref_primary_10_1002_ldr_3147 crossref_primary_10_1007_s00374_019_01391_6 crossref_primary_10_1016_j_atmosenv_2017_09_050 crossref_primary_10_1016_j_apsoil_2018_11_006 crossref_primary_10_1016_j_scitotenv_2016_07_140 crossref_primary_10_1007_s11368_018_1981_8 crossref_primary_10_1038_s41467_024_45277_0 crossref_primary_10_3390_agriculture12070941 crossref_primary_10_1080_00380768_2015_1105112 crossref_primary_10_1186_s40068_018_0108_y crossref_primary_10_1007_s42773_020_00039_1 crossref_primary_10_1016_j_ecoleng_2016_06_004 crossref_primary_10_3389_fpls_2022_878424 crossref_primary_10_3390_su8090841 crossref_primary_10_1016_j_scitotenv_2018_12_400 crossref_primary_10_1007_s44378_025_00041_8 crossref_primary_10_1007_s42729_020_00326_7 crossref_primary_10_1016_j_jenvman_2021_113943 crossref_primary_10_1016_j_agee_2020_106831 crossref_primary_10_1007_s42773_023_00273_3 crossref_primary_10_4236_as_2021_123014 crossref_primary_10_3390_su14138190 crossref_primary_10_1111_gcbb_12474 crossref_primary_10_1007_s42729_025_02320_3 crossref_primary_10_1016_j_geoderma_2018_07_016 crossref_primary_10_3390_molecules27217191 crossref_primary_10_1016_j_resenv_2022_100099 crossref_primary_10_1016_j_envint_2019_105211 crossref_primary_10_1002_geo2_63 crossref_primary_10_1002_jpln_201800261 crossref_primary_10_1016_j_catena_2015_11_002 crossref_primary_10_1016_j_eja_2024_127499 crossref_primary_10_1016_j_scitotenv_2021_145645 crossref_primary_10_1007_s42773_024_00381_8 crossref_primary_10_1016_j_iswcr_2020_09_002 crossref_primary_10_1016_j_apsoil_2016_08_018 crossref_primary_10_1007_s42729_024_02144_7 crossref_primary_10_1016_j_soilbio_2018_12_011 crossref_primary_10_1111_ejss_12388 crossref_primary_10_1007_s11368_021_02928_9 crossref_primary_10_1007_s42773_023_00261_7 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_1007_s12649_019_00757_z crossref_primary_10_1111_gcb_13898 crossref_primary_10_1016_j_scitotenv_2017_08_166 crossref_primary_10_1016_j_apsoil_2024_105389 crossref_primary_10_1016_j_earscirev_2024_104860 crossref_primary_10_1007_s11270_017_3428_z crossref_primary_10_1007_s11356_016_6271_7 crossref_primary_10_1016_j_oneear_2020_07_019 crossref_primary_10_1016_j_soilbio_2024_109689 crossref_primary_10_1016_j_agee_2020_107109 crossref_primary_10_1016_j_scitotenv_2023_167924 crossref_primary_10_1016_j_jaap_2016_08_003 crossref_primary_10_3390_f13101710 crossref_primary_10_1016_j_still_2017_09_012 crossref_primary_10_1021_acs_est_2c06258 crossref_primary_10_3390_su9081482 crossref_primary_10_1016_j_scitotenv_2019_134829 crossref_primary_10_5433_1679_0359_2019v40n4p1405 crossref_primary_10_1016_j_jaap_2021_105383 crossref_primary_10_1007_s11368_015_1347_4 crossref_primary_10_1016_j_geoderma_2019_114162 crossref_primary_10_1016_j_ecoleng_2016_06_039 crossref_primary_10_1016_j_scitotenv_2019_01_101 crossref_primary_10_1016_j_geoderma_2016_08_019 crossref_primary_10_1007_s44246_023_00035_7 crossref_primary_10_1016_j_geoderma_2019_04_025 crossref_primary_10_1080_00103624_2019_1671443 crossref_primary_10_1021_acs_iecr_4c00082 crossref_primary_10_1007_s12205_015_0449_2 crossref_primary_10_1111_gcb_14298 crossref_primary_10_1016_j_jenvman_2024_121196 crossref_primary_10_1007_s11356_016_7829_0 crossref_primary_10_1016_j_scitotenv_2024_176914 crossref_primary_10_1016_j_soilbio_2019_05_024 crossref_primary_10_1016_j_soilbio_2019_01_005 crossref_primary_10_1016_j_agee_2015_03_015 crossref_primary_10_1021_acs_est_7b06487 crossref_primary_10_1002_jpln_201900183 crossref_primary_10_1080_09064710_2020_1853214 crossref_primary_10_1038_s41598_024_56618_w crossref_primary_10_3390_land12081645 crossref_primary_10_1007_s42729_021_00628_4 crossref_primary_10_1111_gcbb_12430 crossref_primary_10_1007_s42729_022_00877_x crossref_primary_10_1016_j_soilbio_2017_09_031 crossref_primary_10_3390_ijerph20020927 crossref_primary_10_3390_agronomy13010249 crossref_primary_10_1007_s10705_023_10281_1 crossref_primary_10_1016_j_scitotenv_2022_154494 crossref_primary_10_1016_j_still_2022_105442 crossref_primary_10_1016_j_apsoil_2025_105911 crossref_primary_10_3390_agronomy12020293 crossref_primary_10_1007_s00374_020_01479_4 crossref_primary_10_3390_agronomy12123065 crossref_primary_10_1080_15324982_2020_1746707 crossref_primary_10_1007_s42729_021_00678_8 crossref_primary_10_1016_S1002_0160_21_60087_5 crossref_primary_10_1007_s42729_024_01641_z crossref_primary_10_1016_j_scitotenv_2022_153956 crossref_primary_10_3390_microorganisms8040502 crossref_primary_10_1089_ees_2023_0069 crossref_primary_10_1016_j_scitotenv_2021_149659 crossref_primary_10_1016_j_scitotenv_2018_12_300 crossref_primary_10_1007_s13399_019_00571_6 crossref_primary_10_1016_j_eti_2024_103683 crossref_primary_10_1111_gcbb_12414 crossref_primary_10_1016_j_indcrop_2025_120518 crossref_primary_10_3390_agriculture12101704 crossref_primary_10_1111_gcbb_12896 crossref_primary_10_3390_soilsystems3010008 crossref_primary_10_1007_s11368_017_1705_5 crossref_primary_10_1016_j_apsoil_2015_11_016 crossref_primary_10_1016_j_apsoil_2021_104284 crossref_primary_10_1093_femsec_fiaa034 crossref_primary_10_1007_s00374_023_01723_7 crossref_primary_10_1007_s42773_025_00440_8 crossref_primary_10_3390_agriculture14101801 crossref_primary_10_1016_j_soilbio_2015_08_005 crossref_primary_10_1007_s13399_021_02257_4 crossref_primary_10_1016_j_fcr_2017_08_018 crossref_primary_10_1016_j_still_2021_105126 crossref_primary_10_1016_j_soilbio_2017_09_004 crossref_primary_10_3389_fmicb_2025_1529784 crossref_primary_10_1007_s11356_023_31203_2 crossref_primary_10_1111_gcbb_12402 crossref_primary_10_1111_gcbb_12644 crossref_primary_10_1111_gcbb_12401 crossref_primary_10_1016_j_scitotenv_2018_02_164 crossref_primary_10_1007_s11676_018_0731_5 crossref_primary_10_1111_1365_2435_14484 crossref_primary_10_1016_j_agee_2016_04_014 crossref_primary_10_1007_s13399_020_00836_5 crossref_primary_10_1007_s11783_021_1473_8 crossref_primary_10_1016_j_still_2024_106284 crossref_primary_10_1016_j_apsoil_2024_105681 crossref_primary_10_1016_j_geoderma_2018_11_006 crossref_primary_10_1016_j_apsoil_2015_08_002 crossref_primary_10_1007_s11368_017_1899_6 crossref_primary_10_1111_gcbb_12517 crossref_primary_10_1007_s00374_021_01574_0 crossref_primary_10_1007_s11356_023_30099_2 crossref_primary_10_1016_j_soilbio_2019_04_018 crossref_primary_10_1016_j_soilbio_2022_108851 crossref_primary_10_1016_j_geoderma_2018_05_009 crossref_primary_10_1080_10643389_2023_2190333 crossref_primary_10_1016_j_soilbio_2018_04_019 crossref_primary_10_29050_harranziraat_282272 crossref_primary_10_1016_j_agee_2019_04_021 crossref_primary_10_1111_nph_17651 crossref_primary_10_1007_s44246_024_00123_2 crossref_primary_10_1093_jxb_erz301 crossref_primary_10_1007_s13399_021_01621_8 crossref_primary_10_1038_s43247_023_01155_z crossref_primary_10_1016_j_scitotenv_2021_148756 crossref_primary_10_2478_johh_2020_0044 crossref_primary_10_3390_agronomy11112300 crossref_primary_10_1016_j_geoderma_2021_115217 crossref_primary_10_1111_sum_12579 crossref_primary_10_1111_ejss_12542 crossref_primary_10_1007_s11356_022_19011_6 crossref_primary_10_1002_ldr_5262 crossref_primary_10_1016_j_apsoil_2024_105540 crossref_primary_10_1016_j_scitotenv_2018_06_231 crossref_primary_10_1016_j_scitotenv_2019_01_298 crossref_primary_10_1016_j_scitotenv_2017_06_275 crossref_primary_10_1016_j_scitotenv_2023_168734 crossref_primary_10_1186_s12870_025_06352_w crossref_primary_10_1016_j_scitotenv_2015_12_107 crossref_primary_10_1016_j_ecoenv_2016_07_005 crossref_primary_10_1016_j_still_2020_104874 crossref_primary_10_1016_j_chemosphere_2021_132691 crossref_primary_10_1007_s00203_020_01849_4 crossref_primary_10_1016_j_ejsobi_2014_09_001 crossref_primary_10_1007_s42773_019_00009_2 crossref_primary_10_1016_j_jia_2023_12_011 crossref_primary_10_3390_agronomy14010026 crossref_primary_10_3390_agronomy13102518 crossref_primary_10_1007_s00374_019_01385_4 crossref_primary_10_1007_s42773_023_00279_x crossref_primary_10_1016_j_watres_2023_121047 crossref_primary_10_1007_s11368_023_03439_5 crossref_primary_10_1007_s11104_016_2803_7 crossref_primary_10_1016_j_scitotenv_2020_140500 crossref_primary_10_1016_j_aoas_2019_12_006 crossref_primary_10_1016_j_jenvman_2018_12_085 crossref_primary_10_1039_C5EM00446B crossref_primary_10_1111_sum_12474 crossref_primary_10_1007_s10333_020_00821_8 crossref_primary_10_3390_su16229967 crossref_primary_10_1007_s10163_015_0447_y |
Cites_doi | 10.1016/j.soilbio.2010.09.013 10.1021/es1014423 10.1016/j.soilbio.2011.07.020 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.1016/j.soilbio.2009.06.022 10.1016/j.geoderma.2009.12.023 10.1007/s11104-011-1067-5 10.1016/j.apsoil.2010.01.003 10.1248/jhs.48.473 10.1038/442624a 10.1016/j.soilbio.2010.11.005 10.1016/j.soilbio.2008.10.016 10.1021/es903140c 10.1248/jhs.52.585 10.1016/j.biombioe.2010.12.008 10.1007/s001140000193 10.1126/science.1154960 10.1016/j.fcr.2011.11.020 10.1890/03-8002 10.1016/S0038-0717(02)00274-2 10.1016/0167-7012(91)90018-L 10.1111/j.1365-2486.2008.01549.x 10.1016/j.agee.2010.12.005 10.1016/j.soilbio.2011.04.022 10.1016/j.soilbio.2006.09.024 10.1016/S0378-1127(03)00164-6 10.2136/sssaj1980.03615995004400050052x 10.1071/SR10004 10.1007/BF02202586 10.1007/s11368-012-0529-6 10.1021/es702888h 10.1016/j.soilbio.2011.06.016 10.1016/j.soilbio.2012.08.024 10.1016/j.soilbio.2012.10.025 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 10.1007/s00374-011-0629-2 10.1016/S0038-0717(98)00030-3 10.1016/j.agee.2005.01.017 10.1016/j.foreco.2004.03.018 10.1007/s00374-003-0688-0 10.1111/j.1365-2486.2007.01409.x 10.1016/j.soilbio.2011.02.005 10.1016/j.gca.2008.09.028 10.1007/s10021-008-9199-z 10.1002/jpln.201100143 10.1007/s00374-002-0466-4 10.1111/j.1365-2486.2008.01562.x 10.1016/j.agee.2012.05.012 10.1111/j.1574-6976.2000.tb00559.x 10.1016/j.soilbio.2009.03.016 10.1016/S0038-0717(00)00084-5 10.1080/09593330802536339 10.1016/S0146-6380(02)00062-1 10.1002/jpln.200390049 10.1016/j.orggeochem.2009.09.007 10.1016/j.soilbio.2011.04.018 10.1016/S0929-1393(00)00069-X 10.1016/0038-0717(94)90211-9 10.1007/s10584-006-9178-3 10.1016/j.chemosphere.2003.07.005 10.1897/09-081.1 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SN 7UA C1K F1W H95 L.G 7S9 L.6 |
DOI | 10.1016/j.soilbio.2014.04.029 |
DatabaseName | CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 21 |
ExternalDocumentID | 28597069 10_1016_j_soilbio_2014_04_029 S0038071714001588 |
GeographicLocations | China, People's Rep., North China Plain China |
GeographicLocations_xml | – name: China, People's Rep., North China Plain – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SN 7UA C1K F1W H95 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c471t-52a8df8d92254431f1d8eb18d4df5db17a1b76b41f6be8e71f278daf8449d53b3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Thu Jul 10 23:06:12 EDT 2025 Fri Jul 11 10:20:24 EDT 2025 Wed Apr 02 07:27:35 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Tue Jul 01 03:19:51 EDT 2025 Fri Feb 23 02:23:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dissolved organic carbon Negative priming effect Adsorption Phospholipid fatty acids Biochar 13C natural abundance Organic carbon Priming effect Phospholipid Isotopic composition Decomposition Fatty acids Carbonization C natural abundance Soil science Sandy loam soil |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-52a8df8d92254431f1d8eb18d4df5db17a1b76b41f6be8e71f278daf8449d53b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1551627221 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1836645182 proquest_miscellaneous_1551627221 pascalfrancis_primary_28597069 crossref_primary_10_1016_j_soilbio_2014_04_029 crossref_citationtrail_10_1016_j_soilbio_2014_04_029 elsevier_sciencedirect_doi_10_1016_j_soilbio_2014_04_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wardle, Nilsson, Zackrisson (bib64) 2008; 320 Doran (bib20) 1980; 44 van Veen, Merckx, Van de Geijn (bib60) 1989; 115 Chiang, Wang, Chiu, King, Hwong (bib14) 2004; 54 Bruun, Hauggaard-Nielsen, Ibrahim, Egsgaard, Ambus, Jensen, Dam-Johansen (bib11) 2011; 35 Carreiro, Sinsabaugh, Repert, Parkhurst (bib12) 2000; 81 Jastrow, Amonette, Bailey (bib28) 2007; 80 Glaser, Haumaier, Guggenberger, Zech (bib25) 2001; 88 Smith, Collins, Bailey (bib54) 2010; 42 Karhu, Mattila, Bergström, Regina (bib30) 2011; 140 Zhang, Bian, Pan, Cui, Hussain, Li, Zheng, Zheng, Zhang, Han, Yu (bib69) 2012; 127 Ameloot, De Neve, Jegajeevagan, Yildiz, Buchan, Funkuin, Prins, Bouckaert, Sleutel (bib2) 2013; 57 USDA (United States Department of Agriculture) (bib59) 1994 Luo, Durenkamp, De Nobili, Lin, Brookes (bib46) 2011; 43 Hill, Mitkowski, Aldrich-Wolfe, Emele, Jurkonie, Ficke, Maldonado-Ramirez, Lynch, Nelson (bib27) 2000; 15 Yin (bib67) 2005 Billings, Ziegler (bib8) 2008; 14 Zimmerman, Ahn (bib72) 2010 Frostegård, Tunlid, Bååth (bib23) 1991; 14 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib39) 2011; 43 Glaser, Lehmann, Zech (bib26) 2002; 35 Uchida, Nishimura, Akiyama (bib58) 2012; 156 Cross, Sohi (bib16) 2011; 43 Zhang, Ding, Yu, He (bib70) 2013; 58 Steinbeiss, Gleixner, Antonietti (bib56) 2009; 41 Birk, Steiner, Teixiera, Zech, Glaser (bib9) 2009 Zimmerman (bib71) 2010; 44 Lee, Jose (bib38) 2003; 185 Schulz, Glaser (bib52) 2012; 175 van Zwieten, Kimber, Morris, Downie, Berger, Rust, Scheer (bib61) 2010; 48 Chodak, Khanna, Beese (bib15) 2003; 39 Spring, Schulze, Overmann, Schleifer (bib55) 2000; 24 Cheng, Reinhard (bib13) 2008; 42 Aylward, Finlay (bib5) 1974 Baldock, Smernik (bib6) 2002; 33 Lu (bib45) 2000 Jones, Murphy, Khalid, Ahmad, Edwards-Jones, DeLuca (bib29) 2011; 43 Baumann, Marschner, Smernik, Baldock (bib7) 2009; 41 Kuzyakov, Friedel, Stahr (bib35) 2000; 32 Thies, Rillig (bib57) 2008 Asada, Ohkubo, Kawata, Oikawa (bib4) 2006; 52 Dempster, Gleeson, Solaiman, Jones, Murphy (bib17) 2012; 354 Kroppenstedt (bib34) 1985 Lehmann (bib40) 2007; 5 Midwood, Boutton (bib48) 1998; 30 Allison, Czimczik, Treseder (bib1) 2008; 14 Yang, Hunter, Tao, Crowley, Gan (bib66) 2009; 28 Dowling, Widdel, White (bib21) 1986; 132 Frey, Knorr, Parrent, Simpson (bib22) 2004; 196 Marris (bib47) 2006; 442 Schimel, Bennett (bib51) 2004; 85 Ding, Yu, Cai, Han, Xu (bib19) 2010; 155 Liu, Liu, Show, Tay (bib44) 2009; 30 Zimmerman, Gao, Ahn (bib73) 2011; 43 Ding, Meng, Yin, Cai, Zheng (bib18) 2007; 39 Asada, Ishihara, Yamane, Toba, Yamada, Oikawa (bib3) 2002; 48 Wang, Wang, Gu, Shi, Chen (bib62) 2006; 25 O'Neill (bib50) 2007 Sinsabaugh, Moorhead (bib53) 1994; 26 Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bib36) 2009; 41 Landgraf, Böhm, Makeschin (bib37) 2003; 166 Ni, Ding, Cai, Wang, Zhang, Zhou (bib49) 2012; 12 Garland, Mackowiak, Zabaloy (bib24) 2010; 44 Böhme, Langer, Bohme (bib10) 2005; 109 Keeler, Hobbie, Kellogg (bib32) 2009; 12 Liang, Lehmann, Solomon, Sohi, Thies, Skjemstad, Luizão, Engelhard, Neves, Wirick (bib43) 2008; 72 Khodadad, Zimmerman, Green, Uthandi, Foster (bib33) 2011; 43 Yu, Ding, Luo, Geng, Ghani, Cai (bib68) 2012; 48 Liang, Lehmann, Sohi, Thies, O'Neill, Trujillo, Gaunt, Solomon, Grossman, Neves, Luizão (bib42) 2010; 41 Liang (bib41) 2008 Kasozi, Zimmerman, Nkedi-Kizza, Gao (bib31) 2010; 44 Wang, Dalal, Moody, Smith (bib63) 2003; 35 Xie, Zhu, Liu, Cadisch, Hasegawa, Chen, Sun, Tang, Zeng (bib65) 2007; 13 Xie (10.1016/j.soilbio.2014.04.029_bib65) 2007; 13 Zimmerman (10.1016/j.soilbio.2014.04.029_bib72) 2010 Keeler (10.1016/j.soilbio.2014.04.029_bib32) 2009; 12 Steinbeiss (10.1016/j.soilbio.2014.04.029_bib56) 2009; 41 Billings (10.1016/j.soilbio.2014.04.029_bib8) 2008; 14 Schulz (10.1016/j.soilbio.2014.04.029_bib52) 2012; 175 Zimmerman (10.1016/j.soilbio.2014.04.029_bib73) 2011; 43 Marris (10.1016/j.soilbio.2014.04.029_bib47) 2006; 442 Böhme (10.1016/j.soilbio.2014.04.029_bib10) 2005; 109 Kroppenstedt (10.1016/j.soilbio.2014.04.029_bib34) 1985 Lehmann (10.1016/j.soilbio.2014.04.029_bib39) 2011; 43 Ding (10.1016/j.soilbio.2014.04.029_bib18) 2007; 39 Ameloot (10.1016/j.soilbio.2014.04.029_bib2) 2013; 57 van Zwieten (10.1016/j.soilbio.2014.04.029_bib61) 2010; 48 Midwood (10.1016/j.soilbio.2014.04.029_bib48) 1998; 30 Uchida (10.1016/j.soilbio.2014.04.029_bib58) 2012; 156 Ni (10.1016/j.soilbio.2014.04.029_bib49) 2012; 12 Jones (10.1016/j.soilbio.2014.04.029_bib29) 2011; 43 Zhang (10.1016/j.soilbio.2014.04.029_bib69) 2012; 127 Kasozi (10.1016/j.soilbio.2014.04.029_bib31) 2010; 44 Kuzyakov (10.1016/j.soilbio.2014.04.029_bib35) 2000; 32 Liang (10.1016/j.soilbio.2014.04.029_bib42) 2010; 41 Thies (10.1016/j.soilbio.2014.04.029_bib57) 2008 Spring (10.1016/j.soilbio.2014.04.029_bib55) 2000; 24 Asada (10.1016/j.soilbio.2014.04.029_bib4) 2006; 52 Asada (10.1016/j.soilbio.2014.04.029_bib3) 2002; 48 Carreiro (10.1016/j.soilbio.2014.04.029_bib12) 2000; 81 Dowling (10.1016/j.soilbio.2014.04.029_bib21) 1986; 132 Wang (10.1016/j.soilbio.2014.04.029_bib62) 2006; 25 Birk (10.1016/j.soilbio.2014.04.029_bib9) 2009 Jastrow (10.1016/j.soilbio.2014.04.029_bib28) 2007; 80 Sinsabaugh (10.1016/j.soilbio.2014.04.029_bib53) 1994; 26 Baldock (10.1016/j.soilbio.2014.04.029_bib6) 2002; 33 Luo (10.1016/j.soilbio.2014.04.029_bib46) 2011; 43 Aylward (10.1016/j.soilbio.2014.04.029_bib5) 1974 Zhang (10.1016/j.soilbio.2014.04.029_bib70) 2013; 58 Landgraf (10.1016/j.soilbio.2014.04.029_bib37) 2003; 166 Yang (10.1016/j.soilbio.2014.04.029_bib66) 2009; 28 Frostegård (10.1016/j.soilbio.2014.04.029_bib23) 1991; 14 Hill (10.1016/j.soilbio.2014.04.029_bib27) 2000; 15 Cheng (10.1016/j.soilbio.2014.04.029_bib13) 2008; 42 Smith (10.1016/j.soilbio.2014.04.029_bib54) 2010; 42 Wardle (10.1016/j.soilbio.2014.04.029_bib64) 2008; 320 Zimmerman (10.1016/j.soilbio.2014.04.029_bib71) 2010; 44 Doran (10.1016/j.soilbio.2014.04.029_bib20) 1980; 44 Khodadad (10.1016/j.soilbio.2014.04.029_bib33) 2011; 43 Chodak (10.1016/j.soilbio.2014.04.029_bib15) 2003; 39 USDA (United States Department of Agriculture) (10.1016/j.soilbio.2014.04.029_bib59) 1994 Liang (10.1016/j.soilbio.2014.04.029_bib43) 2008; 72 O'Neill (10.1016/j.soilbio.2014.04.029_bib50) 2007 Wang (10.1016/j.soilbio.2014.04.029_bib63) 2003; 35 Garland (10.1016/j.soilbio.2014.04.029_bib24) 2010; 44 Lee (10.1016/j.soilbio.2014.04.029_bib38) 2003; 185 Glaser (10.1016/j.soilbio.2014.04.029_bib25) 2001; 88 Bruun (10.1016/j.soilbio.2014.04.029_bib11) 2011; 35 Chiang (10.1016/j.soilbio.2014.04.029_bib14) 2004; 54 Baumann (10.1016/j.soilbio.2014.04.029_bib7) 2009; 41 Kuzyakov (10.1016/j.soilbio.2014.04.029_bib36) 2009; 41 Liang (10.1016/j.soilbio.2014.04.029_bib41) 2008 Yin (10.1016/j.soilbio.2014.04.029_bib67) 2005 Glaser (10.1016/j.soilbio.2014.04.029_bib26) 2002; 35 Lehmann (10.1016/j.soilbio.2014.04.029_bib40) 2007; 5 Karhu (10.1016/j.soilbio.2014.04.029_bib30) 2011; 140 Dempster (10.1016/j.soilbio.2014.04.029_bib17) 2012; 354 Liu (10.1016/j.soilbio.2014.04.029_bib44) 2009; 30 van Veen (10.1016/j.soilbio.2014.04.029_bib60) 1989; 115 Cross (10.1016/j.soilbio.2014.04.029_bib16) 2011; 43 Frey (10.1016/j.soilbio.2014.04.029_bib22) 2004; 196 Lu (10.1016/j.soilbio.2014.04.029_bib45) 2000 Allison (10.1016/j.soilbio.2014.04.029_bib1) 2008; 14 Yu (10.1016/j.soilbio.2014.04.029_bib68) 2012; 48 Ding (10.1016/j.soilbio.2014.04.029_bib19) 2010; 155 Schimel (10.1016/j.soilbio.2014.04.029_bib51) 2004; 85 |
References_xml | – year: 2007 ident: bib50 article-title: Culture-based and Molecular Approaches for Analyzing Microbial Communities in Amazonian Dark Earths – volume: 52 start-page: 585 year: 2006 end-page: 589 ident: bib4 article-title: Ammonia adsorption on bamboo charcoal with acid treatment publication-title: Journal of Health Science – volume: 196 start-page: 159 year: 2004 end-page: 171 ident: bib22 article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests publication-title: Forest Ecology & Management – volume: 5 start-page: 381 year: 2007 end-page: 387 ident: bib40 article-title: Bio-energy in the black publication-title: Frontiers in Ecology & the Environment – volume: 85 start-page: 591 year: 2004 end-page: 602 ident: bib51 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology – volume: 166 start-page: 319 year: 2003 end-page: 325 ident: bib37 article-title: Dynamic of different C and N fractions in a cambisol under five year succession fallow in Saxony (Germany) publication-title: Journal of Plant Nutrition and Soil Science – volume: 48 start-page: 473 year: 2002 end-page: 479 ident: bib3 article-title: Science of bamboo charcoal: study of carbonizing temperature of bamboo charcoal and removal capability of harmful gases publication-title: Journal of Health Science – volume: 26 start-page: 1305 year: 1994 end-page: 1311 ident: bib53 article-title: Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition publication-title: Soil Biology & Biochemistry – volume: 48 start-page: 325 year: 2012 end-page: 336 ident: bib68 article-title: Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil publication-title: Biology & Fertility of Soils – volume: 42 start-page: 2879 year: 2008 end-page: 2885 ident: bib13 article-title: The rate of 2,2-dichloropropane transformation in mineral micropores: implications of sorptive preservation for fate and transport of organic contaminants in the subsurface publication-title: Environmental Science & Technology – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bib39 article-title: Biochar effects on soil biota-a review publication-title: Soil Biology & Biochemistry – volume: 35 start-page: 1182 year: 2011 end-page: 1189 ident: bib11 article-title: Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil publication-title: Biomass Bioenergy – volume: 35 start-page: 273 year: 2003 end-page: 284 ident: bib63 article-title: Relationships of soil respiration to microbial biomass, substrate availability and clay content publication-title: Soil Biology & Biochemistry – volume: 28 start-page: 2283 year: 2009 end-page: 2288 ident: bib66 article-title: Effect of activated carbon on microbial bioavailability of phenanthrene in soils publication-title: Environmental Toxicology & Chemistry – volume: 72 start-page: 6069 year: 2008 end-page: 6078 ident: bib43 article-title: Stability of biomass-derived black carbon in soils publication-title: Geochimica et Cosmochimica Acta – volume: 41 start-page: 206 year: 2010 end-page: 213 ident: bib42 article-title: Black carbon affects the cycling of non-black carbon in soil publication-title: Organic Geochemistry – volume: 185 start-page: 263 year: 2003 end-page: 273 ident: bib38 article-title: Soil respiration, fine root production and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient publication-title: Forest Ecology & Management – volume: 43 start-page: 1723 year: 2011 end-page: 1731 ident: bib29 article-title: Short-term biochar-induced increase in soil CO publication-title: Soil Biology & Biochemistry – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: bib56 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biology & Biochemistry – volume: 41 start-page: 1966 year: 2009 end-page: 1975 ident: bib7 article-title: Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues publication-title: Soil Biology & Biochemistry – volume: 43 start-page: 2127 year: 2011 end-page: 2134 ident: bib16 article-title: The priming potential of biochar products in relation to labile carbon contents and soil organic matter status publication-title: Soil Biology & Biochemistry – volume: 115 start-page: 179 year: 1989 end-page: 188 ident: bib60 article-title: Plant and soil related controls of the flow of carbon from roots through the soil microbial biomass publication-title: Plant & Soil – volume: 44 start-page: 262 year: 2010 end-page: 269 ident: bib24 article-title: Organic waste amendment effects on soil microbial activity in a corn-rye rotation: application of a new approach to community-level physiological profiling publication-title: Applied Soil Ecology – volume: 24 start-page: 573 year: 2000 end-page: 590 ident: bib55 article-title: Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies publication-title: FEMS Microbiology Reviews – volume: 81 start-page: 2359 year: 2000 end-page: 2365 ident: bib12 article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition publication-title: Ecology – volume: 132 start-page: 1815 year: 1986 end-page: 1825 ident: bib21 article-title: Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria publication-title: Journal of General Microbiology – volume: 14 start-page: 1025 year: 2008 end-page: 1036 ident: bib8 article-title: Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO publication-title: Global Change Biology – volume: 58 start-page: 228 year: 2013 end-page: 236 ident: bib70 article-title: Carbon uptake by a microbial community during 30-day treatment with publication-title: Soil Biology & Biochemistry – volume: 12 start-page: 1 year: 2009 end-page: 15 ident: bib32 article-title: Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition publication-title: Ecosystems – volume: 57 start-page: 401 year: 2013 end-page: 410 ident: bib2 article-title: Short-term CO publication-title: Soil Biology & Biochemistry – year: 1974 ident: bib5 article-title: SI Chemical Data – volume: 25 start-page: 1240 year: 2006 end-page: 1244 ident: bib62 article-title: Soil respiration in maize fields in the lower reaches of Liaohe plain publication-title: Journal of Agro Environmental Science – volume: 33 start-page: 1093 year: 2002 end-page: 1109 ident: bib6 article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood publication-title: Organic Geochemistry – volume: 12 start-page: 1007 year: 2012 end-page: 1018 ident: bib49 article-title: Soil carbon dioxide emission from intensively cultivated black soil in Northeast China: nitrogen fertilization effect publication-title: Journal of Soils and Sediments – volume: 43 start-page: 385 year: 2011 end-page: 392 ident: bib33 article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments publication-title: Soil Biology & Biochemistry – volume: 156 start-page: 116 year: 2012 end-page: 122 ident: bib58 article-title: The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields publication-title: Agriculture, Ecosystem & Environment – volume: 39 start-page: 123 year: 2003 end-page: 130 ident: bib15 article-title: Hot water extractable C and N in relation to microbiological properties of soils under beech forests publication-title: Biology and Fertility of Soils – volume: 42 start-page: 2345 year: 2010 end-page: 2347 ident: bib54 article-title: The effect of young biochar on soil respiration publication-title: Soil Biology & Biochemistry – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: bib36 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by publication-title: Soil Biology & Biochemistry – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: bib73 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biology & Biochemistry – year: 2005 ident: bib67 article-title: Relationship and Decomposition Rate of Organic Carbon in Different Fractions for Agricultural Soils – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: bib35 article-title: Review of mechanism and quantification of priming effects publication-title: Soil Biology & Biochemistry – volume: 30 start-page: 69 year: 2009 end-page: 74 ident: bib44 article-title: Toxicity effect of phenol on aerobic granules publication-title: Environmental Technology – volume: 80 start-page: 5 year: 2007 end-page: 23 ident: bib28 article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration publication-title: Climatic Change – volume: 14 start-page: 151 year: 1991 end-page: 163 ident: bib23 article-title: Microbial biomass measured as total lipid phosphate in soils of different organic content publication-title: Journal of Microbiological Methods – volume: 44 start-page: 6189 year: 2010 end-page: 6195 ident: bib31 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environmental Science & Technology – volume: 13 start-page: 1989 year: 2007 end-page: 2007 ident: bib65 article-title: Soil organic carbon stocks in China and changes from 1980s to 2000s publication-title: Global Change Biology – year: 1994 ident: bib59 article-title: Keys to Soil Taxonomy (Soil Conservation Service) – volume: 43 start-page: 2304 year: 2011 end-page: 2314 ident: bib46 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biology & Biochemistry – year: 2008 ident: bib57 article-title: Characteristics of biochar: biological properties publication-title: Biochar for Environmental Management – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: bib71 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environmental Science & Technology – volume: 109 start-page: 141 year: 2005 end-page: 152 ident: bib10 article-title: Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments publication-title: Agriculture, Ecosystems & Environment – volume: 54 start-page: 217 year: 2004 end-page: 224 ident: bib14 article-title: Change in the grassland-forest boundary at Ta-Ta-Chia long term ecological research (LTER) site detected by stable isotope ratio of soil organic matter publication-title: Chemosphere – volume: 44 start-page: 764 year: 1980 end-page: 771 ident: bib20 article-title: Soil microbial and biochemical changes associated with reduced tillage publication-title: Soil Science Society of America Journal – volume: 30 start-page: 1301 year: 1998 end-page: 1307 ident: bib48 article-title: Soil carbonate decomposition by acid has little effect on the δ publication-title: Soil Biology & Biochemistry – volume: 14 start-page: 1156 year: 2008 end-page: 1168 ident: bib1 article-title: Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest publication-title: Global Change Biology – volume: 48 start-page: 555 year: 2010 end-page: 568 ident: bib61 article-title: Influence of biochars on flux of N publication-title: Australian Journal of Soil Research – start-page: 173 year: 1985 end-page: 199 ident: bib34 article-title: Fatty acid and menaquinone analysis of actinomycetes and related organisms publication-title: Chemical Methods in Bacterial Systematics – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: bib30 article-title: Biochar addition to agricultural soil increased CH publication-title: Agriculture, Ecosystem & Environment – volume: 320 start-page: 629 year: 2008 ident: bib64 article-title: Fire-derived charcoal causes loss of forest humus publication-title: Science – volume: 127 start-page: 153 year: 2012 end-page: 160 ident: bib69 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles publication-title: Field Crops Research – volume: 35 start-page: 219 year: 2002 end-page: 230 ident: bib26 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review publication-title: Biology and Fertility of Soils – start-page: 309 year: 2009 end-page: 324 ident: bib9 article-title: Microbial response to charcoal amendments and fertilization of a highly weathered tropical soil publication-title: Amazonian Dark Earths: Wim Sombroek's Vision – volume: 354 start-page: 311 year: 2012 end-page: 324 ident: bib17 article-title: Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil publication-title: Plant & Soil – year: 2008 ident: bib41 article-title: The Biogeochemistry of Black Carbon in Soils – year: 2000 ident: bib45 article-title: Methods of Soil and Agrochemical Analysis – volume: 15 start-page: 25 year: 2000 end-page: 36 ident: bib27 article-title: Methods for assessing the composition and diversity of soil microbial communities publication-title: Applied Soil Ecology – volume: 39 start-page: 669 year: 2007 end-page: 679 ident: bib18 article-title: CO publication-title: Soil Biology & Biochemistry – volume: 88 start-page: 37 year: 2001 end-page: 41 ident: bib25 article-title: The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics publication-title: Naturwissenschaften – volume: 442 start-page: 624 year: 2006 end-page: 626 ident: bib47 article-title: Putting the carbon back: black is the newgreen publication-title: Nature – volume: 175 start-page: 410 year: 2012 end-page: 422 ident: bib52 article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment publication-title: Journal of Plant Nutrition and Soil Science – volume: 155 start-page: 381 year: 2010 end-page: 389 ident: bib19 article-title: Responses of soil respiration to N fertilization in a loamy soil under maize cultivation publication-title: Geoderma – year: 2010 ident: bib72 article-title: Organo-mineral enzyme interactions and influence on soil enzyme activity publication-title: Soil Enzymes – volume: 42 start-page: 2345 year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib54 article-title: The effect of young biochar on soil respiration publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2010.09.013 – volume: 44 start-page: 6189 year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib31 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environmental Science & Technology doi: 10.1021/es1014423 – volume: 43 start-page: 2304 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib46 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.07.020 – year: 2005 ident: 10.1016/j.soilbio.2014.04.029_bib67 – year: 2008 ident: 10.1016/j.soilbio.2014.04.029_bib57 article-title: Characteristics of biochar: biological properties – year: 2000 ident: 10.1016/j.soilbio.2014.04.029_bib45 – volume: 5 start-page: 381 year: 2007 ident: 10.1016/j.soilbio.2014.04.029_bib40 article-title: Bio-energy in the black publication-title: Frontiers in Ecology & the Environment doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 41 start-page: 1966 year: 2009 ident: 10.1016/j.soilbio.2014.04.029_bib7 article-title: Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2009.06.022 – volume: 155 start-page: 381 year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib19 article-title: Responses of soil respiration to N fertilization in a loamy soil under maize cultivation publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.023 – volume: 354 start-page: 311 year: 2012 ident: 10.1016/j.soilbio.2014.04.029_bib17 article-title: Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil publication-title: Plant & Soil doi: 10.1007/s11104-011-1067-5 – volume: 44 start-page: 262 year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib24 article-title: Organic waste amendment effects on soil microbial activity in a corn-rye rotation: application of a new approach to community-level physiological profiling publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2010.01.003 – volume: 48 start-page: 473 year: 2002 ident: 10.1016/j.soilbio.2014.04.029_bib3 article-title: Science of bamboo charcoal: study of carbonizing temperature of bamboo charcoal and removal capability of harmful gases publication-title: Journal of Health Science doi: 10.1248/jhs.48.473 – volume: 442 start-page: 624 year: 2006 ident: 10.1016/j.soilbio.2014.04.029_bib47 article-title: Putting the carbon back: black is the newgreen publication-title: Nature doi: 10.1038/442624a – volume: 43 start-page: 385 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib33 article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2010.11.005 – volume: 41 start-page: 210 year: 2009 ident: 10.1016/j.soilbio.2014.04.029_bib36 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2008.10.016 – volume: 44 start-page: 1295 year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib71 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environmental Science & Technology doi: 10.1021/es903140c – volume: 52 start-page: 585 year: 2006 ident: 10.1016/j.soilbio.2014.04.029_bib4 article-title: Ammonia adsorption on bamboo charcoal with acid treatment publication-title: Journal of Health Science doi: 10.1248/jhs.52.585 – volume: 35 start-page: 1182 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib11 article-title: Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2010.12.008 – volume: 88 start-page: 37 year: 2001 ident: 10.1016/j.soilbio.2014.04.029_bib25 article-title: The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics publication-title: Naturwissenschaften doi: 10.1007/s001140000193 – volume: 320 start-page: 629 year: 2008 ident: 10.1016/j.soilbio.2014.04.029_bib64 article-title: Fire-derived charcoal causes loss of forest humus publication-title: Science doi: 10.1126/science.1154960 – volume: 127 start-page: 153 year: 2012 ident: 10.1016/j.soilbio.2014.04.029_bib69 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles publication-title: Field Crops Research doi: 10.1016/j.fcr.2011.11.020 – volume: 85 start-page: 591 year: 2004 ident: 10.1016/j.soilbio.2014.04.029_bib51 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology doi: 10.1890/03-8002 – year: 2008 ident: 10.1016/j.soilbio.2014.04.029_bib41 – volume: 35 start-page: 273 year: 2003 ident: 10.1016/j.soilbio.2014.04.029_bib63 article-title: Relationships of soil respiration to microbial biomass, substrate availability and clay content publication-title: Soil Biology & Biochemistry doi: 10.1016/S0038-0717(02)00274-2 – volume: 14 start-page: 151 year: 1991 ident: 10.1016/j.soilbio.2014.04.029_bib23 article-title: Microbial biomass measured as total lipid phosphate in soils of different organic content publication-title: Journal of Microbiological Methods doi: 10.1016/0167-7012(91)90018-L – volume: 14 start-page: 1156 year: 2008 ident: 10.1016/j.soilbio.2014.04.029_bib1 article-title: Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2008.01549.x – volume: 132 start-page: 1815 year: 1986 ident: 10.1016/j.soilbio.2014.04.029_bib21 article-title: Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria publication-title: Journal of General Microbiology – volume: 140 start-page: 309 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib30 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study publication-title: Agriculture, Ecosystem & Environment doi: 10.1016/j.agee.2010.12.005 – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib39 article-title: Biochar effects on soil biota-a review publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.04.022 – volume: 39 start-page: 669 year: 2007 ident: 10.1016/j.soilbio.2014.04.029_bib18 article-title: CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2006.09.024 – volume: 185 start-page: 263 year: 2003 ident: 10.1016/j.soilbio.2014.04.029_bib38 article-title: Soil respiration, fine root production and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient publication-title: Forest Ecology & Management doi: 10.1016/S0378-1127(03)00164-6 – volume: 44 start-page: 764 year: 1980 ident: 10.1016/j.soilbio.2014.04.029_bib20 article-title: Soil microbial and biochemical changes associated with reduced tillage publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1980.03615995004400050052x – start-page: 173 year: 1985 ident: 10.1016/j.soilbio.2014.04.029_bib34 article-title: Fatty acid and menaquinone analysis of actinomycetes and related organisms – volume: 25 start-page: 1240 year: 2006 ident: 10.1016/j.soilbio.2014.04.029_bib62 article-title: Soil respiration in maize fields in the lower reaches of Liaohe plain publication-title: Journal of Agro Environmental Science – volume: 48 start-page: 555 year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib61 article-title: Influence of biochars on flux of N2O and CO2 from Ferrosol publication-title: Australian Journal of Soil Research doi: 10.1071/SR10004 – volume: 115 start-page: 179 year: 1989 ident: 10.1016/j.soilbio.2014.04.029_bib60 article-title: Plant and soil related controls of the flow of carbon from roots through the soil microbial biomass publication-title: Plant & Soil doi: 10.1007/BF02202586 – volume: 12 start-page: 1007 year: 2012 ident: 10.1016/j.soilbio.2014.04.029_bib49 article-title: Soil carbon dioxide emission from intensively cultivated black soil in Northeast China: nitrogen fertilization effect publication-title: Journal of Soils and Sediments doi: 10.1007/s11368-012-0529-6 – volume: 42 start-page: 2879 year: 2008 ident: 10.1016/j.soilbio.2014.04.029_bib13 article-title: The rate of 2,2-dichloropropane transformation in mineral micropores: implications of sorptive preservation for fate and transport of organic contaminants in the subsurface publication-title: Environmental Science & Technology doi: 10.1021/es702888h – volume: 43 start-page: 2127 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib16 article-title: The priming potential of biochar products in relation to labile carbon contents and soil organic matter status publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.06.016 – volume: 58 start-page: 228 year: 2013 ident: 10.1016/j.soilbio.2014.04.029_bib70 article-title: Carbon uptake by a microbial community during 30-day treatment with 13C-glucose of a sandy loam soil fertilized for 20 years with NPK or compost as determined by a GC-C-IRMS analysis of phospholipid fatty acids publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2012.08.024 – volume: 57 start-page: 401 year: 2013 ident: 10.1016/j.soilbio.2014.04.029_bib2 article-title: Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2012.10.025 – volume: 81 start-page: 2359 year: 2000 ident: 10.1016/j.soilbio.2014.04.029_bib12 article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition publication-title: Ecology doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 – volume: 48 start-page: 325 year: 2012 ident: 10.1016/j.soilbio.2014.04.029_bib68 article-title: Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil publication-title: Biology & Fertility of Soils doi: 10.1007/s00374-011-0629-2 – start-page: 309 year: 2009 ident: 10.1016/j.soilbio.2014.04.029_bib9 article-title: Microbial response to charcoal amendments and fertilization of a highly weathered tropical soil – year: 1974 ident: 10.1016/j.soilbio.2014.04.029_bib5 – volume: 30 start-page: 1301 year: 1998 ident: 10.1016/j.soilbio.2014.04.029_bib48 article-title: Soil carbonate decomposition by acid has little effect on the δ13C or organic matter publication-title: Soil Biology & Biochemistry doi: 10.1016/S0038-0717(98)00030-3 – volume: 109 start-page: 141 year: 2005 ident: 10.1016/j.soilbio.2014.04.029_bib10 article-title: Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2005.01.017 – volume: 196 start-page: 159 year: 2004 ident: 10.1016/j.soilbio.2014.04.029_bib22 article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests publication-title: Forest Ecology & Management doi: 10.1016/j.foreco.2004.03.018 – volume: 39 start-page: 123 year: 2003 ident: 10.1016/j.soilbio.2014.04.029_bib15 article-title: Hot water extractable C and N in relation to microbiological properties of soils under beech forests publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-003-0688-0 – volume: 13 start-page: 1989 year: 2007 ident: 10.1016/j.soilbio.2014.04.029_bib65 article-title: Soil organic carbon stocks in China and changes from 1980s to 2000s publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2007.01409.x – year: 1994 ident: 10.1016/j.soilbio.2014.04.029_bib59 – volume: 43 start-page: 1169 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib73 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.02.005 – volume: 72 start-page: 6069 year: 2008 ident: 10.1016/j.soilbio.2014.04.029_bib43 article-title: Stability of biomass-derived black carbon in soils publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2008.09.028 – volume: 12 start-page: 1 year: 2009 ident: 10.1016/j.soilbio.2014.04.029_bib32 article-title: Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition publication-title: Ecosystems doi: 10.1007/s10021-008-9199-z – volume: 175 start-page: 410 year: 2012 ident: 10.1016/j.soilbio.2014.04.029_bib52 article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.201100143 – volume: 35 start-page: 219 year: 2002 ident: 10.1016/j.soilbio.2014.04.029_bib26 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-002-0466-4 – volume: 14 start-page: 1025 year: 2008 ident: 10.1016/j.soilbio.2014.04.029_bib8 article-title: Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2008.01562.x – volume: 156 start-page: 116 year: 2012 ident: 10.1016/j.soilbio.2014.04.029_bib58 article-title: The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields publication-title: Agriculture, Ecosystem & Environment doi: 10.1016/j.agee.2012.05.012 – volume: 24 start-page: 573 year: 2000 ident: 10.1016/j.soilbio.2014.04.029_bib55 article-title: Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies publication-title: FEMS Microbiology Reviews doi: 10.1111/j.1574-6976.2000.tb00559.x – volume: 41 start-page: 1301 year: 2009 ident: 10.1016/j.soilbio.2014.04.029_bib56 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2009.03.016 – volume: 32 start-page: 1485 year: 2000 ident: 10.1016/j.soilbio.2014.04.029_bib35 article-title: Review of mechanism and quantification of priming effects publication-title: Soil Biology & Biochemistry doi: 10.1016/S0038-0717(00)00084-5 – volume: 30 start-page: 69 year: 2009 ident: 10.1016/j.soilbio.2014.04.029_bib44 article-title: Toxicity effect of phenol on aerobic granules publication-title: Environmental Technology doi: 10.1080/09593330802536339 – year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib72 article-title: Organo-mineral enzyme interactions and influence on soil enzyme activity – volume: 33 start-page: 1093 year: 2002 ident: 10.1016/j.soilbio.2014.04.029_bib6 article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood publication-title: Organic Geochemistry doi: 10.1016/S0146-6380(02)00062-1 – volume: 166 start-page: 319 year: 2003 ident: 10.1016/j.soilbio.2014.04.029_bib37 article-title: Dynamic of different C and N fractions in a cambisol under five year succession fallow in Saxony (Germany) publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.200390049 – volume: 41 start-page: 206 year: 2010 ident: 10.1016/j.soilbio.2014.04.029_bib42 article-title: Black carbon affects the cycling of non-black carbon in soil publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2009.09.007 – volume: 43 start-page: 1723 year: 2011 ident: 10.1016/j.soilbio.2014.04.029_bib29 article-title: Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.04.018 – year: 2007 ident: 10.1016/j.soilbio.2014.04.029_bib50 – volume: 15 start-page: 25 year: 2000 ident: 10.1016/j.soilbio.2014.04.029_bib27 article-title: Methods for assessing the composition and diversity of soil microbial communities publication-title: Applied Soil Ecology doi: 10.1016/S0929-1393(00)00069-X – volume: 26 start-page: 1305 year: 1994 ident: 10.1016/j.soilbio.2014.04.029_bib53 article-title: Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(94)90211-9 – volume: 80 start-page: 5 year: 2007 ident: 10.1016/j.soilbio.2014.04.029_bib28 article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration publication-title: Climatic Change doi: 10.1007/s10584-006-9178-3 – volume: 54 start-page: 217 year: 2004 ident: 10.1016/j.soilbio.2014.04.029_bib14 article-title: Change in the grassland-forest boundary at Ta-Ta-Chia long term ecological research (LTER) site detected by stable isotope ratio of soil organic matter publication-title: Chemosphere doi: 10.1016/j.chemosphere.2003.07.005 – volume: 28 start-page: 2283 year: 2009 ident: 10.1016/j.soilbio.2014.04.029_bib66 article-title: Effect of activated carbon on microbial bioavailability of phenanthrene in soils publication-title: Environmental Toxicology & Chemistry doi: 10.1897/09-081.1 |
SSID | ssj0002513 |
Score | 2.572046 |
Snippet | Conversion of plant residues to biochar is an attractive strategy for mitigation of atmospheric carbon dioxide (CO2) emission and enhancement of carbon (C)... Conversion of plant residues to biochar is an attractive strategy for mitigation of atmospheric carbon dioxide (CO sub(2)) emission and enhancement of carbon... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12 |
SubjectTerms | 13C natural abundance Adsorption Agronomy. Soil science and plant productions Biochar Biochemistry and biology Biological and medical sciences C3 plants C4 plants carbon dioxide carbon sequestration Chemical, physicochemical, biochemical and biological properties China community structure corn straw crop rotation Dissolved organic carbon Fundamental and applied biological sciences. Psychology Gram-positive bacteria greenhouse gas emissions isotopes microbial biomass microbial communities microbial growth Negative priming effect nitrogen Organic matter Phospholipid fatty acids Physics, chemistry, biochemistry and biology of agricultural and forest soils sandy loam soils soil organic carbon Soil science sorption |
Title | Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect |
URI | https://dx.doi.org/10.1016/j.soilbio.2014.04.029 https://www.proquest.com/docview/1551627221 https://www.proquest.com/docview/1836645182 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcGgrhFraildXrtRr2DycxMttWYEWEJyKxM2yY3sVtCRhHwcu_HZmHGcRagUSUi627NiZmcyM5ZlvCPnDEhkXSWgDHSc6YDosAsUZNJUGaWHMZiEmOF9dZ5MbdnGb3vbIuMuFwbBKr_tbne60te8ZeGoOmrLEHF8ES8cC3mj4OSb8MpajlB89vYR5gP32wLsck3XylyyewR3i5c5UiTmAEXOIp87T_K992mrkAqhm23IX_2huZ47OvpJt70fSUbvVb6Rnqh3yZTSdeywNs0M-jbtibt_Jw0lZY4IVXawaF_pqNAXXj2qDMeU-cIvWlrZVngpayLmCnrKikuIbsQgazFnISj_SWS3vKX7VMR3RykwdeDhtXIWwKW1DRH6Qm7PTv-NJ4KstBAUYqCWcSCXXluthjKhlSWQjzUGRc820TbWKchmpPFMsspky3OSRjXOupeWMDXWaqOQn2ajqyuwSanhowHOwFs4uLAVxKNKhtmEWKliApcUeYR2NReGhyLEixkx0MWd3wrNGIGtECE883CNH62lNi8Xx3gTeMVC8EioB9uK9qf1XDF8viIB_eZjBgN-dBAjgJV6zyMrUq4Vwd49xHsfRG2N4kgFp4HC3__E9HpDP2Goj3g7JxnK-Mr_ARVqqvvsH-mRzdH45uX4GJJ4TpQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKORRUIShUtJRiJDimmzhO4q3Uw1KotvTj1Eq9GTu2V6mWJGx2hXrhT_EHO5M4rSoQlZAq5ZIPx4nHmRkrb94j5AOPFcvj0AWGxSbgJswDLTjsagOzhXOXhljgfHKajs_514vkYon87mthEFbpfX_n01tv7Y8M_GgO6qLAGl8kS0cBbwz8Qnhk5ZG9-gnrtmbv8DMY-SNjB1_O9seBlxYIcvDGc1h-KWGcMEOGFF1x5CIjwGsJw41LjI4yFeks1TxyqbbCZpFjmTDKCc6HJol1DPd9RB5zcBcom7Dz6xZXAgmDZ_oVWB2U3ZYNDS6RoHeqCyw6jHhLsdqmtn8NiKu1asBMrtPX-CNUtPHv4Dl55hNXOurG5gVZsuUaeTqazDx5h10jK_u9etxL8uNTUWFFF20WdYu1tYZCrkmNRRC7R4rRytFOViqnuZppOFKUVFG8I6quQZtGleaKTiv1neJb7dIRLe2kZSundStJNqEdJuUVOX8QG6yT5bIq7WtCrQgtpCrOwWKJJzD_8mRoXJiGGjrgSb5BeD_GMvfc5yjBMZU9yO1SetNINI0MYWPDDbJz06zuyD_uayB6A8o7s1hCgLqv6fYdg990iAyDWZjCBe_7GSDBlvhfR5W2WjSy_dnJMsaif1wj4hSGBlaTm___jO_Iyvjs5FgeH54evSFP8EwHt9siy_PZwr6F_Gyut9vvgZJvD_0BXgN65k_r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+suppressed+the+decomposition+of+organic+carbon+in+a+cultivated+sandy+loam+soil%3A+A+negative+priming+effect&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=WEIWEI+LU&rft.au=WEIXIN+DING&rft.au=JUNHUA+ZHANG&rft.au=YI+LI&rft.date=2014-09-01&rft.pub=Elsevier&rft.issn=0038-0717&rft.volume=76&rft.spage=12&rft.epage=21&rft_id=info:doi/10.1016%2Fj.soilbio.2014.04.029&rft.externalDBID=n%2Fa&rft.externalDocID=28597069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |