Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors

Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity. Sixteen...

Full description

Saved in:
Bibliographic Details
Published inJournal of stroke and cerebrovascular diseases Vol. 30; no. 7; p. 105812
Main Authors Shi, Xiang Qian, Heung, Ho Lam, Tang, Zhi Qiang, Li, Zheng, Tong, Kai Yu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity. Sixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength. For all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase. EMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity.
AbstractList Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity.OBJECTIVESSoft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity.Sixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength.METHODSSixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength.For all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase.RESULTSFor all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase.EMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity.CONCLUSIONEMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity.
Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy of a soft robotic hand that could actively flex and extend the fingers in chronic stroke subjects with different levels of spasticity. Sixteen chronic stroke subjects were recruited into this single-group study. Subjects underwent 20 sessions of 1-hour EMG-driven soft robotic hand training. Training effect was evaluated by the pre-training and post-training assessments with the clinical scores: Action Research Arm Test(ARAT), Fugl-Meyer Assessment for Upper Extremity(FMA-UE), Box-and-Block test(BBT), Modified Ashworth Scale(MAS), and maximum voluntary grip strength. For all the recruited subjects (n = 16), significant improvement of upper limb function was generally observed in ARAT (increased mean=2.44, P = 0.032), FMA-UE (increased mean=3.31, P = 0.003), BBT (increased mean=1.81, P = 0.024), and maximum voluntary grip strength (increased mean=2.14 kg, P < 0.001). No significant change was observed in terms of spasticity with the MAS (decreased mean=0.11, P = 0.423). Further analysis showed subjects with mild or no finger flexor spasticity (MAS<2, n = 9) at pre-training had significant improvement of upper limb function after 20 sessions of training. However, for subjects with moderate and severe finger flexor spasticity (MAS=2,3, n = 7) at pre-training, no significant change in clinical scores was shown and only maximum voluntary grip strength had significant increase. EMG-driven rehabilitation training using the soft robotic hand with flexion and extension could be effective for the functional recovery of upper limb in chronic stroke subjects with mild or no spasticity.
ArticleNumber 105812
Author Li, Zheng
Tong, Kai Yu
Shi, Xiang Qian
Heung, Ho Lam
Tang, Zhi Qiang
Author_xml – sequence: 1
  givenname: Xiang Qian
  orcidid: 0000-0002-9435-1244
  surname: Shi
  fullname: Shi, Xiang Qian
  organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Ho Lam
  orcidid: 0000-0001-9797-4992
  surname: Heung
  fullname: Heung, Ho Lam
  organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Zhi Qiang
  orcidid: 0000-0001-6555-9938
  surname: Tang
  fullname: Tang, Zhi Qiang
  organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Department of Surgery, the Chinese University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Kai Yu
  orcidid: 0000-0003-4375-653X
  surname: Tong
  fullname: Tong, Kai Yu
  email: kytong@cuhk.edu.hk
  organization: Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33895427$$D View this record in MEDLINE/PubMed
BookMark eNqVkc1OGzEUhS1EVX7aV0BeokqT-mcczyxpFEirSJWSdm3ZnmvhMBmD7UTi7TFM2CA2WfkuPn2-554LdDqEARD6QcmEEjr9uZlsUo7hASxEMDHsdep8mjDCaAFEQ9kJOqeCs6oRlJ6WmQhWcSLkGbpIaUMIpaIRX9EZ500raibP0WruHNiccHBY43VwGa-CCdlbvNBDh12I47CCe21877POPgzYD3h2H8NQuPXbTni9i3u_DzF9Q1-c7hN8P7yX6P_t_N9sUS3_3v2e3SwrW0uaK26ta7U03EkQzNQdlzW1ne4EsLI410ZSaaiBacneWiOnZNq2NYBw4BgwfomuR-9jDE87SFltfbLQ93qAsEuKCdoUZYlZ0KsDujNb6NRj9Fsdn9X7HQqwGAEbQ0oRnLKHpDlq3ytK1GsFaqM-q0C9VqDGCorq1wfV-29HSZajBMoB9x6iStbDYKHzsdSluuCP0_35oLO9L93p_gGej5W9AEDxzqs
CitedBy_id crossref_primary_10_3390_s23063263
crossref_primary_10_1115_1_4064198
crossref_primary_10_1177_15280837241238446
crossref_primary_10_1186_s13690_023_01100_8
crossref_primary_10_1177_15459683241257519
crossref_primary_10_1002_mame_202200490
crossref_primary_10_1016_j_rh_2022_08_001
crossref_primary_10_1016_j_robot_2021_103828
crossref_primary_10_3389_fneur_2021_746263
crossref_primary_10_1186_s12984_024_01468_w
crossref_primary_10_1017_wtc_2024_22
crossref_primary_10_1016_j_heliyon_2023_e13588
crossref_primary_10_1109_TII_2023_3348826
crossref_primary_10_1016_j_ijnsa_2022_100072
crossref_primary_10_1016_j_apmr_2024_08_015
crossref_primary_10_1109_TBME_2021_3111891
crossref_primary_10_1016_j_apmr_2024_05_018
crossref_primary_10_1038_s44287_024_00081_2
crossref_primary_10_1155_2022_3738219
crossref_primary_10_12680_balneo_2024_713
crossref_primary_10_1016_j_rineng_2023_101725
crossref_primary_10_1002_adma_202312340
crossref_primary_10_1017_wtc_2024_18
crossref_primary_10_3390_act12070299
crossref_primary_10_1017_wtc_2024_10
crossref_primary_10_1097_WCO_0000000000001328
Cites_doi 10.3389/fbioe.2020.00111
10.1109/LRA.2019.2931607
10.5014/ajot.2019.030908
10.1161/STROKEAHA.110.588723
10.1016/S0140-6736(19)31055-4
10.1093/ageing/27.2.107
10.2340/16501977-2361
10.1089/soro.2017.0125
10.1186/s12955-015-0314-5
10.1177/1545968309338191
10.1191/0269215504cr711oa
10.1109/TNSRE.2008.2010347
10.1016/S1474-4422(14)70160-7
10.1016/j.jelekin.2013.07.007
10.3389/fneur.2013.00184
10.1186/s12984-015-0033-5
10.3109/09638288.2016.1163422
10.1016/j.jstrokecerebrovasdis.2019.03.006
10.1016/j.robot.2014.08.014
10.1016/j.apmr.2007.02.036
10.1038/ncpneuro0709
10.1097/MRR.0b013e328346e8ad
10.1161/01.STR.30.11.2369
10.1682/JRRD.2010.10.0210
10.1152/jn.91108.2008
10.1310/tsr1906-499
10.1186/1743-0003-11-3
10.1191/026921599677595404
10.1161/CIRCRESAHA.116.308413
10.3389/fnhum.2016.00442
10.1016/S1474-4422(09)70150-4
10.1155/2017/3908135
10.3233/NRE-2008-23304
10.1186/1743-0003-8-66
10.4103/digm.digm_3_19
10.1002/14651858.CD006876.pub3
10.2340/16501977-2205
10.1186/s12984-018-0350-6
10.1109/MRA.2007.339622
10.5535/arm.2015.39.5.752
10.3389/fnhum.2014.00129
10.1080/10749357.2017.1389021
10.1080/16501970600803252
10.1186/s12984-019-0537-5
10.1177/1545968306291858
10.1109/LRA.2017.2669366
10.1016/0003-9993(94)90130-9
10.1109/TNSRE.2017.2695379
10.1177/2055668320918130
10.1109/TBME.2020.2984003
10.1016/j.jstrokecerebrovasdis.2017.08.027
10.1002/oti.1403
10.1111/j.1749-6632.2012.06665.x
10.1097/MRR.0000000000000108
10.14474/ptrs.2019.8.2.93
10.3389/fnins.2017.00547
10.1161/STROKEAHA.109.572065
10.1046/j.1442-2018.2002.00123.x
10.1186/1743-0003-8-63
10.1186/s12984-019-0513-0
10.1016/j.rehab.2008.10.003
10.1093/geront/38.2.169
10.1186/s12984-020-00660-y
10.2522/ptj.20060029
10.1109/TNSRE.2016.2569070
10.1002/(SICI)1097-4598(200006)23:6<954::AID-MUS17>3.0.CO;2-0
10.2340/16501977-2530
10.1093/brain/awf091
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jstrokecerebrovasdis.2021.105812
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-8511
ExternalDocumentID 33895427
10_1016_j_jstrokecerebrovasdis_2021_105812
S1052305721002159
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACIEU
ACJTP
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEVXI
AFJKZ
AFRHN
AFTJW
AFXBA
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
L7B
M2W
M41
MO0
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SNG
SNH
SPCBC
SSH
SSZ
T5K
X7M
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AISVY
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NAHTW
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c471t-3ccf9a7b3f7e52b4d3741cdad5e21053ab717b1be60169cb7606994ee5fef2e23
IEDL.DBID .~1
ISSN 1052-3057
1532-8511
IngestDate Mon Jul 21 09:39:49 EDT 2025
Thu Apr 03 07:08:50 EDT 2025
Tue Jul 01 03:13:33 EDT 2025
Thu Apr 24 23:01:59 EDT 2025
Fri Feb 23 02:44:39 EST 2024
Tue Aug 26 16:31:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Stroke rehabilitation
Wearable exoskeletons
Soft actuators
Upper-extremity
Soft-elastic composite actuators
Soft robotic hand
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-3ccf9a7b3f7e52b4d3741cdad5e21053ab717b1be60169cb7606994ee5fef2e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9797-4992
0000-0002-9435-1244
0000-0001-6555-9938
0000-0003-4375-653X
PMID 33895427
PQID 2518741427
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2518741427
pubmed_primary_33895427
crossref_citationtrail_10_1016_j_jstrokecerebrovasdis_2021_105812
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105812
elsevier_sciencedirect_doi_10_1016_j_jstrokecerebrovasdis_2021_105812
elsevier_clinicalkey_doi_10_1016_j_jstrokecerebrovasdis_2021_105812
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of stroke and cerebrovascular diseases
PublicationTitleAlternate J Stroke Cerebrovasc Dis
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Choi, Kang, Jung, Cho (bib0033) 2019; 4
Nijland, van Wegen, Harmeling-van der Wel, Kwakkel (bib0084) 2010; 41
Kim, Taub, Creelman, Cahalan, O'Dell, Stein (bib0086) 2019; 73
Canning, Ada, O'Dwyer (bib0007) 2000; 176
Bernocchi, Mulè, Vanoglio, Taveggia, Luisa, Scalvini (bib0065) 2018; 25
Suzuki, Ohyama, Yamada, Kanamori (bib0003) 2002; 4
Chen (bib0046) 2009
Hatem (bib0004) 2016; 10
Hu, Tong, Song, Zheng, Leung (bib0047) 2009; 23
Cho, Song (bib0075) 2019; 8
C. E. Proulx et al., "Review of the effects of soft robotic gloves for activity-based rehabilitation in individuals with reduced hand function and manual dexterity following a neurological event," vol. 7, p. 2055668320918130, 2020.
P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, "A survey on robotic devices for upper limb rehabilitation," vol. 11, no. 1, p. 3, 2014.
Bützer (bib0037) 2019
Meier, Rothen, Walter (bib0006) 2014; 8
Dobkin (bib0010) 2008; 4
Lambercy (bib0074) 2011; 8
Osuagwu (bib0082) 2020; 17
Hu, Tong, Wei, Rong, Susanto, Ho (bib0055) 2013
Turner, Murguialday, Birbaumer, Hoffmann, Luft (bib0089) 2013; 4
Chu, Patterson (bib0024) 2018; 15
Taub, Uswatte, Pidikiti (bib0012) 1999; 36
Hu, Tong, Wei, Rong, Susanto, Ho (bib0051) 2013; 23
Stock, Thrane, Askim, Anke, Mork (bib0085) 2019; 51
P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, "Soft robotic glove for combined assistance and at-home rehabilitation," vol. 73, pp. 135-143, 2015.
Gitlin, Luborsky, Schemm (bib0030) 1998; 38
Belda-Lois (bib0022) 2011; 8
Heung, Tong, Lau, Li (bib0042) 2019; 6
Heung, Tang, Shi, Tong, Li (bib0045) 2020; 8
K. Moore, A. Dalley, and A. Agur, "Clinically oriented Anatomy. Philadelphia, Baltimore, New York London," ed: Oxford, Buenos Aires, Homg Kong, Sydney, Toronto: Lippincott Williams and …, 2010.
Snickars, Persson, Sunnerhagen (bib0083) 2017; 49
Yue, Zhang, Wang (bib0025) 2017
R. J. Siegert, S. Lord, and K. Porter, "Constraint-induced movement therapy: time for a little restraint?," vol. 18, no. 1, pp. 110-114, 2004.
Mehrholz, Hädrich, Platz, Kugler, Pohl (bib0079) 2012
Rodgers (bib0021) 2019; 394
Dovat (bib0027) 2008; 16
Howard, Goff (bib0005) 2012; 1268
Tang, Heung, Tong, Li (bib0043) 2019
H. L. Heung, Z. Q. Tang, X. Q. Shi, K. Y. Tong, and Z. Li, "Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation," vol. 8, p. 111, 2020.
Zupko (bib0048) 1985
Chen, Tsai, Chung, Chen, Wu, Chen (bib0060) 2015; 13
Van der Lee, Wagenaar, Lankhorst, Vogelaar, Devillé, Bouter (bib0068) 1999; 30
Cram (bib0052) 1998
Woodbury, Velozo, Richards, Duncan, Studenski, Lai (bib0057) 2007; 88
(bib0001) 2018
Boake (bib0016) 2007; 21
Hsieh, Hsueh, Chiang, Lin (bib0058) 1998; 27
Koh (bib0062) 2006; 38
Thielbar (bib0076) 2016; 25
Huang, Naghdy, Naghdy, Du, Todd (bib0020) 2018; 27
K. B. Lee et al., "Six-month functional recovery of stroke patients: a multi-time-point study," vol. 38, no. 2, p. 173, 2015.
McIntyre, Viana, Janzen, Mehta, Pereira, Teasell (bib0013) 2012; 19
Ho (bib0026) 2011
Feigin, Norrving, Mensah (bib0002) 2017; 120
Susanto, Tong, Ockenfeld, Ho (bib0028) 2015; 12
Zariffa (bib0023) 2011
X. Hu, K. Tong, X. Wei, W. Rong, E. Susanto, and S. Ho, "The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot," vol. 23, no. 5, pp. 1065-1074, 2013.
Qiuyang (bib0019) 2019; 16
Peter, Fazekas, Zsiga, Dénes (bib0067) 2011; 34
Kamper, Rymer (bib0049) 2000; 23
Chen, Nichols, Brokaw, Lum (bib0077) 2017; 25
Cheng (bib0041) 2020; 67
Pandyan, Johnson, Price, Curless, Barnes, Rodgers (bib0063) 1999; 13
Oujamaa, Relave, Froger, Mottet, Pelissier (bib0011) 2009; 52
Page, Levine, Leonard, Szaflarski, Kissela (bib0070) 2008; 88
Ansari, Naghdi, Arab, Jalaie (bib0064) 2008; 23
Rosenthal (bib0073) 2019; 16
Yap, Lim, Nasrallah, Yeow (bib0040) 2017; 11
Kim, Won, Seo, Ko (bib0090) 2018; 50
J. H. Bae, S. H. Kang, K. M. Seo, D.-K. Kim, H. I. Shin, and H. E. Shin, "Relationship between grip and pinch strength and activities of daily living in stroke patients," vol. 39, no. 5, p. 752, 2015.
Wolf (bib0014) 2010; 41
Kim, Kim, Lee (bib0066) 2016; 23
Tong (bib0056) 2010
Langhorne, Coupar, Pollock (bib0072) 2009; 8
Polygerinos (bib0034) 2013
Jiang, Chen, Que, Liu, Wang, Xu (bib0035) 2017
Kwakkel, Veerbeek, van Wegen, Wolf (bib0069) 2015; 14
Iwamoto (bib0009) 2019; 28
Milia (bib0038) 2019; 5
Dellon, Matsuoka (bib0031) 2007; 14
Heung, Tang, Ho, Tung, Li, Tong (bib0044) 2019
Lundquist, Maribo (bib0061) 2017; 39
Carey (bib0078) 2002; 125
Martins, Aguiar, Lara, Teixeira-Salmela, Faria (bib0081) 2015
Seo, Rymer, Kamper (bib0088) 2009; 101
Nuckols (bib0087) 2020
Yap (bib0032) 2017; 2
Yap, Lim, Nasrallah, Goh, Yeow (bib0036) 2015
J. Desrosiers, G. Bravo, R. Hébert, É. Dutil, and L. Mercier, "Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies," vol. 75, no. 7, pp. 751-755, 1994.
Takeuchi, Izumi (bib0015) 2013; 2013
E. S. Abd Aziz, M. N. Kamarudin, and M. H. Jali, "Development and control design for linear actuated finger (LAF)," Malaysian Journal of Industrial Technology.
Norouzi-Gheidari, Archambault, Fung (bib0091) 2012; 49
Bützer (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0037) 2019
Heung (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0044) 2019
Lundquist (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0061) 2017; 39
Yue (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0025) 2017
Kamper (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0049) 2000; 23
Milia (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0038) 2019; 5
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0029
Heung (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0045) 2020; 8
Cho (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0075) 2019; 8
Dellon (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0031) 2007; 14
Yap (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0040) 2017; 11
Boake (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0016) 2007; 21
Meier (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0006) 2014; 8
McIntyre (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0013) 2012; 19
Oujamaa (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0011) 2009; 52
Stock (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0085) 2019; 51
Chen (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0060) 2015; 13
Jiang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0035) 2017
Mehrholz (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0079) 2012
Chu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0024) 2018; 15
Carey (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0078) 2002; 125
Turner (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0089) 2013; 4
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0039
Peter (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0067) 2011; 34
Kim (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0090) 2018; 50
Norouzi-Gheidari (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0091) 2012; 49
Polygerinos (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0034) 2013
Feigin (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0002) 2017; 120
Cram (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0052) 1998
Woodbury (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0057) 2007; 88
Tang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0043) 2019
Hu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0047) 2009; 23
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0071
Kwakkel (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0069) 2015; 14
Canning (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0007) 2000; 176
Heung (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0042) 2019; 6
Yap (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0036) 2015
Seo (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0088) 2009; 101
Howard (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0005) 2012; 1268
Hatem (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0004) 2016; 10
Zupko (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0048) 1985
Bernocchi (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0065) 2018; 25
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0008
Iwamoto (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0009) 2019; 28
Qiuyang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0019) 2019; 16
Page (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0070) 2008; 88
Nuckols (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0087) 2020
Suzuki (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0003) 2002; 4
Wolf (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0014) 2010; 41
Dovat (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0027) 2008; 16
Choi (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0033) 2019; 4
Hu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0051) 2013; 23
Van der Lee (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0068) 1999; 30
Belda-Lois (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0022) 2011; 8
Langhorne (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0072) 2009; 8
Snickars (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0083) 2017; 49
Koh (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0062) 2006; 38
Ho (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0026) 2011
Rodgers (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0021) 2019; 394
Cheng (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0041) 2020; 67
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0080
Nijland (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0084) 2010; 41
(10.1016/j.jstrokecerebrovasdis.2021.105812_bib0001) 2018
Hsieh (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0058) 1998; 27
Susanto (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0028) 2015; 12
Rosenthal (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0073) 2019; 16
Lambercy (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0074) 2011; 8
Zariffa (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0023) 2011
Chen (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0046) 2009
Yap (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0032) 2017; 2
Dobkin (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0010) 2008; 4
Martins (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0081) 2015
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0017
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0018
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0059
Osuagwu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0082) 2020; 17
Ansari (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0064) 2008; 23
Tong (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0056) 2010
Kim (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0086) 2019; 73
Taub (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0012) 1999; 36
Gitlin (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0030) 1998; 38
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0053
Huang (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0020) 2018; 27
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0054
Takeuchi (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0015) 2013; 2013
10.1016/j.jstrokecerebrovasdis.2021.105812_bib0050
Hu (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0055) 2013
Kim (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0066) 2016; 23
Chen (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0077) 2017; 25
Thielbar (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0076) 2016; 25
Pandyan (10.1016/j.jstrokecerebrovasdis.2021.105812_bib0063) 1999; 13
References_xml – volume: 10
  start-page: 442
  year: 2016
  ident: bib0004
  article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery
  publication-title: Front Hum Neurosci
– volume: 52
  start-page: 269
  year: 2009
  end-page: 293
  ident: bib0011
  article-title: Rehabilitation of arm function after stroke. Literature review
  publication-title: Ann Phys Rehabil Med
– volume: 88
  start-page: 715
  year: 2007
  end-page: 723
  ident: bib0057
  article-title: Dimensionality and construct validity of the Fugl-Meyer Assessment of the upper extremity
  publication-title: Arch Phys Med Rehabil
– volume: 8
  start-page: 741
  year: 2009
  end-page: 754
  ident: bib0072
  article-title: Motor recovery after stroke: a systematic review
  publication-title: Lancet Neurol
– volume: 38
  start-page: 169
  year: 1998
  end-page: 180
  ident: bib0030
  article-title: Emerging concerns of older stroke patients about assistive device use
  publication-title: Gerontologist
– volume: 73
  year: 2019
  ident: bib0086
  article-title: Feasibility of an electromyography-triggered hand robot for people after chronic stroke
  publication-title: Am J Occup Ther
– volume: 12
  start-page: 42
  year: 2015
  ident: bib0028
  article-title: Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial
  publication-title: J NeuroEng Rehabil
– volume: 23
  start-page: 231
  year: 2008
  end-page: 237
  ident: bib0064
  article-title: The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect
  publication-title: NeuroRehabilitation
– start-page: 428
  year: 2020
  end-page: 433
  ident: bib0087
  article-title: Effects of a soft robotic glove using a high repetition protocol in chronic stroke: a pilot study
  publication-title: 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)
– volume: 25
  start-page: 297
  year: 2016
  end-page: 305
  ident: bib0076
  article-title: Benefits of using a voice and EMG-driven actuated glove to support occupational therapy for stroke survivors
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 2013
  year: 2013
  ident: bib0015
  article-title: Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity
  publication-title: Stroke Res Treat
– volume: 51
  start-page: 248
  year: 2019
  end-page: 256
  ident: bib0085
  article-title: Development of grip strength during the first year after stroke
  publication-title: J Rehabil Med
– volume: 38
  start-page: 375
  year: 2006
  end-page: 380
  ident: bib0062
  article-title: Validation of the action research arm test using item response theory in patients after stroke
  publication-title: J Rehabil Med
– year: 2017
  ident: bib0025
  article-title: Hand rehabilitation robotics on poststroke motor recovery
  publication-title: Behav Neurol
– volume: 49
  start-page: 216
  year: 2017
  end-page: 222
  ident: bib0083
  article-title: Early clinical predictors of motor function in the upper extremity one month post-stroke
  publication-title: J Rehabil Med
– volume: 5
  start-page: 62
  year: 2019
  ident: bib0038
  article-title: Rehabilitation with robotic glove (Gloreha) in poststroke patients
  publication-title: Digit Med
– reference: H. L. Heung, Z. Q. Tang, X. Q. Shi, K. Y. Tong, and Z. Li, "Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation," vol. 8, p. 111, 2020.
– volume: 1268
  start-page: 14
  year: 2012
  ident: bib0005
  article-title: Population shifts and the future of stroke: forecasts of the future burden of stroke
  publication-title: Ann N Y Acad Sci
– reference: P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, "Soft robotic glove for combined assistance and at-home rehabilitation," vol. 73, pp. 135-143, 2015.
– volume: 23
  start-page: 954
  year: 2000
  end-page: 961
  ident: bib0049
  article-title: Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke
  publication-title: Muscle Nerve
– volume: 25
  start-page: 114
  year: 2018
  end-page: 119
  ident: bib0065
  article-title: Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study
  publication-title: Top Stroke Rehabil
– start-page: 817
  year: 2017
  end-page: 822
  ident: bib0035
  article-title: Soft robotic glove for hand rehabilitation based on a novel fabrication method
  publication-title: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)
– volume: 67
  start-page: 3339
  year: 2020
  end-page: 3351
  ident: bib0041
  article-title: Brain-computer interface-based soft robotic glove rehabilitation for stroke
  publication-title: IEEE Trans Biomed Eng
– volume: 36
  start-page: 237
  year: 1999
  end-page: 251
  ident: bib0012
  article-title: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation-a clinical review
  publication-title: J Rehab Res Dev
– year: 2012
  ident: bib0079
  article-title: Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke
  publication-title: Cochrane Database Syst Rev
– volume: 19
  start-page: 499
  year: 2012
  end-page: 513
  ident: bib0013
  article-title: Systematic review and meta-analysis of constraint-induced movement therapy in the hemiparetic upper extremity more than six months post stroke
  publication-title: Top Stroke Rehabil
– volume: 125
  start-page: 773
  year: 2002
  end-page: 788
  ident: bib0078
  article-title: Analysis of fMRI and finger tracking training in subjects with chronic stroke
  publication-title: Brain
– start-page: 1
  year: 2011
  end-page: 5
  ident: bib0026
  article-title: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation
  publication-title: 2011 IEEE international conference on rehabilitation robotics
– reference: C. E. Proulx et al., "Review of the effects of soft robotic gloves for activity-based rehabilitation in individuals with reduced hand function and manual dexterity following a neurological event," vol. 7, p. 2055668320918130, 2020.
– volume: 15
  start-page: 9
  year: 2018
  ident: bib0024
  article-title: Soft robotic devices for hand rehabilitation and assistance: a narrative review
  publication-title: J NeuroEng Rehabil
– volume: 14
  start-page: 30
  year: 2007
  end-page: 34
  ident: bib0031
  article-title: Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics]
  publication-title: IEEE Robot Autom Mag
– volume: 88
  start-page: 333
  year: 2008
  end-page: 340
  ident: bib0070
  article-title: Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial
  publication-title: Phys Ther
– volume: 8
  start-page: 63
  year: 2011
  ident: bib0074
  article-title: Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study
  publication-title: J NeuroEng Rehabil
– volume: 8
  start-page: 129
  year: 2014
  ident: bib0006
  article-title: Developmental aspects of synaesthesia across the adult lifespan
  publication-title: Front Hum Neurosci
– start-page: 1
  year: 2011
  end-page: 5
  ident: bib0023
  article-title: Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population
  publication-title: 2011 IEEE International Conference on Rehabilitation Robotics
– volume: 28
  start-page: 2018
  year: 2019
  end-page: 2025
  ident: bib0009
  article-title: Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients
  publication-title: J Stroke Cerebrovasc Dis
– volume: 16
  start-page: 42
  year: 2019
  ident: bib0073
  article-title: Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements–a pilot study
  publication-title: J NeuroEng Rehabil
– year: 2015
  ident: bib0081
  article-title: Assessment of grip strength with the modified sphygmomanometer test: association between upper limb global strength and motor function
  publication-title: Ann Rehabil Med
– volume: 120
  start-page: 439
  year: 2017
  end-page: 448
  ident: bib0002
  article-title: Global burden of stroke
  publication-title: Circ Res
– volume: 41
  start-page: 2309
  year: 2010
  end-page: 2315
  ident: bib0014
  article-title: The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy
  publication-title: Stroke
– volume: 6
  start-page: 289
  year: 2019
  end-page: 304
  ident: bib0042
  article-title: Robotic glove with soft-elastic composite actuators for assisting activities of daily living
  publication-title: Soft Robot
– volume: 41
  start-page: 745
  year: 2010
  end-page: 750
  ident: bib0084
  article-title: Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study
  publication-title: Stroke
– volume: 50
  start-page: 607
  year: 2018
  end-page: 612
  ident: bib0090
  article-title: Effects of newly developed compact robot-aided upper extremity training systems (neuro-X®) in patients with stroke: a pilot study
  publication-title: J Rehabil Med
– volume: 394
  start-page: 51
  year: 2019
  end-page: 62
  ident: bib0021
  article-title: Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial
  publication-title: Lancet N Am Ed
– reference: K. B. Lee et al., "Six-month functional recovery of stroke patients: a multi-time-point study," vol. 38, no. 2, p. 173, 2015.
– start-page: 3406
  year: 2010
  end-page: 3409
  ident: bib0056
  article-title: An intention driven hand functions task training robotic system
  publication-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
– volume: 16
  start-page: 582
  year: 2008
  end-page: 591
  ident: bib0027
  article-title: HandCARE: a cable-actuated rehabilitation system to train hand function after stroke
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– reference: K. Moore, A. Dalley, and A. Agur, "Clinically oriented Anatomy. Philadelphia, Baltimore, New York London," ed: Oxford, Buenos Aires, Homg Kong, Sydney, Toronto: Lippincott Williams and …, 2010.
– volume: 4
  start-page: 4499
  year: 2019
  end-page: 4506
  ident: bib0033
  article-title: Exo-Wrist: a soft tendon-driven wrist-wearable robot with active anchor for dart-throwing motion in hemiplegic patients
  publication-title: IEEE Robot Autom Lett
– volume: 27
  start-page: 107
  year: 1998
  end-page: 113
  ident: bib0058
  article-title: Inter-rater reliability and validity of the action research arm test in stroke patients
  publication-title: Age Ageing
– volume: 2
  start-page: 1383
  year: 2017
  end-page: 1390
  ident: bib0032
  article-title: A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients
  publication-title: IEEE Robot Autom Lett
– volume: 23
  start-page: 837
  year: 2009
  end-page: 846
  ident: bib0047
  article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke
  publication-title: Neurorehabil Neural Repair
– start-page: 108
  year: 2019
  end-page: 114
  ident: bib0037
  article-title: PEXO-A pediatric whole hand exoskeleton for grasping assistance in task-oriented training
  publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
– volume: 4
  start-page: 155
  year: 2002
  end-page: 161
  ident: bib0003
  article-title: The relationship between fear of falling, activities of daily living and quality of life among elderly individuals
  publication-title: Nurs Health Sci
– volume: 8
  start-page: 66
  year: 2011
  ident: bib0022
  article-title: Rehabilitation of gait after stroke: a review towards a top-down approach
  publication-title: J NeuroEng Rehabi
– reference: R. J. Siegert, S. Lord, and K. Porter, "Constraint-induced movement therapy: time for a little restraint?," vol. 18, no. 1, pp. 110-114, 2004.
– volume: 39
  start-page: 934
  year: 2017
  end-page: 939
  ident: bib0061
  article-title: The Fugl–Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version
  publication-title: Disabil Rehabil
– volume: 23
  start-page: 39
  year: 2016
  end-page: 47
  ident: bib0066
  article-title: Effects of action observational training plus brain–computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial
  publication-title: Occup Ther Int
– volume: 16
  start-page: 64
  year: 2019
  ident: bib0019
  article-title: Distal versus proximal-an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial
  publication-title: J NeuroEng Rehabil
– volume: 13
  start-page: 118
  year: 2015
  ident: bib0060
  article-title: Potential predictors for health-related quality of life in stroke patients undergoing inpatient rehabilitation
  publication-title: Health Qual Life Outcomes
– volume: 21
  start-page: 14
  year: 2007
  end-page: 24
  ident: bib0016
  article-title: Constraint-induced movement therapy during early stroke rehabilitation
  publication-title: Neurorehabil Neural Repair
– volume: 14
  start-page: 224
  year: 2015
  end-page: 234
  ident: bib0069
  article-title: Constraint-induced movement therapy after stroke
  publication-title: Lancet Neurol
– volume: 11
  start-page: 547
  year: 2017
  ident: bib0040
  article-title: Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors
  publication-title: Front Neurosci
– start-page: 65
  year: 2019
  end-page: 70
  ident: bib0044
  article-title: Design of a 3D printed soft robotic hand for stroke rehabilitation and daily activities assistance
  publication-title: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
– start-page: 777
  year: 2009
  end-page: 780
  ident: bib0046
  article-title: Interactive rehabilitation robot for hand function training
  publication-title: 2009 IEEE International Conference on Rehabilitation Robotics
– volume: 4
  start-page: 76
  year: 2008
  end-page: 85
  ident: bib0010
  article-title: Training and exercise to drive poststroke recovery
  publication-title: Nat Clin Pract Neurol
– start-page: 1512
  year: 2013
  end-page: 1517
  ident: bib0034
  article-title: Towards a soft pneumatic glove for hand rehabilitation
  publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 8
  start-page: 111
  year: 2020
  ident: bib0045
  article-title: Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation
  publication-title: Front Bioeng Biotechnol
– start-page: 5903
  year: 2013
  end-page: 5906
  ident: bib0055
  article-title: Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke
  publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 101
  start-page: 3108
  year: 2009
  end-page: 3115
  ident: bib0088
  article-title: Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise
  publication-title: J Neurophysiol
– volume: 23
  start-page: 1065
  year: 2013
  end-page: 1074
  ident: bib0051
  article-title: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot
  publication-title: J Electromyogr Kinesiol
– volume: 49
  start-page: 479
  year: 2012
  end-page: 496
  ident: bib0091
  article-title: Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature
  publication-title: J Rehabil Res Dev
– volume: 17
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib0082
  article-title: Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury: a pilot study
  publication-title: J NeuroEng Rehabil
– start-page: 4967
  year: 2015
  end-page: 4972
  ident: bib0036
  article-title: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness
  publication-title: 2015 IEEE international conference on robotics and automation (ICRA)
– year: 1985
  ident: bib0048
  article-title: A Dictionary of Weights and Measures for the British Isles: the Middle Ages to the Twentieth Century
– volume: 176
  start-page: 45
  year: 2000
  end-page: 56
  ident: bib0007
  article-title: Abnormal muscle activation characteristics associated with loss of dexterity after stroke
  publication-title: J Eeurol Sci
– volume: 34
  start-page: 196
  year: 2011
  end-page: 202
  ident: bib0067
  article-title: Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials
  publication-title: Int J Rehabil Res
– reference: P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, "A survey on robotic devices for upper limb rehabilitation," vol. 11, no. 1, p. 3, 2014.
– year: 1998
  ident: bib0052
  article-title: Introduction to Surface Electromyography
– volume: 4
  start-page: 184
  year: 2013
  ident: bib0089
  article-title: Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations
  publication-title: Front Neurol
– reference: X. Hu, K. Tong, X. Wei, W. Rong, E. Susanto, and S. Ho, "The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot," vol. 23, no. 5, pp. 1065-1074, 2013.
– volume: 13
  start-page: 373
  year: 1999
  end-page: 383
  ident: bib0063
  article-title: A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity
  publication-title: Clin Rehabil
– reference: J. Desrosiers, G. Bravo, R. Hébert, É. Dutil, and L. Mercier, "Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies," vol. 75, no. 7, pp. 751-755, 1994.
– volume: 25
  start-page: 2305
  year: 2017
  end-page: 2312
  ident: bib0077
  article-title: Home-based therapy after stroke using the hand spring operated movement enhancer (HandSOME)
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 27
  start-page: 221
  year: 2018
  end-page: 228
  ident: bib0020
  article-title: The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study
  publication-title: J Stroke Cerebrovasc Dis
– volume: 30
  start-page: 2369
  year: 1999
  end-page: 2375
  ident: bib0068
  article-title: Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial
  publication-title: Stroke
– reference: E. S. Abd Aziz, M. N. Kamarudin, and M. H. Jali, "Development and control design for linear actuated finger (LAF)," Malaysian Journal of Industrial Technology.
– year: 2018
  ident: bib0001
  publication-title: Stroke
– reference: J. H. Bae, S. H. Kang, K. M. Seo, D.-K. Kim, H. I. Shin, and H. E. Shin, "Relationship between grip and pinch strength and activities of daily living in stroke patients," vol. 39, no. 5, p. 752, 2015.
– volume: 8
  start-page: 93
  year: 2019
  end-page: 98
  ident: bib0075
  article-title: Effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors: a preliminary study
  publication-title: Phys Ther Rehabil Sci
– year: 2019
  ident: bib0043
  article-title: Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system
  publication-title: Int J Robot Res
– volume: 2013
  year: 2013
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0015
  article-title: Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity
  publication-title: Stroke Res Treat
– start-page: 1
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0026
  article-title: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0053
– volume: 8
  start-page: 111
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0045
  article-title: Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00111
– volume: 4
  start-page: 4499
  issue: 4
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0033
  article-title: Exo-Wrist: a soft tendon-driven wrist-wearable robot with active anchor for dart-throwing motion in hemiplegic patients
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2019.2931607
– volume: 73
  issue: 4
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0086
  article-title: Feasibility of an electromyography-triggered hand robot for people after chronic stroke
  publication-title: Am J Occup Ther
  doi: 10.5014/ajot.2019.030908
– volume: 41
  start-page: 2309
  issue: 10
  year: 2010
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0014
  article-title: The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.588723
– volume: 394
  start-page: 51
  issue: 10192
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0021
  article-title: Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial
  publication-title: Lancet N Am Ed
  doi: 10.1016/S0140-6736(19)31055-4
– volume: 27
  start-page: 107
  issue: 2
  year: 1998
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0058
  article-title: Inter-rater reliability and validity of the action research arm test in stroke patients
  publication-title: Age Ageing
  doi: 10.1093/ageing/27.2.107
– volume: 50
  start-page: 607
  issue: 7
  year: 2018
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0090
  article-title: Effects of newly developed compact robot-aided upper extremity training systems (neuro-X®) in patients with stroke: a pilot study
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-2361
– volume: 6
  start-page: 289
  issue: 2
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0042
  article-title: Robotic glove with soft-elastic composite actuators for assisting activities of daily living
  publication-title: Soft Robot
  doi: 10.1089/soro.2017.0125
– volume: 13
  start-page: 118
  issue: 1
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0060
  article-title: Potential predictors for health-related quality of life in stroke patients undergoing inpatient rehabilitation
  publication-title: Health Qual Life Outcomes
  doi: 10.1186/s12955-015-0314-5
– volume: 23
  start-page: 837
  issue: 8
  year: 2009
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0047
  article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968309338191
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0071
  doi: 10.1191/0269215504cr711oa
– start-page: 4967
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0036
  article-title: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness
– volume: 16
  start-page: 582
  issue: 6
  year: 2008
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0027
  article-title: HandCARE: a cable-actuated rehabilitation system to train hand function after stroke
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2008.2010347
– start-page: 108
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0037
  article-title: PEXO-A pediatric whole hand exoskeleton for grasping assistance in task-oriented training
– volume: 14
  start-page: 224
  issue: 2
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0069
  article-title: Constraint-induced movement therapy after stroke
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70160-7
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0054
  doi: 10.1016/j.jelekin.2013.07.007
– volume: 4
  start-page: 184
  year: 2013
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0089
  article-title: Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations
  publication-title: Front Neurol
  doi: 10.3389/fneur.2013.00184
– year: 2018
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0001
  publication-title: Stroke
– volume: 12
  start-page: 42
  issue: 1
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0028
  article-title: Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/s12984-015-0033-5
– volume: 39
  start-page: 934
  issue: 9
  year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0061
  article-title: The Fugl–Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version
  publication-title: Disabil Rehabil
  doi: 10.3109/09638288.2016.1163422
– year: 1998
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0052
– volume: 28
  start-page: 2018
  issue: 7
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0009
  article-title: Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2019.03.006
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0017
  doi: 10.1016/j.robot.2014.08.014
– volume: 23
  start-page: 1065
  issue: 5
  year: 2013
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0051
  article-title: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2013.07.007
– year: 1985
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0048
– volume: 88
  start-page: 715
  issue: 6
  year: 2007
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0057
  article-title: Dimensionality and construct validity of the Fugl-Meyer Assessment of the upper extremity
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2007.02.036
– volume: 4
  start-page: 76
  issue: 2
  year: 2008
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0010
  article-title: Training and exercise to drive poststroke recovery
  publication-title: Nat Clin Pract Neurol
  doi: 10.1038/ncpneuro0709
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0050
  doi: 10.3389/fbioe.2020.00111
– volume: 34
  start-page: 196
  issue: 3
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0067
  article-title: Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials
  publication-title: Int J Rehabil Res
  doi: 10.1097/MRR.0b013e328346e8ad
– volume: 30
  start-page: 2369
  issue: 11
  year: 1999
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0068
  article-title: Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial
  publication-title: Stroke
  doi: 10.1161/01.STR.30.11.2369
– volume: 49
  start-page: 479
  issue: 4
  year: 2012
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0091
  article-title: Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.2010.10.0210
– start-page: 1512
  year: 2013
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0034
  article-title: Towards a soft pneumatic glove for hand rehabilitation
– volume: 101
  start-page: 3108
  issue: 6
  year: 2009
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0088
  article-title: Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise
  publication-title: J Neurophysiol
  doi: 10.1152/jn.91108.2008
– volume: 19
  start-page: 499
  issue: 6
  year: 2012
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0013
  article-title: Systematic review and meta-analysis of constraint-induced movement therapy in the hemiparetic upper extremity more than six months post stroke
  publication-title: Top Stroke Rehabil
  doi: 10.1310/tsr1906-499
– issue: AHEAD
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0081
  article-title: Assessment of grip strength with the modified sphygmomanometer test: association between upper limb global strength and motor function
  publication-title: Ann Rehabil Med
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0018
  doi: 10.1186/1743-0003-11-3
– volume: 13
  start-page: 373
  issue: 5
  year: 1999
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0063
  article-title: A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity
  publication-title: Clin Rehabil
  doi: 10.1191/026921599677595404
– start-page: 3406
  year: 2010
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0056
  article-title: An intention driven hand functions task training robotic system
– volume: 120
  start-page: 439
  issue: 3
  year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0002
  article-title: Global burden of stroke
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.308413
– start-page: 428
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0087
  article-title: Effects of a soft robotic glove using a high repetition protocol in chronic stroke: a pilot study
– volume: 10
  start-page: 442
  year: 2016
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0004
  article-title: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2016.00442
– volume: 8
  start-page: 741
  issue: 8
  year: 2009
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0072
  article-title: Motor recovery after stroke: a systematic review
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70150-4
– year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0025
  article-title: Hand rehabilitation robotics on poststroke motor recovery
  publication-title: Behav Neurol
  doi: 10.1155/2017/3908135
– start-page: 65
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0044
  article-title: Design of a 3D printed soft robotic hand for stroke rehabilitation and daily activities assistance
– volume: 23
  start-page: 231
  issue: 3
  year: 2008
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0064
  article-title: The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-2008-23304
– volume: 8
  start-page: 66
  issue: 1
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0022
  article-title: Rehabilitation of gait after stroke: a review towards a top-down approach
  publication-title: J NeuroEng Rehabi
  doi: 10.1186/1743-0003-8-66
– start-page: 777
  year: 2009
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0046
  article-title: Interactive rehabilitation robot for hand function training
– volume: 5
  start-page: 62
  issue: 2
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0038
  article-title: Rehabilitation with robotic glove (Gloreha) in poststroke patients
  publication-title: Digit Med
  doi: 10.4103/digm.digm_3_19
– issue: 6
  year: 2012
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0079
  article-title: Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke
  publication-title: Cochrane Database Syst Rev
  doi: 10.1002/14651858.CD006876.pub3
– volume: 49
  start-page: 216
  issue: 3
  year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0083
  article-title: Early clinical predictors of motor function in the upper extremity one month post-stroke
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-2205
– volume: 15
  start-page: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0024
  article-title: Soft robotic devices for hand rehabilitation and assistance: a narrative review
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/s12984-018-0350-6
– volume: 14
  start-page: 30
  issue: 1
  year: 2007
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0031
  article-title: Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics]
  publication-title: IEEE Robot Autom Mag
  doi: 10.1109/MRA.2007.339622
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0080
  doi: 10.5535/arm.2015.39.5.752
– year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0043
  article-title: Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system
  publication-title: Int J Robot Res
– volume: 8
  start-page: 129
  year: 2014
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0006
  article-title: Developmental aspects of synaesthesia across the adult lifespan
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00129
– volume: 176
  start-page: 45
  issue: 1
  year: 2000
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0007
  article-title: Abnormal muscle activation characteristics associated with loss of dexterity after stroke
  publication-title: J Eeurol Sci
– volume: 25
  start-page: 114
  issue: 2
  year: 2018
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0065
  article-title: Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study
  publication-title: Top Stroke Rehabil
  doi: 10.1080/10749357.2017.1389021
– volume: 38
  start-page: 375
  issue: 6
  year: 2006
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0062
  article-title: Validation of the action research arm test using item response theory in patients after stroke
  publication-title: J Rehabil Med
  doi: 10.1080/16501970600803252
– volume: 16
  start-page: 64
  issue: 1
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0019
  article-title: Distal versus proximal-an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/s12984-019-0537-5
– volume: 21
  start-page: 14
  issue: 1
  year: 2007
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0016
  article-title: Constraint-induced movement therapy during early stroke rehabilitation
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968306291858
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0029
– volume: 2
  start-page: 1383
  issue: 3
  year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0032
  article-title: A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2017.2669366
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0059
  doi: 10.1016/0003-9993(94)90130-9
– volume: 25
  start-page: 2305
  issue: 12
  year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0077
  article-title: Home-based therapy after stroke using the hand spring operated movement enhancer (HandSOME)
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2017.2695379
– volume: 36
  start-page: 237
  issue: 3
  year: 1999
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0012
  article-title: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation-a clinical review
  publication-title: J Rehab Res Dev
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0039
  doi: 10.1177/2055668320918130
– volume: 67
  start-page: 3339
  issue: 12
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0041
  article-title: Brain-computer interface-based soft robotic glove rehabilitation for stroke
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2020.2984003
– volume: 27
  start-page: 221
  issue: 1
  year: 2018
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0020
  article-title: The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2017.08.027
– volume: 23
  start-page: 39
  issue: 1
  year: 2016
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0066
  article-title: Effects of action observational training plus brain–computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial
  publication-title: Occup Ther Int
  doi: 10.1002/oti.1403
– start-page: 817
  year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0035
  article-title: Soft robotic glove for hand rehabilitation based on a novel fabrication method
– volume: 1268
  start-page: 14
  year: 2012
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0005
  article-title: Population shifts and the future of stroke: forecasts of the future burden of stroke
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2012.06665.x
– start-page: 5903
  year: 2013
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0055
  article-title: Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke
– ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0008
  doi: 10.1097/MRR.0000000000000108
– start-page: 1
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0023
  article-title: Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population
– volume: 8
  start-page: 93
  issue: 2
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0075
  article-title: Effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors: a preliminary study
  publication-title: Phys Ther Rehabil Sci
  doi: 10.14474/ptrs.2019.8.2.93
– volume: 11
  start-page: 547
  year: 2017
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0040
  article-title: Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00547
– volume: 41
  start-page: 745
  issue: 4
  year: 2010
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0084
  article-title: Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.572065
– volume: 4
  start-page: 155
  issue: 4
  year: 2002
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0003
  article-title: The relationship between fear of falling, activities of daily living and quality of life among elderly individuals
  publication-title: Nurs Health Sci
  doi: 10.1046/j.1442-2018.2002.00123.x
– volume: 8
  start-page: 63
  issue: 1
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0074
  article-title: Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/1743-0003-8-63
– volume: 16
  start-page: 42
  issue: 1
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0073
  article-title: Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements–a pilot study
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/s12984-019-0513-0
– volume: 52
  start-page: 269
  issue: 3
  year: 2009
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0011
  article-title: Rehabilitation of arm function after stroke. Literature review
  publication-title: Ann Phys Rehabil Med
  doi: 10.1016/j.rehab.2008.10.003
– volume: 38
  start-page: 169
  issue: 2
  year: 1998
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0030
  article-title: Emerging concerns of older stroke patients about assistive device use
  publication-title: Gerontologist
  doi: 10.1093/geront/38.2.169
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0082
  article-title: Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury: a pilot study
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/s12984-020-00660-y
– volume: 88
  start-page: 333
  issue: 3
  year: 2008
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0070
  article-title: Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial
  publication-title: Phys Ther
  doi: 10.2522/ptj.20060029
– volume: 25
  start-page: 297
  issue: 3
  year: 2016
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0076
  article-title: Benefits of using a voice and EMG-driven actuated glove to support occupational therapy for stroke survivors
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2569070
– volume: 23
  start-page: 954
  issue: 6
  year: 2000
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0049
  article-title: Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(200006)23:6<954::AID-MUS17>3.0.CO;2-0
– volume: 51
  start-page: 248
  issue: 4
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0085
  article-title: Development of grip strength during the first year after stroke
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-2530
– volume: 125
  start-page: 773
  issue: 4
  year: 2002
  ident: 10.1016/j.jstrokecerebrovasdis.2021.105812_bib0078
  article-title: Analysis of fMRI and finger tracking training in subjects with chronic stroke
  publication-title: Brain
  doi: 10.1093/brain/awf091
SSID ssj0011585
Score 2.4131558
Snippet Soft robotic hands are proposed for stroke rehabilitation in terms of their high compliance and low inherent stiffness. We investigated the clinical efficacy...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105812
SubjectTerms Soft actuators
Soft robotic hand
Soft-elastic composite actuators
Stroke rehabilitation
Upper-extremity
Wearable exoskeletons
Title Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1052305721002159
https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105812
https://www.ncbi.nlm.nih.gov/pubmed/33895427
https://www.proquest.com/docview/2518741427
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LasJAcBAL0kvpu_YhW-ipkGqyu8bQk4hiW_SgFbyF3c0GtCWRqD322zubh0WoB6G3PCbDZDI7j-w8AB5oQ_BG4AWWwIDaYiEuKdF0Qgud4ZarlVCyYQqcB8Nmf8Jep3xagk5RC2PSKnPdn-n0VFvnV-o5N-uL2aw-ttM_mhxDmNRwmSI-xlwj5U_fmzQPdHjSsZwG2DLQFXj8zfGaL1dJ_KGVTjAANbmfwcy08HZsM_62ZTu7jNUuZzQ1Sr1jOMq9SdLOCD6Bko5OoTLI98vPYJQ1J16SOCSCjFHlklEsY4QmfREFBD3W7GC01bCbzCKSd80l45R2Ml6jTvmKk-U5THrd907fyqcoWAoNz8qiSoWecCUNXc0dyQKKToQKRMA1co5TITGik7bUaWMWJV0MaTyPac1DHTraoRdQjuJIXwFhaO7skFFXaZe1NPWYCloeGnwmuVTMq0K7YJevcorNpItPv8glm_t_sdw3LPczllfheYNjkTXc2OvpTvGV_KK0FJWhj_ZhLyzdDZYtYdwbz30hKD6uWrMVIyIdrxGIm1mINnPcKlxmErR5W4o-JMc71_9ExQ0cmrMsx_gWyqtkre_Qk1rJWrpUanDQfnnrD38ARlkjCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED_mBPVF_HZ-RvBJKFubxK74NIbSqdvDpuBbSNIUptLKPvz7vbTpRNCHgW-lSY7rNbnfXXK5A7ikLclbSZR4Eh1qj6W4pOR1kHpoDLdDo6VWLXvBuT-4jp_Z_Qt_qUG3ugtjwyqd7i91eqGt3Zumk2bzYzxujvxiR5OjC1MAV7QCqzY7Fa_Daqf3EA8Whwk-Lypz2v6eHbAGV99hXq_T2SR_M9pM0Ae14Z_J2GbxDnxbAbftB3_h1V_2aIFLd1uw6QxK0il53oaayXZgre-OzHdhWOYnnpI8JZKMUOuSYa5y7E1imSUEjdbyYfgjZzcZZ8QlziWjgncymqNa-cwn0z14vrt96saeK6TgacSemUe1TiMZKpqGhgeKJRTtCJ3IhBsUHqdSoVOnfGWK3CxahejVRBEzhqcmDUxA96Ge5Zk5BMIQ8fyU0VCbkLUNjZhO2hFiPlNcaRY1oFOJS2jHsS128S6qcLJX8ZvIhRW5KEXegJsFjY8y58ZSo7vVXxLV7VLUhwIhYikqtwsqP-bj0nQuqokicOHa0xiZmXyOnbgth-izIGzAQTmDFl9L0Yzk2HL0T1ycw3r81H8Uj73BwzFs2JYy5PgE6rPJ3JyiYTVTZ27hfAEdWCW7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+a+Soft+Robotic+Hand+for+Hand+Rehabilitation+in+Chronic+Stroke+Survivors&rft.jtitle=Journal+of+stroke+and+cerebrovascular+diseases&rft.au=Shi%2C+Xiang+Qian&rft.au=Heung%2C+Ho+Lam&rft.au=Tang%2C+Zhi+Qiang&rft.au=Li%2C+Zheng&rft.date=2021-07-01&rft.eissn=1532-8511&rft.volume=30&rft.issue=7&rft.spage=105812&rft_id=info:doi/10.1016%2Fj.jstrokecerebrovasdis.2021.105812&rft_id=info%3Apmid%2F33895427&rft.externalDocID=33895427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-3057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-3057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-3057&client=summon