Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor
This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu 3 (PO 4 ) 2 ·3H 2 O as the inorganic component. The synthesized nanoflowers enable the...
Saved in:
Published in | Nanoscale Vol. 6; no. 1; pp. 255 - 262 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu
3
(PO
4
)
2
·3H
2
O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H
2
O
2
, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H
2
O
2
, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.
Novel GOx&HRP-Cu
3
(PO
4
)
2
·3H
2
O nanoflowers can simultaneously catalyze the two-step colorimetric enzyme assay for highly sensitive glucose detection. |
---|---|
AbstractList | This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry. This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry. This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu sub(3)(PO sub(4)) sub(2).3H sub(2)O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H sub(2)O sub(2), which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H sub(2)O sub(2), and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry. This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu 3 (PO 4 ) 2 ·3H 2 O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H 2 O 2 , which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H 2 O 2 , and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry. Novel GOx&HRP-Cu 3 (PO 4 ) 2 ·3H 2 O nanoflowers can simultaneously catalyze the two-step colorimetric enzyme assay for highly sensitive glucose detection. |
Author | Ge, Jiechao Zhang, Hongyan Lan, Minhua Sun, Jiayu Wang, Yanming Niu, Zhongwei Wang, Pengfei Liu, Weimin |
AuthorAffiliation | Key Laboratory of Photochemical Conversion and Optoelectronic Materials Chinese Academy of Sciences Technical Institute of Physics and Chemistry University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: Key Laboratory of Photochemical Conversion and Optoelectronic Materials – sequence: 0 name: Technical Institute of Physics and Chemistry – sequence: 0 name: University of Chinese Academy of Sciences – sequence: 0 name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Jiayu surname: Sun fullname: Sun, Jiayu – sequence: 2 givenname: Jiechao surname: Ge fullname: Ge, Jiechao – sequence: 3 givenname: Weimin surname: Liu fullname: Liu, Weimin – sequence: 4 givenname: Minhua surname: Lan fullname: Lan, Minhua – sequence: 5 givenname: Hongyan surname: Zhang fullname: Zhang, Hongyan – sequence: 6 givenname: Pengfei surname: Wang fullname: Wang, Pengfei – sequence: 7 givenname: Yanming surname: Wang fullname: Wang, Yanming – sequence: 8 givenname: Zhongwei surname: Niu fullname: Niu, Zhongwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24186239$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstLxDAQxoMouqtevCv1JkI1r6atN1mf4ANEzyXNw420STfpIutfb3TXFUQ0l5nM_L4PMpMhWLXOKgB2EDxCkJTHglgPKcWZXAEDDClMCcnx6jJndAMMQ3iBkJWEkXWwgSkqGCblAExup01vUmXfZq1KhEtVWysplUycf-bWiNTYRZaMZ7U3MrHcOt24V-XDSRJmth-rYELCrUx41zVG8N44m_BYioaN86ZVvY_6oGxwfgusad4Etb2Im-Dp4vxxdJXe3F9ej05vUkFz1Ke0LiQRucSZqOMRCBYac1bUmGYQZ_FSshLVPNc6gwJrXaNM65ITSgSGWJBNcDD37bybTFXoq9YEoZqGW-WmoUIsR7TAiOL_UcpyyIq8hBHdW6DTulWy6uLruJ9VXxONwOEcEN6F4JVeIghWH-uqRuTu4XNdZxGGP2Bh-s_x9Z6b5nfJ7lzig1haf_-A2N__q191UpN3vwyt-Q |
CitedBy_id | crossref_primary_10_1039_C6TB03047E crossref_primary_10_1007_s10904_024_03190_5 crossref_primary_10_1016_j_foodchem_2019_03_096 crossref_primary_10_1039_D0NA00025F crossref_primary_10_1016_j_cej_2016_01_104 crossref_primary_10_1016_j_ccr_2022_214974 crossref_primary_10_1002_cbic_201700415 crossref_primary_10_1002_pol_20210501 crossref_primary_10_1016_j_jcis_2020_10_065 crossref_primary_10_1016_j_colsurfb_2023_113241 crossref_primary_10_1039_C9TB02294E crossref_primary_10_1016_j_bios_2017_06_039 crossref_primary_10_1186_s11671_020_03446_2 crossref_primary_10_1016_j_cis_2022_102780 crossref_primary_10_1016_j_jbiosc_2020_01_008 crossref_primary_10_1002_slct_202300404 crossref_primary_10_1016_j_microc_2021_106965 crossref_primary_10_3390_molecules26144152 crossref_primary_10_1016_j_procbio_2018_08_029 crossref_primary_10_1039_C5NR04994F crossref_primary_10_1016_j_cherd_2018_03_036 crossref_primary_10_1021_acsabm_0c01293 crossref_primary_10_3390_polym15132802 crossref_primary_10_1016_j_bios_2015_12_095 crossref_primary_10_1021_acs_analchem_8b00477 crossref_primary_10_1039_C8AN02330A crossref_primary_10_1007_s11696_022_02179_z crossref_primary_10_1016_j_bios_2015_09_012 crossref_primary_10_1016_j_aca_2020_11_026 crossref_primary_10_1016_j_bios_2017_02_004 crossref_primary_10_1016_j_molcatb_2016_08_001 crossref_primary_10_1016_j_procbio_2017_03_026 crossref_primary_10_1016_j_ijbiomac_2018_12_237 crossref_primary_10_1007_s00604_023_06150_x crossref_primary_10_1016_j_ijbiomac_2017_05_080 crossref_primary_10_1016_j_bej_2024_109583 crossref_primary_10_1016_j_aca_2020_10_002 crossref_primary_10_1016_j_apsusc_2020_145710 crossref_primary_10_1039_C4RA00268G crossref_primary_10_1039_C7TB03310A crossref_primary_10_1016_j_msec_2019_110273 crossref_primary_10_1111_1541_4337_12538 crossref_primary_10_1007_s11664_022_09781_7 crossref_primary_10_1038_srep27928 crossref_primary_10_1039_C6RA01564F crossref_primary_10_1021_acsbiomaterials_0c00841 crossref_primary_10_1002_tcr_202100293 crossref_primary_10_1016_j_bej_2018_04_009 crossref_primary_10_1016_j_apsusc_2017_11_284 crossref_primary_10_1016_j_ijbiomac_2019_05_206 crossref_primary_10_1021_acsami_5b03823 crossref_primary_10_1021_acs_analchem_7b02210 crossref_primary_10_1039_C8NJ01950A crossref_primary_10_1016_j_bios_2014_08_062 crossref_primary_10_2139_ssrn_4167596 crossref_primary_10_1016_j_foodchem_2024_140008 crossref_primary_10_1021_acssuschemeng_8b00091 crossref_primary_10_1021_acs_iecr_7b03809 crossref_primary_10_1007_s40843_018_9235_3 crossref_primary_10_3390_molecules28145429 crossref_primary_10_1021_acs_jpcc_6b03537 crossref_primary_10_29235_1029_8940_2019_64_3_374_384 crossref_primary_10_1021_acs_macromol_5b01319 crossref_primary_10_1016_j_bios_2024_116939 crossref_primary_10_1016_j_matlet_2020_128662 crossref_primary_10_3390_nano11061460 crossref_primary_10_1016_j_apcata_2020_117899 crossref_primary_10_1016_j_synthmet_2015_02_023 crossref_primary_10_1016_j_snb_2016_03_094 crossref_primary_10_1039_C9NR05446D crossref_primary_10_1021_am502757e crossref_primary_10_1016_j_ceramint_2015_10_145 crossref_primary_10_3390_catal7110327 crossref_primary_10_1021_acs_biomac_0c00212 crossref_primary_10_1016_j_bios_2018_08_058 crossref_primary_10_1021_acsfoodscitech_1c00015 crossref_primary_10_1016_j_apsusc_2017_06_242 crossref_primary_10_1021_acsami_6b04038 crossref_primary_10_1016_j_foodchem_2018_09_077 crossref_primary_10_1039_C7TB00610A crossref_primary_10_1016_j_ijbiomac_2015_12_018 crossref_primary_10_1016_j_snb_2016_09_049 crossref_primary_10_1007_s00216_020_03090_w crossref_primary_10_1016_j_snb_2018_12_102 crossref_primary_10_1016_j_eti_2021_101992 crossref_primary_10_1039_D1AN00796C crossref_primary_10_1016_j_bej_2020_107893 crossref_primary_10_1016_j_ijbiomac_2018_07_195 crossref_primary_10_1088_2057_1976_1_4_045101 crossref_primary_10_1002_cbdv_202200476 crossref_primary_10_1186_s12951_015_0118_0 crossref_primary_10_1016_j_sajb_2023_07_036 crossref_primary_10_1016_j_procbio_2020_11_015 crossref_primary_10_1038_s41467_017_01764_1 crossref_primary_10_1039_C7RA00302A crossref_primary_10_1038_s41598_020_73778_7 crossref_primary_10_1016_j_carbpol_2017_12_029 crossref_primary_10_1021_acs_macromol_7b02650 crossref_primary_10_1039_D1RA04513J crossref_primary_10_3390_molecules28020839 crossref_primary_10_1039_C6CC09809F crossref_primary_10_1002_elan_201900202 crossref_primary_10_1016_j_snb_2017_01_141 crossref_primary_10_1016_j_talanta_2020_121647 crossref_primary_10_1021_acs_langmuir_7b00594 crossref_primary_10_1039_C5CC00040H crossref_primary_10_1002_asia_202401352 crossref_primary_10_1002_aoc_5381 crossref_primary_10_1039_C8RA02360C crossref_primary_10_1016_j_ccr_2023_215191 crossref_primary_10_1007_s12010_022_04101_5 crossref_primary_10_1016_j_enzmictec_2016_06_011 crossref_primary_10_1038_s41598_020_59699_5 crossref_primary_10_1016_j_apsusc_2017_06_018 crossref_primary_10_1016_j_jbiotec_2020_04_010 crossref_primary_10_1016_j_molliq_2016_09_073 crossref_primary_10_1039_C5CY01181G crossref_primary_10_1016_j_bios_2017_08_015 crossref_primary_10_1016_j_eti_2020_101211 crossref_primary_10_1016_j_enzmictec_2016_12_002 crossref_primary_10_1016_j_enzmictec_2019_109408 crossref_primary_10_1016_j_bios_2019_03_032 crossref_primary_10_1016_j_ccr_2020_213342 crossref_primary_10_1016_j_jece_2024_113887 crossref_primary_10_1039_C5NR08734A crossref_primary_10_1039_D2RA05478G crossref_primary_10_1002_btpr_3075 crossref_primary_10_1039_D1TB00221J crossref_primary_10_3390_catal9080648 crossref_primary_10_1007_s10266_023_00857_2 crossref_primary_10_1039_C7NR06019J crossref_primary_10_1016_j_aca_2023_341838 crossref_primary_10_1016_j_ijbiomac_2016_10_066 crossref_primary_10_1016_j_ijbiomac_2017_12_072 crossref_primary_10_1080_21691401_2018_1428812 crossref_primary_10_3390_pr9020225 crossref_primary_10_1002_cjoc_201600714 crossref_primary_10_1038_s41598_019_57044_z crossref_primary_10_18036_estubtdc_604509 crossref_primary_10_1039_D1AY00053E crossref_primary_10_1016_j_apsusc_2016_01_074 crossref_primary_10_35229_jaes_831445 crossref_primary_10_1021_acsami_5b04398 crossref_primary_10_1021_acsabm_8b00104 crossref_primary_10_1021_acsami_8b15917 crossref_primary_10_1007_s00604_019_3375_z crossref_primary_10_1007_s11705_019_1834_z crossref_primary_10_1039_C4CC08752F crossref_primary_10_1016_j_aca_2024_342586 crossref_primary_10_1016_j_envres_2024_119448 crossref_primary_10_1039_C4TB01802H crossref_primary_10_1002_bab_1364 crossref_primary_10_1007_s13206_018_2409_7 crossref_primary_10_1016_j_enzmictec_2015_09_005 crossref_primary_10_1016_j_procbio_2016_06_004 crossref_primary_10_1016_j_snr_2024_100231 crossref_primary_10_1039_C8NJ04282A crossref_primary_10_1039_C6RA12818A crossref_primary_10_3390_ma13051241 crossref_primary_10_1016_j_bej_2019_01_020 crossref_primary_10_1039_C4RA06094F crossref_primary_10_1039_C6RA24404A crossref_primary_10_1039_C8NJ06429F crossref_primary_10_1021_acsabm_8b00598 crossref_primary_10_1016_j_jbiotec_2018_06_344 crossref_primary_10_1016_j_cej_2021_131808 crossref_primary_10_1039_D1TB01476E crossref_primary_10_1021_acsami_6b09893 crossref_primary_10_1021_acsami_8b09388 crossref_primary_10_1016_j_colsurfb_2020_111052 crossref_primary_10_1039_C9BM00283A crossref_primary_10_1039_C8RA03250E crossref_primary_10_1021_acs_nanolett_9b04959 crossref_primary_10_1039_C5NR05716G crossref_primary_10_1016_j_foodchem_2019_125911 crossref_primary_10_1039_C7RA06592B crossref_primary_10_1039_C7CS00914C crossref_primary_10_1016_j_ccr_2017_09_008 crossref_primary_10_1021_acssuschemeng_6b01805 crossref_primary_10_1016_j_jpowsour_2015_03_011 crossref_primary_10_1016_j_cis_2023_102889 crossref_primary_10_61186_JBUMS_30_1_5 crossref_primary_10_1088_1361_6528_abf692 crossref_primary_10_1039_C6PY01120A crossref_primary_10_1039_D2AY00269H crossref_primary_10_1016_j_cej_2021_129075 crossref_primary_10_1016_j_ces_2015_03_051 crossref_primary_10_1021_acsami_6b15992 crossref_primary_10_1016_j_cej_2020_126874 crossref_primary_10_1021_acsnano_6b01003 crossref_primary_10_1021_acsomega_3c03367 crossref_primary_10_1016_j_surfin_2023_102961 crossref_primary_10_1039_C4TB01697A crossref_primary_10_1039_C5RA05063D crossref_primary_10_1016_j_colsurfa_2022_128419 crossref_primary_10_1186_s13068_017_0861_6 crossref_primary_10_1039_C7CC00300E crossref_primary_10_1080_10242422_2017_1310208 crossref_primary_10_1016_j_jcat_2023_01_001 crossref_primary_10_1007_s00216_018_1398_7 crossref_primary_10_1016_j_nexus_2022_100087 crossref_primary_10_1039_C6TB03295H crossref_primary_10_1021_acsami_5b11834 crossref_primary_10_1016_j_ijbiomac_2020_07_005 crossref_primary_10_1039_D1BM01106E crossref_primary_10_1016_j_snb_2016_01_004 crossref_primary_10_1021_acs_langmuir_7b02004 crossref_primary_10_2116_analsci_20P081 crossref_primary_10_1016_j_electacta_2022_140855 crossref_primary_10_1016_j_ccr_2018_05_004 crossref_primary_10_1016_j_trac_2022_116887 crossref_primary_10_1039_C7RA10597E crossref_primary_10_1039_C9NR08486J crossref_primary_10_1016_j_colsurfb_2020_111386 crossref_primary_10_1039_C5CC00318K crossref_primary_10_1016_j_ceja_2022_100252 crossref_primary_10_1016_j_enzmictec_2017_06_006 crossref_primary_10_1038_srep24163 crossref_primary_10_3390_ma15010005 crossref_primary_10_3390_su15054638 crossref_primary_10_1021_acs_cgd_1c00453 crossref_primary_10_1007_s11814_022_1292_z crossref_primary_10_1039_C5RA17754E crossref_primary_10_1016_j_biotechadv_2021_107867 crossref_primary_10_1007_s00216_018_1293_2 crossref_primary_10_1039_C5NR06594A crossref_primary_10_1021_acscatal_8b04921 crossref_primary_10_1016_j_ijbiomac_2025_139645 crossref_primary_10_1039_C9RA10473A crossref_primary_10_1002_adhm_201801507 crossref_primary_10_1039_D2QM00213B crossref_primary_10_1186_s12951_022_01557_9 crossref_primary_10_1016_j_snb_2017_11_155 crossref_primary_10_1021_acsami_9b05371 crossref_primary_10_1016_j_mtchem_2024_102138 crossref_primary_10_1021_acssuschemeng_3c02578 crossref_primary_10_1039_C5PY02026C crossref_primary_10_1080_07388551_2023_2189548 crossref_primary_10_1002_cnma_201800250 crossref_primary_10_16882_derim_2019_549151 crossref_primary_10_1016_j_colsurfb_2015_04_033 crossref_primary_10_1016_j_cclet_2019_10_011 crossref_primary_10_1016_j_msec_2014_05_019 crossref_primary_10_1007_s10562_020_03362_1 crossref_primary_10_1016_j_pmatsci_2020_100663 crossref_primary_10_1021_mz500788e crossref_primary_10_1021_acssuschemeng_8b04138 crossref_primary_10_1080_02757540_2024_2321985 crossref_primary_10_1016_j_bej_2016_04_007 crossref_primary_10_1021_acsbiomaterials_9b01200 crossref_primary_10_1016_j_cis_2021_102484 crossref_primary_10_1039_C6RA05308D crossref_primary_10_1039_C8AN00866C crossref_primary_10_1039_D3MA00002H crossref_primary_10_3390_catal10030338 crossref_primary_10_1021_acsami_9b09071 crossref_primary_10_1002_jctb_5275 crossref_primary_10_1016_j_bios_2018_08_009 crossref_primary_10_1002_adfm_202402432 crossref_primary_10_1002_ppsc_202000210 crossref_primary_10_1021_acs_langmuir_9b00193 crossref_primary_10_1039_C9TB01390C crossref_primary_10_1002_admi_201600636 crossref_primary_10_3390_bios11100354 crossref_primary_10_1007_s10562_014_1289_2 crossref_primary_10_1039_C7NR00958E crossref_primary_10_1080_07391102_2021_1975566 crossref_primary_10_1016_j_ijbiomac_2019_11_129 crossref_primary_10_1016_j_snb_2018_12_028 crossref_primary_10_1016_j_aca_2015_02_027 crossref_primary_10_1016_j_ijbiomac_2016_06_071 crossref_primary_10_1016_j_ceramint_2014_12_156 crossref_primary_10_1016_j_poly_2020_114888 crossref_primary_10_1016_j_cej_2019_05_141 crossref_primary_10_1016_j_cjche_2020_01_020 crossref_primary_10_1016_j_snb_2023_134422 |
Cites_doi | 10.1002/asia.201300020 10.1021/ar9501535 10.1038/nchem.1025 10.1039/c2nr12109c 10.1039/c2cc17013b 10.1007/s12274-012-0234-1 10.1039/b712421j 10.1126/science.1206938 10.1002/anie.200804066 10.1021/ac200697y 10.1093/protein/gzm045 10.1038/nbt.1557 10.1039/b811196k 10.1021/nl900302z 10.1016/j.cbpa.2013.02.015 10.1039/b604689d 10.1016/j.tibtech.2008.06.009 10.1021/ac702203f 10.1002/chem.201202666 10.1002/adma.200903783 10.1039/C1SM06452E 10.1080/10242420412331283314 10.1038/nmat2496 10.1021/ja3120136 10.1016/j.cbpa.2009.11.023 10.1016/j.bios.2009.11.015 10.1039/C2NR32704J 10.1016/j.cbpa.2010.11.010 10.1016/j.bbrc.2008.09.078 10.1038/nnano.2009.50 10.1002/chem.200902063 10.1039/c3nr33492a 10.1007/s12274-011-0147-4 10.1038/nnano.2012.80 10.1021/ac300939z 10.1039/c1cc12910d 10.1039/c0nr00887g 10.1128/AEM.02181-08 10.1126/science.1198701 10.1016/j.bios.2013.03.057 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/c3nr04425d |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 262 |
ExternalDocumentID | 24186239 10_1039_C3NR04425D c3nr04425d |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3G J3H J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX ABIQK ACRPL ADNMO AFRZK AGQPQ AHGXI AKMSF ALSGL ALUYA ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF L-8 R56 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c471t-4b8d3c7d25cbbbbc108f2a68b2450258f29691ba7ff50c2ffb15ff9a343c202c3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 09:55:18 EDT 2025 Fri Jul 11 08:29:35 EDT 2025 Thu Apr 03 06:59:26 EDT 2025 Tue Jul 01 02:44:51 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 Tue Dec 17 20:59:51 EST 2024 Thu May 30 17:37:08 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-4b8d3c7d25cbbbbc108f2a68b2450258f29691ba7ff50c2ffb15ff9a343c202c3 |
Notes | 10.1039/c3nr04425d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24186239 |
PQID | 1467068790 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_C3NR04425D pubmed_primary_24186239 proquest_miscellaneous_1671482142 proquest_miscellaneous_1467068790 crossref_citationtrail_10_1039_C3NR04425D rsc_primary_c3nr04425d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2014 |
References | Wei (C3NR04425D-(cit31)/*[position()=1]) 2008; 80 Ornatska (C3NR04425D-(cit34)/*[position()=1]) 2011; 83 Li (C3NR04425D-(cit33)/*[position()=1]) 2013; 47 Liu (C3NR04425D-(cit23)/*[position()=1]) 2011; 3 Mann (C3NR04425D-(cit2)/*[position()=1]) 2009; 8 Tauber (C3NR04425D-(cit4)/*[position()=1]) 2013; 19 Song (C3NR04425D-(cit36)/*[position()=1]) 2010; 22 Jiang (C3NR04425D-(cit28)/*[position()=1]) 2008; 47 Wang (C3NR04425D-(cit37)/*[position()=1]) 2011; 4 Chiu (C3NR04425D-(cit1)/*[position()=1]) 2011; 3 Wang (C3NR04425D-(cit3)/*[position()=1]) 2013; 135 Hirakawa (C3NR04425D-(cit22)/*[position()=1]) 2007; 20 Su (C3NR04425D-(cit35)/*[position()=1]) 2012; 84 Lopez-Gallego (C3NR04425D-(cit7)/*[position()=1]) 2010; 14 Zhu (C3NR04425D-(cit39)/*[position()=1]) 2013; 8 Liu (C3NR04425D-(cit24)/*[position()=1]) 2007 Ge (C3NR04425D-(cit38)/*[position()=1]) 2012; 7 Harford (C3NR04425D-(cit40)/*[position()=1]) 1997; 30 Kuiper (C3NR04425D-(cit12)/*[position()=1]) 2008; 6 Mancuso (C3NR04425D-(cit27)/*[position()=1]) 2013; 5 Fan (C3NR04425D-(cit21)/*[position()=1]) 2009; 75 Wilner (C3NR04425D-(cit15)/*[position()=1]) 2009; 4 Manesh (C3NR04425D-(cit19)/*[position()=1]) 2010; 25 Betancor (C3NR04425D-(cit10)/*[position()=1]) 2008; 26 Good (C3NR04425D-(cit18)/*[position()=1]) 2011; 332 Li (C3NR04425D-(cit26)/*[position()=1]) 2013; 5 Delebecque (C3NR04425D-(cit16)/*[position()=1]) 2011; 333 Muller (C3NR04425D-(cit13)/*[position()=1]) 2008; 377 Pierre (C3NR04425D-(cit9)/*[position()=1]) 2004; 22 Wilner (C3NR04425D-(cit14)/*[position()=1]) 2009; 9 Sun (C3NR04425D-(cit30)/*[position()=1]) 2012; 5 Mu (C3NR04425D-(cit32)/*[position()=1]) 2012; 48 Sun (C3NR04425D-(cit29)/*[position()=1]) 2011; 47 Schrittwieser (C3NR04425D-(cit8)/*[position()=1]) 2011; 15 Delaittre (C3NR04425D-(cit20)/*[position()=1]) 2009; 15 Schoffelen (C3NR04425D-(cit6)/*[position()=1]) 2012; 8 Dueber (C3NR04425D-(cit17)/*[position()=1]) 2009; 27 Dong (C3NR04425D-(cit25)/*[position()=1]) 2012; 4 Betancor (C3NR04425D-(cit11)/*[position()=1]) 2006 Oroz-Guinea (C3NR04425D-(cit5)/*[position()=1]) 2013; 17 |
References_xml | – volume: 8 start-page: 2358 year: 2013 ident: C3NR04425D-(cit39)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201300020 – volume: 30 start-page: 123 year: 1997 ident: C3NR04425D-(cit40)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar9501535 – volume: 3 start-page: 393 year: 2011 ident: C3NR04425D-(cit1)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1025 – volume: 4 start-page: 3969 year: 2012 ident: C3NR04425D-(cit25)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr12109c – volume: 48 start-page: 2540 year: 2012 ident: C3NR04425D-(cit32)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc17013b – volume: 5 start-page: 486 year: 2012 ident: C3NR04425D-(cit30)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-012-0234-1 – start-page: 4872 year: 2007 ident: C3NR04425D-(cit24)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b712421j – volume: 333 start-page: 470 year: 2011 ident: C3NR04425D-(cit16)/*[position()=1] publication-title: Science doi: 10.1126/science.1206938 – volume: 47 start-page: 8601 year: 2008 ident: C3NR04425D-(cit28)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200804066 – volume: 83 start-page: 4273 year: 2011 ident: C3NR04425D-(cit34)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac200697y – volume: 20 start-page: 453 year: 2007 ident: C3NR04425D-(cit22)/*[position()=1] publication-title: Protein Eng., Des. Sel. doi: 10.1093/protein/gzm045 – volume: 27 start-page: 753 year: 2009 ident: C3NR04425D-(cit17)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1557 – volume: 6 start-page: 4315 year: 2008 ident: C3NR04425D-(cit12)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/b811196k – volume: 9 start-page: 2040 year: 2009 ident: C3NR04425D-(cit14)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl900302z – volume: 17 start-page: 236 year: 2013 ident: C3NR04425D-(cit5)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2013.02.015 – start-page: 3640 year: 2006 ident: C3NR04425D-(cit11)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b604689d – volume: 26 start-page: 566 year: 2008 ident: C3NR04425D-(cit10)/*[position()=1] publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2008.06.009 – volume: 80 start-page: 2250 year: 2008 ident: C3NR04425D-(cit31)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac702203f – volume: 19 start-page: 4030 year: 2013 ident: C3NR04425D-(cit4)/*[position()=1] publication-title: Chem. –Eur. J. doi: 10.1002/chem.201202666 – volume: 22 start-page: 2206 year: 2010 ident: C3NR04425D-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200903783 – volume: 8 start-page: 1736 year: 2012 ident: C3NR04425D-(cit6)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C1SM06452E – volume: 22 start-page: 145 year: 2004 ident: C3NR04425D-(cit9)/*[position()=1] publication-title: Biocatal. Biotransform. doi: 10.1080/10242420412331283314 – volume: 8 start-page: 781 year: 2009 ident: C3NR04425D-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2496 – volume: 135 start-page: 1272 year: 2013 ident: C3NR04425D-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3120136 – volume: 14 start-page: 174 year: 2010 ident: C3NR04425D-(cit7)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2009.11.023 – volume: 25 start-page: 1579 year: 2010 ident: C3NR04425D-(cit19)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.11.015 – volume: 5 start-page: 619 year: 2013 ident: C3NR04425D-(cit26)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C2NR32704J – volume: 15 start-page: 249 year: 2011 ident: C3NR04425D-(cit8)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.11.010 – volume: 377 start-page: 62 year: 2008 ident: C3NR04425D-(cit13)/*[position()=1] publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.09.078 – volume: 4 start-page: 249 year: 2009 ident: C3NR04425D-(cit15)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.50 – volume: 15 start-page: 12600 year: 2009 ident: C3NR04425D-(cit20)/*[position()=1] publication-title: Chem. –Eur. J. doi: 10.1002/chem.200902063 – volume: 5 start-page: 1678 year: 2013 ident: C3NR04425D-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr33492a – volume: 4 start-page: 908 year: 2011 ident: C3NR04425D-(cit37)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-011-0147-4 – volume: 7 start-page: 428 year: 2012 ident: C3NR04425D-(cit38)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.80 – volume: 84 start-page: 5753 year: 2012 ident: C3NR04425D-(cit35)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac300939z – volume: 47 start-page: 9888 year: 2011 ident: C3NR04425D-(cit29)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc12910d – volume: 3 start-page: 1421 year: 2011 ident: C3NR04425D-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c0nr00887g – volume: 75 start-page: 1754 year: 2009 ident: C3NR04425D-(cit21)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02181-08 – volume: 332 start-page: 680 year: 2011 ident: C3NR04425D-(cit18)/*[position()=1] publication-title: Science doi: 10.1126/science.1198701 – volume: 47 start-page: 502 year: 2013 ident: C3NR04425D-(cit33)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.03.057 |
SSID | ssj0069363 |
Score | 2.5585108 |
Snippet | This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 255 |
SubjectTerms | Biocatalysis Cascades Colorimetry Copper - chemistry Enzymes, Immobilized - chemistry Enzymes, Immobilized - metabolism Glucose Glucose - analysis Glucose Oxidase - chemistry Glucose Oxidase - metabolism Horseradish Peroxidase - chemistry Horseradish Peroxidase - metabolism Humans Hydrogen Peroxide - chemistry Hydrogen Peroxide - metabolism Nanocomposites Nanomaterials Nanostructure Nanostructures - chemistry Phosphates - chemistry Sensors Synthesis |
Title | Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24186239 https://www.proquest.com/docview/1467068790 https://www.proquest.com/docview/1671482142 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHxNdYxoeM4AVVGYntfPFWxsYEo0jQir5FtmOrlbZktM1D99dzjvM1tUKDVorSq5VUuV_Pd_bd7xB6K_2Mx4xrV3s8cpnytculMFnmHpNRmJAwMNXI38bh2ZR9mQWzLpW3qi5ZiyN5vbOu5H-0CjLQq6mS_QfNthcFAZyDfuEIGobjrXRcVc-6Kr_eXJqkc1ddCgWGJKt7NUl3kddnw_nGlGYNc54X-sJ2RqMjw1cADqDhJKk4W7vNbNN-hg8No7Wh_zcs_sMVBLzFsu_MgmUuVqDjFhs_S1vpseCbsk3ssYv0CyXnvGjTfxZlldynTE-xVsjrRP58XvL-aoTPeqsRldEiJkORUstMfqT6suiG1Q23wFVbUMvaW0_GxJrqLTvvUUOTKmm-9BhYnaybzZod_PH39HR6fp5OTmaTu2iPQBRBBmhv9PXj51_NVB0mtGq11_7ohr-WJu-7a9_0WLbCEHBKlk2zmMopmTxED-poAo8sNB6hOyp_jO73OCafoN99kOAeSPAWSLAFCe6B5ANuIYIBIrgHEcxBhPsQwRYiT9H09GRyfObWfTZcCa7J2mUizqiMMhJIAS_pe7EmPIwFYQG4xPAhCRNf8EjrwJNEa-EHWiecMiqJRyTdR4O8yNUBwsyXsTabteYtAioEuJ_UcDByTUQUO-hd8yxTWZPQm14oF2mVDEGT9JiOf1TP_ZOD3rRjryz1ys5RrxuVpGAZzXYXz1VRrkxQG3lhHCXeX8aEkSHC9Rlx0DOrz_Ze4NtCuE8TB-2DgltxBwwHHe7-Ir3K9OEt7vkc3ev-Qy_QYL0s1UvwcdfiVY3UP-a7q3Q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-enzyme+co-embedded+organic-inorganic+hybrid+nanoflowers%3A+synthesis+and+application+as+a+colorimetric+sensor&rft.jtitle=Nanoscale&rft.au=Sun%2C+Jiayu&rft.au=Ge%2C+Jiechao&rft.au=Liu%2C+Weimin&rft.au=Lan%2C+Minhua&rft.date=2014-01-01&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=6&rft.issue=1&rft.spage=255&rft.epage=262&rft_id=info:doi/10.1039%2Fc3nr04425d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |