Fall detection and fall risk assessment in older person using wearable sensors: A systematic review
•A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and diagnostic.•Discusses elements to be addressed in futures studies on fall related events and its prevention with sensors. wearable sensors a...
Saved in:
Published in | International journal of medical informatics (Shannon, Ireland) Vol. 130; p. 103946 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and diagnostic.•Discusses elements to be addressed in futures studies on fall related events and its prevention with sensors.
wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening.
To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies.
A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application.
We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application.
This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application. |
---|---|
AbstractList | wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening.
To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies.
A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application.
We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application.
This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application. •A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and diagnostic.•Discusses elements to be addressed in futures studies on fall related events and its prevention with sensors. wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening. To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies. A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application. We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application. This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application. wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening.BACKGROUNDwearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and advances in computational intelligence. However, there are no review papers addressing the three most common types of applications related to fall using sensors, namely: fall detection, fallers classification and fall risk screening.To identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies.OBJECTIVETo identify the state of art of fall-related events detection in older person using wearable sensors, as well as the main characteristics of the studies in the literature, pointing gaps for future studies.A systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application.METHODSA systematic review design was used to search peer-reviewed literature on fall detection and risk in elderly through inertial sensors, published in English, Portuguese, Spanish or French between August 2002 and June 2019. The following questions are investigated: the type of sensors and their sampling rate, the type of signal and data processing employed, the scales and tests used in the study and the type of application.We identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application.RESULTSWe identified 608 studies, from which 29 were included. The accelerometer, with sampling rate 50 or 100 Hz, allocated in the waist or lumbar was the most used sensor setting. Methods comparing features or variables extracted from the accelerometry signal are the most common, and fall risk screening the most observed application.This review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application.CONCLUSIONThis review identifies the main elements to be addressed in studies on the detection of events related to falls in the elderly and may help in future studies on the subject. However, some aspects are still no reach consensus in the literature such as the size of the sample to be studied, the population under study and how to acquire data for each application. |
ArticleNumber | 103946 |
Author | Castro, Paula C. Ponti, Moacir A. Bet, Patricia |
Author_xml | – sequence: 1 givenname: Patricia surname: Bet fullname: Bet, Patricia email: patriciabet95@gmail.com organization: DGero — Universidade Federal de São Carlos, São Carlos, SP, Brazil – sequence: 2 givenname: Paula C. surname: Castro fullname: Castro, Paula C. organization: DGero — Universidade Federal de São Carlos, São Carlos, SP, Brazil – sequence: 3 givenname: Moacir A. surname: Ponti fullname: Ponti, Moacir A. organization: ICMC — Universidade de São Paulo, São Carlos, 13566-590, SP, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31450081$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1r3DAURUVJaD7avxC07Mbuky3LSimlITRNINBNuxay9Fw0seWpniZh_n01TGaTTbKyMOceoXvP2FFcIjJ2IaAWINTnVR1WM_oQx7oBcVmDrgHUO3YqdN9UupHtUTm3WlUddOqEnRGtAEQPnXzPTlohOwAtTpm7sdPEPWZ0OSyR2-j5uPuVAj1wS4REM8bMQ-TL5DHxNSYq4IZC_Muf0CY7TMgJIy2JvvArTlvKONscHE_4GPDpAzsuSsKPz99z9ufmx-_r2-r-18-766v7ysle5Eq23qnRa-XLC1vhpNWyt4AWAFzXdx1YLxspBi3lpUewrVWoFI5NM_RuEO05-7T3rtPyb4OUzRzI4TTZiMuGTNNoUdR91xT04hndDKVGs05htmlrDsUU4OsecGkhSjgaF7LdVZSTDZMRYHY7mJU57GB2OxjQpuxQ4upF_HDDq8Hv-yCWokp5yZALGF0hU5nI-CW8rvj2QuGmEIOz0wNu3yL4D_ksvAc |
CitedBy_id | crossref_primary_10_1016_j_jbi_2022_104116 crossref_primary_10_1038_s44172_024_00168_6 crossref_primary_10_1016_j_ijmedinf_2022_104765 crossref_primary_10_1016_j_measurement_2022_110945 crossref_primary_10_3390_s22031196 crossref_primary_10_1016_j_smhl_2022_100303 crossref_primary_10_1016_j_neunet_2023_03_042 crossref_primary_10_1007_s12652_021_03248_z crossref_primary_10_1007_s11517_024_03180_2 crossref_primary_10_1109_THMS_2021_3097984 crossref_primary_10_1155_2023_1746536 crossref_primary_10_3390_s22093334 crossref_primary_10_1016_j_exger_2020_111139 crossref_primary_10_1108_JET_02_2024_0011 crossref_primary_10_1109_ACCESS_2021_3061626 crossref_primary_10_3389_fnagi_2024_1384242 crossref_primary_10_3390_electronics11040592 crossref_primary_10_1007_s12206_022_0836_9 crossref_primary_10_2196_53811 crossref_primary_10_3390_s21165430 crossref_primary_10_1016_j_aggp_2024_100077 crossref_primary_10_3390_s23031575 crossref_primary_10_1111_jonm_13853 crossref_primary_10_1016_j_eij_2025_100643 crossref_primary_10_3390_technologies12090166 crossref_primary_10_1016_j_dsp_2021_103091 crossref_primary_10_1109_JBHI_2023_3267039 crossref_primary_10_1016_j_compbiomed_2022_106060 crossref_primary_10_1109_TCSVT_2023_3303258 crossref_primary_10_1016_j_dsp_2022_103571 crossref_primary_10_1093_jamia_ocac111 crossref_primary_10_3390_s22208016 crossref_primary_10_1186_s12984_024_01409_7 crossref_primary_10_1016_j_ijepes_2022_108292 crossref_primary_10_3390_s21175863 crossref_primary_10_1016_j_dhjo_2021_101207 crossref_primary_10_1016_j_sna_2020_112105 crossref_primary_10_3390_app131810352 crossref_primary_10_1038_s41597_024_03144_z crossref_primary_10_1109_JSEN_2021_3090454 crossref_primary_10_1007_s10433_024_00801_5 crossref_primary_10_1016_j_aei_2024_102626 crossref_primary_10_1007_s40520_023_02503_x crossref_primary_10_2196_19244 crossref_primary_10_1371_journal_pdig_0000120 crossref_primary_10_1080_20476965_2024_2395574 crossref_primary_10_3390_s23249656 crossref_primary_10_1007_s11042_020_09708_6 crossref_primary_10_1088_2631_8695_ad43b9 crossref_primary_10_3390_s23094356 crossref_primary_10_3390_s23084100 crossref_primary_10_1186_s12877_024_05395_2 crossref_primary_10_1109_JBHI_2020_3025049 crossref_primary_10_1155_2022_8372291 crossref_primary_10_1016_j_optlastec_2024_111193 crossref_primary_10_1080_17434440_2023_2245320 crossref_primary_10_1109_TFUZZ_2024_3444489 crossref_primary_10_1109_JSEN_2020_2976554 crossref_primary_10_3390_s23146360 crossref_primary_10_1016_j_heliyon_2023_e15210 crossref_primary_10_12674_ptk_2023_30_2_102 crossref_primary_10_3390_s21082828 crossref_primary_10_1109_ACCESS_2024_3355927 crossref_primary_10_3390_s20154098 crossref_primary_10_1111_opn_12431 crossref_primary_10_1055_a_2151_4709 crossref_primary_10_3390_ijerph18147410 crossref_primary_10_1186_s11556_021_00266_w crossref_primary_10_3390_s23010495 crossref_primary_10_1080_10400435_2024_2348147 crossref_primary_10_1088_2057_1976_ab43d4 crossref_primary_10_1016_j_archger_2020_104294 crossref_primary_10_1155_2021_6252445 crossref_primary_10_3390_ijerph192316050 crossref_primary_10_1109_JBHI_2024_3434973 crossref_primary_10_1007_s40520_022_02238_1 crossref_primary_10_3390_geriatrics8030051 crossref_primary_10_1109_JSEN_2024_3375603 crossref_primary_10_2196_49331 crossref_primary_10_1149_2162_8777_acd65f crossref_primary_10_2196_22215 crossref_primary_10_3390_s21144767 crossref_primary_10_3390_app14209170 crossref_primary_10_1007_s00339_025_08305_4 crossref_primary_10_1109_JBHI_2022_3228598 crossref_primary_10_1016_j_procs_2020_10_028 crossref_primary_10_1109_ACCESS_2020_2982153 crossref_primary_10_3390_s20154192 crossref_primary_10_3390_s21237791 crossref_primary_10_1016_j_measurement_2022_111843 crossref_primary_10_3390_s23229194 crossref_primary_10_3390_s20236992 crossref_primary_10_1016_j_smhl_2024_100498 crossref_primary_10_3934_mbe_2023498 crossref_primary_10_3390_s21175930 crossref_primary_10_1016_j_sbsr_2023_100612 crossref_primary_10_3390_s21062254 |
Cites_doi | 10.1109/TIM.2016.2552678 10.1089/rej.2013.1491 10.3138/ptc.41.6.304 10.2340/16501977-1877 10.1016/0021-9290(85)90043-0 10.1080/10255842.2013.805211 10.1016/j.gaitpost.2006.09.012 10.1111/jgs.15304 10.1111/j.1532-5415.1986.tb05480.x 10.1016/j.compbiomed.2017.04.009 10.3390/s18041275 10.1097/MCO.0000000000000081 10.1016/j.maturitas.2011.11.003 10.1186/1743-0003-10-91 10.1007/s11517-016-1504-y 10.1007/s11517-008-0366-3 10.4015/S1016237214500598 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TNSRE.2017.2771383 10.1109/TBME.2016.2614230 10.1088/0967-3334/32/12/009 10.1109/TNSRE.2017.2687100 10.1109/TBME.2011.2151193 10.1016/j.gaitpost.2012.03.015 10.1109/TBME.2002.800763 10.1016/j.ijmedinf.2017.12.015 10.1186/1475-925X-10-1 10.1186/1475-925X-11-9 10.1038/s41598-018-34671-6 10.1177/1545968313491004 10.3390/s18051654 10.1186/s12984-017-0255-9 10.1007/s11042-013-1473-1 10.3390/s17010198 10.3390/s150511575 10.1186/1743-0003-10-7 10.1016/j.ijmedinf.2013.06.001 10.3109/00016485909129172 10.1111/j.1532-5415.1997.tb01479.x 10.1016/j.patrec.2005.10.010 10.4236/jcc.2018.61009 10.1109/JBHI.2013.2288940 10.3390/s17061321 10.1371/journal.pone.0175559 10.1007/s40520-017-0749-0 10.1109/JSEN.2017.2749446 10.1186/s12877-018-0706-6 10.1109/TBME.2015.2433935 10.1016/j.jbiomech.2016.01.015 10.1007/s00391-012-0400-9 10.1093/gerona/glu225 10.1016/j.archger.2004.08.004 10.1109/JSEN.2013.2245231 10.1093/geronj/49.2.M85 10.2466/pms.1995.80.1.163 10.1109/TIT.1967.1053964 10.1111/j.1532-5415.1991.tb01616.x 10.3390/s140610691 10.1109/TITB.2012.2226905 10.1016/j.gaitpost.2017.03.037 10.3390/s18051350 10.1016/j.gaitpost.2018.10.005 10.1111/jocn.14599 10.1142/S0219691318400052 10.1016/j.cmpb.2014.09.005 10.1159/000478092 10.4103/ijph.IJPH_332_17 10.3390/s16081161 10.1164/ajrccm.166.1.at1102 10.1109/JBHI.2017.2677901 10.1007/s00391-009-0035-7 10.1109/TBME.2009.2033038 10.3390/s101211556 10.1016/j.gaitpost.2010.12.003 10.1109/TNSRE.2019.2911602 10.1038/s41746-018-0033-5 10.1007/s00391-013-0559-8 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ijmedinf.2019.08.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8243 |
ExternalDocumentID | 31450081 10_1016_j_ijmedinf_2019_08_006 S1386505619303375 |
Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABDPE ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACJTP ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SNG SPC SPCBC SSH SSV SSZ T5K UHS Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AISVY AJBFU AJOXV AMFUW EFLBG G8K LCYCR NAHTW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c471t-43dc6fd86d10131c4a847a0ea000c57550ad4241b8449de0a3a6e66ef22b7cb13 |
IEDL.DBID | .~1 |
ISSN | 1386-5056 1872-8243 |
IngestDate | Fri Jul 11 02:19:50 EDT 2025 Mon Jul 21 05:41:07 EDT 2025 Tue Jul 01 02:50:24 EDT 2025 Thu Apr 24 22:52:06 EDT 2025 Fri Feb 23 02:18:33 EST 2024 Tue Aug 26 16:32:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Signal processing Fall prevention Inertial sensors Fall detection |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-43dc6fd86d10131c4a847a0ea000c57550ad4241b8449de0a3a6e66ef22b7cb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
OpenAccessLink | http://dx.doi.org/10.1016/j.ijmedinf.2019.08.006 |
PMID | 31450081 |
PQID | 2281101752 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2281101752 pubmed_primary_31450081 crossref_citationtrail_10_1016_j_ijmedinf_2019_08_006 crossref_primary_10_1016_j_ijmedinf_2019_08_006 elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2019_08_006 elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2019_08_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | International journal of medical informatics (Shannon, Ireland) |
PublicationTitleAlternate | Int J Med Inform |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Schwickert, Becker, Lindemann, Marechal, Bourke, Chiari, Helbostad, Zijlstra, Aminian, Todd (bib0045) 2013; 46 Sun, Sosnoff (bib0295) 2018; 18 Guralnik, Simonsick, Ferrucci, Glynn, Berkman, Blazer, Scherr, Wallace (bib0355) 1994; 49 Liu, Redmond, Wang, Blumenkron, Narayanan, Lovell (bib0155) 2011; 58 Thilo, Hahn, Halfens, Schols (bib0040) 2019; 28 Park (bib0110) 2018; 30 Kosse, Brands, Bauer, Hortobagyi, Lamoth (bib0435) 2013; 82 Lapierre, Neubauer, Miguel-Cruz, Rincon, Liu, Rousseau (bib0430) 2018; 111 Weiss, Brozgol, Dorfman, Herman, Shema, Giladi, Hausdorff (bib0180) 2013; 27 Weiss, Herman, Plotnik, Brozgol, Giladi, Hausdorff (bib0175) 2011; 32 Gietzelt, Spehr, Ehmen, Wegel, Feldwieser, Meis, Marschollek, Wolf, Steinhagen-Thiessen, Govercin (bib0060) 2012; 45 Simila, Mantyjarvi, Merilahti, Lindholm, Ermes (bib0145) 2014; 18 Howcroft, Lemaire, Kofman, McIlroy (bib0080) 2018; 18 Qiu, Rehman, Yu, Xiong (bib0280) 2018; 8 Podsiadlo, Richardson (bib0325) 1991; 39 Ejupi, Lord, Delbaere (bib0425) 2014; 17 Pitchai, Dedhia, Bhandari, Krishnan, D’Souza, Bellara (bib0005) 2019; 63 Sucerquia, Lopez, Vargas-Bonilla (bib0050) 2017; 17 Saadeh, Butt, Altaf (bib0065) 2019; 27 Najafi, Aminian, Loew, Blanc, Robert (bib0125) 2002; 49 Fong, Chan (bib0030) 2010; 10 Pogorelc, Gams (bib0405) 2013; 66 Wang, Delbaere, Brodie, Lovell, Kark, Lord, Redmond (bib0025) 2017; 21 Howcroft, Kofman, Lemaire (bib0135) 2017; 25 Tinetti (bib0330) 1986; 34 Montesinos, Castaldo, Pecchia (bib0400) 2018; 26 Antonsson, Mann (bib0410) 1985; 18 Fawcett (bib0385) 2006; 27 Taraldsen, Chastin, Riphagen, Vereijken, Helbostad (bib0415) 2012; 71 Cover, Hart (bib0315) 1967; 13 Di Rosa, Hausdorff, Stara, Rossi, Glynn, Casey, Burkard, Cherubini (bib0140) 2017; 55 van Schooten, Pijnappels, Rispens, Elders, Lips, van Die¨en (bib0300) 2015; 70 Drover, Howcroft, Kofman, Lemaire (bib0085) 2017; 17 Kwolek, Kepski (bib0250) 2015; 168 Howcroft, Kofman, Lemaire, McIlroy (bib0100) 2016; 49 Schwickert, Klenk, Zijlstra, Forst-Gill, Sczuka, Helbostad, Chiari, Aminian, Todd, Becker (bib0305) 2018; 64 Noury, Fleury, Rumeau, Bourke, Laighin, Rialle, Lundy (bib0265) 2007 Xu, Zhou (bib0275) 2018; 16 A. C. on Proficiency Standards for Clinical Pulmonary Function Laboratories (bib0345) 2002; 166 Howcroft, Kofman, Lemaire (bib0395) 2013; 10 Howcroft, Kofman, Lemaire (bib0390) 2017; 14 Caby, Kieffer, de Saint Hubert, Cremer, Macq (bib0075) 2011; 10 Janssen, Bussmann, Horemans, Stam (bib0035) 2008; 46 Cheng, Chen, Shen (bib0230) 2012; 17 Khojasteh, Villar, Chira, Gonz´alez, de la Cal (bib0220) 2018; 18 Li, Stankovic, Hanson, Barth, Lach, Zhou (bib0205) 2009 