Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor

This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu 3 (PO 4 ) 2 ·3H 2 O as the inorganic component. The synthesized nanoflowers enable the...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 6; no. 1; pp. 255 - 262
Main Authors Sun, Jiayu, Ge, Jiechao, Liu, Weimin, Lan, Minhua, Zhang, Hongyan, Wang, Pengfei, Wang, Yanming, Niu, Zhongwei
Format Journal Article
LanguageEnglish
Published England 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu 3 (PO 4 ) 2 ·3H 2 O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H 2 O 2 , which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H 2 O 2 , and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry. Novel GOx&HRP-Cu 3 (PO 4 ) 2 ·3H 2 O nanoflowers can simultaneously catalyze the two-step colorimetric enzyme assay for highly sensitive glucose detection.
AbstractList This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.
This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.
This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu sub(3)(PO sub(4)) sub(2).3H sub(2)O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H sub(2)O sub(2), which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H sub(2)O sub(2), and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.
This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu 3 (PO 4 ) 2 ·3H 2 O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H 2 O 2 , which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H 2 O 2 , and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry. Novel GOx&HRP-Cu 3 (PO 4 ) 2 ·3H 2 O nanoflowers can simultaneously catalyze the two-step colorimetric enzyme assay for highly sensitive glucose detection.
Author Ge, Jiechao
Zhang, Hongyan
Lan, Minhua
Sun, Jiayu
Wang, Yanming
Niu, Zhongwei
Wang, Pengfei
Liu, Weimin
AuthorAffiliation Key Laboratory of Photochemical Conversion and Optoelectronic Materials
Chinese Academy of Sciences
Technical Institute of Physics and Chemistry
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: Key Laboratory of Photochemical Conversion and Optoelectronic Materials
– sequence: 0
  name: Technical Institute of Physics and Chemistry
– sequence: 0
  name: University of Chinese Academy of Sciences
– sequence: 0
  name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Jiayu
  surname: Sun
  fullname: Sun, Jiayu
– sequence: 2
  givenname: Jiechao
  surname: Ge
  fullname: Ge, Jiechao
– sequence: 3
  givenname: Weimin
  surname: Liu
  fullname: Liu, Weimin
– sequence: 4
  givenname: Minhua
  surname: Lan
  fullname: Lan, Minhua
– sequence: 5
  givenname: Hongyan
  surname: Zhang
  fullname: Zhang, Hongyan
– sequence: 6
  givenname: Pengfei
  surname: Wang
  fullname: Wang, Pengfei
– sequence: 7
  givenname: Yanming
  surname: Wang
  fullname: Wang, Yanming
– sequence: 8
  givenname: Zhongwei
  surname: Niu
  fullname: Niu, Zhongwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24186239$$D View this record in MEDLINE/PubMed
BookMark eNqFkstLxDAQxoMouqtevCv1JkI1r6atN1mf4ANEzyXNw420STfpIutfb3TXFUQ0l5nM_L4PMpMhWLXOKgB2EDxCkJTHglgPKcWZXAEDDClMCcnx6jJndAMMQ3iBkJWEkXWwgSkqGCblAExup01vUmXfZq1KhEtVWysplUycf-bWiNTYRZaMZ7U3MrHcOt24V-XDSRJmth-rYELCrUx41zVG8N44m_BYioaN86ZVvY_6oGxwfgusad4Etb2Im-Dp4vxxdJXe3F9ej05vUkFz1Ke0LiQRucSZqOMRCBYac1bUmGYQZ_FSshLVPNc6gwJrXaNM65ITSgSGWJBNcDD37bybTFXoq9YEoZqGW-WmoUIsR7TAiOL_UcpyyIq8hBHdW6DTulWy6uLruJ9VXxONwOEcEN6F4JVeIghWH-uqRuTu4XNdZxGGP2Bh-s_x9Z6b5nfJ7lzig1haf_-A2N__q191UpN3vwyt-Q
CitedBy_id crossref_primary_10_1039_C6TB03047E
crossref_primary_10_1007_s10904_024_03190_5
crossref_primary_10_1016_j_foodchem_2019_03_096
crossref_primary_10_1039_D0NA00025F
crossref_primary_10_1016_j_cej_2016_01_104
crossref_primary_10_1016_j_ccr_2022_214974
crossref_primary_10_1002_cbic_201700415
crossref_primary_10_1002_pol_20210501
crossref_primary_10_1016_j_jcis_2020_10_065
crossref_primary_10_1016_j_colsurfb_2023_113241
crossref_primary_10_1039_C9TB02294E
crossref_primary_10_1016_j_bios_2017_06_039
crossref_primary_10_1186_s11671_020_03446_2
crossref_primary_10_1016_j_cis_2022_102780
crossref_primary_10_1016_j_jbiosc_2020_01_008
crossref_primary_10_1002_slct_202300404
crossref_primary_10_1016_j_microc_2021_106965
crossref_primary_10_3390_molecules26144152
crossref_primary_10_1016_j_procbio_2018_08_029
crossref_primary_10_1039_C5NR04994F
crossref_primary_10_1016_j_cherd_2018_03_036
crossref_primary_10_1021_acsabm_0c01293
crossref_primary_10_3390_polym15132802
crossref_primary_10_1016_j_bios_2015_12_095
crossref_primary_10_1021_acs_analchem_8b00477
crossref_primary_10_1039_C8AN02330A
crossref_primary_10_1007_s11696_022_02179_z
crossref_primary_10_1016_j_bios_2015_09_012
crossref_primary_10_1016_j_aca_2020_11_026
crossref_primary_10_1016_j_bios_2017_02_004
crossref_primary_10_1016_j_molcatb_2016_08_001
crossref_primary_10_1016_j_procbio_2017_03_026
crossref_primary_10_1016_j_ijbiomac_2018_12_237
crossref_primary_10_1007_s00604_023_06150_x
crossref_primary_10_1016_j_ijbiomac_2017_05_080
crossref_primary_10_1016_j_bej_2024_109583
crossref_primary_10_1016_j_aca_2020_10_002
crossref_primary_10_1016_j_apsusc_2020_145710
crossref_primary_10_1039_C4RA00268G
crossref_primary_10_1039_C7TB03310A
crossref_primary_10_1016_j_msec_2019_110273
crossref_primary_10_1111_1541_4337_12538
crossref_primary_10_1007_s11664_022_09781_7
crossref_primary_10_1038_srep27928
crossref_primary_10_1039_C6RA01564F
crossref_primary_10_1021_acsbiomaterials_0c00841
crossref_primary_10_1002_tcr_202100293
crossref_primary_10_1016_j_bej_2018_04_009
crossref_primary_10_1016_j_apsusc_2017_11_284
crossref_primary_10_1016_j_ijbiomac_2019_05_206
crossref_primary_10_1021_acsami_5b03823
crossref_primary_10_1021_acs_analchem_7b02210
crossref_primary_10_1039_C8NJ01950A
crossref_primary_10_1016_j_bios_2014_08_062
crossref_primary_10_2139_ssrn_4167596
crossref_primary_10_1016_j_foodchem_2024_140008
crossref_primary_10_1021_acssuschemeng_8b00091
crossref_primary_10_1021_acs_iecr_7b03809
crossref_primary_10_1007_s40843_018_9235_3
crossref_primary_10_3390_molecules28145429
crossref_primary_10_1021_acs_jpcc_6b03537
crossref_primary_10_29235_1029_8940_2019_64_3_374_384
crossref_primary_10_1021_acs_macromol_5b01319
crossref_primary_10_1016_j_bios_2024_116939
crossref_primary_10_1016_j_matlet_2020_128662
crossref_primary_10_3390_nano11061460
crossref_primary_10_1016_j_apcata_2020_117899
crossref_primary_10_1016_j_synthmet_2015_02_023
crossref_primary_10_1016_j_snb_2016_03_094
crossref_primary_10_1039_C9NR05446D
crossref_primary_10_1021_am502757e
crossref_primary_10_1016_j_ceramint_2015_10_145
crossref_primary_10_3390_catal7110327
crossref_primary_10_1021_acs_biomac_0c00212
crossref_primary_10_1016_j_bios_2018_08_058
crossref_primary_10_1021_acsfoodscitech_1c00015
crossref_primary_10_1016_j_apsusc_2017_06_242
crossref_primary_10_1021_acsami_6b04038
crossref_primary_10_1016_j_foodchem_2018_09_077
crossref_primary_10_1039_C7TB00610A
crossref_primary_10_1016_j_ijbiomac_2015_12_018
crossref_primary_10_1016_j_snb_2016_09_049
crossref_primary_10_1007_s00216_020_03090_w
crossref_primary_10_1016_j_snb_2018_12_102
crossref_primary_10_1016_j_eti_2021_101992
crossref_primary_10_1039_D1AN00796C
crossref_primary_10_1016_j_bej_2020_107893
crossref_primary_10_1016_j_ijbiomac_2018_07_195
crossref_primary_10_1088_2057_1976_1_4_045101
crossref_primary_10_1002_cbdv_202200476
crossref_primary_10_1186_s12951_015_0118_0
crossref_primary_10_1016_j_sajb_2023_07_036
crossref_primary_10_1016_j_procbio_2020_11_015
crossref_primary_10_1038_s41467_017_01764_1
crossref_primary_10_1039_C7RA00302A
crossref_primary_10_1038_s41598_020_73778_7
crossref_primary_10_1016_j_carbpol_2017_12_029
crossref_primary_10_1021_acs_macromol_7b02650
crossref_primary_10_1039_D1RA04513J
crossref_primary_10_3390_molecules28020839
crossref_primary_10_1039_C6CC09809F
crossref_primary_10_1002_elan_201900202
crossref_primary_10_1016_j_snb_2017_01_141
crossref_primary_10_1016_j_talanta_2020_121647
crossref_primary_10_1021_acs_langmuir_7b00594
crossref_primary_10_1039_C5CC00040H
crossref_primary_10_1002_asia_202401352
crossref_primary_10_1002_aoc_5381
crossref_primary_10_1039_C8RA02360C
crossref_primary_10_1016_j_ccr_2023_215191
crossref_primary_10_1007_s12010_022_04101_5
crossref_primary_10_1016_j_enzmictec_2016_06_011
crossref_primary_10_1038_s41598_020_59699_5
crossref_primary_10_1016_j_apsusc_2017_06_018
crossref_primary_10_1016_j_jbiotec_2020_04_010
crossref_primary_10_1016_j_molliq_2016_09_073
crossref_primary_10_1039_C5CY01181G
crossref_primary_10_1016_j_bios_2017_08_015
crossref_primary_10_1016_j_eti_2020_101211
crossref_primary_10_1016_j_enzmictec_2016_12_002
crossref_primary_10_1016_j_enzmictec_2019_109408
crossref_primary_10_1016_j_bios_2019_03_032
crossref_primary_10_1016_j_ccr_2020_213342
crossref_primary_10_1016_j_jece_2024_113887
crossref_primary_10_1039_C5NR08734A
crossref_primary_10_1039_D2RA05478G
crossref_primary_10_1002_btpr_3075
crossref_primary_10_1039_D1TB00221J
crossref_primary_10_3390_catal9080648
crossref_primary_10_1007_s10266_023_00857_2
crossref_primary_10_1039_C7NR06019J
crossref_primary_10_1016_j_aca_2023_341838
crossref_primary_10_1016_j_ijbiomac_2016_10_066
crossref_primary_10_1016_j_ijbiomac_2017_12_072
crossref_primary_10_1080_21691401_2018_1428812
crossref_primary_10_3390_pr9020225
crossref_primary_10_1002_cjoc_201600714
crossref_primary_10_1038_s41598_019_57044_z
crossref_primary_10_18036_estubtdc_604509
crossref_primary_10_1039_D1AY00053E
crossref_primary_10_1016_j_apsusc_2016_01_074
crossref_primary_10_35229_jaes_831445
crossref_primary_10_1021_acsami_5b04398
crossref_primary_10_1021_acsabm_8b00104
crossref_primary_10_1021_acsami_8b15917
crossref_primary_10_1007_s00604_019_3375_z
crossref_primary_10_1007_s11705_019_1834_z
crossref_primary_10_1039_C4CC08752F
crossref_primary_10_1016_j_aca_2024_342586
crossref_primary_10_1016_j_envres_2024_119448
crossref_primary_10_1039_C4TB01802H
crossref_primary_10_1002_bab_1364
crossref_primary_10_1007_s13206_018_2409_7
crossref_primary_10_1016_j_enzmictec_2015_09_005
crossref_primary_10_1016_j_procbio_2016_06_004
crossref_primary_10_1016_j_snr_2024_100231
crossref_primary_10_1039_C8NJ04282A
crossref_primary_10_1039_C6RA12818A
crossref_primary_10_3390_ma13051241
crossref_primary_10_1016_j_bej_2019_01_020
crossref_primary_10_1039_C4RA06094F
crossref_primary_10_1039_C6RA24404A
crossref_primary_10_1039_C8NJ06429F
crossref_primary_10_1021_acsabm_8b00598
crossref_primary_10_1016_j_jbiotec_2018_06_344
crossref_primary_10_1016_j_cej_2021_131808
crossref_primary_10_1039_D1TB01476E
crossref_primary_10_1021_acsami_6b09893
crossref_primary_10_1021_acsami_8b09388
crossref_primary_10_1016_j_colsurfb_2020_111052
crossref_primary_10_1039_C9BM00283A
crossref_primary_10_1039_C8RA03250E
crossref_primary_10_1021_acs_nanolett_9b04959
crossref_primary_10_1039_C5NR05716G
crossref_primary_10_1016_j_foodchem_2019_125911
crossref_primary_10_1039_C7RA06592B
crossref_primary_10_1039_C7CS00914C
crossref_primary_10_1016_j_ccr_2017_09_008
crossref_primary_10_1021_acssuschemeng_6b01805
crossref_primary_10_1016_j_jpowsour_2015_03_011
crossref_primary_10_1016_j_cis_2023_102889
crossref_primary_10_61186_JBUMS_30_1_5
crossref_primary_10_1088_1361_6528_abf692
crossref_primary_10_1039_C6PY01120A
crossref_primary_10_1039_D2AY00269H
crossref_primary_10_1016_j_cej_2021_129075
crossref_primary_10_1016_j_ces_2015_03_051
crossref_primary_10_1021_acsami_6b15992
crossref_primary_10_1016_j_cej_2020_126874
crossref_primary_10_1021_acsnano_6b01003
crossref_primary_10_1021_acsomega_3c03367
crossref_primary_10_1016_j_surfin_2023_102961
crossref_primary_10_1039_C4TB01697A
crossref_primary_10_1039_C5RA05063D
crossref_primary_10_1016_j_colsurfa_2022_128419
crossref_primary_10_1186_s13068_017_0861_6
crossref_primary_10_1039_C7CC00300E
crossref_primary_10_1080_10242422_2017_1310208
crossref_primary_10_1016_j_jcat_2023_01_001
crossref_primary_10_1007_s00216_018_1398_7
crossref_primary_10_1016_j_nexus_2022_100087
crossref_primary_10_1039_C6TB03295H
crossref_primary_10_1021_acsami_5b11834
crossref_primary_10_1016_j_ijbiomac_2020_07_005
crossref_primary_10_1039_D1BM01106E
crossref_primary_10_1016_j_snb_2016_01_004
crossref_primary_10_1021_acs_langmuir_7b02004
crossref_primary_10_2116_analsci_20P081
crossref_primary_10_1016_j_electacta_2022_140855
crossref_primary_10_1016_j_ccr_2018_05_004
crossref_primary_10_1016_j_trac_2022_116887
crossref_primary_10_1039_C7RA10597E
crossref_primary_10_1039_C9NR08486J
crossref_primary_10_1016_j_colsurfb_2020_111386
crossref_primary_10_1039_C5CC00318K
crossref_primary_10_1016_j_ceja_2022_100252
crossref_primary_10_1016_j_enzmictec_2017_06_006
crossref_primary_10_1038_srep24163
crossref_primary_10_3390_ma15010005
crossref_primary_10_3390_su15054638
crossref_primary_10_1021_acs_cgd_1c00453
crossref_primary_10_1007_s11814_022_1292_z
crossref_primary_10_1039_C5RA17754E
crossref_primary_10_1016_j_biotechadv_2021_107867
crossref_primary_10_1007_s00216_018_1293_2
crossref_primary_10_1039_C5NR06594A
crossref_primary_10_1021_acscatal_8b04921
crossref_primary_10_1016_j_ijbiomac_2025_139645
crossref_primary_10_1039_C9RA10473A
crossref_primary_10_1002_adhm_201801507
crossref_primary_10_1039_D2QM00213B
crossref_primary_10_1186_s12951_022_01557_9
crossref_primary_10_1016_j_snb_2017_11_155
crossref_primary_10_1021_acsami_9b05371
crossref_primary_10_1016_j_mtchem_2024_102138
crossref_primary_10_1021_acssuschemeng_3c02578
crossref_primary_10_1039_C5PY02026C
crossref_primary_10_1080_07388551_2023_2189548
crossref_primary_10_1002_cnma_201800250
crossref_primary_10_16882_derim_2019_549151
crossref_primary_10_1016_j_colsurfb_2015_04_033
crossref_primary_10_1016_j_cclet_2019_10_011
crossref_primary_10_1016_j_msec_2014_05_019
crossref_primary_10_1007_s10562_020_03362_1
crossref_primary_10_1016_j_pmatsci_2020_100663
crossref_primary_10_1021_mz500788e
crossref_primary_10_1021_acssuschemeng_8b04138
crossref_primary_10_1080_02757540_2024_2321985
crossref_primary_10_1016_j_bej_2016_04_007
crossref_primary_10_1021_acsbiomaterials_9b01200
crossref_primary_10_1016_j_cis_2021_102484
crossref_primary_10_1039_C6RA05308D
crossref_primary_10_1039_C8AN00866C
crossref_primary_10_1039_D3MA00002H
crossref_primary_10_3390_catal10030338
crossref_primary_10_1021_acsami_9b09071
crossref_primary_10_1002_jctb_5275
crossref_primary_10_1016_j_bios_2018_08_009
crossref_primary_10_1002_adfm_202402432
crossref_primary_10_1002_ppsc_202000210
crossref_primary_10_1021_acs_langmuir_9b00193
crossref_primary_10_1039_C9TB01390C
crossref_primary_10_1002_admi_201600636
crossref_primary_10_3390_bios11100354
crossref_primary_10_1007_s10562_014_1289_2
crossref_primary_10_1039_C7NR00958E
crossref_primary_10_1080_07391102_2021_1975566
crossref_primary_10_1016_j_ijbiomac_2019_11_129
crossref_primary_10_1016_j_snb_2018_12_028
crossref_primary_10_1016_j_aca_2015_02_027
crossref_primary_10_1016_j_ijbiomac_2016_06_071
crossref_primary_10_1016_j_ceramint_2014_12_156
crossref_primary_10_1016_j_poly_2020_114888
crossref_primary_10_1016_j_cej_2019_05_141
crossref_primary_10_1016_j_cjche_2020_01_020
crossref_primary_10_1016_j_snb_2023_134422
Cites_doi 10.1002/asia.201300020
10.1021/ar9501535
10.1038/nchem.1025
10.1039/c2nr12109c
10.1039/c2cc17013b
10.1007/s12274-012-0234-1
10.1039/b712421j
10.1126/science.1206938
10.1002/anie.200804066
10.1021/ac200697y
10.1093/protein/gzm045
10.1038/nbt.1557
10.1039/b811196k
10.1021/nl900302z
10.1016/j.cbpa.2013.02.015
10.1039/b604689d
10.1016/j.tibtech.2008.06.009
10.1021/ac702203f
10.1002/chem.201202666
10.1002/adma.200903783
10.1039/C1SM06452E
10.1080/10242420412331283314
10.1038/nmat2496
10.1021/ja3120136
10.1016/j.cbpa.2009.11.023
10.1016/j.bios.2009.11.015
10.1039/C2NR32704J
10.1016/j.cbpa.2010.11.010
10.1016/j.bbrc.2008.09.078
10.1038/nnano.2009.50
10.1002/chem.200902063
10.1039/c3nr33492a
10.1007/s12274-011-0147-4
10.1038/nnano.2012.80
10.1021/ac300939z
10.1039/c1cc12910d
10.1039/c0nr00887g
10.1128/AEM.02181-08
10.1126/science.1198701
10.1016/j.bios.2013.03.057
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/c3nr04425d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 262
ExternalDocumentID 24186239
10_1039_C3NR04425D
c3nr04425d
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
ABIQK
ACRPL
ADNMO
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ALUYA
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
HVGLF
L-8
R56
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c471t-4b8d3c7d25cbbbbc108f2a68b2450258f29691ba7ff50c2ffb15ff9a343c202c3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 09:55:18 EDT 2025
Fri Jul 11 08:29:35 EDT 2025
Thu Apr 03 06:59:26 EDT 2025
Tue Jul 01 02:44:51 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Tue Dec 17 20:59:51 EST 2024
Thu May 30 17:37:08 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-4b8d3c7d25cbbbbc108f2a68b2450258f29691ba7ff50c2ffb15ff9a343c202c3
Notes 10.1039/c3nr04425d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24186239
PQID 1467068790
PQPubID 23479
PageCount 8
ParticipantIDs crossref_primary_10_1039_C3NR04425D
pubmed_primary_24186239
proquest_miscellaneous_1671482142
proquest_miscellaneous_1467068790
crossref_citationtrail_10_1039_C3NR04425D
rsc_primary_c3nr04425d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2014
References Wei (C3NR04425D-(cit31)/*[position()=1]) 2008; 80
Ornatska (C3NR04425D-(cit34)/*[position()=1]) 2011; 83
Li (C3NR04425D-(cit33)/*[position()=1]) 2013; 47
Liu (C3NR04425D-(cit23)/*[position()=1]) 2011; 3
Mann (C3NR04425D-(cit2)/*[position()=1]) 2009; 8
Tauber (C3NR04425D-(cit4)/*[position()=1]) 2013; 19
Song (C3NR04425D-(cit36)/*[position()=1]) 2010; 22
Jiang (C3NR04425D-(cit28)/*[position()=1]) 2008; 47
Wang (C3NR04425D-(cit37)/*[position()=1]) 2011; 4
Chiu (C3NR04425D-(cit1)/*[position()=1]) 2011; 3
Wang (C3NR04425D-(cit3)/*[position()=1]) 2013; 135
Hirakawa (C3NR04425D-(cit22)/*[position()=1]) 2007; 20
Su (C3NR04425D-(cit35)/*[position()=1]) 2012; 84
Lopez-Gallego (C3NR04425D-(cit7)/*[position()=1]) 2010; 14
Zhu (C3NR04425D-(cit39)/*[position()=1]) 2013; 8
Liu (C3NR04425D-(cit24)/*[position()=1]) 2007
Ge (C3NR04425D-(cit38)/*[position()=1]) 2012; 7
Harford (C3NR04425D-(cit40)/*[position()=1]) 1997; 30
Kuiper (C3NR04425D-(cit12)/*[position()=1]) 2008; 6
Mancuso (C3NR04425D-(cit27)/*[position()=1]) 2013; 5
Fan (C3NR04425D-(cit21)/*[position()=1]) 2009; 75
Wilner (C3NR04425D-(cit15)/*[position()=1]) 2009; 4
Manesh (C3NR04425D-(cit19)/*[position()=1]) 2010; 25
Betancor (C3NR04425D-(cit10)/*[position()=1]) 2008; 26
Good (C3NR04425D-(cit18)/*[position()=1]) 2011; 332
Li (C3NR04425D-(cit26)/*[position()=1]) 2013; 5
Delebecque (C3NR04425D-(cit16)/*[position()=1]) 2011; 333
Muller (C3NR04425D-(cit13)/*[position()=1]) 2008; 377
Pierre (C3NR04425D-(cit9)/*[position()=1]) 2004; 22
Wilner (C3NR04425D-(cit14)/*[position()=1]) 2009; 9
Sun (C3NR04425D-(cit30)/*[position()=1]) 2012; 5
Mu (C3NR04425D-(cit32)/*[position()=1]) 2012; 48
Sun (C3NR04425D-(cit29)/*[position()=1]) 2011; 47
Schrittwieser (C3NR04425D-(cit8)/*[position()=1]) 2011; 15
Delaittre (C3NR04425D-(cit20)/*[position()=1]) 2009; 15
Schoffelen (C3NR04425D-(cit6)/*[position()=1]) 2012; 8
Dueber (C3NR04425D-(cit17)/*[position()=1]) 2009; 27
Dong (C3NR04425D-(cit25)/*[position()=1]) 2012; 4
Betancor (C3NR04425D-(cit11)/*[position()=1]) 2006
Oroz-Guinea (C3NR04425D-(cit5)/*[position()=1]) 2013; 17
References_xml – volume: 8
  start-page: 2358
  year: 2013
  ident: C3NR04425D-(cit39)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201300020
– volume: 30
  start-page: 123
  year: 1997
  ident: C3NR04425D-(cit40)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9501535
– volume: 3
  start-page: 393
  year: 2011
  ident: C3NR04425D-(cit1)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1025
– volume: 4
  start-page: 3969
  year: 2012
  ident: C3NR04425D-(cit25)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr12109c
– volume: 48
  start-page: 2540
  year: 2012
  ident: C3NR04425D-(cit32)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17013b
– volume: 5
  start-page: 486
  year: 2012
  ident: C3NR04425D-(cit30)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0234-1
– start-page: 4872
  year: 2007
  ident: C3NR04425D-(cit24)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b712421j
– volume: 333
  start-page: 470
  year: 2011
  ident: C3NR04425D-(cit16)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1206938
– volume: 47
  start-page: 8601
  year: 2008
  ident: C3NR04425D-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200804066
– volume: 83
  start-page: 4273
  year: 2011
  ident: C3NR04425D-(cit34)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac200697y
– volume: 20
  start-page: 453
  year: 2007
  ident: C3NR04425D-(cit22)/*[position()=1]
  publication-title: Protein Eng., Des. Sel.
  doi: 10.1093/protein/gzm045
– volume: 27
  start-page: 753
  year: 2009
  ident: C3NR04425D-(cit17)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1557
– volume: 6
  start-page: 4315
  year: 2008
  ident: C3NR04425D-(cit12)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b811196k
– volume: 9
  start-page: 2040
  year: 2009
  ident: C3NR04425D-(cit14)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl900302z
– volume: 17
  start-page: 236
  year: 2013
  ident: C3NR04425D-(cit5)/*[position()=1]
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2013.02.015
– start-page: 3640
  year: 2006
  ident: C3NR04425D-(cit11)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b604689d
– volume: 26
  start-page: 566
  year: 2008
  ident: C3NR04425D-(cit10)/*[position()=1]
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2008.06.009
– volume: 80
  start-page: 2250
  year: 2008
  ident: C3NR04425D-(cit31)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac702203f
– volume: 19
  start-page: 4030
  year: 2013
  ident: C3NR04425D-(cit4)/*[position()=1]
  publication-title: Chem. –Eur. J.
  doi: 10.1002/chem.201202666
– volume: 22
  start-page: 2206
  year: 2010
  ident: C3NR04425D-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903783
– volume: 8
  start-page: 1736
  year: 2012
  ident: C3NR04425D-(cit6)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C1SM06452E
– volume: 22
  start-page: 145
  year: 2004
  ident: C3NR04425D-(cit9)/*[position()=1]
  publication-title: Biocatal. Biotransform.
  doi: 10.1080/10242420412331283314
– volume: 8
  start-page: 781
  year: 2009
  ident: C3NR04425D-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2496
– volume: 135
  start-page: 1272
  year: 2013
  ident: C3NR04425D-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3120136
– volume: 14
  start-page: 174
  year: 2010
  ident: C3NR04425D-(cit7)/*[position()=1]
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2009.11.023
– volume: 25
  start-page: 1579
  year: 2010
  ident: C3NR04425D-(cit19)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2009.11.015
– volume: 5
  start-page: 619
  year: 2013
  ident: C3NR04425D-(cit26)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C2NR32704J
– volume: 15
  start-page: 249
  year: 2011
  ident: C3NR04425D-(cit8)/*[position()=1]
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2010.11.010
– volume: 377
  start-page: 62
  year: 2008
  ident: C3NR04425D-(cit13)/*[position()=1]
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.09.078
– volume: 4
  start-page: 249
  year: 2009
  ident: C3NR04425D-(cit15)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.50
– volume: 15
  start-page: 12600
  year: 2009
  ident: C3NR04425D-(cit20)/*[position()=1]
  publication-title: Chem. –Eur. J.
  doi: 10.1002/chem.200902063
– volume: 5
  start-page: 1678
  year: 2013
  ident: C3NR04425D-(cit27)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr33492a
– volume: 4
  start-page: 908
  year: 2011
  ident: C3NR04425D-(cit37)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0147-4
– volume: 7
  start-page: 428
  year: 2012
  ident: C3NR04425D-(cit38)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.80
– volume: 84
  start-page: 5753
  year: 2012
  ident: C3NR04425D-(cit35)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac300939z
– volume: 47
  start-page: 9888
  year: 2011
  ident: C3NR04425D-(cit29)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc12910d
– volume: 3
  start-page: 1421
  year: 2011
  ident: C3NR04425D-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c0nr00887g
– volume: 75
  start-page: 1754
  year: 2009
  ident: C3NR04425D-(cit21)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02181-08
– volume: 332
  start-page: 680
  year: 2011
  ident: C3NR04425D-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1198701
– volume: 47
  start-page: 502
  year: 2013
  ident: C3NR04425D-(cit33)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.03.057
SSID ssj0069363
Score 2.5585108
Snippet This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 255
SubjectTerms Biocatalysis
Cascades
Colorimetry
Copper - chemistry
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
Glucose
Glucose - analysis
Glucose Oxidase - chemistry
Glucose Oxidase - metabolism
Horseradish Peroxidase - chemistry
Horseradish Peroxidase - metabolism
Humans
Hydrogen Peroxide - chemistry
Hydrogen Peroxide - metabolism
Nanocomposites
Nanomaterials
Nanostructure
Nanostructures - chemistry
Phosphates - chemistry
Sensors
Synthesis
Title Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor
URI https://www.ncbi.nlm.nih.gov/pubmed/24186239
https://www.proquest.com/docview/1467068790
https://www.proquest.com/docview/1671482142
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHxNdYxoeM4AVVGYntfPFWxsYEo0jQir5FtmOrlbZktM1D99dzjvM1tUKDVorSq5VUuV_Pd_bd7xB6K_2Mx4xrV3s8cpnytculMFnmHpNRmJAwMNXI38bh2ZR9mQWzLpW3qi5ZiyN5vbOu5H-0CjLQq6mS_QfNthcFAZyDfuEIGobjrXRcVc-6Kr_eXJqkc1ddCgWGJKt7NUl3kddnw_nGlGYNc54X-sJ2RqMjw1cADqDhJKk4W7vNbNN-hg8No7Wh_zcs_sMVBLzFsu_MgmUuVqDjFhs_S1vpseCbsk3ssYv0CyXnvGjTfxZlldynTE-xVsjrRP58XvL-aoTPeqsRldEiJkORUstMfqT6suiG1Q23wFVbUMvaW0_GxJrqLTvvUUOTKmm-9BhYnaybzZod_PH39HR6fp5OTmaTu2iPQBRBBmhv9PXj51_NVB0mtGq11_7ohr-WJu-7a9_0WLbCEHBKlk2zmMopmTxED-poAo8sNB6hOyp_jO73OCafoN99kOAeSPAWSLAFCe6B5ANuIYIBIrgHEcxBhPsQwRYiT9H09GRyfObWfTZcCa7J2mUizqiMMhJIAS_pe7EmPIwFYQG4xPAhCRNf8EjrwJNEa-EHWiecMiqJRyTdR4O8yNUBwsyXsTabteYtAioEuJ_UcDByTUQUO-hd8yxTWZPQm14oF2mVDEGT9JiOf1TP_ZOD3rRjryz1ys5RrxuVpGAZzXYXz1VRrkxQG3lhHCXeX8aEkSHC9Rlx0DOrz_Ze4NtCuE8TB-2DgltxBwwHHe7-Ir3K9OEt7vkc3ev-Qy_QYL0s1UvwcdfiVY3UP-a7q3Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-enzyme+co-embedded+organic-inorganic+hybrid+nanoflowers%3A+synthesis+and+application+as+a+colorimetric+sensor&rft.jtitle=Nanoscale&rft.au=Sun%2C+Jiayu&rft.au=Ge%2C+Jiechao&rft.au=Liu%2C+Weimin&rft.au=Lan%2C+Minhua&rft.date=2014-01-01&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=6&rft.issue=1&rft.spage=255&rft.epage=262&rft_id=info:doi/10.1039%2Fc3nr04425d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon