On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number

Local thermal equilibrium is an often-used hypothesis when studying heat transfer in porous media. Examination of non-equilibrium phenomena shows that this hypothesis is usually not valid during rapid heating or cooling. The results from this theoretical study confirm that local thermal equilibrium...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 42; no. 18; pp. 3373 - 3385
Main Authors Minkowycz, W.J., Haji-Sheikh, A., Vafai, K.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.1999
Elsevier
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/S0017-9310(99)00043-5

Cover

Loading…
Abstract Local thermal equilibrium is an often-used hypothesis when studying heat transfer in porous media. Examination of non-equilibrium phenomena shows that this hypothesis is usually not valid during rapid heating or cooling. The results from this theoretical study confirm that local thermal equilibrium in a fluidized bed depends on the size of the layer, mean pore size, interstitial heat transfer coefficient, and thermophysical properties. For a porous medium subject to rapid transient heating, the existence of the local thermal equilibrium depends on the magnitude of the Sparrow number and on the rate of change of the heat input.
AbstractList Local thermal equilibrium is an often-used hypothesis when studying heat transfer in porous media. Examination of non-equilibrium phenomena shows that this hypothesis is usually not valid during rapid heating or cooling. The results from this theoretical study confirm that local thermal equilibrium in a fluidized bed depends on the size of the layer, mean pore size, interstitial heat transfer coefficient, and thermophysical properties. For a porous medium subject to rapid transient heating, the existence of the local thermal equilibrium depends on the magnitude of the Sparrow number and on the rate of change of the heat input.
Author Minkowycz, W.J.
Haji-Sheikh, A.
Vafai, K.
Author_xml – sequence: 1
  givenname: W.J.
  surname: Minkowycz
  fullname: Minkowycz, W.J.
  organization: Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL 60607-7022, USA
– sequence: 2
  givenname: A.
  surname: Haji-Sheikh
  fullname: Haji-Sheikh, A.
  email: haji@mae.uta.edu
  organization: Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019-0023, USA
– sequence: 3
  givenname: K.
  surname: Vafai
  fullname: Vafai, K.
  organization: Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210-1107, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1832484$$DView record in Pascal Francis
BookMark eNqFkcFrFTEQxoNU8LX6Jwg5COpha7KbfbvRg0jRKhR6qJ7DNJnti-wm20mi9L83r68oeOlpGPL7vszMd8yOQgzI2EspTqWQ23dXQsih0Z0Ub7R-K4RQXdM_YRs5Drpp5aiP2OYv8owdp_Rz3wq13bByGbjDFSgXQj5RXPgcLcw875CWWvG2-Nlfky8L94GvkWJJfEHngbuCPEcOnGD1br7jdgfhxocbvkPIPMVCFt_vrfhV_YLibx7Kco30nD2dYE744qGesB9fPn8_-9pcXJ5_O_t00Vg1yNz0smvbFpWbeiew662qY7dua0eU2sIg1TQIV5FOai1F7awDgPoC4Nph6E7Y64PvSvG2YMpm8cniPEPAuoYZVK9V22tZyVcPJKS6_kQQrE9mJb8A3Rk5dq0aVcX6A2YppkQ4_SOE2Ydh7sMw-0sbrc19GKavug__6azPkH0MmcDPj6o_HtRYb_XLI5lkPQZbQyC02bjoH3H4A3VUpl8
CODEN IJHMAK
CitedBy_id crossref_primary_10_3390_ma9020094
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_059
crossref_primary_10_1016_j_applthermaleng_2020_115483
crossref_primary_10_1002_nag_2145
crossref_primary_10_1016_j_enconman_2022_115667
crossref_primary_10_1115_1_4053414
crossref_primary_10_1016_j_cam_2010_07_017
crossref_primary_10_1016_j_jfoodeng_2019_05_028
crossref_primary_10_1016_j_jtherbio_2022_103368
crossref_primary_10_3390_su10114130
crossref_primary_10_1002_num_21694
crossref_primary_10_1016_j_applthermaleng_2021_116619
crossref_primary_10_1098_rspa_2013_0187
crossref_primary_10_1016_j_icheatmasstransfer_2015_09_003
crossref_primary_10_1016_j_ijheatmasstransfer_2007_01_005
crossref_primary_10_1007_s00707_006_0385_9
crossref_primary_10_1007_s11242_011_9766_1
crossref_primary_10_1088_2057_1976_ab6e22
crossref_primary_10_1016_j_ijheatmasstransfer_2004_03_012
crossref_primary_10_1016_j_applthermaleng_2024_124861
crossref_primary_10_1016_j_ijnonlinmec_2015_01_007
crossref_primary_10_1080_10407780600619956
crossref_primary_10_1115_1_4004354
crossref_primary_10_1016_j_ijheatmasstransfer_2004_07_033
crossref_primary_10_1016_j_ijthermalsci_2017_08_020
crossref_primary_10_1007_s10973_020_09532_y
crossref_primary_10_1115_1_2977544
crossref_primary_10_1016_S1290_0729_03_00026_7
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120625
crossref_primary_10_1080_10407782_2022_2157915
crossref_primary_10_1007_s00161_022_01096_6
crossref_primary_10_1007_s00419_022_02285_0
crossref_primary_10_1007_s00707_019_02427_6
crossref_primary_10_1016_j_jtherbio_2023_103747
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119278
crossref_primary_10_1016_j_icheatmasstransfer_2014_12_012
crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_023
crossref_primary_10_1007_s40430_019_2132_x
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119153
crossref_primary_10_1177_0954411921990532
crossref_primary_10_1016_j_cej_2017_05_098
crossref_primary_10_1016_j_cma_2021_114182
crossref_primary_10_1016_j_jhydrol_2022_127589
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_006
crossref_primary_10_1080_10407782_2021_1959870
crossref_primary_10_1016_S0017_9310_02_00088_1
crossref_primary_10_1115_1_1773194
crossref_primary_10_1016_j_applthermaleng_2014_08_013
crossref_primary_10_1007_s12217_024_10140_w
crossref_primary_10_1016_S0017_9310_00_00191_5
crossref_primary_10_1002_htj_22687
crossref_primary_10_1016_j_ijthermalsci_2020_106591
crossref_primary_10_1115_1_1772411
crossref_primary_10_1007_s11242_020_01431_y
crossref_primary_10_1080_01457632_2018_1564204
crossref_primary_10_1016_j_ijrmms_2016_12_007
crossref_primary_10_1007_s11587_014_0193_9
crossref_primary_10_1016_j_ijheatmasstransfer_2013_11_050
crossref_primary_10_5194_npg_25_279_2018
crossref_primary_10_1016_j_physa_2019_123794
crossref_primary_10_2514_1_T4523
crossref_primary_10_1002_ceat_200600069
crossref_primary_10_1115_1_2217750
crossref_primary_10_5194_se_13_1045_2022
crossref_primary_10_1016_j_icheatmasstransfer_2021_105329
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125540
crossref_primary_10_1029_2012JB009161
crossref_primary_10_1061__ASCE_GT_1943_5606_0002760
crossref_primary_10_1016_j_ijheatmasstransfer_2007_02_025
crossref_primary_10_1016_j_expthermflusci_2007_08_004
crossref_primary_10_1016_j_ijthermalsci_2011_10_023
crossref_primary_10_1016_j_physrep_2023_11_001
crossref_primary_10_1016_j_energy_2013_07_063
crossref_primary_10_1016_j_ijheatmasstransfer_2004_06_042
crossref_primary_10_1016_j_ijheatmasstransfer_2006_06_046
crossref_primary_10_1016_j_applthermaleng_2021_117237
crossref_primary_10_1007_s00707_013_0821_6
crossref_primary_10_1016_j_compgeo_2020_103729
crossref_primary_10_1007_s11630_019_1137_1
crossref_primary_10_1002_nag_3161
crossref_primary_10_1115_1_4026371
crossref_primary_10_1016_S0017_9310_01_00008_4
crossref_primary_10_1016_j_icheatmasstransfer_2014_08_018
crossref_primary_10_1016_j_ijthermalsci_2012_11_008
crossref_primary_10_1205_fbp07033
crossref_primary_10_1016_j_apm_2015_10_025
crossref_primary_10_1115_1_2010494
crossref_primary_10_1016_j_energy_2013_06_025
crossref_primary_10_1002_htj_21336
crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_006
crossref_primary_10_1016_j_ijthermalsci_2003_07_005
crossref_primary_10_1115_1_4035199
crossref_primary_10_1016_j_ijheatmasstransfer_2008_08_029
crossref_primary_10_1142_S0218348X15400034
crossref_primary_10_1007_s10973_011_1581_y
crossref_primary_10_1029_2020WR027772
crossref_primary_10_1007_s10973_019_08362_x
crossref_primary_10_1115_1_1844540
crossref_primary_10_1007_s11242_022_01881_6
crossref_primary_10_1016_j_ijheatmasstransfer_2014_11_022
crossref_primary_10_1007_s00231_005_0073_7
crossref_primary_10_3390_en12050933
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_088
crossref_primary_10_1016_j_ijheatmasstransfer_2009_01_032
crossref_primary_10_1088_1742_2132_7_4_009
crossref_primary_10_1016_j_gete_2020_100218
crossref_primary_10_1016_j_coldregions_2019_102940
crossref_primary_10_1007_s10973_022_11801_x
crossref_primary_10_1016_j_ces_2018_09_045
crossref_primary_10_1016_j_ijheatmasstransfer_2015_06_001
crossref_primary_10_1016_j_energy_2021_122527
crossref_primary_10_1016_j_ijheatmasstransfer_2007_03_054
crossref_primary_10_1016_j_earscirev_2024_104730
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_010
crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_115
crossref_primary_10_1016_S0017_9310_02_00203_X
crossref_primary_10_1061_JGGEFK_GTENG_11152
crossref_primary_10_1016_j_icheatmasstransfer_2014_08_039
crossref_primary_10_1080_10255842_2020_1779232
crossref_primary_10_1016_j_ijthermalsci_2018_01_010
crossref_primary_10_1007_s11242_004_1801_z
crossref_primary_10_1016_j_ijheatmasstransfer_2008_10_018
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119069
crossref_primary_10_1115_1_1471524
crossref_primary_10_1016_j_applthermaleng_2011_09_039
crossref_primary_10_3390_en12173209
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121021
crossref_primary_10_1061__ASCE_GT_1943_5606_0002324
crossref_primary_10_1016_j_icheatmasstransfer_2022_105889
crossref_primary_10_1007_s11242_014_0272_0
crossref_primary_10_1016_j_ijheatmasstransfer_2006_05_034
crossref_primary_10_1016_j_ijthermalsci_2016_08_013
crossref_primary_10_1016_j_ijthermalsci_2015_06_003
crossref_primary_10_1021_acs_iecr_4c01571
crossref_primary_10_1080_08327823_2019_1569900
crossref_primary_10_1115_1_4000049
crossref_primary_10_1115_1_1860567
crossref_primary_10_1016_j_ijthermalsci_2009_01_007
crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_033
crossref_primary_10_1016_j_ijheatmasstransfer_2008_01_025
crossref_primary_10_1016_j_ijheatmasstransfer_2009_06_007
crossref_primary_10_1063_5_0221671
crossref_primary_10_1080_17455030_2022_2062483
crossref_primary_10_1088_1402_4896_ac34b4
crossref_primary_10_1016_j_rser_2020_110127
crossref_primary_10_1080_10407782_2020_1769437
crossref_primary_10_1016_j_ijthermalsci_2011_10_008
crossref_primary_10_1016_j_ijheatmasstransfer_2014_06_039
crossref_primary_10_1142_S1793524519500323
crossref_primary_10_1016_j_ijthermalsci_2008_06_004
crossref_primary_10_1016_j_ijsolstr_2011_11_014
crossref_primary_10_1016_j_apenergy_2019_03_200
crossref_primary_10_1002_num_20427
crossref_primary_10_1016_j_ijnonlinmec_2021_103889
crossref_primary_10_1115_1_4005636
crossref_primary_10_1115_1_4005635
crossref_primary_10_1016_j_ijheatmasstransfer_2005_02_005
crossref_primary_10_1615_JPorMedia_2023043649
crossref_primary_10_1007_s00231_016_1821_6
crossref_primary_10_1016_j_ijengsci_2010_12_005
crossref_primary_10_1016_j_ijthermalsci_2017_09_002
crossref_primary_10_1115_1_4000747
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121724
crossref_primary_10_1007_s11630_020_1169_6
crossref_primary_10_1016_j_ijheatmasstransfer_2007_03_017
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123195
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126540
crossref_primary_10_1016_j_ijthermalsci_2022_107758
crossref_primary_10_1080_01457632_2021_1976563
crossref_primary_10_1080_17415970500147688
crossref_primary_10_1016_j_apenergy_2015_10_075
crossref_primary_10_1016_j_jmmm_2014_11_020
crossref_primary_10_1016_j_heliyon_2024_e26424
crossref_primary_10_1016_j_icheatmasstransfer_2024_108273
crossref_primary_10_1007_s11242_016_0778_8
crossref_primary_10_1016_j_ijthermalsci_2021_107346
crossref_primary_10_1007_s10440_022_00551_5
crossref_primary_10_1007_s00231_007_0229_8
crossref_primary_10_1016_j_ijmecsci_2019_04_022
crossref_primary_10_1016_j_ijheatmasstransfer_2004_04_029
crossref_primary_10_1108_HFF_11_2018_0659
crossref_primary_10_1108_HFF_03_2015_0112
crossref_primary_10_1016_j_ijheatmasstransfer_2009_07_003
crossref_primary_10_1063_5_0046358
crossref_primary_10_1115_1_4025661
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119539
crossref_primary_10_1007_s00231_020_02920_y
crossref_primary_10_1080_01457632_2023_2185487
crossref_primary_10_3390_en14238114
crossref_primary_10_1016_j_ijheatmasstransfer_2005_02_025
crossref_primary_10_1016_j_ijthermalsci_2024_109059
crossref_primary_10_1080_10407782_2022_2102342
crossref_primary_10_1016_j_applthermaleng_2016_07_092
crossref_primary_10_1016_j_applthermaleng_2018_10_130
crossref_primary_10_1115_1_4050616
crossref_primary_10_1016_j_applthermaleng_2024_124945
crossref_primary_10_1115_1_4030905
crossref_primary_10_1016_j_applthermaleng_2018_06_055
crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_084
crossref_primary_10_1115_1_1447935
crossref_primary_10_1016_j_ijheatmasstransfer_2008_02_014
crossref_primary_10_1016_j_expthermflusci_2012_04_008
crossref_primary_10_1016_j_advwatres_2019_103394
crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_044
crossref_primary_10_1080_10407790_2024_2358540
crossref_primary_10_1142_S0219519417500877
crossref_primary_10_3390_atmos14081307
crossref_primary_10_1007_s11242_006_9064_5
crossref_primary_10_1007_s10973_018_7044_y
crossref_primary_10_2514_1_T4701
crossref_primary_10_1080_10407790_2016_1277919
crossref_primary_10_1002_htj_22590
crossref_primary_10_1016_j_ijheatmasstransfer_2011_02_020
crossref_primary_10_1016_j_ijheatmasstransfer_2011_02_023
crossref_primary_10_1002_ese3_49
crossref_primary_10_1007_s10765_020_02770_0
crossref_primary_10_1016_j_ijheatmasstransfer_2011_12_012
crossref_primary_10_1016_j_actaastro_2014_01_012
crossref_primary_10_1016_j_icheatmasstransfer_2011_04_001
crossref_primary_10_1061__ASCE_GT_1943_5606_0002390
crossref_primary_10_1093_gji_ggx406
crossref_primary_10_1016_S0017_9310_02_00210_7
crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_007
crossref_primary_10_1080_17455030_2023_2192809
crossref_primary_10_1016_j_compgeo_2024_106893
crossref_primary_10_1016_j_apenergy_2014_10_004
crossref_primary_10_1016_j_tsep_2024_102693
crossref_primary_10_1080_10407780903163876
crossref_primary_10_1002_num_20476
crossref_primary_10_1016_j_compgeo_2021_104019
Cites_doi 10.1016/0017-9310(85)90272-8
10.1016/0017-9310(91)90092-S
10.2514/3.309
10.1016/0142-727X(94)90030-2
10.1115/1.2910442
10.1016/0017-9310(90)90255-S
10.1061/(ASCE)0733-9399(1994)120:10(2028)
10.1016/0029-5493(94)90062-0
10.1016/0029-5493(94)90042-6
10.1063/1.1694915
10.1016/S0017-9310(98)00185-9
10.1007/BF00709226
10.1016/S0017-9310(98)00120-3
10.1016/0017-9310(91)90222-Z
10.2514/2.6357
10.1016/0017-9310(95)00010-7
10.1115/1.2830048
10.1080/07373939408959981
10.1016/0017-9310(94)90219-4
10.1016/0038-092X(93)90100-3
10.1016/0017-9310(81)90027-2
10.1115/1.3240807
10.1016/S0017-9310(98)00184-7
10.1016/S0017-9310(05)80053-5
10.1016/S0065-2156(08)70197-2
10.1115/1.2910473
10.1016/0017-9310(85)90107-3
10.1115/1.3447169
10.1016/0017-9310(85)90108-5
10.1016/0009-2509(93)80132-A
10.1557/JMR.1994.0731
10.1115/1.3250574
10.1029/JB082i014p02040
10.1115/1.3240810
10.1016/0017-9310(92)90323-K
ContentType Journal Article
Copyright 1999 Elsevier Science Ltd
1999 INIST-CNRS
Copyright_xml – notice: 1999 Elsevier Science Ltd
– notice: 1999 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0017-9310(99)00043-5
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 3385
ExternalDocumentID 1832484
10_1016_S0017_9310_99_00043_5
S0017931099000435
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c471t-513222e4df5d0e35c40172d6c8e19ca714f70d2223199104f7cdaaaca7aad2773
IEDL.DBID AIKHN
ISSN 0017-9310
IngestDate Fri Jul 11 11:01:02 EDT 2025
Mon Jul 21 09:11:17 EDT 2025
Tue Jul 01 04:23:36 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 23 02:14:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Theoretical study
Rapid thermal processing
Modelling
Thermal equilibrium
Heat transfer
Porous medium
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-513222e4df5d0e35c40172d6c8e19ca714f70d2223199104f7cdaaaca7aad2773
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 745942591
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_745942591
pascalfrancis_primary_1832484
crossref_primary_10_1016_S0017_9310_99_00043_5
crossref_citationtrail_10_1016_S0017_9310_99_00043_5
elsevier_sciencedirect_doi_10_1016_S0017_9310_99_00043_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-09-01
PublicationDateYYYYMMDD 1999-09-01
PublicationDate_xml – month: 09
  year: 1999
  text: 1999-09-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 1999
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References van Heek (BIB10) 1994; 150
Sozen, Vafai (BIB28) 1990; 33
Getachew, Minkowycz, Poulikakos (BIB23) 1998; 1
Vafai, Ettefagh (BIB14) 1998; 110
Chen, Chen, Minkowycz, Gill (BIB18) 1992; 35
Beavers, Wittenberg, Sparrow (BIB27) 1981; 103
Hrubesh, Pekala (BIB9) 1994; 9
Bejan, Khair (BIB25) 1985; 28
Vafai, Sozen (BIB35) 1990; 112
Chawla, Pedersen, Minkowycz (BIB11) 1985; 28
Cheng, Minkowycz (BIB1) 1977; 82
Sparrow, Beavers, Masha (BIB24) 1974; 17
Vafai, Tien (BIB22) 1981; 34
Tzou (BIB40) 1997
Zhang, Fryer (BIB5) 1993; 48
Hollands, Iynkaran (BIB6) 1993; 51
Tien, Vafai (BIB42) 1979; 65
Lee, Howell (BIB17) 1991; 34
Fournier, Boccara (BIB39) 1989; 157
Beck, Cole, Haji-Sheikh, Litkouhi (BIB43) 1992
Bohn, Swanson (BIB16) 1991; 34
Bear (BIB31) 1972
Vafai, Sozen (BIB44) 1990; 112
Catton, Chung (BIB13) 1994; 151
Masha, Beavers, Sparrow (BIB19) 1974; 96
Kazanskiy, Zolotokrylin (BIB2) 1994; 71
Getachew, Poulikakos, Minkowycz (BIB21) 1998; 12
Lee, Vafai (BIB38) 1999; 42
Selih, Sousa, Bremner (BIB8) 1994; 120
Manole, Lage (BIB3) 1995; 38
Chawla, Pedersen, Minkowycz (BIB12) 1985; 28
Tien, Vafai (BIB34) 1989; 27
Nield, Bejan (BIB32) 1992
Hays-Stang, Haji-Sheikh (BIB41) 1999; 42
Sözen, Vafai, Kennedy (BIB15) 1991; 5
Huang, Vafai (BIB29) 1994; 15
J.R. Leith, A. Haji-Sheikh, A transient technique for finding effective thermal conductivity of fluid saturated porous media. Symposium on Heat Transfer in Porous Media. Beck, Yao (Eds.), ASME HTD-Vol. 22, Bk. No. H00250 (1982) 93–101
Peterson, Chang (BIB30) 1998; 120
Abalone, Lara, Gaspar, Piacentini (BIB4) 1994; 12
Younis, Viskanta (BIB20) 1993; 36
Kaviany (BIB33) 1991
Beavers, Hajji, Sparrow (BIB26) 1981; 103
Amiri, Vafai (BIB36) 1994; 37
Amiri, Vafai (BIB37) 1998; 41
Catton (10.1016/S0017-9310(99)00043-5_BIB13) 1994; 151
Bohn (10.1016/S0017-9310(99)00043-5_BIB16) 1991; 34
Chawla (10.1016/S0017-9310(99)00043-5_BIB11) 1985; 28
Vafai (10.1016/S0017-9310(99)00043-5_BIB14) 1998; 110
Kazanskiy (10.1016/S0017-9310(99)00043-5_BIB2) 1994; 71
Younis (10.1016/S0017-9310(99)00043-5_BIB20) 1993; 36
Bear (10.1016/S0017-9310(99)00043-5_BIB31) 1972
Hollands (10.1016/S0017-9310(99)00043-5_BIB6) 1993; 51
Sparrow (10.1016/S0017-9310(99)00043-5_BIB24) 1974; 17
Manole (10.1016/S0017-9310(99)00043-5_BIB3) 1995; 38
Chen (10.1016/S0017-9310(99)00043-5_BIB18) 1992; 35
Nield (10.1016/S0017-9310(99)00043-5_BIB32) 1992
Hays-Stang (10.1016/S0017-9310(99)00043-5_BIB41) 1999; 42
Lee (10.1016/S0017-9310(99)00043-5_BIB17) 1991; 34
Zhang (10.1016/S0017-9310(99)00043-5_BIB5) 1993; 48
Selih (10.1016/S0017-9310(99)00043-5_BIB8) 1994; 120
Cheng (10.1016/S0017-9310(99)00043-5_BIB1) 1977; 82
Beavers (10.1016/S0017-9310(99)00043-5_BIB27) 1981; 103
Vafai (10.1016/S0017-9310(99)00043-5_BIB35) 1990; 112
Beavers (10.1016/S0017-9310(99)00043-5_BIB26) 1981; 103
Tzou (10.1016/S0017-9310(99)00043-5_BIB40) 1997
Bejan (10.1016/S0017-9310(99)00043-5_BIB25) 1985; 28
Abalone (10.1016/S0017-9310(99)00043-5_BIB4) 1994; 12
Sözen (10.1016/S0017-9310(99)00043-5_BIB15) 1991; 5
Getachew (10.1016/S0017-9310(99)00043-5_BIB21) 1998; 12
Sozen (10.1016/S0017-9310(99)00043-5_BIB28) 1990; 33
van Heek (10.1016/S0017-9310(99)00043-5_BIB10) 1994; 150
Chawla (10.1016/S0017-9310(99)00043-5_BIB12) 1985; 28
Getachew (10.1016/S0017-9310(99)00043-5_BIB23) 1998; 1
Hrubesh (10.1016/S0017-9310(99)00043-5_BIB9) 1994; 9
Peterson (10.1016/S0017-9310(99)00043-5_BIB30) 1998; 120
Vafai (10.1016/S0017-9310(99)00043-5_BIB44) 1990; 112
Tien (10.1016/S0017-9310(99)00043-5_BIB42) 1979; 65
Beck (10.1016/S0017-9310(99)00043-5_BIB43) 1992
Masha (10.1016/S0017-9310(99)00043-5_BIB19) 1974; 96
Fournier (10.1016/S0017-9310(99)00043-5_BIB39) 1989; 157
Amiri (10.1016/S0017-9310(99)00043-5_BIB37) 1998; 41
Kaviany (10.1016/S0017-9310(99)00043-5_BIB33) 1991
Tien (10.1016/S0017-9310(99)00043-5_BIB34) 1989; 27
Vafai (10.1016/S0017-9310(99)00043-5_BIB22) 1981; 34
Huang (10.1016/S0017-9310(99)00043-5_BIB29) 1994; 15
10.1016/S0017-9310(99)00043-5_BIB7
Lee (10.1016/S0017-9310(99)00043-5_BIB38) 1999; 42
Amiri (10.1016/S0017-9310(99)00043-5_BIB36) 1994; 37
References_xml – volume: 12
  start-page: 629
  year: 1994
  end-page: 647
  ident: BIB4
  article-title: Drying of biological products with significant volume variations. Experimental and modeling results for potato drying
  publication-title: Drying Technology
– volume: 41
  start-page: 4259
  year: 1998
  end-page: 4279
  ident: BIB37
  article-title: Transient analysis of incompressible flow through a packed bed
  publication-title: International Journal of Heat and Mass Transfer
– volume: 71
  start-page: 189
  year: 1994
  end-page: 195
  ident: BIB2
  article-title: Missing component in the equation for the land surface heat balance as applied to the heat exchange between the desert or semidesert surface
  publication-title: Boundary-Layer Meteorology
– volume: 110
  start-page: 1011
  year: 1998
  end-page: 1014
  ident: BIB14
  article-title: Analysis of the radiative and conductive heat transfer characteristics of a waste package canister
  publication-title: ASME Journal of Heat Transfer
– year: 1992
  ident: BIB32
  publication-title: Convection in Porous Media
– volume: 34
  start-page: 2123
  year: 1991
  end-page: 2132
  ident: BIB17
  article-title: Theoretical and experimental heat and mass transfer in highly porous media
  publication-title: International Journal of Heat and Mass Transfer
– volume: 17
  start-page: 1465
  year: 1974
  end-page: 1467
  ident: BIB24
  article-title: Laminar flow in a rectangular duct bounded by a porous wall
  publication-title: Physics of Fluids
– volume: 33
  start-page: 1247
  year: 1990
  end-page: 1261
  ident: BIB28
  article-title: Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed
  publication-title: International Journal of Heat and Mass Transfer
– volume: 34
  start-page: 2509
  year: 1991
  end-page: 2519
  ident: BIB16
  article-title: A comparison of models and experimental data for pressure drop and heat transfer in irrigated packed beds
  publication-title: International Journal of Heat and Mass Transfer
– volume: 157
  start-page: 587
  year: 1989
  end-page: 592
  ident: BIB39
  article-title: Heterogeneous media and rough surfaces: a fractal approach for heat diffusion studies
  publication-title: Physics (A)
– volume: 65
  start-page: 135
  year: 1979
  end-page: 148
  ident: BIB42
  article-title: Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation
  publication-title: AIAA Progress Series
– volume: 34
  start-page: 195
  year: 1981
  end-page: 203
  ident: BIB22
  article-title: Boundary and inertia effects on convective heat transfer in porous media
  publication-title: International Journal of Heat and Mass Transfer
– year: 1991
  ident: BIB33
  publication-title: Principles of Heat Transfer in Porous Media
– volume: 96
  start-page: 353
  year: 1974
  end-page: 357
  ident: BIB19
  article-title: Experiments on the resistance law for non-Darcy compressible gas flows in porous media
  publication-title: Journal of Fluids Engineering
– year: 1997
  ident: BIB40
  publication-title: Macro- to Microscale Heat Transfer
– volume: 5
  start-page: 623
  year: 1991
  end-page: 625
  ident: BIB15
  article-title: Thermal charging and discharging of sensible and latent heat storage packed beds
  publication-title: Journal of Thermophysics and Heat Transfer
– volume: 12
  start-page: 437
  year: 1998
  end-page: 446
  ident: BIB21
  article-title: Double diffusion in a porous cavity saturated with non-Newtonian fluid
  publication-title: Journal of Thermophysics and Heat Transfer
– volume: 27
  start-page: 225
  year: 1989
  end-page: 282
  ident: BIB34
  article-title: Convective and radiative heat transfer in porous media
  publication-title: Advances in Applied Mechanics
– volume: 28
  start-page: 2129
  year: 1985
  end-page: 2136
  ident: BIB11
  article-title: Governing equations for heat and mass transfer in heat generating porous beds. Part I: coolant boiling and transient void propagation
  publication-title: International Journal of Heat and Mass Transfer
– volume: 103
  start-page: 432
  year: 1981
  end-page: 439
  ident: BIB26
  article-title: Fluid flow through a class of highly-deformable porous media Part 1: experiments with air
  publication-title: Journal of Fluids Engineering
– volume: 51
  start-page: 223
  year: 1993
  end-page: 227
  ident: BIB6
  article-title: Analytical model for the thermal conductance of compound honeycomb transparent insulation, with experimental validation
  publication-title: Solar Energy
– volume: 37
  start-page: 939
  year: 1994
  end-page: 954
  ident: BIB36
  article-title: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media
  publication-title: International Journal of Heat and Mass Transfer
– volume: 35
  start-page: 3041
  year: 1992
  end-page: 3046
  ident: BIB18
  article-title: Non-Darcian effects on mixed convection about a vertical cylinder embedded in a saturated porous medium
  publication-title: International Journal of Heat and Mass Transfer
– volume: 112
  start-page: 1014
  year: 1990
  end-page: 1022
  ident: BIB44
  article-title: An investigation of a latent heat storage packed bed and condensing flow through it
  publication-title: ASME Journal of Heat Transfer
– volume: 82
  start-page: 2040
  year: 1977
  end-page: 2044
  ident: BIB1
  article-title: Free convection abut a vertical flat plate embedded in a saturated porous medium with application to heat transfer about a dike
  publication-title: Journal of Geophysical Research
– volume: 42
  start-page: 455
  year: 1999
  end-page: 465
  ident: BIB41
  article-title: A unified solution for heat conduction in thin films
  publication-title: International Journal of Heat and Mass Transfer
– volume: 120
  start-page: 2028
  year: 1994
  end-page: 2043
  ident: BIB8
  article-title: Moisture and heat flow in concrete walls exposed to fire
  publication-title: Journal of Engineering Mechanics of ASCE
– volume: 28
  start-page: 909
  year: 1985
  end-page: 918
  ident: BIB25
  article-title: Heat and mass transfer by natural convection in a porous medium
  publication-title: International Journal of Heat and Mass Transfer
– volume: 103
  start-page: 440
  year: 1981
  end-page: 444
  ident: BIB27
  article-title: Fluid flow through a class of highly-deformable porous media Part II: experiments with water
  publication-title: Journal of Fluids Engineering
– volume: 112
  start-page: 690
  year: 1990
  end-page: 699
  ident: BIB35
  article-title: Analysis of energy and momentum transport for fluid flow through a porous bed
  publication-title: ASME Journal of Heat Transfer
– volume: 48
  start-page: 633
  year: 1993
  end-page: 642
  ident: BIB5
  article-title: Models for the electrical heating of solid–liquid food mixtures
  publication-title: Chemical Engineering Science
– volume: 120
  start-page: 243
  year: 1998
  end-page: 252
  ident: BIB30
  article-title: Two-phase heat dissipation utilizing porous-channels of high-conductivity material
  publication-title: ASME Journal of Heat Transfer
– volume: 38
  start-page: 2583
  year: 1995
  end-page: 2593
  ident: BIB3
  article-title: Numerical simulation of supercritical Hadley circulation within a porous layer, induced by inclined temperature gradients
  publication-title: International Journal of Heat and Mass Transfer
– volume: 36
  start-page: 1425
  year: 1993
  end-page: 1434
  ident: BIB20
  article-title: Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam
  publication-title: International Journal of Heat and Mass Transfer
– volume: 151
  start-page: 185
  year: 1994
  ident: BIB13
  article-title: Two-phase flow in porous media with phase change: post dryout heat transfer and steam injection
  publication-title: Nuclear Engineering Designs
– volume: 1
  start-page: 273
  year: 1998
  end-page: 283
  ident: BIB23
  article-title: Macroscopic equations of non-Newtonian fluid flow and heat transfer in a porous matrix
  publication-title: Journal of Porous Media
– volume: 42
  start-page: 423
  year: 1999
  end-page: 435
  ident: BIB38
  article-title: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media
  publication-title: International Journal of Heat and Mass Transfer
– reference: J.R. Leith, A. Haji-Sheikh, A transient technique for finding effective thermal conductivity of fluid saturated porous media. Symposium on Heat Transfer in Porous Media. Beck, Yao (Eds.), ASME HTD-Vol. 22, Bk. No. H00250 (1982) 93–101
– year: 1992
  ident: BIB43
  publication-title: Heat Conduction Using Green’s functions
– volume: 28
  start-page: 2137
  year: 1985
  end-page: 3148
  ident: BIB12
  article-title: Governing equations for heat and mass transfer in heat generating porous beds. Part II: particulate melting and substrate penetration by dissolution
  publication-title: International Journal of Heat and Mass Transfer
– volume: 150
  start-page: 183
  year: 1994
  end-page: 189
  ident: BIB10
  article-title: Increasing the power of the high temperature reactor module
  publication-title: Nuclear Engineering and Designs
– volume: 15
  start-page: 48
  year: 1994
  end-page: 61
  ident: BIB29
  article-title: Passive alteration and control of convective heat transfer utilizing alternate porous cavity/block wafers
  publication-title: International Journal of Heat and Fluid Flow
– year: 1972
  ident: BIB31
  publication-title: Dynamics of Fluids in Porous Media
– volume: 9
  start-page: 731
  year: 1994
  end-page: 738
  ident: BIB9
  article-title: Thermal properties of organic and inorganic aerogels
  publication-title: Journal of Materials Research
– volume: 28
  start-page: 909
  year: 1985
  ident: 10.1016/S0017-9310(99)00043-5_BIB25
  article-title: Heat and mass transfer by natural convection in a porous medium
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(85)90272-8
– volume: 34
  start-page: 2509
  year: 1991
  ident: 10.1016/S0017-9310(99)00043-5_BIB16
  article-title: A comparison of models and experimental data for pressure drop and heat transfer in irrigated packed beds
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(91)90092-S
– year: 1992
  ident: 10.1016/S0017-9310(99)00043-5_BIB32
– volume: 5
  start-page: 623
  year: 1991
  ident: 10.1016/S0017-9310(99)00043-5_BIB15
  article-title: Thermal charging and discharging of sensible and latent heat storage packed beds
  publication-title: Journal of Thermophysics and Heat Transfer
  doi: 10.2514/3.309
– volume: 15
  start-page: 48
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB29
  article-title: Passive alteration and control of convective heat transfer utilizing alternate porous cavity/block wafers
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/0142-727X(94)90030-2
– volume: 112
  start-page: 690
  year: 1990
  ident: 10.1016/S0017-9310(99)00043-5_BIB35
  article-title: Analysis of energy and momentum transport for fluid flow through a porous bed
  publication-title: ASME Journal of Heat Transfer
  doi: 10.1115/1.2910442
– volume: 33
  start-page: 1247
  year: 1990
  ident: 10.1016/S0017-9310(99)00043-5_BIB28
  article-title: Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(90)90255-S
– volume: 120
  start-page: 2028
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB8
  article-title: Moisture and heat flow in concrete walls exposed to fire
  publication-title: Journal of Engineering Mechanics of ASCE
  doi: 10.1061/(ASCE)0733-9399(1994)120:10(2028)
– volume: 150
  start-page: 183
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB10
  article-title: Increasing the power of the high temperature reactor module
  publication-title: Nuclear Engineering and Designs
  doi: 10.1016/0029-5493(94)90062-0
– volume: 151
  start-page: 185
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB13
  article-title: Two-phase flow in porous media with phase change: post dryout heat transfer and steam injection
  publication-title: Nuclear Engineering Designs
  doi: 10.1016/0029-5493(94)90042-6
– year: 1991
  ident: 10.1016/S0017-9310(99)00043-5_BIB33
– ident: 10.1016/S0017-9310(99)00043-5_BIB7
– year: 1992
  ident: 10.1016/S0017-9310(99)00043-5_BIB43
– volume: 17
  start-page: 1465
  year: 1974
  ident: 10.1016/S0017-9310(99)00043-5_BIB24
  article-title: Laminar flow in a rectangular duct bounded by a porous wall
  publication-title: Physics of Fluids
  doi: 10.1063/1.1694915
– volume: 42
  start-page: 423
  year: 1999
  ident: 10.1016/S0017-9310(99)00043-5_BIB38
  article-title: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(98)00185-9
– volume: 71
  start-page: 189
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB2
  article-title: Missing component in the equation for the land surface heat balance as applied to the heat exchange between the desert or semidesert surface
  publication-title: Boundary-Layer Meteorology
  doi: 10.1007/BF00709226
– volume: 41
  start-page: 4259
  year: 1998
  ident: 10.1016/S0017-9310(99)00043-5_BIB37
  article-title: Transient analysis of incompressible flow through a packed bed
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(98)00120-3
– volume: 34
  start-page: 2123
  year: 1991
  ident: 10.1016/S0017-9310(99)00043-5_BIB17
  article-title: Theoretical and experimental heat and mass transfer in highly porous media
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(91)90222-Z
– volume: 157
  start-page: 587
  year: 1989
  ident: 10.1016/S0017-9310(99)00043-5_BIB39
  article-title: Heterogeneous media and rough surfaces: a fractal approach for heat diffusion studies
  publication-title: Physics (A)
– volume: 12
  start-page: 437
  year: 1998
  ident: 10.1016/S0017-9310(99)00043-5_BIB21
  article-title: Double diffusion in a porous cavity saturated with non-Newtonian fluid
  publication-title: Journal of Thermophysics and Heat Transfer
  doi: 10.2514/2.6357
– volume: 38
  start-page: 2583
  year: 1995
  ident: 10.1016/S0017-9310(99)00043-5_BIB3
  article-title: Numerical simulation of supercritical Hadley circulation within a porous layer, induced by inclined temperature gradients
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(95)00010-7
– volume: 120
  start-page: 243
  year: 1998
  ident: 10.1016/S0017-9310(99)00043-5_BIB30
  article-title: Two-phase heat dissipation utilizing porous-channels of high-conductivity material
  publication-title: ASME Journal of Heat Transfer
  doi: 10.1115/1.2830048
– volume: 12
  start-page: 629
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB4
  article-title: Drying of biological products with significant volume variations. Experimental and modeling results for potato drying
  publication-title: Drying Technology
  doi: 10.1080/07373939408959981
– volume: 37
  start-page: 939
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB36
  article-title: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(94)90219-4
– year: 1997
  ident: 10.1016/S0017-9310(99)00043-5_BIB40
– volume: 65
  start-page: 135
  year: 1979
  ident: 10.1016/S0017-9310(99)00043-5_BIB42
  article-title: Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation
  publication-title: AIAA Progress Series
– volume: 51
  start-page: 223
  year: 1993
  ident: 10.1016/S0017-9310(99)00043-5_BIB6
  article-title: Analytical model for the thermal conductance of compound honeycomb transparent insulation, with experimental validation
  publication-title: Solar Energy
  doi: 10.1016/0038-092X(93)90100-3
– volume: 34
  start-page: 195
  year: 1981
  ident: 10.1016/S0017-9310(99)00043-5_BIB22
  article-title: Boundary and inertia effects on convective heat transfer in porous media
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(81)90027-2
– volume: 103
  start-page: 432
  year: 1981
  ident: 10.1016/S0017-9310(99)00043-5_BIB26
  article-title: Fluid flow through a class of highly-deformable porous media Part 1: experiments with air
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.3240807
– volume: 42
  start-page: 455
  year: 1999
  ident: 10.1016/S0017-9310(99)00043-5_BIB41
  article-title: A unified solution for heat conduction in thin films
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(98)00184-7
– volume: 36
  start-page: 1425
  year: 1993
  ident: 10.1016/S0017-9310(99)00043-5_BIB20
  article-title: Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(05)80053-5
– volume: 27
  start-page: 225
  year: 1989
  ident: 10.1016/S0017-9310(99)00043-5_BIB34
  article-title: Convective and radiative heat transfer in porous media
  publication-title: Advances in Applied Mechanics
  doi: 10.1016/S0065-2156(08)70197-2
– volume: 112
  start-page: 1014
  year: 1990
  ident: 10.1016/S0017-9310(99)00043-5_BIB44
  article-title: An investigation of a latent heat storage packed bed and condensing flow through it
  publication-title: ASME Journal of Heat Transfer
  doi: 10.1115/1.2910473
– volume: 28
  start-page: 2129
  year: 1985
  ident: 10.1016/S0017-9310(99)00043-5_BIB11
  article-title: Governing equations for heat and mass transfer in heat generating porous beds. Part I: coolant boiling and transient void propagation
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(85)90107-3
– volume: 96
  start-page: 353
  year: 1974
  ident: 10.1016/S0017-9310(99)00043-5_BIB19
  article-title: Experiments on the resistance law for non-Darcy compressible gas flows in porous media
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.3447169
– volume: 28
  start-page: 2137
  year: 1985
  ident: 10.1016/S0017-9310(99)00043-5_BIB12
  article-title: Governing equations for heat and mass transfer in heat generating porous beds. Part II: particulate melting and substrate penetration by dissolution
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(85)90108-5
– volume: 1
  start-page: 273
  year: 1998
  ident: 10.1016/S0017-9310(99)00043-5_BIB23
  article-title: Macroscopic equations of non-Newtonian fluid flow and heat transfer in a porous matrix
  publication-title: Journal of Porous Media
– volume: 48
  start-page: 633
  year: 1993
  ident: 10.1016/S0017-9310(99)00043-5_BIB5
  article-title: Models for the electrical heating of solid–liquid food mixtures
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(93)80132-A
– volume: 9
  start-page: 731
  year: 1994
  ident: 10.1016/S0017-9310(99)00043-5_BIB9
  article-title: Thermal properties of organic and inorganic aerogels
  publication-title: Journal of Materials Research
  doi: 10.1557/JMR.1994.0731
– volume: 110
  start-page: 1011
  year: 1998
  ident: 10.1016/S0017-9310(99)00043-5_BIB14
  article-title: Analysis of the radiative and conductive heat transfer characteristics of a waste package canister
  publication-title: ASME Journal of Heat Transfer
  doi: 10.1115/1.3250574
– volume: 82
  start-page: 2040
  year: 1977
  ident: 10.1016/S0017-9310(99)00043-5_BIB1
  article-title: Free convection abut a vertical flat plate embedded in a saturated porous medium with application to heat transfer about a dike
  publication-title: Journal of Geophysical Research
  doi: 10.1029/JB082i014p02040
– volume: 103
  start-page: 440
  year: 1981
  ident: 10.1016/S0017-9310(99)00043-5_BIB27
  article-title: Fluid flow through a class of highly-deformable porous media Part II: experiments with water
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.3240810
– year: 1972
  ident: 10.1016/S0017-9310(99)00043-5_BIB31
– volume: 35
  start-page: 3041
  year: 1992
  ident: 10.1016/S0017-9310(99)00043-5_BIB18
  article-title: Non-Darcian effects on mixed convection about a vertical cylinder embedded in a saturated porous medium
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(92)90323-K
SSID ssj0017046
Score 2.1186135
Snippet Local thermal equilibrium is an often-used hypothesis when studying heat transfer in porous media. Examination of non-equilibrium phenomena shows that this...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3373
SubjectTerms Cooling
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heat flow in porous media
Heat transfer
Heat transfer in inhomogeneous media, in porous media, and through interfaces
Heating
Physics
Porous materials
Thermoanalysis
Title On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number
URI https://dx.doi.org/10.1016/S0017-9310(99)00043-5
https://www.proquest.com/docview/745942591
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDYVCKX3SNE2YQw_twYm9K9mr3kJo2HRpCm1DcxNaPcCQeN3d9aGX_vbMSN4soZRATsYyIxmNPN_IM98I4H3JqiWczLwa0QbFiDJT-UxlsiIsCjP2-Jmc_PW8nFyIL5fycgtO1lwYTqvsbX-y6dFa9y1H_WwetXXNHF9eXDGyw_EsuQ07w5EqxwPYOT6bTs5vgwlVnvg6bJBZYEPkSZ3Exg9KfYz9ZPJ_EPWkNUuauJBOvPjHeEdEOn0GT3tXEo_T2z6HLd-8gEcxpdMuX0L3rUFHYLPgGAEyjQQjcCG7fNd09b-7Omb8d9dYN0iO-LxbYqSSoOs8ruZocGHa2l39wUgQJphDNt6Yfvl_4q7wRxvrOGI6W-QVXJx-_nkyyfpDFjJLuLTKZIy1eOGCdLkfSSt4V-hKO_aFsqYqRKhyx14EJ0nldGedMYaeGOOGVTV6DYNm3vg3gEWwRRlEUG7ohPFqFgztBksjnZM2OLkLYj2v2vYVyPkgjCu9STWjwTWrQyulozo0iR3eirWpBMd9AuO10vSdtaQJJu4T3b-j5M2AZPnEWOwCrpWu6Tvk4IppPGlHV0Iqsn-qePvw0ffgcaoKwSls72CwWnR-n3ye1ewAtg__Fgf9yubr9Puv6Q3sZfyv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaWFUvoKTZu0c-ihPbixs5K9yi2EhE2TbA9NIDeh1QMMidfdXR_67zsjebOEUgI5GcuMZDTyfCPPfCOALyWrlnAy82pIGxQjykzlU5XJirAoTNnjZ3LyxaQcX4kf1_J6A45WXBhOq-xtf7Lp0Vr3LXv9bO61dc0cX15cMbLD8Sz5BDa5OpUYwObh6dl4chdMqPLE12GDzAJrIk_qJDZ-Vepb7CeT_4OoF61Z0MSFdOLFP8Y7ItLJK3jZu5J4mN72NWz45g08jSmddvEWup8NOgKbOccIkGkkGIEL2eW7pav_3dUx47-7xbpBcsRn3QIjlQRd53E5Q4Nz09bu5g9GgjDBHLLxxvTL_4C7wl9trOOI6WyRd3B1cnx5NM76QxYyS7i0zGSMtXjhgnS5H0oreFfoSjvyhbKmKkSocsdeBCdJ5XRnnTGGnhjj9qtquAWDZtb494BFsEUZRFBu3wnj1TQY2g2WRjonbXByG8RqXrXtK5DzQRg3ep1qRoNrVodWSkd1aBL7fifWphIcDwmMVkrT99aSJph4SHT3npLXA5LlEyOxDbhSuqbvkIMrpvGkHV0Jqcj-qeLD40f_DM_Glxfn-vx0cvYRnqcKEZzOtgOD5bzzu-T_LKef-vX9F_zt_PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+departure+from+local+thermal+equilibrium+in+porous+media+due+to+a+rapidly+changing+heat+source%3A+the+Sparrow+number&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Minkowycz%2C+W.J.&rft.au=Haji-Sheikh%2C+A.&rft.au=Vafai%2C+K.&rft.date=1999-09-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=42&rft.issue=18&rft.spage=3373&rft.epage=3385&rft_id=info:doi/10.1016%2FS0017-9310%2899%2900043-5&rft.externalDocID=S0017931099000435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon