Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors
Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity. Sixteen...
Saved in:
Published in | Journal of stroke and cerebrovascular diseases Vol. 30; no. 7; p. 105812 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity.
Sixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength.
For all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase.
EMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity. |
---|---|
AbstractList | Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity.OBJECTIVESSoft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity.Sixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength.METHODSSixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength.For all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase.RESULTSFor all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase.EMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity.CONCLUSIONEMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity. Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity. Sixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength. For all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase. EMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity. |
ArticleNumber | 105812 |
Author | Li, Zheng Tong, Kai Yu Shi, Xiang Qian Heung, Ho Lam Tang, Zhi Qiang |
Author_xml | – sequence: 1 givenname: Xiang Qian orcidid: 0000-0002-9435-1244 surname: Shi fullname: Shi, Xiang Qian organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong – sequence: 2 givenname: Ho Lam orcidid: 0000-0001-9797-4992 surname: Heung fullname: Heung, Ho Lam organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong – sequence: 3 givenname: Zhi Qiang orcidid: 0000-0001-6555-9938 surname: Tang fullname: Tang, Zhi Qiang organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong – sequence: 4 givenname: Zheng surname: Li fullname: Li, Zheng organization: Department of Surgery, the Chinese University of Hong Kong, Hong Kong – sequence: 5 givenname: Kai Yu orcidid: 0000-0003-4375-653X surname: Tong fullname: Tong, Kai Yu email: kytong@cuhk.edu.hk organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33895427$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkc1OGzEUhS1EVX7aV0BeokqT-mcczyxpFEirSJWSdm3ZnmvhMBmD7UTi7TFM2CA2WfkuPn2-554LdDqEARD6QcmEEjr9uZlsUo7hASxEMDHsdep8mjDCaAFEQ9kJOqeCs6oRlJ6WmQhWcSLkGbpIaUMIpaIRX9EZ500raibP0WruHNiccHBY43VwGa-CCdlbvNBDh12I47CCe21877POPgzYD3h2H8NQuPXbTni9i3u_DzF9Q1-c7hN8P7yX6P_t_N9sUS3_3v2e3SwrW0uaK26ta7U03EkQzNQdlzW1ne4EsLI410ZSaaiBacneWiOnZNq2NYBw4BgwfomuR-9jDE87SFltfbLQ93qAsEuKCdoUZYlZ0KsDujNb6NRj9Fsdn9X7HQqwGAEbQ0oRnLKHpDlq3ytK1GsFaqM-q0C9VqDGCorq1wfV-29HSZajBMoB9x6iStbDYKHzsdSluuCP0_35oLO9L93p_gGej5W9AEDxzqs |
CitedBy_id | crossref_primary_10_3390_s23063263 crossref_primary_10_1115_1_4064198 crossref_primary_10_1177_15280837241238446 crossref_primary_10_1186_s13690_023_01100_8 crossref_primary_10_1177_15459683241257519 crossref_primary_10_1002_mame_202200490 crossref_primary_10_1016_j_rh_2022_08_001 crossref_primary_10_1016_j_robot_2021_103828 crossref_primary_10_3389_fneur_2021_746263 crossref_primary_10_1186_s12984_024_01468_w crossref_primary_10_1017_wtc_2024_22 crossref_primary_10_1016_j_heliyon_2023_e13588 crossref_primary_10_1109_TII_2023_3348826 crossref_primary_10_1016_j_ijnsa_2022_100072 crossref_primary_10_1016_j_apmr_2024_08_015 crossref_primary_10_1109_TBME_2021_3111891 crossref_primary_10_1016_j_apmr_2024_05_018 crossref_primary_10_1038_s44287_024_00081_2 crossref_primary_10_1155_2022_3738219 crossref_primary_10_12680_balneo_2024_713 crossref_primary_10_1016_j_rineng_2023_101725 crossref_primary_10_1002_adma_202312340 crossref_primary_10_1017_wtc_2024_18 crossref_primary_10_3390_act12070299 crossref_primary_10_1017_wtc_2024_10 crossref_primary_10_1097_WCO_0000000000001328 |
Cites_doi | 10.3389/fbioe.2020.00111 10.1109/LRA.2019.2931607 10.5014/ajot.2019.030908 10.1161/STROKEAHA.110.588723 10.1016/S0140-6736(19)31055-4 10.1093/ageing/27.2.107 10.2340/16501977-2361 10.1089/soro.2017.0125 10.1186/s12955-015-0314-5 10.1177/1545968309338191 10.1191/0269215504cr711oa 10.1109/TNSRE.2008.2010347 10.1016/S1474-4422(14)70160-7 10.1016/j.jelekin.2013.07.007 10.3389/fneur.2013.00184 10.1186/s12984-015-0033-5 10.3109/09638288.2016.1163422 10.1016/j.jstrokecerebrovasdis.2019.03.006 10.1016/j.robot.2014.08.014 10.1016/j.apmr.2007.02.036 10.1038/ncpneuro0709 10.1097/MRR.0b013e328346e8ad 10.1161/01.STR.30.11.2369 10.1682/JRRD.2010.10.0210 10.1152/jn.91108.2008 10.1310/tsr1906-499 10.1186/1743-0003-11-3 10.1191/026921599677595404 10.1161/CIRCRESAHA.116.308413 10.3389/fnhum.2016.00442 10.1016/S1474-4422(09)70150-4 10.1155/2017/3908135 10.3233/NRE-2008-23304 10.1186/1743-0003-8-66 10.4103/digm.digm_3_19 10.1002/14651858.CD006876.pub3 10.2340/16501977-2205 10.1186/s12984-018-0350-6 10.1109/MRA.2007.339622 10.5535/arm.2015.39.5.752 10.3389/fnhum.2014.00129 10.1080/10749357.2017.1389021 10.1080/16501970600803252 10.1186/s12984-019-0537-5 10.1177/1545968306291858 10.1109/LRA.2017.2669366 10.1016/0003-9993(94)90130-9 10.1109/TNSRE.2017.2695379 10.1177/2055668320918130 10.1109/TBME.2020.2984003 10.1016/j.jstrokecerebrovasdis.2017.08.027 10.1002/oti.1403 10.1111/j.1749-6632.2012.06665.x 10.1097/MRR.0000000000000108 10.14474/ptrs.2019.8.2.93 10.3389/fnins.2017.00547 10.1161/STROKEAHA.109.572065 10.1046/j.1442-2018.2002.00123.x 10.1186/1743-0003-8-63 10.1186/s12984-019-0513-0 10.1016/j.rehab.2008.10.003 10.1093/geront/38.2.169 10.1186/s12984-020-00660-y 10.2522/ptj.20060029 10.1109/TNSRE.2016.2569070 10.1002/(SICI)1097-4598(200006)23:6<954::AID-MUS17>3.0.CO;2-0 10.2340/16501977-2530 10.1093/brain/awf091 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jstrokecerebrovasdis.2021.105812 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-8511 |
ExternalDocumentID | 33895427 10_1016_j_jstrokecerebrovasdis_2021_105812 S1052305721002159 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACIEU ACJTP ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AEVXI AFJKZ AFRHN AFTJW AFXBA AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM L7B M2W M41 MO0 N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEL SES SEW SNG SNH SPCBC SSH SSZ T5K X7M Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AISVY AJBFU AJOXV AMFUW EFLBG LCYCR NAHTW RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c471t-3ccf9a7b3f7e52b4d3741cdad5e21053ab717b1be60169cb7606994ee5fef2e23 |
IEDL.DBID | .~1 |
ISSN | 1052-3057 1532-8511 |
IngestDate | Mon Jul 21 09:39:49 EDT 2025 Thu Apr 03 07:08:50 EDT 2025 Tue Jul 01 03:13:33 EDT 2025 Thu Apr 24 23:01:59 EDT 2025 Fri Feb 23 02:44:39 EST 2024 Tue Aug 26 16:31:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Stroke rehabilitation Wearable exoskeletons Soft actuators Upper-extremity Soft-elastic composite actuators Soft robotic hand |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-3ccf9a7b3f7e52b4d3741cdad5e21053ab717b1be60169cb7606994ee5fef2e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9797-4992 0000-0002-9435-1244 0000-0001-6555-9938 0000-0003-4375-653X |
PMID | 33895427 |
PQID | 2518741427 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2518741427 pubmed_primary_33895427 crossref_citationtrail_10_1016_j_jstrokecerebrovasdis_2021_105812 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105812 elsevier_sciencedirect_doi_10_1016_j_jstrokecerebrovasdis_2021_105812 elsevier_clinicalkey_doi_10_1016_j_jstrokecerebrovasdis_2021_105812 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of stroke and cerebrovascular diseases |
PublicationTitleAlternate | J Stroke Cerebrovasc Dis |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Choi, Kang, Jung, Cho (bib0033) 2019; 4 Nijland, van Wegen, Harmeling-van der Wel, Kwakkel (bib0084) 2010; 41 Kim, Taub, Creelman, Cahalan, O'Dell, Stein (bib0086) 2019; 73 Canning, Ada, O'Dwyer (bib0007) 2000; 176 Bernocchi, Mulè, Vanoglio, Taveggia, Luisa, Scalvini (bib0065) 2018; 25 Suzuki, Ohyama, Yamada, Kanamori (bib0003) 2002; 4 Chen (bib0046) 2009 Hatem (bib0004) 2016; 10 Hu, Tong, Song, Zheng, Leung (bib0047) 2009; 23 Cho, Song (bib0075) 2019; 8 C. E. Proulx et al., "Review of the effects of soft robotic gloves for activity-based rehabilitation in individuals with reduced hand function and manual dexterity following a neurological event," vol. 7, p. 2055668320918130, 2020. P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, "A survey on robotic devices for upper limb rehabilitation," vol. 11, no. 1, p. 3, 2014. Bützer (bib0037) 2019 Meier, Rothen, Walter (bib0006) 2014; 8 Dobkin (bib0010) 2008; 4 Lambercy (bib0074) 2011; 8 Osuagwu (bib0082) 2020; 17 Hu, Tong, Wei, Rong, Susanto, Ho (bib0055) 2013 Turner, Murguialday, Birbaumer, Hoffmann, Luft (bib0089) 2013; 4 Chu, Patterson (bib0024) 2018; 15 Taub, Uswatte, Pidikiti (bib0012) 1999; 36 Hu, Tong, Wei, Rong, Susanto, Ho (bib0051) 2013; 23 Stock, Thrane, Askim, Anke, Mork (bib0085) 2019; 51 P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, "Soft robotic glove for combined assistance and at-home rehabilitation," vol. 73, pp. 135-143, 2015. Gitlin, Luborsky, Schemm (bib0030) 1998; 38 Belda-Lois (bib0022) 2011; 8 Heung, Tong, Lau, Li (bib0042) 2019; 6 Heung, Tang, Shi, Tong, Li (bib0045) 2020; 8 K. Moore, A. Dalley, and A. Agur, "Clinically oriented Anatomy. Philadelphia, Baltimore, New York London," ed: Oxford, Buenos Aires, Homg Kong, Sydney, Toronto: Lippincott Williams and …, 2010. Snickars, Persson, Sunnerhagen (bib0083) 2017; 49 Yue, Zhang, Wang (bib0025) 2017 R. J. Siegert, S. Lord, and K. Porter, "Constraint-induced movement therapy: time for a little restraint?," vol. 18, no. 1, pp. 110-114, 2004. Mehrholz, Hädrich, Platz, Kugler, Pohl (bib0079) 2012 Rodgers (bib0021) 2019; 394 Dovat (bib0027) 2008; 16 Howard, Goff (bib0005) 2012; 1268 Tang, Heung, Tong, Li (bib0043) 2019 H. L. Heung, Z. Q. Tang, X. Q. Shi, K. Y. Tong, and Z. Li, "Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation," vol. 8, p. 111, 2020. Zupko (bib0048) 1985 Chen, Tsai, Chung, Chen, Wu, Chen (bib0060) 2015; 13 Van der Lee, Wagenaar, Lankhorst, Vogelaar, Devillé, Bouter (bib0068) 1999; 30 Cram (bib0052) 1998 Woodbury, Velozo, Richards, Duncan, Studenski, Lai (bib0057) 2007; 88 (bib0001) 2018 Boake (bib0016) 2007; 21 Hsieh, Hsueh, Chiang, Lin (bib0058) 1998; 27 Koh (bib0062) 2006; 38 Thielbar (bib0076) 2016; 25 Huang, Naghdy, Naghdy, Du, Todd (bib0020) 2018; 27 K. B. Lee et al., "Six-month functional recovery of stroke patients: a multi-time-point study," vol. 38, no. 2, p. 173, 2015. McIntyre, Viana, Janzen, Mehta, Pereira, Teasell (bib0013) 2012; 19 Ho (bib0026) 2011 Feigin, Norrving, Mensah (bib0002) 2017; 120 Susanto, Tong, Ockenfeld, Ho (bib0028) 2015; 12 Zariffa (bib0023) 2011 X. Hu, K. Tong, X. Wei, W. Rong, E. Susanto, and S. Ho, "The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot," vol. 23, no. 5, pp. 1065-1074, 2013. Qiuyang (bib0019) 2019; 16 Peter, Fazekas, Zsiga, Dénes (bib0067) 2011; 34 Kamper, Rymer (bib0049) 2000; 23 Chen, Nichols, Brokaw, Lum (bib0077) 2017; 25 Cheng (bib0041) 2020; 67 Pandyan, Johnson, Price, Curless, Barnes, Rodgers (bib0063) 1999; 13 Oujamaa, Relave, Froger, Mottet, Pelissier (bib0011) 2009; 52 Page, Levine, Leonard, Szaflarski, Kissela (bib0070) 2008; 88 Ansari, Naghdi, Arab, Jalaie (bib0064) 2008; 23 Rosenthal (bib0073) 2019; 16 Yap, Lim, Nasrallah, Yeow (bib0040) 2017; 11 Kim, Won, Seo, Ko (bib0090) 2018; 50 J. H. Bae, S. H. Kang, K. M. Seo, D.-K. Kim, H. I. Shin, and H. E. Shin, "Relationship between grip and pinch strength and activities of daily living in stroke patients," vol. 39, no. 5, p. 752, 2015. Wolf (bib0014) 2010; 41 Kim, Kim, Lee (bib0066) 2016; 23 Tong (bib0056) 2010 Langhorne, Coupar, Pollock (bib0072) 2009; 8 Polygerinos (bib0034) 2013 Jiang, Chen, Que, Liu, Wang, Xu (bib0035) 2017 Kwakkel, Veerbeek, van Wegen, Wolf (bib0069) 2015; 14 Iwamoto (bib0009) 2019; 28 Milia (bib0038) 2019; 5 Dellon, Matsuoka (bib0031) 2007; 14 Heung, Tang, Ho, Tung, Li, Tong (bib0044) 2019 Lundquist, Maribo (bib0061) 2017; 39 Carey (bib0078) 2002; 125 Martins, Aguiar, Lara, Teixeira-Salmela, Faria (bib0081) 2015 Seo, Rymer, Kamper (bib0088) 2009; 101 Nuckols (bib0087) 2020 Yap (bib0032) 2017; 2 Yap, Lim, Nasrallah, Goh, Yeow (bib0036) 2015 J. Desrosiers, G. Bravo, R. Hébert, É. Dutil, and L. Mercier, "Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies," vol. 75, no. 7, pp. 751-755, 1994. Takeuchi, Izumi (bib0015) 2013; 2013 E. S. Abd Aziz, M. N. Kamarudin, and M. H. Jali, "Development and control design for linear actuated finger (LAF)," Malaysian Journal of Industrial Technology. Norouzi-Gheidari, Archambault, Fung (bib0091) 2012; 49 Bützer (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0037) 2019 Heung (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0044) 2019 Lundquist (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0061) 2017; 39 Yue (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0025) 2017 Kamper (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0049) 2000; 23 Milia (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0038) 2019; 5 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0029 Heung (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0045) 2020; 8 Cho (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0075) 2019; 8 Dellon (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0031) 2007; 14 Yap (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0040) 2017; 11 Boake (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0016) 2007; 21 Meier (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0006) 2014; 8 McIntyre (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0013) 2012; 19 Oujamaa (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0011) 2009; 52 Stock (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0085) 2019; 51 Chen (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0060) 2015; 13 Jiang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0035) 2017 Mehrholz (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0079) 2012 Chu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0024) 2018; 15 Carey (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0078) 2002; 125 Turner (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0089) 2013; 4 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0039 Peter (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0067) 2011; 34 Kim (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0090) 2018; 50 Norouzi-Gheidari (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0091) 2012; 49 Polygerinos (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0034) 2013 Feigin (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0002) 2017; 120 Cram (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0052) 1998 Woodbury (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0057) 2007; 88 Tang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0043) 2019 Hu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0047) 2009; 23 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0071 Kwakkel (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0069) 2015; 14 Canning (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0007) 2000; 176 Heung (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0042) 2019; 6 Yap (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0036) 2015 Seo (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0088) 2009; 101 Howard (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0005) 2012; 1268 Hatem (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0004) 2016; 10 Zupko (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0048) 1985 Bernocchi (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0065) 2018; 25 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0008 Iwamoto (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0009) 2019; 28 Qiuyang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0019) 2019; 16 Page (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0070) 2008; 88 Nuckols (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0087) 2020 Suzuki (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0003) 2002; 4 Wolf (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0014) 2010; 41 Dovat (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0027) 2008; 16 Choi (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0033) 2019; 4 Hu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0051) 2013; 23 Van der Lee (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0068) 1999; 30 Belda-Lois (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0022) 2011; 8 Langhorne (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0072) 2009; 8 Snickars (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0083) 2017; 49 Koh (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0062) 2006; 38 Ho (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0026) 2011 Rodgers (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0021) 2019; 394 Cheng (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0041) 2020; 67 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0080 Nijland (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0084) 2010; 41 (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0001) 2018 Hsieh (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0058) 1998; 27 Susanto (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0028) 2015; 12 Rosenthal (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0073) 2019; 16 Lambercy (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0074) 2011; 8 Zariffa (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0023) 2011 Chen (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0046) 2009 Yap (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0032) 2017; 2 Dobkin (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0010) 2008; 4 Martins (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0081) 2015 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0017 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0018 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0059 Osuagwu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0082) 2020; 17 Ansari (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0064) 2008; 23 Tong (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0056) 2010 Kim (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0086) 2019; 73 Taub (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0012) 1999; 36 Gitlin (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0030) 1998; 38 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0053 Huang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0020) 2018; 27 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0054 Takeuchi (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0015) 2013; 2013 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0050 Hu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0055) 2013 Kim (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0066) 2016; 23 Chen (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0077) 2017; 25 Thielbar (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0076) 2016; 25 Pandyan (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0063) 1999; 13 |
References_xml | – volume: 10 start-page: 442 year: 2016 ident: bib0004 article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery publication-title: Front Hum Neurosci – volume: 52 start-page: 269 year: 2009 end-page: 293 ident: bib0011 article-title: Rehabilitation of arm function after stroke. Literature review publication-title: Ann Phys Rehabil Med – volume: 88 start-page: 715 year: 2007 end-page: 723 ident: bib0057 article-title: Dimensionality and construct validity of the Fugl-Meyer Assessment of the upper extremity publication-title: Arch Phys Med Rehabil – volume: 8 start-page: 741 year: 2009 end-page: 754 ident: bib0072 article-title: Motor recovery after stroke: a systematic review publication-title: Lancet Neurol – volume: 38 start-page: 169 year: 1998 end-page: 180 ident: bib0030 article-title: Emerging concerns of older stroke patients about assistive device use publication-title: Gerontologist – volume: 73 year: 2019 ident: bib0086 article-title: Feasibility of an electromyography-triggered hand robot for people after chronic stroke publication-title: Am J Occup Ther – volume: 12 start-page: 42 year: 2015 ident: bib0028 article-title: Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial publication-title: J NeuroEng Rehabil – volume: 23 start-page: 231 year: 2008 end-page: 237 ident: bib0064 article-title: The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect publication-title: NeuroRehabilitation – start-page: 428 year: 2020 end-page: 433 ident: bib0087 article-title: Effects of a soft robotic glove using a high repetition protocol in chronic stroke: a pilot study publication-title: 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) – volume: 25 start-page: 297 year: 2016 end-page: 305 ident: bib0076 article-title: Benefits of using a voice and EMG-driven actuated glove to support occupational therapy for stroke survivors publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 2013 year: 2013 ident: bib0015 article-title: Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity publication-title: Stroke Res Treat – volume: 51 start-page: 248 year: 2019 end-page: 256 ident: bib0085 article-title: Development of grip strength during the first year after stroke publication-title: J Rehabil Med – volume: 38 start-page: 375 year: 2006 end-page: 380 ident: bib0062 article-title: Validation of the action research arm test using item response theory in patients after stroke publication-title: J Rehabil Med – year: 2017 ident: bib0025 article-title: Hand rehabilitation robotics on poststroke motor recovery publication-title: Behav Neurol – volume: 49 start-page: 216 year: 2017 end-page: 222 ident: bib0083 article-title: Early clinical predictors of motor function in the upper extremity one month post-stroke publication-title: J Rehabil Med – volume: 5 start-page: 62 year: 2019 ident: bib0038 article-title: Rehabilitation with robotic glove (Gloreha) in poststroke patients publication-title: Digit Med – reference: H. L. Heung, Z. Q. Tang, X. Q. Shi, K. Y. Tong, and Z. Li, "Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation," vol. 8, p. 111, 2020. – volume: 1268 start-page: 14 year: 2012 ident: bib0005 article-title: Population shifts and the future of stroke: forecasts of the future burden of stroke publication-title: Ann N Y Acad Sci – reference: P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, "Soft robotic glove for combined assistance and at-home rehabilitation," vol. 73, pp. 135-143, 2015. – volume: 23 start-page: 954 year: 2000 end-page: 961 ident: bib0049 article-title: Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke publication-title: Muscle Nerve – volume: 25 start-page: 114 year: 2018 end-page: 119 ident: bib0065 article-title: Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study publication-title: Top Stroke Rehabil – start-page: 817 year: 2017 end-page: 822 ident: bib0035 article-title: Soft robotic glove for hand rehabilitation based on a novel fabrication method publication-title: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) – volume: 67 start-page: 3339 year: 2020 end-page: 3351 ident: bib0041 article-title: Brain-computer interface-based soft robotic glove rehabilitation for stroke publication-title: IEEE Trans Biomed Eng – volume: 36 start-page: 237 year: 1999 end-page: 251 ident: bib0012 article-title: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation-a clinical review publication-title: J Rehab Res Dev – year: 2012 ident: bib0079 article-title: Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke publication-title: Cochrane Database Syst Rev – volume: 19 start-page: 499 year: 2012 end-page: 513 ident: bib0013 article-title: Systematic review and meta-analysis of constraint-induced movement therapy in the hemiparetic upper extremity more than six months post stroke publication-title: Top Stroke Rehabil – volume: 125 start-page: 773 year: 2002 end-page: 788 ident: bib0078 article-title: Analysis of fMRI and finger tracking training in subjects with chronic stroke publication-title: Brain – start-page: 1 year: 2011 end-page: 5 ident: bib0026 article-title: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation publication-title: 2011 IEEE international conference on rehabilitation robotics – reference: C. E. Proulx et al., "Review of the effects of soft robotic gloves for activity-based rehabilitation in individuals with reduced hand function and manual dexterity following a neurological event," vol. 7, p. 2055668320918130, 2020. – volume: 15 start-page: 9 year: 2018 ident: bib0024 article-title: Soft robotic devices for hand rehabilitation and assistance: a narrative review publication-title: J NeuroEng Rehabil – volume: 14 start-page: 30 year: 2007 end-page: 34 ident: bib0031 article-title: Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics] publication-title: IEEE Robot Autom Mag – volume: 88 start-page: 333 year: 2008 end-page: 340 ident: bib0070 article-title: Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial publication-title: Phys Ther – volume: 8 start-page: 63 year: 2011 ident: bib0074 article-title: Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study publication-title: J NeuroEng Rehabil – volume: 8 start-page: 129 year: 2014 ident: bib0006 article-title: Developmental aspects of synaesthesia across the adult lifespan publication-title: Front Hum Neurosci – start-page: 1 year: 2011 end-page: 5 ident: bib0023 article-title: Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population publication-title: 2011 IEEE International Conference on Rehabilitation Robotics – volume: 28 start-page: 2018 year: 2019 end-page: 2025 ident: bib0009 article-title: Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients publication-title: J Stroke Cerebrovasc Dis – volume: 16 start-page: 42 year: 2019 ident: bib0073 article-title: Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements–a pilot study publication-title: J NeuroEng Rehabil – year: 2015 ident: bib0081 article-title: Assessment of grip strength with the modified sphygmomanometer test: association between upper limb global strength and motor function publication-title: Ann Rehabil Med – volume: 120 start-page: 439 year: 2017 end-page: 448 ident: bib0002 article-title: Global burden of stroke publication-title: Circ Res – volume: 41 start-page: 2309 year: 2010 end-page: 2315 ident: bib0014 article-title: The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy publication-title: Stroke – volume: 6 start-page: 289 year: 2019 end-page: 304 ident: bib0042 article-title: Robotic glove with soft-elastic composite actuators for assisting activities of daily living publication-title: Soft Robot – volume: 41 start-page: 745 year: 2010 end-page: 750 ident: bib0084 article-title: Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study publication-title: Stroke – volume: 50 start-page: 607 year: 2018 end-page: 612 ident: bib0090 article-title: Effects of newly developed compact robot-aided upper extremity training systems (neuro-X®) in patients with stroke: a pilot study publication-title: J Rehabil Med – volume: 394 start-page: 51 year: 2019 end-page: 62 ident: bib0021 article-title: Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial publication-title: Lancet N Am Ed – reference: K. B. Lee et al., "Six-month functional recovery of stroke patients: a multi-time-point study," vol. 38, no. 2, p. 173, 2015. – start-page: 3406 year: 2010 end-page: 3409 ident: bib0056 article-title: An intention driven hand functions task training robotic system publication-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology – volume: 16 start-page: 582 year: 2008 end-page: 591 ident: bib0027 article-title: HandCARE: a cable-actuated rehabilitation system to train hand function after stroke publication-title: IEEE Trans Neural Syst Rehabil Eng – reference: K. Moore, A. Dalley, and A. Agur, "Clinically oriented Anatomy. Philadelphia, Baltimore, New York London," ed: Oxford, Buenos Aires, Homg Kong, Sydney, Toronto: Lippincott Williams and …, 2010. – volume: 4 start-page: 4499 year: 2019 end-page: 4506 ident: bib0033 article-title: Exo-Wrist: a soft tendon-driven wrist-wearable robot with active anchor for dart-throwing motion in hemiplegic patients publication-title: IEEE Robot Autom Lett – volume: 27 start-page: 107 year: 1998 end-page: 113 ident: bib0058 article-title: Inter-rater reliability and validity of the action research arm test in stroke patients publication-title: Age Ageing – volume: 2 start-page: 1383 year: 2017 end-page: 1390 ident: bib0032 article-title: A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients publication-title: IEEE Robot Autom Lett – volume: 23 start-page: 837 year: 2009 end-page: 846 ident: bib0047 article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke publication-title: Neurorehabil Neural Repair – start-page: 108 year: 2019 end-page: 114 ident: bib0037 article-title: PEXO-A pediatric whole hand exoskeleton for grasping assistance in task-oriented training publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) – volume: 4 start-page: 155 year: 2002 end-page: 161 ident: bib0003 article-title: The relationship between fear of falling, activities of daily living and quality of life among elderly individuals publication-title: Nurs Health Sci – volume: 8 start-page: 66 year: 2011 ident: bib0022 article-title: Rehabilitation of gait after stroke: a review towards a top-down approach publication-title: J NeuroEng Rehabi – reference: R. J. Siegert, S. Lord, and K. Porter, "Constraint-induced movement therapy: time for a little restraint?," vol. 18, no. 1, pp. 110-114, 2004. – volume: 39 start-page: 934 year: 2017 end-page: 939 ident: bib0061 article-title: The Fugl–Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version publication-title: Disabil Rehabil – volume: 23 start-page: 39 year: 2016 end-page: 47 ident: bib0066 article-title: Effects of action observational training plus brain–computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial publication-title: Occup Ther Int – volume: 16 start-page: 64 year: 2019 ident: bib0019 article-title: Distal versus proximal-an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial publication-title: J NeuroEng Rehabil – volume: 13 start-page: 118 year: 2015 ident: bib0060 article-title: Potential predictors for health-related quality of life in stroke patients undergoing inpatient rehabilitation publication-title: Health Qual Life Outcomes – volume: 21 start-page: 14 year: 2007 end-page: 24 ident: bib0016 article-title: Constraint-induced movement therapy during early stroke rehabilitation publication-title: Neurorehabil Neural Repair – volume: 14 start-page: 224 year: 2015 end-page: 234 ident: bib0069 article-title: Constraint-induced movement therapy after stroke publication-title: Lancet Neurol – volume: 11 start-page: 547 year: 2017 ident: bib0040 article-title: Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors publication-title: Front Neurosci – start-page: 65 year: 2019 end-page: 70 ident: bib0044 article-title: Design of a 3D printed soft robotic hand for stroke rehabilitation and daily activities assistance publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) – start-page: 777 year: 2009 end-page: 780 ident: bib0046 article-title: Interactive rehabilitation robot for hand function training publication-title: 2009 IEEE International Conference on Rehabilitation Robotics – volume: 4 start-page: 76 year: 2008 end-page: 85 ident: bib0010 article-title: Training and exercise to drive poststroke recovery publication-title: Nat Clin Pract Neurol – start-page: 1512 year: 2013 end-page: 1517 ident: bib0034 article-title: Towards a soft pneumatic glove for hand rehabilitation publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 8 start-page: 111 year: 2020 ident: bib0045 article-title: Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation publication-title: Front Bioeng Biotechnol – start-page: 5903 year: 2013 end-page: 5906 ident: bib0055 article-title: Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 101 start-page: 3108 year: 2009 end-page: 3115 ident: bib0088 article-title: Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise publication-title: J Neurophysiol – volume: 23 start-page: 1065 year: 2013 end-page: 1074 ident: bib0051 article-title: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot publication-title: J Electromyogr Kinesiol – volume: 49 start-page: 479 year: 2012 end-page: 496 ident: bib0091 article-title: Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature publication-title: J Rehabil Res Dev – volume: 17 start-page: 1 year: 2020 end-page: 15 ident: bib0082 article-title: Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury: a pilot study publication-title: J NeuroEng Rehabil – start-page: 4967 year: 2015 end-page: 4972 ident: bib0036 article-title: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness publication-title: 2015 IEEE international conference on robotics and automation (ICRA) – year: 1985 ident: bib0048 article-title: A Dictionary of Weights and Measures for the British Isles: the Middle Ages to the Twentieth Century – volume: 176 start-page: 45 year: 2000 end-page: 56 ident: bib0007 article-title: Abnormal muscle activation characteristics associated with loss of dexterity after stroke publication-title: J Eeurol Sci – volume: 34 start-page: 196 year: 2011 end-page: 202 ident: bib0067 article-title: Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials publication-title: Int J Rehabil Res – reference: P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, "A survey on robotic devices for upper limb rehabilitation," vol. 11, no. 1, p. 3, 2014. – year: 1998 ident: bib0052 article-title: Introduction to Surface Electromyography – volume: 4 start-page: 184 year: 2013 ident: bib0089 article-title: Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations publication-title: Front Neurol – reference: X. Hu, K. Tong, X. Wei, W. Rong, E. Susanto, and S. Ho, "The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot," vol. 23, no. 5, pp. 1065-1074, 2013. – volume: 13 start-page: 373 year: 1999 end-page: 383 ident: bib0063 article-title: A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity publication-title: Clin Rehabil – reference: J. Desrosiers, G. Bravo, R. Hébert, É. Dutil, and L. Mercier, "Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies," vol. 75, no. 7, pp. 751-755, 1994. – volume: 25 start-page: 2305 year: 2017 end-page: 2312 ident: bib0077 article-title: Home-based therapy after stroke using the hand spring operated movement enhancer (HandSOME) publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 27 start-page: 221 year: 2018 end-page: 228 ident: bib0020 article-title: The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study publication-title: J Stroke Cerebrovasc Dis – volume: 30 start-page: 2369 year: 1999 end-page: 2375 ident: bib0068 article-title: Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial publication-title: Stroke – reference: E. S. Abd Aziz, M. N. Kamarudin, and M. H. Jali, "Development and control design for linear actuated finger (LAF)," Malaysian Journal of Industrial Technology. – year: 2018 ident: bib0001 publication-title: Stroke – reference: J. H. Bae, S. H. Kang, K. M. Seo, D.-K. Kim, H. I. Shin, and H. E. Shin, "Relationship between grip and pinch strength and activities of daily living in stroke patients," vol. 39, no. 5, p. 752, 2015. – volume: 8 start-page: 93 year: 2019 end-page: 98 ident: bib0075 article-title: Effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors: a preliminary study publication-title: Phys Ther Rehabil Sci – year: 2019 ident: bib0043 article-title: Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system publication-title: Int J Robot Res – volume: 2013 year: 2013 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0015 article-title: Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity publication-title: Stroke Res Treat – start-page: 1 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0026 article-title: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0053 – volume: 8 start-page: 111 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0045 article-title: Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00111 – volume: 4 start-page: 4499 issue: 4 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0033 article-title: Exo-Wrist: a soft tendon-driven wrist-wearable robot with active anchor for dart-throwing motion in hemiplegic patients publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2019.2931607 – volume: 73 issue: 4 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0086 article-title: Feasibility of an electromyography-triggered hand robot for people after chronic stroke publication-title: Am J Occup Ther doi: 10.5014/ajot.2019.030908 – volume: 41 start-page: 2309 issue: 10 year: 2010 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0014 article-title: The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy publication-title: Stroke doi: 10.1161/STROKEAHA.110.588723 – volume: 394 start-page: 51 issue: 10192 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0021 article-title: Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial publication-title: Lancet N Am Ed doi: 10.1016/S0140-6736(19)31055-4 – volume: 27 start-page: 107 issue: 2 year: 1998 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0058 article-title: Inter-rater reliability and validity of the action research arm test in stroke patients publication-title: Age Ageing doi: 10.1093/ageing/27.2.107 – volume: 50 start-page: 607 issue: 7 year: 2018 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0090 article-title: Effects of newly developed compact robot-aided upper extremity training systems (neuro-X®) in patients with stroke: a pilot study publication-title: J Rehabil Med doi: 10.2340/16501977-2361 – volume: 6 start-page: 289 issue: 2 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0042 article-title: Robotic glove with soft-elastic composite actuators for assisting activities of daily living publication-title: Soft Robot doi: 10.1089/soro.2017.0125 – volume: 13 start-page: 118 issue: 1 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0060 article-title: Potential predictors for health-related quality of life in stroke patients undergoing inpatient rehabilitation publication-title: Health Qual Life Outcomes doi: 10.1186/s12955-015-0314-5 – volume: 23 start-page: 837 issue: 8 year: 2009 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0047 article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968309338191 – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0071 doi: 10.1191/0269215504cr711oa – start-page: 4967 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0036 article-title: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness – volume: 16 start-page: 582 issue: 6 year: 2008 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0027 article-title: HandCARE: a cable-actuated rehabilitation system to train hand function after stroke publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2008.2010347 – start-page: 108 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0037 article-title: PEXO-A pediatric whole hand exoskeleton for grasping assistance in task-oriented training – volume: 14 start-page: 224 issue: 2 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0069 article-title: Constraint-induced movement therapy after stroke publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70160-7 – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0054 doi: 10.1016/j.jelekin.2013.07.007 – volume: 4 start-page: 184 year: 2013 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0089 article-title: Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations publication-title: Front Neurol doi: 10.3389/fneur.2013.00184 – year: 2018 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0001 publication-title: Stroke – volume: 12 start-page: 42 issue: 1 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0028 article-title: Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-015-0033-5 – volume: 39 start-page: 934 issue: 9 year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0061 article-title: The Fugl–Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version publication-title: Disabil Rehabil doi: 10.3109/09638288.2016.1163422 – year: 1998 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0052 – volume: 28 start-page: 2018 issue: 7 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0009 article-title: Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2019.03.006 – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0017 doi: 10.1016/j.robot.2014.08.014 – volume: 23 start-page: 1065 issue: 5 year: 2013 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0051 article-title: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2013.07.007 – year: 1985 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0048 – volume: 88 start-page: 715 issue: 6 year: 2007 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0057 article-title: Dimensionality and construct validity of the Fugl-Meyer Assessment of the upper extremity publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2007.02.036 – volume: 4 start-page: 76 issue: 2 year: 2008 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0010 article-title: Training and exercise to drive poststroke recovery publication-title: Nat Clin Pract Neurol doi: 10.1038/ncpneuro0709 – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0050 doi: 10.3389/fbioe.2020.00111 – volume: 34 start-page: 196 issue: 3 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0067 article-title: Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials publication-title: Int J Rehabil Res doi: 10.1097/MRR.0b013e328346e8ad – volume: 30 start-page: 2369 issue: 11 year: 1999 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0068 article-title: Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial publication-title: Stroke doi: 10.1161/01.STR.30.11.2369 – volume: 49 start-page: 479 issue: 4 year: 2012 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0091 article-title: Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2010.10.0210 – start-page: 1512 year: 2013 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0034 article-title: Towards a soft pneumatic glove for hand rehabilitation – volume: 101 start-page: 3108 issue: 6 year: 2009 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0088 article-title: Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise publication-title: J Neurophysiol doi: 10.1152/jn.91108.2008 – volume: 19 start-page: 499 issue: 6 year: 2012 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0013 article-title: Systematic review and meta-analysis of constraint-induced movement therapy in the hemiparetic upper extremity more than six months post stroke publication-title: Top Stroke Rehabil doi: 10.1310/tsr1906-499 – issue: AHEAD year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0081 article-title: Assessment of grip strength with the modified sphygmomanometer test: association between upper limb global strength and motor function publication-title: Ann Rehabil Med – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0018 doi: 10.1186/1743-0003-11-3 – volume: 13 start-page: 373 issue: 5 year: 1999 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0063 article-title: A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity publication-title: Clin Rehabil doi: 10.1191/026921599677595404 – start-page: 3406 year: 2010 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0056 article-title: An intention driven hand functions task training robotic system – volume: 120 start-page: 439 issue: 3 year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0002 article-title: Global burden of stroke publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.308413 – start-page: 428 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0087 article-title: Effects of a soft robotic glove using a high repetition protocol in chronic stroke: a pilot study – volume: 10 start-page: 442 year: 2016 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0004 article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2016.00442 – volume: 8 start-page: 741 issue: 8 year: 2009 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0072 article-title: Motor recovery after stroke: a systematic review publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70150-4 – year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0025 article-title: Hand rehabilitation robotics on poststroke motor recovery publication-title: Behav Neurol doi: 10.1155/2017/3908135 – start-page: 65 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0044 article-title: Design of a 3D printed soft robotic hand for stroke rehabilitation and daily activities assistance – volume: 23 start-page: 231 issue: 3 year: 2008 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0064 article-title: The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect publication-title: NeuroRehabilitation doi: 10.3233/NRE-2008-23304 – volume: 8 start-page: 66 issue: 1 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0022 article-title: Rehabilitation of gait after stroke: a review towards a top-down approach publication-title: J NeuroEng Rehabi doi: 10.1186/1743-0003-8-66 – start-page: 777 year: 2009 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0046 article-title: Interactive rehabilitation robot for hand function training – volume: 5 start-page: 62 issue: 2 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0038 article-title: Rehabilitation with robotic glove (Gloreha) in poststroke patients publication-title: Digit Med doi: 10.4103/digm.digm_3_19 – issue: 6 year: 2012 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0079 article-title: Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke publication-title: Cochrane Database Syst Rev doi: 10.1002/14651858.CD006876.pub3 – volume: 49 start-page: 216 issue: 3 year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0083 article-title: Early clinical predictors of motor function in the upper extremity one month post-stroke publication-title: J Rehabil Med doi: 10.2340/16501977-2205 – volume: 15 start-page: 9 issue: 1 year: 2018 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0024 article-title: Soft robotic devices for hand rehabilitation and assistance: a narrative review publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-018-0350-6 – volume: 14 start-page: 30 issue: 1 year: 2007 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0031 article-title: Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics] publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2007.339622 – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0080 doi: 10.5535/arm.2015.39.5.752 – year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0043 article-title: Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system publication-title: Int J Robot Res – volume: 8 start-page: 129 year: 2014 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0006 article-title: Developmental aspects of synaesthesia across the adult lifespan publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00129 – volume: 176 start-page: 45 issue: 1 year: 2000 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0007 article-title: Abnormal muscle activation characteristics associated with loss of dexterity after stroke publication-title: J Eeurol Sci – volume: 25 start-page: 114 issue: 2 year: 2018 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0065 article-title: Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study publication-title: Top Stroke Rehabil doi: 10.1080/10749357.2017.1389021 – volume: 38 start-page: 375 issue: 6 year: 2006 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0062 article-title: Validation of the action research arm test using item response theory in patients after stroke publication-title: J Rehabil Med doi: 10.1080/16501970600803252 – volume: 16 start-page: 64 issue: 1 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0019 article-title: Distal versus proximal-an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-019-0537-5 – volume: 21 start-page: 14 issue: 1 year: 2007 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0016 article-title: Constraint-induced movement therapy during early stroke rehabilitation publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968306291858 – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0029 – volume: 2 start-page: 1383 issue: 3 year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0032 article-title: A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2017.2669366 – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0059 doi: 10.1016/0003-9993(94)90130-9 – volume: 25 start-page: 2305 issue: 12 year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0077 article-title: Home-based therapy after stroke using the hand spring operated movement enhancer (HandSOME) publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2017.2695379 – volume: 36 start-page: 237 issue: 3 year: 1999 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0012 article-title: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation-a clinical review publication-title: J Rehab Res Dev – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0039 doi: 10.1177/2055668320918130 – volume: 67 start-page: 3339 issue: 12 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0041 article-title: Brain-computer interface-based soft robotic glove rehabilitation for stroke publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2020.2984003 – volume: 27 start-page: 221 issue: 1 year: 2018 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0020 article-title: The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2017.08.027 – volume: 23 start-page: 39 issue: 1 year: 2016 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0066 article-title: Effects of action observational training plus brain–computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial publication-title: Occup Ther Int doi: 10.1002/oti.1403 – start-page: 817 year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0035 article-title: Soft robotic glove for hand rehabilitation based on a novel fabrication method – volume: 1268 start-page: 14 year: 2012 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0005 article-title: Population shifts and the future of stroke: forecasts of the future burden of stroke publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2012.06665.x – start-page: 5903 year: 2013 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0055 article-title: Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke – ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0008 doi: 10.1097/MRR.0000000000000108 – start-page: 1 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0023 article-title: Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population – volume: 8 start-page: 93 issue: 2 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0075 article-title: Effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors: a preliminary study publication-title: Phys Ther Rehabil Sci doi: 10.14474/ptrs.2019.8.2.93 – volume: 11 start-page: 547 year: 2017 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0040 article-title: Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors publication-title: Front Neurosci doi: 10.3389/fnins.2017.00547 – volume: 41 start-page: 745 issue: 4 year: 2010 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0084 article-title: Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study publication-title: Stroke doi: 10.1161/STROKEAHA.109.572065 – volume: 4 start-page: 155 issue: 4 year: 2002 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0003 article-title: The relationship between fear of falling, activities of daily living and quality of life among elderly individuals publication-title: Nurs Health Sci doi: 10.1046/j.1442-2018.2002.00123.x – volume: 8 start-page: 63 issue: 1 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0074 article-title: Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study publication-title: J NeuroEng Rehabil doi: 10.1186/1743-0003-8-63 – volume: 16 start-page: 42 issue: 1 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0073 article-title: Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements–a pilot study publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-019-0513-0 – volume: 52 start-page: 269 issue: 3 year: 2009 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0011 article-title: Rehabilitation of arm function after stroke. Literature review publication-title: Ann Phys Rehabil Med doi: 10.1016/j.rehab.2008.10.003 – volume: 38 start-page: 169 issue: 2 year: 1998 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0030 article-title: Emerging concerns of older stroke patients about assistive device use publication-title: Gerontologist doi: 10.1093/geront/38.2.169 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0082 article-title: Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury: a pilot study publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-020-00660-y – volume: 88 start-page: 333 issue: 3 year: 2008 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0070 article-title: Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial publication-title: Phys Ther doi: 10.2522/ptj.20060029 – volume: 25 start-page: 297 issue: 3 year: 2016 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0076 article-title: Benefits of using a voice and EMG-driven actuated glove to support occupational therapy for stroke survivors publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2569070 – volume: 23 start-page: 954 issue: 6 year: 2000 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0049 article-title: Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(200006)23:6<954::AID-MUS17>3.0.CO;2-0 – volume: 51 start-page: 248 issue: 4 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0085 article-title: Development of grip strength during the first year after stroke publication-title: J Rehabil Med doi: 10.2340/16501977-2530 – volume: 125 start-page: 773 issue: 4 year: 2002 ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0078 article-title: Analysis of fMRI and finger tracking training in subjects with chronic stroke publication-title: Brain doi: 10.1093/brain/awf091 |
SSID | ssj0011585 |
Score | 2.4131558 |
Snippet | Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105812 |
SubjectTerms | Soft actuators Soft robotic hand Soft-elastic composite actuators Stroke rehabilitation Upper-extremity Wearable exoskeletons |
Title | Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1052305721002159 https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105812 https://www.ncbi.nlm.nih.gov/pubmed/33895427 https://www.proquest.com/docview/2518741427 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LasJAcBAL0kvpu_YhW-ipkGqyu8bQk4hiW_SgFbyF3c0GtCWRqD322zubh0WoB6G3PCbDZDI7j-w8AB5oQ_BG4AWWwIDaYiEuKdF0Qgud4ZarlVCyYQqcB8Nmf8Jep3xagk5RC2PSKnPdn-n0VFvnV-o5N-uL2aw-ttM_mhxDmNRwmSI-xlwj5U_fmzQPdHjSsZwG2DLQFXj8zfGaL1dJ_KGVTjAANbmfwcy08HZsM_62ZTu7jNUuZzQ1Sr1jOMq9SdLOCD6Bko5OoTLI98vPYJQ1J16SOCSCjFHlklEsY4QmfREFBD3W7GC01bCbzCKSd80l45R2Ml6jTvmKk-U5THrd907fyqcoWAoNz8qiSoWecCUNXc0dyQKKToQKRMA1co5TITGik7bUaWMWJV0MaTyPac1DHTraoRdQjuJIXwFhaO7skFFXaZe1NPWYCloeGnwmuVTMq0K7YJevcorNpItPv8glm_t_sdw3LPczllfheYNjkTXc2OvpTvGV_KK0FJWhj_ZhLyzdDZYtYdwbz30hKD6uWrMVIyIdrxGIm1mINnPcKlxmErR5W4o-JMc71_9ExQ0cmrMsx_gWyqtkre_Qk1rJWrpUanDQfnnrD38ARlkjCg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED_mBPVF_HZ-RvBJKFubxK74NIbSqdvDpuBbSNIUptLKPvz7vbTpRNCHgW-lSY7rNbnfXXK5A7ikLclbSZR4Eh1qj6W4pOR1kHpoDLdDo6VWLXvBuT-4jp_Z_Qt_qUG3ugtjwyqd7i91eqGt3Zumk2bzYzxujvxiR5OjC1MAV7QCqzY7Fa_Daqf3EA8Whwk-Lypz2v6eHbAGV99hXq_T2SR_M9pM0Ae14Z_J2GbxDnxbAbftB3_h1V_2aIFLd1uw6QxK0il53oaayXZgre-OzHdhWOYnnpI8JZKMUOuSYa5y7E1imSUEjdbyYfgjZzcZZ8QlziWjgncymqNa-cwn0z14vrt96saeK6TgacSemUe1TiMZKpqGhgeKJRTtCJ3IhBsUHqdSoVOnfGWK3CxahejVRBEzhqcmDUxA96Ge5Zk5BMIQ8fyU0VCbkLUNjZhO2hFiPlNcaRY1oFOJS2jHsS128S6qcLJX8ZvIhRW5KEXegJsFjY8y58ZSo7vVXxLV7VLUhwIhYikqtwsqP-bj0nQuqokicOHa0xiZmXyOnbgth-izIGzAQTmDFl9L0Yzk2HL0T1ycw3r81H8Uj73BwzFs2JYy5PgE6rPJ3JyiYTVTZ27hfAEdWCW7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+a+Soft+Robotic+Hand+for+Hand+Rehabilitation+in+Chronic+Stroke+Survivors&rft.jtitle=Journal+of+stroke+and+cerebrovascular+diseases&rft.au=Shi%2C+Xiang+Qian&rft.au=Heung%2C+Ho+Lam&rft.au=Tang%2C+Zhi+Qiang&rft.au=Li%2C+Zheng&rft.date=2021-07-01&rft.eissn=1532-8511&rft.volume=30&rft.issue=7&rft.spage=105812&rft_id=info:doi/10.1016%2Fj.jstrokecerebrovasdis.2021.105812&rft_id=info%3Apmid%2F33895427&rft.externalDocID=33895427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-3057&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-3057&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-3057&client=summon |