Bourke, Obrien, Lyons (bib0200) 2007; 26 Alkhatib, Diab, Corbier, El Badaoui (bib0070) 2018; 6 Shahzad, Ko, Lee, Lee, Kim (bib0130) 2017; 17 Veronese, Bolzetta, Toffanello, Zambon, De Rui, Perissinotto, Coin, Corti, Baggio, Crepaldi (bib0380) 2014; 17 Doi, Hirata, Ono, Tsutsumimoto, Misu, Ando (bib0285) 2013; 10 Bergen (bib0015) 2014 Ozdemir, Barshan (bib0240) 2014; 14 Berg, Wood-Dauphine, Williams, Gayton (bib0375) 1989; 41 Bautmans, Jansen, Van Keymolen, Mets (bib0160) 2011; 33 Tong, Song, Ge, Liu (bib0235) 2013; 13 Brodie, Lord, Coppens, Annegarn, Delbaere (bib0095) 2015; 62 Krizhevsky, Sutskever, Hinton (bib0320) 2012 Vellas, Wayne, Romero, Baumgartner, Rubenstein, Garry (bib0365) 1997; 45 Simil¨a, Immonen, Ermes (bib0370) 2017; 85 Marschollek, Nemitz, Gietzelt, Wolf, Zu Schwabedissen, Haux (bib0165) 2009; 42 And`o, Baglio, Lombardo, Marletta (bib0255) 2016; 65 Bohannon (bib0335) 1995; 80 Nait Aicha, Englebienne, van Schooten, Pijnappels, Krose (bib0190) 2018; 18 Simila, Immonen, Niemirepo (bib0195) 2018 Florence, Bergen, Atherly, Burns, Stevens, Drake (bib0020) 2018; 66 Palmerini, Bagala, Zanetti, Klenk, Becker, Cappello (bib0055) 2015; 15 Luo, Li, Wu, Yang, Xu (bib0210) 2014; 26 Rivolta, Aktaruzzaman, Rizzo, Lafortuna, Ferrarin, Bovi, Bonardi, Caspani, Sassi (bib0185) 2019 Ozdemir (bib0260) 2016; 16 Yuwono, Moulton, Su, Celler, Nguyen (bib0225) 2012; 11 Tibshirani (bib0310) 1996; 58 Hua, Quicksall, Di, Motl, LaCroix, Schatz, Buchner (bib0105) 2018; 1 Narayanan, Redmond, Scalzi, Lord, Celler, Lovell (bib0120) 2010; 57 Fillit, Rockwood, Young (bib0010) 2016 Zakaria, Kuwae, Tamura, Minato, Kanaya (bib0115) 2015; 18 Ejupi, Brodie, Lord, Annegarn, Redmond, Delbaere (bib0170) 2017; 64 Zhao, Chen, Liu (bib0245) 2010 Fukuda (bib0360) 1959; 50 Senden, Savelberg, Grimm, Heyligers, Meijer (bib0150) 2012; 36 Chung, Chan, Fung, Fong, Lam, Lai, Ng (bib0340) 2014; 46 Macaˇs, Lesoin, P´erin (bib0270) 2018 Hsieh, Roach, Wajda, Sosnoff (bib0290) 2019; 67 Kwolek, Kepski (bib0215) 2014; 117 Ponti, Bet, Oliveira, Castro (bib0090) 2017; 12 Aziz, Musngi, Park, Mori, Robinovitch (bib0420) 2017; 55 Mourey, Camus, dAthis, Blanchon, Martin-Hunyadi, de Rekeneire, Pfitzenmeyer (bib0350) 2005; 40 Kwolek (10.1016/j.ijmedinf.2019.08.006_bib0215) 2014; 117 Bergen (10.1016/j.ijmedinf.2019.08.006_bib0015) 2014 Najafi (10.1016/j.ijmedinf.2019.08.006_bib0125) 2002; 49 Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0135) 2017; 25 Bautmans (10.1016/j.ijmedinf.2019.08.006_bib0160) 2011; 33 Janssen (10.1016/j.ijmedinf.2019.08.006_bib0035) 2008; 46 Mourey (10.1016/j.ijmedinf.2019.08.006_bib0350) 2005; 40 Nait Aicha (10.1016/j.ijmedinf.2019.08.006_bib0190) 2018; 18 Sucerquia (10.1016/j.ijmedinf.2019.08.006_bib0050) 2017; 17 Krizhevsky (10.1016/j.ijmedinf.2019.08.006_bib0320) 2012 Podsiadlo (10.1016/j.ijmedinf.2019.08.006_bib0325) 1991; 39 Chung (10.1016/j.ijmedinf.2019.08.006_bib0340) 2014; 46 Pogorelc (10.1016/j.ijmedinf.2019.08.006_bib0405) 2013; 66 Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0080) 2018; 18 Cover (10.1016/j.ijmedinf.2019.08.006_bib0315) 1967; 13 Palmerini (10.1016/j.ijmedinf.2019.08.006_bib0055) 2015; 15 Bourke (10.1016/j.ijmedinf.2019.08.006_bib0200) 2007; 26 Fong (10.1016/j.ijmedinf.2019.08.006_bib0030) 2010; 10 Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0100) 2016; 49 Noury (10.1016/j.ijmedinf.2019.08.006_bib0265) 2007 Pitchai (10.1016/j.ijmedinf.2019.08.006_bib0005) 2019; 63 And`o (10.1016/j.ijmedinf.2019.08.006_bib0255) 2016; 65 Sun (10.1016/j.ijmedinf.2019.08.006_bib0295) 2018; 18 Fawcett (10.1016/j.ijmedinf.2019.08.006_bib0385) 2006; 27 Montesinos (10.1016/j.ijmedinf.2019.08.006_bib0400) 2018; 26 Ejupi (10.1016/j.ijmedinf.2019.08.006_bib0170) 2017; 64 Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0390) 2017; 14 Howcroft (10.1016/j.ijmedinf.2019.08.006_bib0395) 2013; 10 Cheng (10.1016/j.ijmedinf.2019.08.006_bib0230) 2012; 17 Fukuda (10.1016/j.ijmedinf.2019.08.006_bib0360) 1959; 50 Brodie (10.1016/j.ijmedinf.2019.08.006_bib0095) 2015; 62 Senden (10.1016/j.ijmedinf.2019.08.006_bib0150) 2012; 36 Ponti (10.1016/j.ijmedinf.2019.08.006_bib0090) 2017; 12 Tinetti (10.1016/j.ijmedinf.2019.08.006_bib0330) 1986; 34 Di Rosa (10.1016/j.ijmedinf.2019.08.006_bib0140) 2017; 55 Luo (10.1016/j.ijmedinf.2019.08.006_bib0210) 2014; 26 Tong (10.1016/j.ijmedinf.2019.08.006_bib0235) 2013; 13 Xu (10.1016/j.ijmedinf.2019.08.006_bib0275) 2018; 16 Simila (10.1016/j.ijmedinf.2019.08.006_bib0145) 2014; 18 Simila (10.1016/j.ijmedinf.2019.08.006_bib0195) 2018 Ozdemir (10.1016/j.ijmedinf.2019.08.006_bib0240) 2014; 14 Thilo (10.1016/j.ijmedinf.2019.08.006_bib0040) 2019; 28 Hua (10.1016/j.ijmedinf.2019.08.006_bib0105) 2018; 1 Rivolta (10.1016/j.ijmedinf.2019.08.006_bib0185) 2019 Li (10.1016/j.ijmedinf.2019.08.006_bib0205) 2009 Narayanan (10.1016/j.ijmedinf.2019.08.006_bib0120) 2010; 57 Tibshirani (10.1016/j.ijmedinf.2019.08.006_bib0310) 1996; 58 Park (10.1016/j.ijmedinf.2019.08.006_bib0110) 2018; 30 Fillit (10.1016/j.ijmedinf.2019.08.006_bib0010) 2016 Doi (10.1016/j.ijmedinf.2019.08.006_bib0285) 2013; 10 Antonsson (10.1016/j.ijmedinf.2019.08.006_bib0410) 1985; 18 Taraldsen (10.1016/j.ijmedinf.2019.08.006_bib0415) 2012; 71 Lapierre (10.1016/j.ijmedinf.2019.08.006_bib0430) 2018; 111 Yuwono (10.1016/j.ijmedinf.2019.08.006_bib0225) 2012; 11 Kosse (10.1016/j.ijmedinf.2019.08.006_bib0435) 2013; 82 Saadeh (10.1016/j.ijmedinf.2019.08.006_bib0065) 2019; 27 Khojasteh (10.1016/j.ijmedinf.2019.08.006_bib0220) 2018; 18 Shahzad (10.1016/j.ijmedinf.2019.08.006_bib0130) 2017; 17 Guralnik (10.1016/j.ijmedinf.2019.08.006_bib0355) 1994; 49 Veronese (10.1016/j.ijmedinf.2019.08.006_bib0380) 2014; 17 Drover (10.1016/j.ijmedinf.2019.08.006_bib0085) 2017; 17 Alkhatib (10.1016/j.ijmedinf.2019.08.006_bib0070) 2018; 6 Weiss (10.1016/j.ijmedinf.2019.08.006_bib0180) 2013; 27 Gietzelt (10.1016/j.ijmedinf.2019.08.006_bib0060) 2012; 45 Schwickert (10.1016/j.ijmedinf.2019.08.006_bib0305) 2018; 64 Macaˇs (10.1016/j.ijmedinf.2019.08.006_bib0270) 2018 Berg (10.1016/j.ijmedinf.2019.08.006_bib0375) 1989; 41 Simil¨a (10.1016/j.ijmedinf.2019.08.006_bib0370) 2017; 85 Ejupi (10.1016/j.ijmedinf.2019.08.006_bib0425) 2014; 17 Caby (10.1016/j.ijmedinf.2019.08.006_bib0075) 2011; 10 A. C. on Proficiency Standards for Clinical Pulmonary Function Laboratories (10.1016/j.ijmedinf.2019.08.006_bib0345) 2002; 166 Marschollek (10.1016/j.ijmedinf.2019.08.006_bib0165) 2009; 42 Schwickert (10.1016/j.ijmedinf.2019.08.006_bib0045) 2013; 46 Aziz (10.1016/j.ijmedinf.2019.08.006_bib0420) 2017; 55 Weiss (10.1016/j.ijmedinf.2019.08.006_bib0175) 2011; 32 Kwolek (10.1016/j.ijmedinf.2019.08.006_bib0250) 2015; 168 Florence (10.1016/j.ijmedinf.2019.08.006_bib0020) 2018; 66 Zhao (10.1016/j.ijmedinf.2019.08.006_bib0245) 2010 Ozdemir (10.1016/j.ijmedinf.2019.08.006_bib0260) 2016; 16 Liu (10.1016/j.ijmedinf.2019.08.006_bib0155) 2011; 58 Hsieh (10.1016/j.ijmedinf.2019.08.006_bib0290) 2019; 67 Qiu (10.1016/j.ijmedinf.2019.08.006_bib0280) 2018; 8 Zakaria (10.1016/j.ijmedinf.2019.08.006_bib0115) 2015; 18 van Schooten (10.1016/j.ijmedinf.2019.08.006_bib0300) 2015; 70 Bohannon (10.1016/j.ijmedinf.2019.08.006_bib0335) 1995; 80 Wang (10.1016/j.ijmedinf.2019.08.006_bib0025) 2017; 21 Vellas (10.1016/j.ijmedinf.2019.08.006_bib0365) 1997; 45 |
References_xml | – volume: 10 start-page: 11556 year: 2010 end-page: 11565 ident: bib0030 article-title: The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review publication-title: Sensors – volume: 45 start-page: 716 year: 2012 end-page: 721 ident: bib0060 article-title: Gal@ home publication-title: Zeitschrift fuer Gerontologie und Geriatrie – volume: 34 start-page: 119 year: 1986 end-page: 126 ident: bib0330 article-title: Performance-oriented assessment of mobility problems in elderly patients publication-title: J. Am. Geriatr. Soc. – volume: 10 start-page: 1 year: 2011 ident: bib0075 article-title: Feature extraction and selection for 423 objective gait analysis and fall risk assessment by accelerometry publication-title: Biomed. Eng. Online – volume: 55 start-page: 6 year: 2017 end-page: 11 ident: bib0140 article-title: Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: a pilot study publication-title: Gait Posture – volume: 26 start-page: 573 year: 2018 end-page: 582 ident: bib0400 article-title: Wearable inertial sensors for fall risk assessment and prediction in older adults: a systematic review and meta-analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 17 start-page: 407 year: 2014 end-page: 411 ident: bib0425 article-title: New methods for fall risk prediction publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib0315 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory – start-page: 157 year: 2018 end-page: 161 ident: bib0270 article-title: Camera based real time fall detection using pattern classification publication-title: Precision Medicine Powered by pHealth and Connected Health – year: 2016 ident: bib0010 article-title: Brocklehurst’s Textbook of Geriatric Medicine and Gerontology E-Book – volume: 18 start-page: 1350 year: 2018 ident: bib0220 article-title: Improving fall detection using an on-wrist wearable accelerometer publication-title: Sensors – volume: 17 start-page: 198 year: 2017 ident: bib0050 article-title: Sisfall: a fall and movement dataset publication-title: Sensors – volume: 8 start-page: 16349 year: 2018 ident: bib0280 article-title: Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people publication-title: Sci. Rep. – volume: 55 start-page: 45 year: 2017 end-page: 55 ident: bib0420 article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. Machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials publication-title: Med. Biol. Eng. Comput. – volume: 25 start-page: 1812 year: 2017 end-page: 1820 ident: bib0135 article-title: Prospective fall-risk prediction models for older adults base on wearable sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 138 year: 2009 end-page: 143 ident: bib0205 article-title: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information publication-title: 2009 Body Sensor Networks – volume: 10 start-page: 7 year: 2013 ident: bib0285 article-title: The harmonic ratio of trunk acceleration predicts falling among older people: results of a 1-year prospective study publication-title: J. Neuroeng. Rehabil. – volume: 66 start-page: 693 year: 2018 end-page: 698 ident: bib0020 article-title: Medical costs of fatal and nonfatal falls in older adults publication-title: J. Am. Geriatr. Soc. – volume: 27 start-page: 742 year: 2013 end-page: 752 ident: bib0180 article-title: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings publication-title: Neurorehabil. Neural Repair – volume: 17 start-page: 1321 year: 2017 ident: bib0085 article-title: Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features publication-title: Sensors – volume: 39 start-page: 142 year: 1991 end-page: 148 ident: bib0325 article-title: The timed up & go: a test of basic functional mobility for frail elderly persons publication-title: J. Am. Geriatr. Soc. – volume: 41 start-page: 304 year: 1989 end-page: 311 ident: bib0375 article-title: Measuring balance in the elderly: preliminary development of an instrument publication-title: Physiother. Canada – volume: 16 year: 2018 ident: bib0275 article-title: Elders fall detection based on biomechanical features using depth camera publication-title: Int. J. Wavelets, Multiresolution Inf. Process. – volume: 45 start-page: 735 year: 1997 end-page: 738 ident: bib0365 article-title: One-leg balance is an important predictor of injurious falls in older persons publication-title: J. Am. Geriatr. Soc. – volume: 80 start-page: 163 year: 1995 end-page: 166 ident: bib0335 article-title: Sit-to-stand test for measuring performance of lower extremity muscles publication-title: Percept. Mot. Skills – volume: 16 start-page: 1161 year: 2016 ident: bib0260 article-title: An analysis on sensor locations of the human body for wearable fall detection devices:¨ Principles and practice publication-title: Sensors – volume: 17 start-page: 6743 year: 2017 end-page: 6751 ident: bib0130 article-title: Quantitative assessment of balance impairment for fall risk estimation using wearable triaxial accelerometer publication-title: IEEE Sens. J. – volume: 85 start-page: 25 year: 2017 end-page: 32 ident: bib0370 article-title: Accelerometry-based assessment and detection of early signs of balance deficits publication-title: Comput. Biol. Med. – volume: 18 start-page: 1275 year: 2018 ident: bib0080 article-title: Dual-task elderly gait of prospective fallers and non-fallers: a wearable sensor-based analysis publication-title: Sensors – volume: 58 start-page: 2308 year: 2011 end-page: 2315 ident: bib0155 article-title: Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation publication-title: IEEE Trans. Biomed. Eng. – volume: 14 start-page: 47 year: 2017 ident: bib0390 article-title: Feature selection for elderly faller classification based on wearable sensors publication-title: J. Neuroeng. Rehabil. – volume: 14 start-page: 10691 year: 2014 end-page: 10708 ident: bib0240 article-title: Detecting falls with wearable sensors using machine learning techniques publication-title: Sensors – volume: 12 year: 2017 ident: bib0090 article-title: Better than counting seconds: identifying fallers amonghealthy elderly using fusion of accelerometer features and dual-task timed up and go publication-title: PLoS One – volume: 17 start-page: 276 year: 2014 end-page: 284 ident: bib0380 article-title: Association between short physical performance battery and falls in older people: the progetto veneto anziani study publication-title: Rejuvenation Res. – volume: 26 year: 2014 ident: bib0210 article-title: Fall detection using three wearable triaxial accelerometers and a decision-tree classifier, Biomedical Engineering: applications publication-title: Basis Commun. – volume: 49 start-page: M85 year: 1994 end-page: M94 ident: bib0355 article-title: A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission publication-title: J. Gerontol. – year: 2019 ident: bib0185 article-title: Evaluation of the Tinetti Score and Fall Risk Assessment Via Accelerometry-based Movement Analysis, Artificial Intelligence in Medicine – volume: 57 start-page: 534 year: 2010 end-page: 541 ident: bib0120 article-title: Longitudinal falls-risk estimation using triaxial accelerometry publication-title: IEEE Trans. Biomed. Eng. – volume: 36 start-page: 296 year: 2012 end-page: 300 ident: bib0150 article-title: Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling publication-title: Gait Posture – volume: 27 start-page: 995 year: 2019 end-page: 1003 ident: bib0065 article-title: A patient-specific single sensor iot-based wearable fall prediction and detection system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 10 start-page: 91 year: 2013 ident: bib0395 article-title: Review of fall risk assessment in geriatric populations using inertial sensors publication-title: J. Neuroeng. Rehabil. – volume: 18 start-page: 426 year: 2015 end-page: 437 ident: bib0115 article-title: Quantitative analysis of fall risk using tug test publication-title: Comput. Methods Biomech. Biomed. Engin. – volume: 50 start-page: 95 year: 1959 end-page: 108 ident: bib0360 article-title: The stepping test: two phases of the labyrinthine reflex publication-title: Acta Otolaryngol. – volume: 18 start-page: 1654 year: 2018 ident: bib0190 article-title: Deep learning to predictfalls in older adults based on daily-life trunk accelerometry publication-title: Sensors – volume: 64 start-page: 1602 year: 2017 end-page: 1607 ident: bib0170 article-title: Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device publication-title: IEEE Trans. Biomed. Eng. – volume: 67 start-page: 160 year: 2019 end-page: 165 ident: bib0290 article-title: Smartphone technology can measure postural stability and discriminate fall risk in older adults publication-title: Gait Posture – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib0385 article-title: An introduction to roc analysis publication-title: Pattern Recognit. Lett. – volume: 64 start-page: 90 year: 2018 end-page: 95 ident: bib0305 article-title: Reading from the black box: what sensors tell us about resting and recovery after real-world falls publication-title: Gerontology – volume: 30 start-page: 1 year: 2018 end-page: 16 ident: bib0110 article-title: Tools for assessing fall risk in the elderly: a systematic review and meta-analysis publication-title: Aging Clin. Exp. Res. – volume: 18 start-page: 39 year: 1985 end-page: 47 ident: bib0410 article-title: The frequency content of gait publication-title: J. Biomech. – volume: 28 start-page: 310 year: 2019 end-page: 320 ident: bib0040 article-title: Usability of a wearable fall detection prototype from the perspective of older people–a real field testing approach publication-title: J. Clin. Nurs. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0310 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B – volume: 166 start-page: 111 year: 2002 end-page: 117 ident: bib0345 article-title: Ats statement: guidelines for the six-minute walk test publication-title: Am. J. Respir. Crit. Care Med. – volume: 111 start-page: 58 year: 2018 end-page: 71 ident: bib0430 article-title: The state of knowledge on technologies and their use for fall detection: a scoping review publication-title: Int. J. Med. Inform. – volume: 32 start-page: 2003 year: 2011 ident: bib0175 article-title: An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers publication-title: Physiol. Meas. – volume: 46 start-page: 879 year: 2008 end-page: 887 ident: bib0035 article-title: Validity of accelerometry in assessing the duration of the sit-to-stand movement publication-title: Med. Biol. Eng. Comput. – volume: 49 start-page: 992 year: 2016 end-page: 1001 ident: bib0100 article-title: Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors publication-title: J. Biomech. – start-page: 494 year: 2010 end-page: 497 ident: bib0245 article-title: Fall detecting and alarming based on mobile phone publication-title: 2010 7th International Conference on Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing – volume: 26 start-page: 194 year: 2007 end-page: 199 ident: bib0200 article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm publication-title: Gait Posture – start-page: 1097 year: 2012 end-page: 1105 ident: bib0320 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 70 start-page: 608 year: 2015 end-page: 615 ident: bib0300 article-title: Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults publication-title: J. Gerontol. Ser. A – volume: 63 start-page: 21 year: 2019 ident: bib0005 article-title: Prevalence, risk factors, circumstances for falls and level of functional independence among geriatric population-a descriptive study publication-title: Indian J. Public Health – volume: 17 start-page: 38 year: 2012 end-page: 45 ident: bib0230 article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals publication-title: IEEE J. Biomed. Health Inform. – volume: 168 start-page: 637 year: 2015 end-page: 645 ident: bib0250 article-title: Improving fall detection by the use of depth sensor and accelerometer publication-title: Neuro Comput. – volume: 40 start-page: 201 year: 2005 end-page: 211 ident: bib0350 article-title: Mini motor test: a clinical test for rehabilitation of patients showing psychomotor disadaptation syndrome (pds) publication-title: Arch. Gerontol. Geriatr. – volume: 1 start-page: 25 year: 2018 ident: bib0105 article-title: Accelerometer-based predictive models of fall risk in older women: a pilot study publication-title: NPJ Digit. Med. – volume: 18 start-page: 14 year: 2018 ident: bib0295 article-title: Novel sensing technology in fall risk assessment in older adults: a systematic review publication-title: BMC Geriatr. – volume: 82 start-page: 743 year: 2013 end-page: 752 ident: bib0435 article-title: Sensor technologies aiming at fall prevention in institutionalized old adults: a synthesis of current knowledge publication-title: Int. J. Med. Inform. – volume: 11 start-page: 9 year: 2012 ident: bib0225 article-title: Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems publication-title: Biomed. Eng. Online – volume: 65 start-page: 1960 year: 2016 end-page: 1967 ident: bib0255 article-title: A multisensor data-fusion approach for adl and fallclassification publication-title: IEEE Trans. Instrum. Meas. – volume: 49 start-page: 843 year: 2002 end-page: 851 ident: bib0125 article-title: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly publication-title: IEEE Trans. Biomed. Eng. – volume: 66 start-page: 95 year: 2013 end-page: 114 ident: bib0405 article-title: Detecting gait-related health problems of the elderly using multidimensionaldynamic time warping approach with semantic attributes publication-title: Multimed. Tools Appl. – volume: 42 start-page: 317 year: 2009 end-page: 322 ident: bib0165 article-title: Predicting in patient falls in a geriatric clinic publication-title: Zeitschrift fur Gerontologie und Geriatrie – volume: 46 start-page: 706 year: 2013 end-page: 719 ident: bib0045 article-title: Fall detection with body-worn sensors: a systematic review publication-title: Z. Gerontol. Geriatr. – volume: 71 start-page: 13 year: 2012 end-page: 19 ident: bib0415 article-title: Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications publication-title: Maturitas – year: 2014 ident: bib0015 article-title: Falls and fall injuries among adults aged ≥ 65 years – United States publication-title: MMWR. Morbidity and Mortality Weekly Report 65 – volume: 18 start-page: 1114 year: 2014 end-page: 1121 ident: bib0145 article-title: Accelerometry-based berg balance scale score estimation publication-title: IEEE J. Biomed. Health Inform. – volume: 117 start-page: 489 year: 2014 end-page: 501 ident: bib0215 article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer publication-title: Comput. Methods Programs Biomed. – volume: 13 start-page: 1849 year: 2013 end-page: 1856 ident: bib0235 article-title: Hmm-based human fall detection and prediction method using tri-axial accelerometer publication-title: IEEE Sens. J. – volume: 21 start-page: 1479 year: 2017 end-page: 1486 ident: bib0025 article-title: Differences between gait on stairs and flat surfaces in relation to fall risk and future falls publication-title: IEEE J. Biomed. Health Inform. – volume: 15 start-page: 11575 year: 2015 end-page: 11586 ident: bib0055 article-title: A wavelet-based approach to fall detection publication-title: Sensors – start-page: 1663 year: 2007 end-page: 1666 ident: bib0265 article-title: Fall detection-principles and methods publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 46 start-page: 969 year: 2014 end-page: 974 ident: bib0340 article-title: Reliability and validity of alternate step test times in subjects with chronic stroke publication-title: J. Rehabil. Med. – volume: 62 start-page: 2588 year: 2015 end-page: 2594 ident: bib0095 article-title: Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers publication-title: IEEE Trans. Biomed. Eng. – volume: 33 start-page: 366 year: 2011 end-page: 372 ident: bib0160 article-title: Reliability and clinical correlates of 3d accelerometry based gait analysis outcomes according to age and fall-risk publication-title: Gait Posture – start-page: 1530 year: 2018 end-page: 1533 ident: bib0195 article-title: Mobile fall risk assessment solution for daily-life settings publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 6 start-page: 81 year: 2018 end-page: 91 ident: bib0070 article-title: Task-specific gait analysis: faller versus non-faller comparative study publication-title: J. Comput. Commun. – volume: 65 start-page: 1960 issue: 9 year: 2016 ident: 10.1016/j.ijmedinf.2019.08.006_bib0255 article-title: A multisensor data-fusion approach for adl and fallclassification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2552678 – volume: 17 start-page: 276 issue: 3 year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0380 article-title: Association between short physical performance battery and falls in older people: the progetto veneto anziani study publication-title: Rejuvenation Res. doi: 10.1089/rej.2013.1491 – volume: 41 start-page: 304 issue: 6 year: 1989 ident: 10.1016/j.ijmedinf.2019.08.006_bib0375 article-title: Measuring balance in the elderly: preliminary development of an instrument publication-title: Physiother. Canada doi: 10.3138/ptc.41.6.304 – volume: 46 start-page: 969 issue: 10 year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0340 article-title: Reliability and validity of alternate step test times in subjects with chronic stroke publication-title: J. Rehabil. Med. doi: 10.2340/16501977-1877 – volume: 18 start-page: 39 issue: 1 year: 1985 ident: 10.1016/j.ijmedinf.2019.08.006_bib0410 article-title: The frequency content of gait publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90043-0 – volume: 18 start-page: 426 issue: 4 year: 2015 ident: 10.1016/j.ijmedinf.2019.08.006_bib0115 article-title: Quantitative analysis of fall risk using tug test publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/10255842.2013.805211 – volume: 26 start-page: 194 issue: 2 year: 2007 ident: 10.1016/j.ijmedinf.2019.08.006_bib0200 article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.09.012 – volume: 66 start-page: 693 issue: 4 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0020 article-title: Medical costs of fatal and nonfatal falls in older adults publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.15304 – volume: 168 start-page: 637 year: 2015 ident: 10.1016/j.ijmedinf.2019.08.006_bib0250 article-title: Improving fall detection by the use of depth sensor and accelerometer publication-title: Neuro Comput. – volume: 34 start-page: 119 issue: 2 year: 1986 ident: 10.1016/j.ijmedinf.2019.08.006_bib0330 article-title: Performance-oriented assessment of mobility problems in elderly patients publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.1986.tb05480.x – volume: 85 start-page: 25 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0370 article-title: Accelerometry-based assessment and detection of early signs of balance deficits publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.04.009 – volume: 18 start-page: 1275 issue: 4 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0080 article-title: Dual-task elderly gait of prospective fallers and non-fallers: a wearable sensor-based analysis publication-title: Sensors doi: 10.3390/s18041275 – year: 2016 ident: 10.1016/j.ijmedinf.2019.08.006_bib0010 – volume: 17 start-page: 407 issue: 5 year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0425 article-title: New methods for fall risk prediction publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0000000000000081 – volume: 71 start-page: 13 issue: 1 year: 2012 ident: 10.1016/j.ijmedinf.2019.08.006_bib0415 article-title: Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications publication-title: Maturitas doi: 10.1016/j.maturitas.2011.11.003 – volume: 10 start-page: 91 issue: 1 year: 2013 ident: 10.1016/j.ijmedinf.2019.08.006_bib0395 article-title: Review of fall risk assessment in geriatric populations using inertial sensors publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-91 – volume: 55 start-page: 45 issue: 1 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0420 article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. Machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-016-1504-y – volume: 46 start-page: 879 issue: 9 year: 2008 ident: 10.1016/j.ijmedinf.2019.08.006_bib0035 article-title: Validity of accelerometry in assessing the duration of the sit-to-stand movement publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0366-3 – volume: 26 issue: 5 year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0210 article-title: Fall detection using three wearable triaxial accelerometers and a decision-tree classifier, Biomedical Engineering: applications publication-title: Basis Commun. doi: 10.4015/S1016237214500598 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.ijmedinf.2019.08.006_bib0310 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 26 start-page: 573 issue: 3 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0400 article-title: Wearable inertial sensors for fall risk assessment and prediction in older adults: a systematic review and meta-analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2771383 – volume: 64 start-page: 1602 issue: 7 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0170 article-title: Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2614230 – volume: 32 start-page: 2003 issue: 12 year: 2011 ident: 10.1016/j.ijmedinf.2019.08.006_bib0175 article-title: An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers publication-title: Physiol. Meas. doi: 10.1088/0967-3334/32/12/009 – volume: 25 start-page: 1812 issue: 10 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0135 article-title: Prospective fall-risk prediction models for older adults base on wearable sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2687100 – volume: 58 start-page: 2308 issue: 8 year: 2011 ident: 10.1016/j.ijmedinf.2019.08.006_bib0155 article-title: Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2151193 – volume: 36 start-page: 296 issue: 2 year: 2012 ident: 10.1016/j.ijmedinf.2019.08.006_bib0150 article-title: Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.03.015 – volume: 49 start-page: 843 issue: 8 year: 2002 ident: 10.1016/j.ijmedinf.2019.08.006_bib0125 article-title: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.800763 – volume: 111 start-page: 58 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0430 article-title: The state of knowledge on technologies and their use for fall detection: a scoping review publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2017.12.015 – volume: 10 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.ijmedinf.2019.08.006_bib0075 article-title: Feature extraction and selection for 423 objective gait analysis and fall risk assessment by accelerometry publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-10-1 – start-page: 494 year: 2010 ident: 10.1016/j.ijmedinf.2019.08.006_bib0245 article-title: Fall detecting and alarming based on mobile phone – volume: 11 start-page: 9 issue: 1 year: 2012 ident: 10.1016/j.ijmedinf.2019.08.006_bib0225 article-title: Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-11-9 – volume: 8 start-page: 16349 issue: 1 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0280 article-title: Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people publication-title: Sci. Rep. doi: 10.1038/s41598-018-34671-6 – volume: 27 start-page: 742 issue: 8 year: 2013 ident: 10.1016/j.ijmedinf.2019.08.006_bib0180 article-title: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968313491004 – start-page: 138 year: 2009 ident: 10.1016/j.ijmedinf.2019.08.006_bib0205 article-title: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information – volume: 18 start-page: 1654 issue: 5 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0190 article-title: Deep learning to predictfalls in older adults based on daily-life trunk accelerometry publication-title: Sensors doi: 10.3390/s18051654 – volume: 14 start-page: 47 issue: 1 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0390 article-title: Feature selection for elderly faller classification based on wearable sensors publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-017-0255-9 – volume: 66 start-page: 95 issue: 1 year: 2013 ident: 10.1016/j.ijmedinf.2019.08.006_bib0405 article-title: Detecting gait-related health problems of the elderly using multidimensionaldynamic time warping approach with semantic attributes publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-013-1473-1 – volume: 17 start-page: 198 issue: 1 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0050 article-title: Sisfall: a fall and movement dataset publication-title: Sensors doi: 10.3390/s17010198 – volume: 15 start-page: 11575 issue: 5 year: 2015 ident: 10.1016/j.ijmedinf.2019.08.006_bib0055 article-title: A wavelet-based approach to fall detection publication-title: Sensors doi: 10.3390/s150511575 – volume: 10 start-page: 7 issue: 1 year: 2013 ident: 10.1016/j.ijmedinf.2019.08.006_bib0285 article-title: The harmonic ratio of trunk acceleration predicts falling among older people: results of a 1-year prospective study publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-7 – volume: 82 start-page: 743 issue: 9 year: 2013 ident: 10.1016/j.ijmedinf.2019.08.006_bib0435 article-title: Sensor technologies aiming at fall prevention in institutionalized old adults: a synthesis of current knowledge publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2013.06.001 – start-page: 1530 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0195 article-title: Mobile fall risk assessment solution for daily-life settings – volume: 50 start-page: 95 issue: 1–2 year: 1959 ident: 10.1016/j.ijmedinf.2019.08.006_bib0360 article-title: The stepping test: two phases of the labyrinthine reflex publication-title: Acta Otolaryngol. doi: 10.3109/00016485909129172 – volume: 45 start-page: 735 issue: 6 year: 1997 ident: 10.1016/j.ijmedinf.2019.08.006_bib0365 article-title: One-leg balance is an important predictor of injurious falls in older persons publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.1997.tb01479.x – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.ijmedinf.2019.08.006_bib0385 article-title: An introduction to roc analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 6 start-page: 81 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0070 article-title: Task-specific gait analysis: faller versus non-faller comparative study publication-title: J. Comput. Commun. doi: 10.4236/jcc.2018.61009 – volume: 18 start-page: 1114 issue: 4 year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0145 article-title: Accelerometry-based berg balance scale score estimation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2288940 – year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0015 article-title: Falls and fall injuries among adults aged ≥ 65 years – United States – start-page: 157 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0270 article-title: Camera based real time fall detection using pattern classification – volume: 17 start-page: 1321 issue: 6 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0085 article-title: Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features publication-title: Sensors doi: 10.3390/s17061321 – volume: 12 issue: 4 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0090 article-title: Better than counting seconds: identifying fallers amonghealthy elderly using fusion of accelerometer features and dual-task timed up and go publication-title: PLoS One doi: 10.1371/journal.pone.0175559 – volume: 30 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0110 article-title: Tools for assessing fall risk in the elderly: a systematic review and meta-analysis publication-title: Aging Clin. Exp. Res. doi: 10.1007/s40520-017-0749-0 – volume: 17 start-page: 6743 issue: 20 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0130 article-title: Quantitative assessment of balance impairment for fall risk estimation using wearable triaxial accelerometer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2749446 – year: 2019 ident: 10.1016/j.ijmedinf.2019.08.006_bib0185 – volume: 18 start-page: 14 issue: 1 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0295 article-title: Novel sensing technology in fall risk assessment in older adults: a systematic review publication-title: BMC Geriatr. doi: 10.1186/s12877-018-0706-6 – volume: 62 start-page: 2588 issue: 11 year: 2015 ident: 10.1016/j.ijmedinf.2019.08.006_bib0095 article-title: Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2433935 – volume: 49 start-page: 992 issue: 7 year: 2016 ident: 10.1016/j.ijmedinf.2019.08.006_bib0100 article-title: Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.01.015 – volume: 45 start-page: 716 issue: 8 year: 2012 ident: 10.1016/j.ijmedinf.2019.08.006_bib0060 article-title: Gal@ home publication-title: Zeitschrift fuer Gerontologie und Geriatrie doi: 10.1007/s00391-012-0400-9 – volume: 70 start-page: 608 issue: 5 year: 2015 ident: 10.1016/j.ijmedinf.2019.08.006_bib0300 article-title: Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults publication-title: J. Gerontol. Ser. A doi: 10.1093/gerona/glu225 – start-page: 1663 year: 2007 ident: 10.1016/j.ijmedinf.2019.08.006_bib0265 article-title: Fall detection-principles and methods – volume: 40 start-page: 201 issue: 2 year: 2005 ident: 10.1016/j.ijmedinf.2019.08.006_bib0350 article-title: Mini motor test: a clinical test for rehabilitation of patients showing psychomotor disadaptation syndrome (pds) publication-title: Arch. Gerontol. Geriatr. doi: 10.1016/j.archger.2004.08.004 – volume: 13 start-page: 1849 issue: 5 year: 2013 ident: 10.1016/j.ijmedinf.2019.08.006_bib0235 article-title: Hmm-based human fall detection and prediction method using tri-axial accelerometer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2245231 – volume: 49 start-page: M85 issue: 2 year: 1994 ident: 10.1016/j.ijmedinf.2019.08.006_bib0355 article-title: A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission publication-title: J. Gerontol. doi: 10.1093/geronj/49.2.M85 – volume: 80 start-page: 163 issue: 1 year: 1995 ident: 10.1016/j.ijmedinf.2019.08.006_bib0335 article-title: Sit-to-stand test for measuring performance of lower extremity muscles publication-title: Percept. Mot. Skills doi: 10.2466/pms.1995.80.1.163 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.ijmedinf.2019.08.006_bib0315 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 39 start-page: 142 issue: 2 year: 1991 ident: 10.1016/j.ijmedinf.2019.08.006_bib0325 article-title: The timed up & go: a test of basic functional mobility for frail elderly persons publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.1991.tb01616.x – volume: 14 start-page: 10691 issue: 6 year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0240 article-title: Detecting falls with wearable sensors using machine learning techniques publication-title: Sensors doi: 10.3390/s140610691 – volume: 17 start-page: 38 issue: 1 year: 2012 ident: 10.1016/j.ijmedinf.2019.08.006_bib0230 article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/TITB.2012.2226905 – volume: 55 start-page: 6 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0140 article-title: Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: a pilot study publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.03.037 – volume: 18 start-page: 1350 issue: 5 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0220 article-title: Improving fall detection using an on-wrist wearable accelerometer publication-title: Sensors doi: 10.3390/s18051350 – volume: 67 start-page: 160 year: 2019 ident: 10.1016/j.ijmedinf.2019.08.006_bib0290 article-title: Smartphone technology can measure postural stability and discriminate fall risk in older adults publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.10.005 – volume: 28 start-page: 310 issue: 1–2 year: 2019 ident: 10.1016/j.ijmedinf.2019.08.006_bib0040 article-title: Usability of a wearable fall detection prototype from the perspective of older people–a real field testing approach publication-title: J. Clin. Nurs. doi: 10.1111/jocn.14599 – volume: 16 issue: 2 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0275 article-title: Elders fall detection based on biomechanical features using depth camera publication-title: Int. J. Wavelets, Multiresolution Inf. Process. doi: 10.1142/S0219691318400052 – volume: 117 start-page: 489 issue: 3 year: 2014 ident: 10.1016/j.ijmedinf.2019.08.006_bib0215 article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.005 – volume: 64 start-page: 90 issue: 1 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0305 article-title: Reading from the black box: what sensors tell us about resting and recovery after real-world falls publication-title: Gerontology doi: 10.1159/000478092 – volume: 63 start-page: 21 issue: 1 year: 2019 ident: 10.1016/j.ijmedinf.2019.08.006_bib0005 article-title: Prevalence, risk factors, circumstances for falls and level of functional independence among geriatric population-a descriptive study publication-title: Indian J. Public Health doi: 10.4103/ijph.IJPH_332_17 – volume: 16 start-page: 1161 issue: 8 year: 2016 ident: 10.1016/j.ijmedinf.2019.08.006_bib0260 article-title: An analysis on sensor locations of the human body for wearable fall detection devices:¨ Principles and practice publication-title: Sensors doi: 10.3390/s16081161 – volume: 166 start-page: 111 year: 2002 ident: 10.1016/j.ijmedinf.2019.08.006_bib0345 article-title: Ats statement: guidelines for the six-minute walk test publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.166.1.at1102 – volume: 21 start-page: 1479 issue: 6 year: 2017 ident: 10.1016/j.ijmedinf.2019.08.006_bib0025 article-title: Differences between gait on stairs and flat surfaces in relation to fall risk and future falls publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2677901 – volume: 42 start-page: 317 issue: 4 year: 2009 ident: 10.1016/j.ijmedinf.2019.08.006_bib0165 article-title: Predicting in patient falls in a geriatric clinic publication-title: Zeitschrift fur Gerontologie und Geriatrie doi: 10.1007/s00391-009-0035-7 – volume: 57 start-page: 534 issue: 3 year: 2010 ident: 10.1016/j.ijmedinf.2019.08.006_bib0120 article-title: Longitudinal falls-risk estimation using triaxial accelerometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2033038 – volume: 10 start-page: 11556 issue: 12 year: 2010 ident: 10.1016/j.ijmedinf.2019.08.006_bib0030 article-title: The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review publication-title: Sensors doi: 10.3390/s101211556 – volume: 33 start-page: 366 issue: 3 year: 2011 ident: 10.1016/j.ijmedinf.2019.08.006_bib0160 article-title: Reliability and clinical correlates of 3d accelerometry based gait analysis outcomes according to age and fall-risk publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.12.003 – volume: 27 start-page: 995 issue: 5 year: 2019 ident: 10.1016/j.ijmedinf.2019.08.006_bib0065 article-title: A patient-specific single sensor iot-based wearable fall prediction and detection system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2911602 – volume: 1 start-page: 25 issue: 1 year: 2018 ident: 10.1016/j.ijmedinf.2019.08.006_bib0105 article-title: Accelerometer-based predictive models of fall risk in older women: a pilot study publication-title: NPJ Digit. Med. doi: 10.1038/s41746-018-0033-5 – volume: 46 start-page: 706 issue: 8 year: 2013 ident: 10.1016/j.ijmedinf.2019.08.006_bib0045 article-title: Fall detection with body-worn sensors: a systematic review publication-title: Z. Gerontol. Geriatr. doi: 10.1007/s00391-013-0559-8 – start-page: 1097 year: 2012 ident: 10.1016/j.ijmedinf.2019.08.006_bib0320 article-title: Imagenet classification with deep convolutional neural networks |
SSID | ssj0017054 |
Score | 2.5804791 |
SecondaryResourceType | review_article |
Snippet | •A novel literature review categorizing studies into applications with mobile sensors.•Investigates sensors, parameters, samples, and methods for detection and... wearable sensors are often used to acquire data for gait analysis as a strategy to study fall events, due to greater availability of acquisition platforms, and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103946 |
SubjectTerms | Accidental Falls - statistics & numerical data Aged Fall detection Fall prevention Geriatric Assessment - methods Humans Inertial sensors Risk Assessment - methods Signal processing Wearable Electronic Devices - statistics & numerical data |
Title | Fall detection and fall risk assessment in older person using wearable sensors: A systematic review |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1386505619303375 https://dx.doi.org/10.1016/j.ijmedinf.2019.08.006 https://www.ncbi.nlm.nih.gov/pubmed/31450081 https://www.proquest.com/docview/2281101752 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF5EQXwRb-vFCr7GJtnJpvGtFEs9EQ_wbdnsbqWlpMVWfPO3O5NLBUXBpySbTI7JZGbCznwfY0doJAJ3gRf2Y-EB4JoGHzypE4vRR7ggpwO6upa9Bzh_jB7nWKfqhaGyytL3Fz4999blSLPUZnMyGDTvAqKrpAQ4QTcsYmo0B4jJyo_f6jIPQospiG1b0qOjP3UJD48HQ5rBznIozySH8iTmo-8D1E8JaB6Iuitsucwgebu4yVU257I1tnhVzpGvM9PVoxG3bpYXWWVcZ5b3aYiqyLmukTj5IONj4ujmkzzr5lQC_8Rf0fSpnYpP8Qd3_Dw94W3-AffMi1aXDfbQPb3v9LySSsEzGH1mHghrZN-2pA0IYMeAxqikfafRIxrM2CJfW8BgnrYAEut8LbR0Urp-GKaxSQOxyeazcea2Gcf3F4fGhQ5PATqO0jQBaY2xqGFIQDRYVOlPmRJnnOguRqoqKBuqSu-K9K6IB9OXDdas5SYF0savEnH1elTVR4qeT2Ew-FUyqSW_WNufZA8rS1D4KdL8is7c-GWqwrAVkIeLwgbbKkykfhIRQETp184_rrzLlmirKCXcY_Oz5xe3jynRLD3Ibf6ALbQ7t5c3tDy76F2_A2IqDOE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB80gdoXqa22sa1dwddr7m4_Lte3IIZETV5U8G3Z292UhHAJJuK_78x9qWBR6Nuxy9zH7OzMHDvz-wGcoJFwnBJBPE14IAReGRGKQJnUYfThPirogMYTNbwR57fydgtO614YKqusfH_p0wtvXY10K212V7NZ9yoiukpKgFN0wzyR29AmdCrZgnZ_dDGcNIcJSShLbtueCkjgWaPw_PdsTofYeYHmmRZonkR-9HqM-lcOWsSiwSfYrZJI1i_fcw-2fP4ZPoyrY_IvYAdmsWDOb4o6q5yZ3LEpDVEhOTMNGCeb5WxJNN1sVSTejKrg_7IHtH7qqGJr_Mdd3q3_sD57QnxmZbfLPtwMzq5Ph0HFphBYDECbQHBn1dT1lIsIY8cKg4HJhN6gU7SYtMnQOIHxPOsJkTofGm6UV8pP4zhLbBbxA2jly9x_A4ZLmMTWxx5vIUwisywVylnrUMMiFbwDstafthXUODFeLHRdUzbXtd416V0TFWaoOtBt5FYl2MabEkm9PLpuJUXnpzEevCmZNpIvDO5dsse1JWjcjXTEYnK_vF_rOO5F5ORk3IGvpYk0X8IjISkDO_yPJ_-CneH1-FJfjiYX3-EjzZSVhT-gtbm79z8xQ9pkR9UOeAQedA39 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+detection+and+fall+risk+assessment+in+older+person+using+wearable+sensors%3A+A+systematic+review&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Bet%2C+Patricia&rft.au=Castro%2C+Paula+C&rft.au=Ponti%2C+Moacir+A&rft.date=2019-10-01&rft.issn=1872-8243&rft.eissn=1872-8243&rft.volume=130&rft.spage=103946&rft_id=info:doi/10.1016%2Fj.ijmedinf.2019.08.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon |