Fall detection and fall risk assessment in older person using wearable sensors: A systematic review

•A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and diagnostic.•Discusses elements to be addressed in futures studies on fall related events and its prevention with sensors. wearable sensors a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of medical informatics (Shannon, Ireland) Vol. 130; p. 103946
Main Authors Bet, Patricia, Castro, Paula C., Ponti, Moacir A.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and diagnostic.•Discusses elements to be addressed in futures studies on fall related events and its prevention with sensors. wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening. To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies. A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application. We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application. This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application.
AbstractList wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening. To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies. A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application. We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application. This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application.
•A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and diagnostic.•Discusses elements to be addressed in futures studies on fall related events and its prevention with sensors. wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening. To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies. A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application. We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application. This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application.
wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening.BACKGROUNDwearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening.To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies.OBJECTIVETo identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies.A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application.METHODSA systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application.We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application.RESULTSWe identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application.This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application.CONCLUSIONThis review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application.
ArticleNumber 103946
Author Castro, Paula C.
Ponti, Moacir A.
Bet, Patricia
Author_xml – sequence: 1
  givenname: Patricia
  surname: Bet
  fullname: Bet, Patricia
  email: patriciabet95@gmail.com
  organization: DGero — Universidade Federal de São Carlos, São Carlos, SP, Brazil
– sequence: 2
  givenname: Paula C.
  surname: Castro
  fullname: Castro, Paula C.
  organization: DGero — Universidade Federal de São Carlos, São Carlos, SP, Brazil
– sequence: 3
  givenname: Moacir A.
  surname: Ponti
  fullname: Ponti, Moacir A.
  organization: ICMC — Universidade de São Paulo, São Carlos, 13566-590, SP, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31450081$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAURUVJaD7avxC07Mbuky3LSimlITRNINBNuxay9Fw0seWpniZh_n01TGaTTbKyMOceoXvP2FFcIjJ2IaAWINTnVR1WM_oQx7oBcVmDrgHUO3YqdN9UupHtUTm3WlUddOqEnRGtAEQPnXzPTlohOwAtTpm7sdPEPWZ0OSyR2-j5uPuVAj1wS4REM8bMQ-TL5DHxNSYq4IZC_Muf0CY7TMgJIy2JvvArTlvKONscHE_4GPDpAzsuSsKPz99z9ufmx-_r2-r-18-766v7ysle5Eq23qnRa-XLC1vhpNWyt4AWAFzXdx1YLxspBi3lpUewrVWoFI5NM_RuEO05-7T3rtPyb4OUzRzI4TTZiMuGTNNoUdR91xT04hndDKVGs05htmlrDsUU4OsecGkhSjgaF7LdVZSTDZMRYHY7mJU57GB2OxjQpuxQ4upF_HDDq8Hv-yCWokp5yZALGF0hU5nI-CW8rvj2QuGmEIOz0wNu3yL4D_ksvAc
CitedBy_id crossref_primary_10_1016_j_jbi_2022_104116
crossref_primary_10_1038_s44172_024_00168_6
crossref_primary_10_1016_j_ijmedinf_2022_104765
crossref_primary_10_1016_j_measurement_2022_110945
crossref_primary_10_3390_s22031196
crossref_primary_10_1016_j_smhl_2022_100303
crossref_primary_10_1016_j_neunet_2023_03_042
crossref_primary_10_1007_s12652_021_03248_z
crossref_primary_10_1007_s11517_024_03180_2
crossref_primary_10_1109_THMS_2021_3097984
crossref_primary_10_1155_2023_1746536
crossref_primary_10_3390_s22093334
crossref_primary_10_1016_j_exger_2020_111139
crossref_primary_10_1108_JET_02_2024_0011
crossref_primary_10_1109_ACCESS_2021_3061626
crossref_primary_10_3389_fnagi_2024_1384242
crossref_primary_10_3390_electronics11040592
crossref_primary_10_1007_s12206_022_0836_9
crossref_primary_10_2196_53811
crossref_primary_10_3390_s21165430
crossref_primary_10_1016_j_aggp_2024_100077
crossref_primary_10_3390_s23031575
crossref_primary_10_1111_jonm_13853
crossref_primary_10_1016_j_eij_2025_100643
crossref_primary_10_3390_technologies12090166
crossref_primary_10_1016_j_dsp_2021_103091
crossref_primary_10_1109_JBHI_2023_3267039
crossref_primary_10_1016_j_compbiomed_2022_106060
crossref_primary_10_1109_TCSVT_2023_3303258
crossref_primary_10_1016_j_dsp_2022_103571
crossref_primary_10_1093_jamia_ocac111
crossref_primary_10_3390_s22208016
crossref_primary_10_1186_s12984_024_01409_7
crossref_primary_10_1016_j_ijepes_2022_108292
crossref_primary_10_3390_s21175863
crossref_primary_10_1016_j_dhjo_2021_101207
crossref_primary_10_1016_j_sna_2020_112105
crossref_primary_10_3390_app131810352
crossref_primary_10_1038_s41597_024_03144_z
crossref_primary_10_1109_JSEN_2021_3090454
crossref_primary_10_1007_s10433_024_00801_5
crossref_primary_10_1016_j_aei_2024_102626
crossref_primary_10_1007_s40520_023_02503_x
crossref_primary_10_2196_19244
crossref_primary_10_1371_journal_pdig_0000120
crossref_primary_10_1080_20476965_2024_2395574
crossref_primary_10_3390_s23249656
crossref_primary_10_1007_s11042_020_09708_6
crossref_primary_10_1088_2631_8695_ad43b9
crossref_primary_10_3390_s23094356
crossref_primary_10_3390_s23084100
crossref_primary_10_1186_s12877_024_05395_2
crossref_primary_10_1109_JBHI_2020_3025049
crossref_primary_10_1155_2022_8372291
crossref_primary_10_1016_j_optlastec_2024_111193
crossref_primary_10_1080_17434440_2023_2245320
crossref_primary_10_1109_TFUZZ_2024_3444489
crossref_primary_10_1109_JSEN_2020_2976554
crossref_primary_10_3390_s23146360
crossref_primary_10_1016_j_heliyon_2023_e15210
crossref_primary_10_12674_ptk_2023_30_2_102
crossref_primary_10_3390_s21082828
crossref_primary_10_1109_ACCESS_2024_3355927
crossref_primary_10_3390_s20154098
crossref_primary_10_1111_opn_12431
crossref_primary_10_1055_a_2151_4709
crossref_primary_10_3390_ijerph18147410
crossref_primary_10_1186_s11556_021_00266_w
crossref_primary_10_3390_s23010495
crossref_primary_10_1080_10400435_2024_2348147
crossref_primary_10_1088_2057_1976_ab43d4
crossref_primary_10_1016_j_archger_2020_104294
crossref_primary_10_1155_2021_6252445
crossref_primary_10_3390_ijerph192316050
crossref_primary_10_1109_JBHI_2024_3434973
crossref_primary_10_1007_s40520_022_02238_1
crossref_primary_10_3390_geriatrics8030051
crossref_primary_10_1109_JSEN_2024_3375603
crossref_primary_10_2196_49331
crossref_primary_10_1149_2162_8777_acd65f
crossref_primary_10_2196_22215
crossref_primary_10_3390_s21144767
crossref_primary_10_3390_app14209170
crossref_primary_10_1007_s00339_025_08305_4
crossref_primary_10_1109_JBHI_2022_3228598
crossref_primary_10_1016_j_procs_2020_10_028
crossref_primary_10_1109_ACCESS_2020_2982153
crossref_primary_10_3390_s20154192
crossref_primary_10_3390_s21237791
crossref_primary_10_1016_j_measurement_2022_111843
crossref_primary_10_3390_s23229194
crossref_primary_10_3390_s20236992
crossref_primary_10_1016_j_smhl_2024_100498
crossref_primary_10_3934_mbe_2023498
crossref_primary_10_3390_s21175930
crossref_primary_10_1016_j_sbsr_2023_100612
crossref_primary_10_3390_s21062254
Cites_doi 10.1109/TIM.2016.2552678
10.1089/rej.2013.1491
10.3138/ptc.41.6.304
10.2340/16501977-1877
10.1016/0021-9290(85)90043-0
10.1080/10255842.2013.805211
10.1016/j.gaitpost.2006.09.012
10.1111/jgs.15304
10.1111/j.1532-5415.1986.tb05480.x
10.1016/j.compbiomed.2017.04.009
10.3390/s18041275
10.1097/MCO.0000000000000081
10.1016/j.maturitas.2011.11.003
10.1186/1743-0003-10-91
10.1007/s11517-016-1504-y
10.1007/s11517-008-0366-3
10.4015/S1016237214500598
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TNSRE.2017.2771383
10.1109/TBME.2016.2614230
10.1088/0967-3334/32/12/009
10.1109/TNSRE.2017.2687100
10.1109/TBME.2011.2151193
10.1016/j.gaitpost.2012.03.015
10.1109/TBME.2002.800763
10.1016/j.ijmedinf.2017.12.015
10.1186/1475-925X-10-1
10.1186/1475-925X-11-9
10.1038/s41598-018-34671-6
10.1177/1545968313491004
10.3390/s18051654
10.1186/s12984-017-0255-9
10.1007/s11042-013-1473-1
10.3390/s17010198
10.3390/s150511575
10.1186/1743-0003-10-7
10.1016/j.ijmedinf.2013.06.001
10.3109/00016485909129172
10.1111/j.1532-5415.1997.tb01479.x
10.1016/j.patrec.2005.10.010
10.4236/jcc.2018.61009
10.1109/JBHI.2013.2288940
10.3390/s17061321
10.1371/journal.pone.0175559
10.1007/s40520-017-0749-0
10.1109/JSEN.2017.2749446
10.1186/s12877-018-0706-6
10.1109/TBME.2015.2433935
10.1016/j.jbiomech.2016.01.015
10.1007/s00391-012-0400-9
10.1093/gerona/glu225
10.1016/j.archger.2004.08.004
10.1109/JSEN.2013.2245231
10.1093/geronj/49.2.M85
10.2466/pms.1995.80.1.163
10.1109/TIT.1967.1053964
10.1111/j.1532-5415.1991.tb01616.x
10.3390/s140610691
10.1109/TITB.2012.2226905
10.1016/j.gaitpost.2017.03.037
10.3390/s18051350
10.1016/j.gaitpost.2018.10.005
10.1111/jocn.14599
10.1142/S0219691318400052
10.1016/j.cmpb.2014.09.005
10.1159/000478092
10.4103/ijph.IJPH_332_17
10.3390/s16081161
10.1164/ajrccm.166.1.at1102
10.1109/JBHI.2017.2677901
10.1007/s00391-009-0035-7
10.1109/TBME.2009.2033038
10.3390/s101211556
10.1016/j.gaitpost.2010.12.003
10.1109/TNSRE.2019.2911602
10.1038/s41746-018-0033-5
10.1007/s00391-013-0559-8
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ijmedinf.2019.08.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8243
ExternalDocumentID 31450081
10_1016_j_ijmedinf_2019_08_006
S1386505619303375
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABDPE
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACJTP
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNG
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AISVY
AJBFU
AJOXV
AMFUW
EFLBG
G8K
LCYCR
NAHTW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c471t-43dc6fd86d10131c4a847a0ea000c57550ad4241b8449de0a3a6e66ef22b7cb13
IEDL.DBID .~1
ISSN 1386-5056
1872-8243
IngestDate Fri Jul 11 02:19:50 EDT 2025
Mon Jul 21 05:41:07 EDT 2025
Tue Jul 01 02:50:24 EDT 2025
Thu Apr 24 22:52:06 EDT 2025
Fri Feb 23 02:18:33 EST 2024
Tue Aug 26 16:32:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Signal processing
Fall prevention
Inertial sensors
Fall detection
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-43dc6fd86d10131c4a847a0ea000c57550ad4241b8449de0a3a6e66ef22b7cb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
OpenAccessLink http://dx.doi.org/10.1016/j.ijmedinf.2019.08.006
PMID 31450081
PQID 2281101752
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2281101752
pubmed_primary_31450081
crossref_citationtrail_10_1016_j_ijmedinf_2019_08_006
crossref_primary_10_1016_j_ijmedinf_2019_08_006
elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2019_08_006
elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2019_08_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle International journal of medical informatics (Shannon, Ireland)
PublicationTitleAlternate Int J Med Inform
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Schwickert, Becker, Lindemann, Marechal, Bourke, Chiari, Helbostad, Zijlstra, Aminian, Todd (bib0045) 2013; 46
Sun, Sosnoff (bib0295) 2018; 18
Guralnik, Simonsick, Ferrucci, Glynn, Berkman, Blazer, Scherr, Wallace (bib0355) 1994; 49
Liu, Redmond, Wang, Blumenkron, Narayanan, Lovell (bib0155) 2011; 58
Thilo, Hahn, Halfens, Schols (bib0040) 2019; 28
Park (bib0110) 2018; 30
Kosse, Brands, Bauer, Hortobagyi, Lamoth (bib0435) 2013; 82
Lapierre, Neubauer, Miguel-Cruz, Rincon, Liu, Rousseau (bib0430) 2018; 111
Weiss, Brozgol, Dorfman, Herman, Shema, Giladi, Hausdorff (bib0180) 2013; 27
Weiss, Herman, Plotnik, Brozgol, Giladi, Hausdorff (bib0175) 2011; 32
Gietzelt, Spehr, Ehmen, Wegel, Feldwieser, Meis, Marschollek, Wolf, Steinhagen-Thiessen, Govercin (bib0060) 2012; 45
Simila, Mantyjarvi, Merilahti, Lindholm, Ermes (bib0145) 2014; 18
Howcroft, Lemaire, Kofman, McIlroy (bib0080) 2018; 18
Qiu, Rehman, Yu, Xiong (bib0280) 2018; 8
Podsiadlo, Richardson (bib0325) 1991; 39
Ejupi, Lord, Delbaere (bib0425) 2014; 17
Pitchai, Dedhia, Bhandari, Krishnan, D’Souza, Bellara (bib0005) 2019; 63
Sucerquia, Lopez, Vargas-Bonilla (bib0050) 2017; 17
Saadeh, Butt, Altaf (bib0065) 2019; 27
Najafi, Aminian, Loew, Blanc, Robert (bib0125) 2002; 49
Fong, Chan (bib0030) 2010; 10
Pogorelc, Gams (bib0405) 2013; 66
Wang, Delbaere, Brodie, Lovell, Kark, Lord, Redmond (bib0025) 2017; 21
Howcroft, Kofman, Lemaire (bib0135) 2017; 25
Tinetti (bib0330) 1986; 34
Montesinos, Castaldo, Pecchia (bib0400) 2018; 26
Antonsson, Mann (bib0410) 1985; 18
Fawcett (bib0385) 2006; 27
Taraldsen, Chastin, Riphagen, Vereijken, Helbostad (bib0415) 2012; 71
Cover, Hart (bib0315) 1967; 13
Di Rosa, Hausdorff, Stara, Rossi, Glynn, Casey, Burkard, Cherubini (bib0140) 2017; 55
van Schooten, Pijnappels, Rispens, Elders, Lips, van Die¨en (bib0300) 2015; 70
Drover, Howcroft, Kofman, Lemaire (bib0085) 2017; 17
Kwolek, Kepski (bib0250) 2015; 168
Howcroft, Kofman, Lemaire, McIlroy (bib0100) 2016; 49
Schwickert, Klenk, Zijlstra, Forst-Gill, Sczuka, Helbostad, Chiari, Aminian, Todd, Becker (bib0305) 2018; 64
Noury, Fleury, Rumeau, Bourke, Laighin, Rialle, Lundy (bib0265) 2007
Xu, Zhou (bib0275) 2018; 16
A. C. on Proficiency Standards for Clinical Pulmonary Function Laboratories (bib0345) 2002; 166
Howcroft, Kofman, Lemaire (bib0395) 2013; 10
Howcroft, Kofman, Lemaire (bib0390) 2017; 14
Caby, Kieffer, de Saint Hubert, Cremer, Macq (bib0075) 2011; 10
Janssen, Bussmann, Horemans, Stam (bib0035) 2008; 46
Cheng, Chen, Shen (bib0230) 2012; 17
Khojasteh, Villar, Chira, Gonz´alez, de la Cal (bib0220) 2018; 18
Li, Stankovic, Hanson, Barth, Lach, Zhou (bib0205) 2009
Bourke, Obrien, Lyons (bib0200) 2007; 26
Alkhatib, Diab, Corbier, El Badaoui (bib0070) 2018; 6
Shahzad, Ko, Lee, Lee, Kim (bib0130) 2017; 17
Veronese, Bolzetta, Toffanello, Zambon, De Rui, Perissinotto, Coin, Corti, Baggio, Crepaldi (bib0380) 2014; 17
Doi, Hirata, Ono, Tsutsumimoto, Misu, Ando (bib0285) 2013; 10
Bergen (bib0015) 2014
Ozdemir, Barshan (bib0240) 2014; 14
Berg, Wood-Dauphine, Williams, Gayton (bib0375) 1989; 41
Bautmans, Jansen, Van Keymolen, Mets (bib0160) 2011; 33
Tong, Song, Ge, Liu (bib0235) 2013; 13
Brodie, Lord, Coppens, Annegarn, Delbaere (bib0095) 2015; 62
Krizhevsky, Sutskever, Hinton (bib0320) 2012
Vellas, Wayne, Romero, Baumgartner, Rubenstein, Garry (bib0365) 1997; 45
Simil¨a, Immonen, Ermes (bib0370) 2017; 85
Marschollek, Nemitz, Gietzelt, Wolf, Zu Schwabedissen, Haux (bib0165) 2009; 42
And`o, Baglio, Lombardo, Marletta (bib0255) 2016; 65
Bohannon (bib0335) 1995; 80
Nait Aicha, Englebienne, van Schooten, Pijnappels, Krose (bib0190) 2018; 18
Simila, Immonen, Niemirepo (bib0195) 2018
Florence, Bergen, Atherly, Burns, Stevens, Drake (bib0020) 2018; 66
Palmerini, Bagala, Zanetti, Klenk, Becker, Cappello (bib0055) 2015; 15
Luo, Li, Wu, Yang, Xu (bib0210) 2014; 26
Rivolta, Aktaruzzaman, Rizzo, Lafortuna, Ferrarin, Bovi, Bonardi, Caspani, Sassi (bib0185) 2019
Ozdemir (bib0260) 2016; 16
Yuwono, Moulton, Su, Celler, Nguyen (bib0225) 2012; 11
Tibshirani (bib0310) 1996; 58
Hua, Quicksall, Di, Motl, LaCroix, Schatz, Buchner (bib0105) 2018; 1
Narayanan, Redmond, Scalzi, Lord, Celler, Lovell (bib0120) 2010; 57
Fillit, Rockwood, Young (bib0010) 2016
Zakaria, Kuwae, Tamura, Minato, Kanaya (bib0115) 2015; 18
Ejupi, Brodie, Lord, Annegarn, Redmond, Delbaere (bib0170) 2017; 64
Zhao, Chen, Liu (bib0245) 2010
Fukuda (bib0360) 1959; 50
Senden, Savelberg, Grimm, Heyligers, Meijer (bib0150) 2012; 36
Chung, Chan, Fung, Fong, Lam, Lai, Ng (bib0340) 2014; 46
Macaˇs, Lesoin, P´erin (bib0270) 2018
Hsieh, Roach, Wajda, Sosnoff (bib0290) 2019; 67
Kwolek, Kepski (bib0215) 2014; 117
Ponti, Bet, Oliveira, Castro (bib0090) 2017; 12
Aziz, Musngi, Park, Mori, Robinovitch (bib0420) 2017; 55
Mourey, Camus, dAthis, Blanchon, Martin-Hunyadi, de Rekeneire, Pfitzenmeyer (bib0350) 2005; 40
Kwolek (10.1016/j.ijmedinf.2019.08.006_bib0215) 2014; 117
Bergen (10.1016/j.ijmedinf.2019.08.006_bib0015) 2014
Najafi (10.1016/j.ijmedinf.2019.08.006_bib0125) 2002; 49
Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0135) 2017; 25
Bautmans (10.1016/j.ijmedinf.2019.08.006_bib0160) 2011; 33
Janssen (10.1016/j.ijmedinf.2019.08.006_bib0035) 2008; 46
Mourey (10.1016/j.ijmedinf.2019.08.006_bib0350) 2005; 40
Nait Aicha (10.1016/j.ijmedinf.2019.08.006_bib0190) 2018; 18
Sucerquia (10.1016/j.ijmedinf.2019.08.006_bib0050) 2017; 17
Krizhevsky (10.1016/j.ijmedinf.2019.08.006_bib0320) 2012
Podsiadlo (10.1016/j.ijmedinf.2019.08.006_bib0325) 1991; 39
Chung (10.1016/j.ijmedinf.2019.08.006_bib0340) 2014; 46
Pogorelc (10.1016/j.ijmedinf.2019.08.006_bib0405) 2013; 66
Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0080) 2018; 18
Cover (10.1016/j.ijmedinf.2019.08.006_bib0315) 1967; 13
Palmerini (10.1016/j.ijmedinf.2019.08.006_bib0055) 2015; 15
Bourke (10.1016/j.ijmedinf.2019.08.006_bib0200) 2007; 26
Fong (10.1016/j.ijmedinf.2019.08.006_bib0030) 2010; 10
Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0100) 2016; 49
Noury (10.1016/j.ijmedinf.2019.08.006_bib0265) 2007
Pitchai (10.1016/j.ijmedinf.2019.08.006_bib0005) 2019; 63
And`o (10.1016/j.ijmedinf.2019.08.006_bib0255) 2016; 65
Sun (10.1016/j.ijmedinf.2019.08.006_bib0295) 2018; 18
Fawcett (10.1016/j.ijmedinf.2019.08.006_bib0385) 2006; 27
Montesinos (10.1016/j.ijmedinf.2019.08.006_bib0400) 2018; 26
Ejupi (10.1016/j.ijmedinf.2019.08.006_bib0170) 2017; 64
Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0390) 2017; 14
Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0395) 2013; 10
Cheng (10.1016/j.ijmedinf.2019.08.006_bib0230) 2012; 17
Fukuda (10.1016/j.ijmedinf.2019.08.006_bib0360) 1959; 50
Brodie (10.1016/j.ijmedinf.2019.08.006_bib0095) 2015; 62
Senden (10.1016/j.ijmedinf.2019.08.006_bib0150) 2012; 36
Ponti (10.1016/j.ijmedinf.2019.08.006_bib0090) 2017; 12
Tinetti (10.1016/j.ijmedinf.2019.08.006_bib0330) 1986; 34
Di Rosa (10.1016/j.ijmedinf.2019.08.006_bib0140) 2017; 55
Luo (10.1016/j.ijmedinf.2019.08.006_bib0210) 2014; 26
Tong (10.1016/j.ijmedinf.2019.08.006_bib0235) 2013; 13
Xu (10.1016/j.ijmedinf.2019.08.006_bib0275) 2018; 16
Simila (10.1016/j.ijmedinf.2019.08.006_bib0145) 2014; 18
Simila (10.1016/j.ijmedinf.2019.08.006_bib0195) 2018
Ozdemir (10.1016/j.ijmedinf.2019.08.006_bib0240) 2014; 14
Thilo (10.1016/j.ijmedinf.2019.08.006_bib0040) 2019; 28
Hua (10.1016/j.ijmedinf.2019.08.006_bib0105) 2018; 1
Rivolta (10.1016/j.ijmedinf.2019.08.006_bib0185) 2019
Li (10.1016/j.ijmedinf.2019.08.006_bib0205) 2009
Narayanan (10.1016/j.ijmedinf.2019.08.006_bib0120) 2010; 57
Tibshirani (10.1016/j.ijmedinf.2019.08.006_bib0310) 1996; 58
Park (10.1016/j.ijmedinf.2019.08.006_bib0110) 2018; 30
Fillit (10.1016/j.ijmedinf.2019.08.006_bib0010) 2016
Doi (10.1016/j.ijmedinf.2019.08.006_bib0285) 2013; 10
Antonsson (10.1016/j.ijmedinf.2019.08.006_bib0410) 1985; 18
Taraldsen (10.1016/j.ijmedinf.2019.08.006_bib0415) 2012; 71
Lapierre (10.1016/j.ijmedinf.2019.08.006_bib0430) 2018; 111
Yuwono (10.1016/j.ijmedinf.2019.08.006_bib0225) 2012; 11
Kosse (10.1016/j.ijmedinf.2019.08.006_bib0435) 2013; 82
Saadeh (10.1016/j.ijmedinf.2019.08.006_bib0065) 2019; 27
Khojasteh (10.1016/j.ijmedinf.2019.08.006_bib0220) 2018; 18
Shahzad (10.1016/j.ijmedinf.2019.08.006_bib0130) 2017; 17
Guralnik (10.1016/j.ijmedinf.2019.08.006_bib0355) 1994; 49
Veronese (10.1016/j.ijmedinf.2019.08.006_bib0380) 2014; 17
Drover (10.1016/j.ijmedinf.2019.08.006_bib0085) 2017; 17
Alkhatib (10.1016/j.ijmedinf.2019.08.006_bib0070) 2018; 6
Weiss (10.1016/j.ijmedinf.2019.08.006_bib0180) 2013; 27
Gietzelt (10.1016/j.ijmedinf.2019.08.006_bib0060) 2012; 45
Schwickert (10.1016/j.ijmedinf.2019.08.006_bib0305) 2018; 64
Macaˇs (10.1016/j.ijmedinf.2019.08.006_bib0270) 2018
Berg (10.1016/j.ijmedinf.2019.08.006_bib0375) 1989; 41
Simil¨a (10.1016/j.ijmedinf.2019.08.006_bib0370) 2017; 85
Ejupi (10.1016/j.ijmedinf.2019.08.006_bib0425) 2014; 17
Caby (10.1016/j.ijmedinf.2019.08.006_bib0075) 2011; 10
A. C. on Proficiency Standards for Clinical Pulmonary Function Laboratories (10.1016/j.ijmedinf.2019.08.006_bib0345) 2002; 166
Marschollek (10.1016/j.ijmedinf.2019.08.006_bib0165) 2009; 42
Schwickert (10.1016/j.ijmedinf.2019.08.006_bib0045) 2013; 46
Aziz (10.1016/j.ijmedinf.2019.08.006_bib0420) 2017; 55
Weiss (10.1016/j.ijmedinf.2019.08.006_bib0175) 2011; 32
Kwolek (10.1016/j.ijmedinf.2019.08.006_bib0250) 2015; 168
Florence (10.1016/j.ijmedinf.2019.08.006_bib0020) 2018; 66
Zhao (10.1016/j.ijmedinf.2019.08.006_bib0245) 2010
Ozdemir (10.1016/j.ijmedinf.2019.08.006_bib0260) 2016; 16
Liu (10.1016/j.ijmedinf.2019.08.006_bib0155) 2011; 58
Hsieh (10.1016/j.ijmedinf.2019.08.006_bib0290) 2019; 67
Qiu (10.1016/j.ijmedinf.2019.08.006_bib0280) 2018; 8
Zakaria (10.1016/j.ijmedinf.2019.08.006_bib0115) 2015; 18
van Schooten (10.1016/j.ijmedinf.2019.08.006_bib0300) 2015; 70
Bohannon (10.1016/j.ijmedinf.2019.08.006_bib0335) 1995; 80
Wang (10.1016/j.ijmedinf.2019.08.006_bib0025) 2017; 21
Vellas (10.1016/j.ijmedinf.2019.08.006_bib0365) 1997; 45
References_xml – volume: 10
  start-page: 11556
  year: 2010
  end-page: 11565
  ident: bib0030
  article-title: The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review
  publication-title: Sensors
– volume: 45
  start-page: 716
  year: 2012
  end-page: 721
  ident: bib0060
  article-title: Gal@ home
  publication-title: Zeitschrift fuer Gerontologie und Geriatrie
– volume: 34
  start-page: 119
  year: 1986
  end-page: 126
  ident: bib0330
  article-title: Performance-oriented assessment of mobility problems in elderly patients
  publication-title: J. Am. Geriatr. Soc.
– volume: 10
  start-page: 1
  year: 2011
  ident: bib0075
  article-title: Feature extraction and selection for 423 objective gait analysis and fall risk assessment by accelerometry
  publication-title: Biomed. Eng. Online
– volume: 55
  start-page: 6
  year: 2017
  end-page: 11
  ident: bib0140
  article-title: Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: a pilot study
  publication-title: Gait Posture
– volume: 26
  start-page: 573
  year: 2018
  end-page: 582
  ident: bib0400
  article-title: Wearable inertial sensors for fall risk assessment and prediction in older adults: a systematic review and meta-analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 17
  start-page: 407
  year: 2014
  end-page: 411
  ident: bib0425
  article-title: New methods for fall risk prediction
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib0315
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– start-page: 157
  year: 2018
  end-page: 161
  ident: bib0270
  article-title: Camera based real time fall detection using pattern classification
  publication-title: Precision Medicine Powered by pHealth and Connected Health
– year: 2016
  ident: bib0010
  article-title: Brocklehurst’s Textbook of Geriatric Medicine and Gerontology E-Book
– volume: 18
  start-page: 1350
  year: 2018
  ident: bib0220
  article-title: Improving fall detection using an on-wrist wearable accelerometer
  publication-title: Sensors
– volume: 17
  start-page: 198
  year: 2017
  ident: bib0050
  article-title: Sisfall: a fall and movement dataset
  publication-title: Sensors
– volume: 8
  start-page: 16349
  year: 2018
  ident: bib0280
  article-title: Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people
  publication-title: Sci. Rep.
– volume: 55
  start-page: 45
  year: 2017
  end-page: 55
  ident: bib0420
  article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. Machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials
  publication-title: Med. Biol. Eng. Comput.
– volume: 25
  start-page: 1812
  year: 2017
  end-page: 1820
  ident: bib0135
  article-title: Prospective fall-risk prediction models for older adults base on wearable sensors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 138
  year: 2009
  end-page: 143
  ident: bib0205
  article-title: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information
  publication-title: 2009 Body Sensor Networks
– volume: 10
  start-page: 7
  year: 2013
  ident: bib0285
  article-title: The harmonic ratio of trunk acceleration predicts falling among older people: results of a 1-year prospective study
  publication-title: J. Neuroeng. Rehabil.
– volume: 66
  start-page: 693
  year: 2018
  end-page: 698
  ident: bib0020
  article-title: Medical costs of fatal and nonfatal falls in older adults
  publication-title: J. Am. Geriatr. Soc.
– volume: 27
  start-page: 742
  year: 2013
  end-page: 752
  ident: bib0180
  article-title: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings
  publication-title: Neurorehabil. Neural Repair
– volume: 17
  start-page: 1321
  year: 2017
  ident: bib0085
  article-title: Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features
  publication-title: Sensors
– volume: 39
  start-page: 142
  year: 1991
  end-page: 148
  ident: bib0325
  article-title: The timed up & go: a test of basic functional mobility for frail elderly persons
  publication-title: J. Am. Geriatr. Soc.
– volume: 41
  start-page: 304
  year: 1989
  end-page: 311
  ident: bib0375
  article-title: Measuring balance in the elderly: preliminary development of an instrument
  publication-title: Physiother. Canada
– volume: 16
  year: 2018
  ident: bib0275
  article-title: Elders fall detection based on biomechanical features using depth camera
  publication-title: Int. J. Wavelets, Multiresolution Inf. Process.
– volume: 45
  start-page: 735
  year: 1997
  end-page: 738
  ident: bib0365
  article-title: One-leg balance is an important predictor of injurious falls in older persons
  publication-title: J. Am. Geriatr. Soc.
– volume: 80
  start-page: 163
  year: 1995
  end-page: 166
  ident: bib0335
  article-title: Sit-to-stand test for measuring performance of lower extremity muscles
  publication-title: Percept. Mot. Skills
– volume: 16
  start-page: 1161
  year: 2016
  ident: bib0260
  article-title: An analysis on sensor locations of the human body for wearable fall detection devices:¨ Principles and practice
  publication-title: Sensors
– volume: 17
  start-page: 6743
  year: 2017
  end-page: 6751
  ident: bib0130
  article-title: Quantitative assessment of balance impairment for fall risk estimation using wearable triaxial accelerometer
  publication-title: IEEE Sens. J.
– volume: 85
  start-page: 25
  year: 2017
  end-page: 32
  ident: bib0370
  article-title: Accelerometry-based assessment and detection of early signs of balance deficits
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 1275
  year: 2018
  ident: bib0080
  article-title: Dual-task elderly gait of prospective fallers and non-fallers: a wearable sensor-based analysis
  publication-title: Sensors
– volume: 58
  start-page: 2308
  year: 2011
  end-page: 2315
  ident: bib0155
  article-title: Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14
  start-page: 47
  year: 2017
  ident: bib0390
  article-title: Feature selection for elderly faller classification based on wearable sensors
  publication-title: J. Neuroeng. Rehabil.
– volume: 14
  start-page: 10691
  year: 2014
  end-page: 10708
  ident: bib0240
  article-title: Detecting falls with wearable sensors using machine learning techniques
  publication-title: Sensors
– volume: 12
  year: 2017
  ident: bib0090
  article-title: Better than counting seconds: identifying fallers amonghealthy elderly using fusion of accelerometer features and dual-task timed up and go
  publication-title: PLoS One
– volume: 17
  start-page: 276
  year: 2014
  end-page: 284
  ident: bib0380
  article-title: Association between short physical performance battery and falls in older people: the progetto veneto anziani study
  publication-title: Rejuvenation Res.
– volume: 26
  year: 2014
  ident: bib0210
  article-title: Fall detection using three wearable triaxial accelerometers and a decision-tree classifier, Biomedical Engineering: applications
  publication-title: Basis Commun.
– volume: 49
  start-page: M85
  year: 1994
  end-page: M94
  ident: bib0355
  article-title: A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission
  publication-title: J. Gerontol.
– year: 2019
  ident: bib0185
  article-title: Evaluation of the Tinetti Score and Fall Risk Assessment Via Accelerometry-based Movement Analysis, Artificial Intelligence in Medicine
– volume: 57
  start-page: 534
  year: 2010
  end-page: 541
  ident: bib0120
  article-title: Longitudinal falls-risk estimation using triaxial accelerometry
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 36
  start-page: 296
  year: 2012
  end-page: 300
  ident: bib0150
  article-title: Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling
  publication-title: Gait Posture
– volume: 27
  start-page: 995
  year: 2019
  end-page: 1003
  ident: bib0065
  article-title: A patient-specific single sensor iot-based wearable fall prediction and detection system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 10
  start-page: 91
  year: 2013
  ident: bib0395
  article-title: Review of fall risk assessment in geriatric populations using inertial sensors
  publication-title: J. Neuroeng. Rehabil.
– volume: 18
  start-page: 426
  year: 2015
  end-page: 437
  ident: bib0115
  article-title: Quantitative analysis of fall risk using tug test
  publication-title: Comput. Methods Biomech. Biomed. Engin.
– volume: 50
  start-page: 95
  year: 1959
  end-page: 108
  ident: bib0360
  article-title: The stepping test: two phases of the labyrinthine reflex
  publication-title: Acta Otolaryngol.
– volume: 18
  start-page: 1654
  year: 2018
  ident: bib0190
  article-title: Deep learning to predictfalls in older adults based on daily-life trunk accelerometry
  publication-title: Sensors
– volume: 64
  start-page: 1602
  year: 2017
  end-page: 1607
  ident: bib0170
  article-title: Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 67
  start-page: 160
  year: 2019
  end-page: 165
  ident: bib0290
  article-title: Smartphone technology can measure postural stability and discriminate fall risk in older adults
  publication-title: Gait Posture
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0385
  article-title: An introduction to roc analysis
  publication-title: Pattern Recognit. Lett.
– volume: 64
  start-page: 90
  year: 2018
  end-page: 95
  ident: bib0305
  article-title: Reading from the black box: what sensors tell us about resting and recovery after real-world falls
  publication-title: Gerontology
– volume: 30
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib0110
  article-title: Tools for assessing fall risk in the elderly: a systematic review and meta-analysis
  publication-title: Aging Clin. Exp. Res.
– volume: 18
  start-page: 39
  year: 1985
  end-page: 47
  ident: bib0410
  article-title: The frequency content of gait
  publication-title: J. Biomech.
– volume: 28
  start-page: 310
  year: 2019
  end-page: 320
  ident: bib0040
  article-title: Usability of a wearable fall detection prototype from the perspective of older people–a real field testing approach
  publication-title: J. Clin. Nurs.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0310
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 166
  start-page: 111
  year: 2002
  end-page: 117
  ident: bib0345
  article-title: Ats statement: guidelines for the six-minute walk test
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 111
  start-page: 58
  year: 2018
  end-page: 71
  ident: bib0430
  article-title: The state of knowledge on technologies and their use for fall detection: a scoping review
  publication-title: Int. J. Med. Inform.
– volume: 32
  start-page: 2003
  year: 2011
  ident: bib0175
  article-title: An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers
  publication-title: Physiol. Meas.
– volume: 46
  start-page: 879
  year: 2008
  end-page: 887
  ident: bib0035
  article-title: Validity of accelerometry in assessing the duration of the sit-to-stand movement
  publication-title: Med. Biol. Eng. Comput.
– volume: 49
  start-page: 992
  year: 2016
  end-page: 1001
  ident: bib0100
  article-title: Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors
  publication-title: J. Biomech.
– start-page: 494
  year: 2010
  end-page: 497
  ident: bib0245
  article-title: Fall detecting and alarming based on mobile phone
  publication-title: 2010 7th International Conference on Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing
– volume: 26
  start-page: 194
  year: 2007
  end-page: 199
  ident: bib0200
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait Posture
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0320
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 70
  start-page: 608
  year: 2015
  end-page: 615
  ident: bib0300
  article-title: Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults
  publication-title: J. Gerontol. Ser. A
– volume: 63
  start-page: 21
  year: 2019
  ident: bib0005
  article-title: Prevalence, risk factors, circumstances for falls and level of functional independence among geriatric population-a descriptive study
  publication-title: Indian J. Public Health
– volume: 17
  start-page: 38
  year: 2012
  end-page: 45
  ident: bib0230
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 168
  start-page: 637
  year: 2015
  end-page: 645
  ident: bib0250
  article-title: Improving fall detection by the use of depth sensor and accelerometer
  publication-title: Neuro Comput.
– volume: 40
  start-page: 201
  year: 2005
  end-page: 211
  ident: bib0350
  article-title: Mini motor test: a clinical test for rehabilitation of patients showing psychomotor disadaptation syndrome (pds)
  publication-title: Arch. Gerontol. Geriatr.
– volume: 1
  start-page: 25
  year: 2018
  ident: bib0105
  article-title: Accelerometer-based predictive models of fall risk in older women: a pilot study
  publication-title: NPJ Digit. Med.
– volume: 18
  start-page: 14
  year: 2018
  ident: bib0295
  article-title: Novel sensing technology in fall risk assessment in older adults: a systematic review
  publication-title: BMC Geriatr.
– volume: 82
  start-page: 743
  year: 2013
  end-page: 752
  ident: bib0435
  article-title: Sensor technologies aiming at fall prevention in institutionalized old adults: a synthesis of current knowledge
  publication-title: Int. J. Med. Inform.
– volume: 11
  start-page: 9
  year: 2012
  ident: bib0225
  article-title: Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems
  publication-title: Biomed. Eng. Online
– volume: 65
  start-page: 1960
  year: 2016
  end-page: 1967
  ident: bib0255
  article-title: A multisensor data-fusion approach for adl and fallclassification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 49
  start-page: 843
  year: 2002
  end-page: 851
  ident: bib0125
  article-title: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 66
  start-page: 95
  year: 2013
  end-page: 114
  ident: bib0405
  article-title: Detecting gait-related health problems of the elderly using multidimensionaldynamic time warping approach with semantic attributes
  publication-title: Multimed. Tools Appl.
– volume: 42
  start-page: 317
  year: 2009
  end-page: 322
  ident: bib0165
  article-title: Predicting in patient falls in a geriatric clinic
  publication-title: Zeitschrift fur Gerontologie und Geriatrie
– volume: 46
  start-page: 706
  year: 2013
  end-page: 719
  ident: bib0045
  article-title: Fall detection with body-worn sensors: a systematic review
  publication-title: Z. Gerontol. Geriatr.
– volume: 71
  start-page: 13
  year: 2012
  end-page: 19
  ident: bib0415
  article-title: Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications
  publication-title: Maturitas
– year: 2014
  ident: bib0015
  article-title: Falls and fall injuries among adults aged ≥ 65 years – United States
  publication-title: MMWR. Morbidity and Mortality Weekly Report 65
– volume: 18
  start-page: 1114
  year: 2014
  end-page: 1121
  ident: bib0145
  article-title: Accelerometry-based berg balance scale score estimation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 117
  start-page: 489
  year: 2014
  end-page: 501
  ident: bib0215
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput. Methods Programs Biomed.
– volume: 13
  start-page: 1849
  year: 2013
  end-page: 1856
  ident: bib0235
  article-title: Hmm-based human fall detection and prediction method using tri-axial accelerometer
  publication-title: IEEE Sens. J.
– volume: 21
  start-page: 1479
  year: 2017
  end-page: 1486
  ident: bib0025
  article-title: Differences between gait on stairs and flat surfaces in relation to fall risk and future falls
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 15
  start-page: 11575
  year: 2015
  end-page: 11586
  ident: bib0055
  article-title: A wavelet-based approach to fall detection
  publication-title: Sensors
– start-page: 1663
  year: 2007
  end-page: 1666
  ident: bib0265
  article-title: Fall detection-principles and methods
  publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 46
  start-page: 969
  year: 2014
  end-page: 974
  ident: bib0340
  article-title: Reliability and validity of alternate step test times in subjects with chronic stroke
  publication-title: J. Rehabil. Med.
– volume: 62
  start-page: 2588
  year: 2015
  end-page: 2594
  ident: bib0095
  article-title: Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 33
  start-page: 366
  year: 2011
  end-page: 372
  ident: bib0160
  article-title: Reliability and clinical correlates of 3d accelerometry based gait analysis outcomes according to age and fall-risk
  publication-title: Gait Posture
– start-page: 1530
  year: 2018
  end-page: 1533
  ident: bib0195
  article-title: Mobile fall risk assessment solution for daily-life settings
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 6
  start-page: 81
  year: 2018
  end-page: 91
  ident: bib0070
  article-title: Task-specific gait analysis: faller versus non-faller comparative study
  publication-title: J. Comput. Commun.
– volume: 65
  start-page: 1960
  issue: 9
  year: 2016
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0255
  article-title: A multisensor data-fusion approach for adl and fallclassification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2552678
– volume: 17
  start-page: 276
  issue: 3
  year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0380
  article-title: Association between short physical performance battery and falls in older people: the progetto veneto anziani study
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2013.1491
– volume: 41
  start-page: 304
  issue: 6
  year: 1989
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0375
  article-title: Measuring balance in the elderly: preliminary development of an instrument
  publication-title: Physiother. Canada
  doi: 10.3138/ptc.41.6.304
– volume: 46
  start-page: 969
  issue: 10
  year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0340
  article-title: Reliability and validity of alternate step test times in subjects with chronic stroke
  publication-title: J. Rehabil. Med.
  doi: 10.2340/16501977-1877
– volume: 18
  start-page: 39
  issue: 1
  year: 1985
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0410
  article-title: The frequency content of gait
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90043-0
– volume: 18
  start-page: 426
  issue: 4
  year: 2015
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0115
  article-title: Quantitative analysis of fall risk using tug test
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2013.805211
– volume: 26
  start-page: 194
  issue: 2
  year: 2007
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0200
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.09.012
– volume: 66
  start-page: 693
  issue: 4
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0020
  article-title: Medical costs of fatal and nonfatal falls in older adults
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.15304
– volume: 168
  start-page: 637
  year: 2015
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0250
  article-title: Improving fall detection by the use of depth sensor and accelerometer
  publication-title: Neuro Comput.
– volume: 34
  start-page: 119
  issue: 2
  year: 1986
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0330
  article-title: Performance-oriented assessment of mobility problems in elderly patients
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1986.tb05480.x
– volume: 85
  start-page: 25
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0370
  article-title: Accelerometry-based assessment and detection of early signs of balance deficits
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.04.009
– volume: 18
  start-page: 1275
  issue: 4
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0080
  article-title: Dual-task elderly gait of prospective fallers and non-fallers: a wearable sensor-based analysis
  publication-title: Sensors
  doi: 10.3390/s18041275
– year: 2016
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0010
– volume: 17
  start-page: 407
  issue: 5
  year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0425
  article-title: New methods for fall risk prediction
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0000000000000081
– volume: 71
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0415
  article-title: Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2011.11.003
– volume: 10
  start-page: 91
  issue: 1
  year: 2013
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0395
  article-title: Review of fall risk assessment in geriatric populations using inertial sensors
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-91
– volume: 55
  start-page: 45
  issue: 1
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0420
  article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. Machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1504-y
– volume: 46
  start-page: 879
  issue: 9
  year: 2008
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0035
  article-title: Validity of accelerometry in assessing the duration of the sit-to-stand movement
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0366-3
– volume: 26
  issue: 5
  year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0210
  article-title: Fall detection using three wearable triaxial accelerometers and a decision-tree classifier, Biomedical Engineering: applications
  publication-title: Basis Commun.
  doi: 10.4015/S1016237214500598
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0310
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 26
  start-page: 573
  issue: 3
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0400
  article-title: Wearable inertial sensors for fall risk assessment and prediction in older adults: a systematic review and meta-analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2771383
– volume: 64
  start-page: 1602
  issue: 7
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0170
  article-title: Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2614230
– volume: 32
  start-page: 2003
  issue: 12
  year: 2011
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0175
  article-title: An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/32/12/009
– volume: 25
  start-page: 1812
  issue: 10
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0135
  article-title: Prospective fall-risk prediction models for older adults base on wearable sensors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2687100
– volume: 58
  start-page: 2308
  issue: 8
  year: 2011
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0155
  article-title: Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2151193
– volume: 36
  start-page: 296
  issue: 2
  year: 2012
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0150
  article-title: Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.03.015
– volume: 49
  start-page: 843
  issue: 8
  year: 2002
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0125
  article-title: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.800763
– volume: 111
  start-page: 58
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0430
  article-title: The state of knowledge on technologies and their use for fall detection: a scoping review
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2017.12.015
– volume: 10
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0075
  article-title: Feature extraction and selection for 423 objective gait analysis and fall risk assessment by accelerometry
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-10-1
– start-page: 494
  year: 2010
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0245
  article-title: Fall detecting and alarming based on mobile phone
– volume: 11
  start-page: 9
  issue: 1
  year: 2012
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0225
  article-title: Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-11-9
– volume: 8
  start-page: 16349
  issue: 1
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0280
  article-title: Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34671-6
– volume: 27
  start-page: 742
  issue: 8
  year: 2013
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0180
  article-title: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968313491004
– start-page: 138
  year: 2009
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0205
  article-title: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information
– volume: 18
  start-page: 1654
  issue: 5
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0190
  article-title: Deep learning to predictfalls in older adults based on daily-life trunk accelerometry
  publication-title: Sensors
  doi: 10.3390/s18051654
– volume: 14
  start-page: 47
  issue: 1
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0390
  article-title: Feature selection for elderly faller classification based on wearable sensors
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-017-0255-9
– volume: 66
  start-page: 95
  issue: 1
  year: 2013
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0405
  article-title: Detecting gait-related health problems of the elderly using multidimensionaldynamic time warping approach with semantic attributes
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-013-1473-1
– volume: 17
  start-page: 198
  issue: 1
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0050
  article-title: Sisfall: a fall and movement dataset
  publication-title: Sensors
  doi: 10.3390/s17010198
– volume: 15
  start-page: 11575
  issue: 5
  year: 2015
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0055
  article-title: A wavelet-based approach to fall detection
  publication-title: Sensors
  doi: 10.3390/s150511575
– volume: 10
  start-page: 7
  issue: 1
  year: 2013
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0285
  article-title: The harmonic ratio of trunk acceleration predicts falling among older people: results of a 1-year prospective study
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-7
– volume: 82
  start-page: 743
  issue: 9
  year: 2013
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0435
  article-title: Sensor technologies aiming at fall prevention in institutionalized old adults: a synthesis of current knowledge
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2013.06.001
– start-page: 1530
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0195
  article-title: Mobile fall risk assessment solution for daily-life settings
– volume: 50
  start-page: 95
  issue: 1–2
  year: 1959
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0360
  article-title: The stepping test: two phases of the labyrinthine reflex
  publication-title: Acta Otolaryngol.
  doi: 10.3109/00016485909129172
– volume: 45
  start-page: 735
  issue: 6
  year: 1997
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0365
  article-title: One-leg balance is an important predictor of injurious falls in older persons
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1997.tb01479.x
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0385
  article-title: An introduction to roc analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 6
  start-page: 81
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0070
  article-title: Task-specific gait analysis: faller versus non-faller comparative study
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2018.61009
– volume: 18
  start-page: 1114
  issue: 4
  year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0145
  article-title: Accelerometry-based berg balance scale score estimation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2288940
– year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0015
  article-title: Falls and fall injuries among adults aged ≥ 65 years – United States
– start-page: 157
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0270
  article-title: Camera based real time fall detection using pattern classification
– volume: 17
  start-page: 1321
  issue: 6
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0085
  article-title: Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features
  publication-title: Sensors
  doi: 10.3390/s17061321
– volume: 12
  issue: 4
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0090
  article-title: Better than counting seconds: identifying fallers amonghealthy elderly using fusion of accelerometer features and dual-task timed up and go
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175559
– volume: 30
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0110
  article-title: Tools for assessing fall risk in the elderly: a systematic review and meta-analysis
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/s40520-017-0749-0
– volume: 17
  start-page: 6743
  issue: 20
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0130
  article-title: Quantitative assessment of balance impairment for fall risk estimation using wearable triaxial accelerometer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2749446
– year: 2019
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0185
– volume: 18
  start-page: 14
  issue: 1
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0295
  article-title: Novel sensing technology in fall risk assessment in older adults: a systematic review
  publication-title: BMC Geriatr.
  doi: 10.1186/s12877-018-0706-6
– volume: 62
  start-page: 2588
  issue: 11
  year: 2015
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0095
  article-title: Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2433935
– volume: 49
  start-page: 992
  issue: 7
  year: 2016
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0100
  article-title: Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.01.015
– volume: 45
  start-page: 716
  issue: 8
  year: 2012
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0060
  article-title: Gal@ home
  publication-title: Zeitschrift fuer Gerontologie und Geriatrie
  doi: 10.1007/s00391-012-0400-9
– volume: 70
  start-page: 608
  issue: 5
  year: 2015
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0300
  article-title: Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults
  publication-title: J. Gerontol. Ser. A
  doi: 10.1093/gerona/glu225
– start-page: 1663
  year: 2007
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0265
  article-title: Fall detection-principles and methods
– volume: 40
  start-page: 201
  issue: 2
  year: 2005
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0350
  article-title: Mini motor test: a clinical test for rehabilitation of patients showing psychomotor disadaptation syndrome (pds)
  publication-title: Arch. Gerontol. Geriatr.
  doi: 10.1016/j.archger.2004.08.004
– volume: 13
  start-page: 1849
  issue: 5
  year: 2013
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0235
  article-title: Hmm-based human fall detection and prediction method using tri-axial accelerometer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2245231
– volume: 49
  start-page: M85
  issue: 2
  year: 1994
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0355
  article-title: A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission
  publication-title: J. Gerontol.
  doi: 10.1093/geronj/49.2.M85
– volume: 80
  start-page: 163
  issue: 1
  year: 1995
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0335
  article-title: Sit-to-stand test for measuring performance of lower extremity muscles
  publication-title: Percept. Mot. Skills
  doi: 10.2466/pms.1995.80.1.163
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0315
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 39
  start-page: 142
  issue: 2
  year: 1991
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0325
  article-title: The timed up & go: a test of basic functional mobility for frail elderly persons
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1991.tb01616.x
– volume: 14
  start-page: 10691
  issue: 6
  year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0240
  article-title: Detecting falls with wearable sensors using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s140610691
– volume: 17
  start-page: 38
  issue: 1
  year: 2012
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0230
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/TITB.2012.2226905
– volume: 55
  start-page: 6
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0140
  article-title: Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: a pilot study
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.03.037
– volume: 18
  start-page: 1350
  issue: 5
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0220
  article-title: Improving fall detection using an on-wrist wearable accelerometer
  publication-title: Sensors
  doi: 10.3390/s18051350
– volume: 67
  start-page: 160
  year: 2019
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0290
  article-title: Smartphone technology can measure postural stability and discriminate fall risk in older adults
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.10.005
– volume: 28
  start-page: 310
  issue: 1–2
  year: 2019
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0040
  article-title: Usability of a wearable fall detection prototype from the perspective of older people–a real field testing approach
  publication-title: J. Clin. Nurs.
  doi: 10.1111/jocn.14599
– volume: 16
  issue: 2
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0275
  article-title: Elders fall detection based on biomechanical features using depth camera
  publication-title: Int. J. Wavelets, Multiresolution Inf. Process.
  doi: 10.1142/S0219691318400052
– volume: 117
  start-page: 489
  issue: 3
  year: 2014
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0215
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– volume: 64
  start-page: 90
  issue: 1
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0305
  article-title: Reading from the black box: what sensors tell us about resting and recovery after real-world falls
  publication-title: Gerontology
  doi: 10.1159/000478092
– volume: 63
  start-page: 21
  issue: 1
  year: 2019
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0005
  article-title: Prevalence, risk factors, circumstances for falls and level of functional independence among geriatric population-a descriptive study
  publication-title: Indian J. Public Health
  doi: 10.4103/ijph.IJPH_332_17
– volume: 16
  start-page: 1161
  issue: 8
  year: 2016
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0260
  article-title: An analysis on sensor locations of the human body for wearable fall detection devices:¨ Principles and practice
  publication-title: Sensors
  doi: 10.3390/s16081161
– volume: 166
  start-page: 111
  year: 2002
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0345
  article-title: Ats statement: guidelines for the six-minute walk test
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.166.1.at1102
– volume: 21
  start-page: 1479
  issue: 6
  year: 2017
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0025
  article-title: Differences between gait on stairs and flat surfaces in relation to fall risk and future falls
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2677901
– volume: 42
  start-page: 317
  issue: 4
  year: 2009
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0165
  article-title: Predicting in patient falls in a geriatric clinic
  publication-title: Zeitschrift fur Gerontologie und Geriatrie
  doi: 10.1007/s00391-009-0035-7
– volume: 57
  start-page: 534
  issue: 3
  year: 2010
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0120
  article-title: Longitudinal falls-risk estimation using triaxial accelerometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2033038
– volume: 10
  start-page: 11556
  issue: 12
  year: 2010
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0030
  article-title: The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review
  publication-title: Sensors
  doi: 10.3390/s101211556
– volume: 33
  start-page: 366
  issue: 3
  year: 2011
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0160
  article-title: Reliability and clinical correlates of 3d accelerometry based gait analysis outcomes according to age and fall-risk
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.12.003
– volume: 27
  start-page: 995
  issue: 5
  year: 2019
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0065
  article-title: A patient-specific single sensor iot-based wearable fall prediction and detection system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2911602
– volume: 1
  start-page: 25
  issue: 1
  year: 2018
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0105
  article-title: Accelerometer-based predictive models of fall risk in older women: a pilot study
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0033-5
– volume: 46
  start-page: 706
  issue: 8
  year: 2013
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0045
  article-title: Fall detection with body-worn sensors: a systematic review
  publication-title: Z. Gerontol. Geriatr.
  doi: 10.1007/s00391-013-0559-8
– start-page: 1097
  year: 2012
  ident: 10.1016/j.ijmedinf.2019.08.006_bib0320
  article-title: Imagenet classification with deep convolutional neural networks
SSID ssj0017054
Score 2.5804791
SecondaryResourceType review_article
Snippet •A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and...
wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103946
SubjectTerms Accidental Falls - statistics & numerical data
Aged
Fall detection
Fall prevention
Geriatric Assessment - methods
Humans
Inertial sensors
Risk Assessment - methods
Signal processing
Wearable Electronic Devices - statistics & numerical data
Title Fall detection and fall risk assessment in older person using wearable sensors: A systematic review
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1386505619303375
https://dx.doi.org/10.1016/j.ijmedinf.2019.08.006
https://www.ncbi.nlm.nih.gov/pubmed/31450081
https://www.proquest.com/docview/2281101752
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF5EQXwRb-vFCr7GJtnJpvGtFEs9EQ_wbdnsbqWlpMVWfPO3O5NLBUXBpySbTI7JZGbCznwfY0doJAJ3gRf2Y-EB4JoGHzypE4vRR7ggpwO6upa9Bzh_jB7nWKfqhaGyytL3Fz4999blSLPUZnMyGDTvAqKrpAQ4QTcsYmo0B4jJyo_f6jIPQospiG1b0qOjP3UJD48HQ5rBznIozySH8iTmo-8D1E8JaB6Iuitsucwgebu4yVU257I1tnhVzpGvM9PVoxG3bpYXWWVcZ5b3aYiqyLmukTj5IONj4ujmkzzr5lQC_8Rf0fSpnYpP8Qd3_Dw94W3-AffMi1aXDfbQPb3v9LySSsEzGH1mHghrZN-2pA0IYMeAxqikfafRIxrM2CJfW8BgnrYAEut8LbR0Urp-GKaxSQOxyeazcea2Gcf3F4fGhQ5PATqO0jQBaY2xqGFIQDRYVOlPmRJnnOguRqoqKBuqSu-K9K6IB9OXDdas5SYF0savEnH1elTVR4qeT2Ew-FUyqSW_WNufZA8rS1D4KdL8is7c-GWqwrAVkIeLwgbbKkykfhIRQETp184_rrzLlmirKCXcY_Oz5xe3jynRLD3Ibf6ALbQ7t5c3tDy76F2_A2IqDOE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB80gdoXqa22sa1dwddr7m4_Lte3IIZETV5U8G3Z292UhHAJJuK_78x9qWBR6Nuxy9zH7OzMHDvz-wGcoJFwnBJBPE14IAReGRGKQJnUYfThPirogMYTNbwR57fydgtO614YKqusfH_p0wtvXY10K212V7NZ9yoiukpKgFN0wzyR29AmdCrZgnZ_dDGcNIcJSShLbtueCkjgWaPw_PdsTofYeYHmmRZonkR-9HqM-lcOWsSiwSfYrZJI1i_fcw-2fP4ZPoyrY_IvYAdmsWDOb4o6q5yZ3LEpDVEhOTMNGCeb5WxJNN1sVSTejKrg_7IHtH7qqGJr_Mdd3q3_sD57QnxmZbfLPtwMzq5Ph0HFphBYDECbQHBn1dT1lIsIY8cKg4HJhN6gU7SYtMnQOIHxPOsJkTofGm6UV8pP4zhLbBbxA2jly9x_A4ZLmMTWxx5vIUwisywVylnrUMMiFbwDstafthXUODFeLHRdUzbXtd416V0TFWaoOtBt5FYl2MabEkm9PLpuJUXnpzEevCmZNpIvDO5dsse1JWjcjXTEYnK_vF_rOO5F5ORk3IGvpYk0X8IjISkDO_yPJ_-CneH1-FJfjiYX3-EjzZSVhT-gtbm79z8xQ9pkR9UOeAQedA39
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+detection+and+fall+risk+assessment+in+older+person+using+wearable+sensors%3A+A+systematic+review&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Bet%2C+Patricia&rft.au=Castro%2C+Paula+C&rft.au=Ponti%2C+Moacir+A&rft.date=2019-10-01&rft.issn=1872-8243&rft.eissn=1872-8243&rft.volume=130&rft.spage=103946&rft_id=info:doi/10.1016%2Fj.ijmedinf.2019.08.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon