HGCS-Det: A Deep Learning-Based Solution for Localizing and Recognizing Household Garbage in Complex Scenarios

With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 12; p. 3726
Main Authors Zhou, Houkui, Chen, Chang, Xia, Zhongyi, Ding, Qifeng, Liao, Qinqin, Wang, Qun, Yu, Huimin, Hu, Haoji, Zhang, Guangqun, Hu, Junguo, He, Tao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25123726

Cover

Loading…
Abstract With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model’s attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification.
AbstractList With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model's attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification.With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model's attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification.
With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model’s attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification.
Audience Academic
Author Wang, Qun
Zhang, Guangqun
He, Tao
Xia, Zhongyi
Liao, Qinqin
Hu, Junguo
Chen, Chang
Ding, Qifeng
Hu, Haoji
Zhou, Houkui
Yu, Huimin
AuthorAffiliation 2 Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China
1 College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
3 College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 311300, China
5 State Key Laboratory of CAD & CG, Hangzhou 310027, China
4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
AuthorAffiliation_xml – name: 3 College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 311300, China
– name: 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
– name: 1 College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
– name: 5 State Key Laboratory of CAD & CG, Hangzhou 310027, China
– name: 2 Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China
Author_xml – sequence: 1
  givenname: Houkui
  orcidid: 0000-0001-7915-8684
  surname: Zhou
  fullname: Zhou, Houkui
– sequence: 2
  givenname: Chang
  surname: Chen
  fullname: Chen, Chang
– sequence: 3
  givenname: Zhongyi
  surname: Xia
  fullname: Xia, Zhongyi
– sequence: 4
  givenname: Qifeng
  surname: Ding
  fullname: Ding, Qifeng
– sequence: 5
  givenname: Qinqin
  surname: Liao
  fullname: Liao, Qinqin
– sequence: 6
  givenname: Qun
  surname: Wang
  fullname: Wang, Qun
– sequence: 7
  givenname: Huimin
  surname: Yu
  fullname: Yu, Huimin
– sequence: 8
  givenname: Haoji
  surname: Hu
  fullname: Hu, Haoji
– sequence: 9
  givenname: Guangqun
  surname: Zhang
  fullname: Zhang, Guangqun
– sequence: 10
  givenname: Junguo
  surname: Hu
  fullname: Hu, Junguo
– sequence: 11
  givenname: Tao
  orcidid: 0000-0001-5304-3010
  surname: He
  fullname: He, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40573613$$D View this record in MEDLINE/PubMed
BookMark eNpdUk1vEzEQXaEi-gEH_gCyxAUOW_y5a3NBIYWkUiQkAmfL6x1vXW3s1N4g4NfjkBK1yJbsmXl-njd659VJiAGq6iXBl4wp_C5TQShrafOkOiOc8lpSik8e3E-r85xvMaaMMfmsOuVYtKwh7KwKy8V8XV_B9B7N0BXAFq3ApODDUH80GXq0juNu8jEgFxNaRWtG_7tUkQk9-go2DuEQL-Muw00ce7QwqTMDIB_QPG62I_xEawvBJB_z8-qpM2OGF_fnRfX986dv82W9-rK4ns9WteUtmWomhOx6K3ratJyQRoIj-8BygTvZGtbIVjFjJOsxE05i18pegTPKyhZIyy6q6wNvH82t3ia_MemXjsbrv4mYBm3S5O0IGituADPc8bItUGWdk4QIRboOrNtzfThwbXfdBvoiZUpmfET6uBL8jR7iD00oUU0jSWF4c8-Q4t0O8qQ3PlsYRxOgjE0zSnnDORW4QF__B72NuxTKrPYopjhRat_S5QE1mKLABxfLx7asHjbeFnM4X_IzyYVijcCqPHj1UMOx-X9GKIC3B4BNMecE7gghWO9Npo8mY38AhjLBVA
Cites_doi 10.1109/CVPR52729.2023.00721
10.3390/electronics14020356
10.1023/B:VISI.0000013087.49260.fb
10.1109/CVPR.2017.690
10.1007/s10163-023-01597-9
10.1109/ICCV.2017.324
10.1007/978-3-319-46448-0
10.26599/TST.2021.9010072
10.1007/978-3-030-01234-2_1
10.1016/j.jclepro.2023.137558
10.1109/TGRS.2020.3023928
10.1016/j.resconrec.2022.106235
10.1016/j.imavis.2024.105276
10.1109/CVPR42600.2020.01155
10.1109/ICCV.2017.167
10.1109/CVPR46437.2021.00841
10.1109/CVPR46437.2021.01350
10.1109/ICCV.2017.74
10.1109/KCIC.2018.8628499
10.1016/j.jenvman.2021.112591
10.1016/j.jclepro.2022.135816
10.1007/s44196-023-00314-6
10.1596/978-1-4648-1329-0
10.1023/B:VISI.0000029664.99615.94
10.1109/ICCV51070.2023.01225
10.1109/CVPR.2018.00745
10.1016/j.wasman.2021.12.001
10.1016/j.jclepro.2022.131096
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25123726
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_094ae030b40b4ce29cff811591bbecf7
PMC12196681
A845936509
40573613
10_3390_s25123726
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: No. LY24F020005
– fundername: Zhejiang Provincial Department of Education
  grantid: Y202147814
– fundername: Zhejiang Undergraduate Innovation Plan
  grantid: 2024R412A032
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-3558bdc5d26741168ef15d26c450b87a368793aa83d035f80f78d9efa9c87e173
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:50 EDT 2025
Thu Aug 21 18:34:12 EDT 2025
Fri Jul 11 16:58:25 EDT 2025
Fri Jul 25 09:11:43 EDT 2025
Tue Jul 01 05:44:03 EDT 2025
Mon Jun 30 02:54:48 EDT 2025
Tue Aug 05 12:07:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords instance boundary reinforcement
garbage detection
Slide Loss
attention-feature fusion
normalization attention
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-3558bdc5d26741168ef15d26c450b87a368793aa83d035f80f78d9efa9c87e173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5304-3010
0000-0001-7915-8684
OpenAccessLink https://www.proquest.com/docview/3223941997?pq-origsite=%requestingapplication%
PMID 40573613
PQID 3223941997
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_094ae030b40b4ce29cff811591bbecf7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12196681
proquest_miscellaneous_3224644250
proquest_journals_3223941997
gale_infotracacademiconefile_A845936509
pubmed_primary_40573613
crossref_primary_10_3390_s25123726
PublicationCentury 2000
PublicationDate 2025-06-14
PublicationDateYYYYMMDD 2025-06-14
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_32
ref_31
ref_30
Wang (ref_16) 2024; 24
ref_17
ref_39
ref_38
ref_15
Sun (ref_19) 2021; 59
ref_37
Mao (ref_21) 2022; 344
Lun (ref_24) 2023; 16
Chen (ref_18) 2023; 414
Lee (ref_20) 2022; 14
Viola (ref_7) 2004; 57
Wu (ref_26) 2022; 27
ref_44
ref_43
ref_42
ref_41
Zhang (ref_22) 2022; 181
Majchrowska (ref_23) 2022; 138
ref_1
ref_29
ref_28
Chu (ref_2) 2023; 25
ref_27
Pan (ref_10) 2024; 151
Lowe (ref_4) 2004; 60
ref_9
ref_8
Li (ref_25) 2023; 388
Zhang (ref_3) 2021; 290
ref_5
Li (ref_40) 2020; 33
ref_6
References_xml – ident: ref_28
– ident: ref_29
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_30
– ident: ref_5
– ident: ref_17
  doi: 10.3390/electronics14020356
– volume: 57
  start-page: 137
  year: 2004
  ident: ref_7
  article-title: Robust Real-Time Face Detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref_9
  doi: 10.1109/CVPR.2017.690
– volume: 25
  start-page: 1333
  year: 2023
  ident: ref_2
  article-title: Assessing the Implementation Effect of Shanghai’s Compulsory Municipal Solid Waste Classification Policy
  publication-title: J. Mater. Cycles Waste Manag.
  doi: 10.1007/s10163-023-01597-9
– ident: ref_34
– ident: ref_39
  doi: 10.1109/ICCV.2017.324
– ident: ref_11
– ident: ref_12
  doi: 10.1007/978-3-319-46448-0
– volume: 27
  start-page: 793
  year: 2022
  ident: ref_26
  article-title: New Benchmark for Household Garbage Image Recognition
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2021.9010072
– volume: 33
  start-page: 21002
  year: 2020
  ident: ref_40
  article-title: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_14
– ident: ref_31
  doi: 10.1007/978-3-030-01234-2_1
– volume: 414
  start-page: 137558
  year: 2023
  ident: ref_18
  article-title: Classification and Recycling of Recyclable Garbage Based on Deep Learning
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.137558
– volume: 59
  start-page: 6154
  year: 2021
  ident: ref_19
  article-title: SRAF-Net: Shape Robust Anchor-Free Network for Garbage Dumps in Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3023928
– ident: ref_42
– volume: 181
  start-page: 106235
  year: 2022
  ident: ref_22
  article-title: A Multi-Label Waste Detection Model Based on Transfer Learning
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2022.106235
– ident: ref_44
– volume: 151
  start-page: 105276
  year: 2024
  ident: ref_10
  article-title: LVD-YOLO: An Efficient Lightweight Vehicle Detection Model for Intelligent Transportation Systems
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2024.105276
– ident: ref_36
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref_32
  doi: 10.1109/ICCV.2017.167
– ident: ref_41
  doi: 10.1109/CVPR46437.2021.00841
– ident: ref_6
– ident: ref_37
  doi: 10.1109/CVPR46437.2021.01350
– ident: ref_38
  doi: 10.1109/ICCV.2017.74
– ident: ref_8
  doi: 10.1109/KCIC.2018.8628499
– ident: ref_27
– volume: 290
  start-page: 112591
  year: 2021
  ident: ref_3
  article-title: Determinants Affecting Residents’ Waste Classification Intention and Behavior: A Study Based on TPB and A-B-C Methodology
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112591
– volume: 14
  start-page: 405
  year: 2022
  ident: ref_20
  article-title: A Highly Efficient Garbage Pick-Up Embedded System Based on Improved SSD Neural Network Using Robotic Arms
  publication-title: Appl. Intell. Syst.
– volume: 388
  start-page: 135816
  year: 2023
  ident: ref_25
  article-title: An Accurate and Adaptable Deep Learning-Based Solution to Floating Litter Cleaning up and Its Effectiveness on Environmental Recovery
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.135816
– ident: ref_15
– volume: 16
  start-page: 139
  year: 2023
  ident: ref_24
  article-title: Skip-YOLO: Domestic Garbage Detection Using Deep Learning Method in Complex Multi-Scenes
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-023-00314-6
– ident: ref_13
– ident: ref_1
  doi: 10.1596/978-1-4648-1329-0
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_4
  article-title: Distinctive Image Features from Scale-Invariant Keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref_33
  doi: 10.1109/ICCV51070.2023.01225
– ident: ref_43
– volume: 24
  start-page: 1234
  year: 2024
  ident: ref_16
  article-title: LWCNet: A Lightweight and Efficient Algorithm for Household Waste Detection and Classification Based on Deep Learning
  publication-title: Sensors
– ident: ref_35
  doi: 10.1109/CVPR.2018.00745
– volume: 138
  start-page: 274
  year: 2022
  ident: ref_23
  article-title: Deep Learning-Based Waste Detection in Natural and Urban Environments
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2021.12.001
– volume: 344
  start-page: 131096
  year: 2022
  ident: ref_21
  article-title: Deep Learning Networks for Real-Time Regional Domestic Waste Detection
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131096
SSID ssj0023338
Score 2.449901
Snippet With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3726
SubjectTerms Accuracy
Algorithms
attention-feature fusion
Attentional bias
Classification
Consumption
Datasets
Deep learning
Efficiency
Embedded systems
garbage detection
instance boundary reinforcement
Localization
normalization attention
Refuse and refuse disposal
Remote sensing
Semantics
Slide Loss
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BggxC4mQ1iR3H4bZtaVcIOFAq9Wb5Y9KuhLIVu5Uqfj0zSXaVFQcuSHvJOlKcGY_fm9h-A_DepFSqSqOkbBmlDnkrg0qtTMRtTZnKYEs-4Pz1m5lf6M-X1eWk1BfvCRvkgQfDHVL64ZFGYtD0i1g2sW0t0ZimCPT4tj9HTpi3SabGVEtR5jXoCClK6g9XjOKqZgWFCfr0Iv1_T8UTLNrdJzkBntNH8HBkjGI29HQf7mH3GB5MdASfQDc_Oz6XJ7j-KGbiBPFGjLKpV_KIUCqJzccvQRRVfGH4WvymVuG7JL4PW4j66_nydoW8ICXOeB3iCsWiEzxl_MQ7cU4dpMx6uXoKF6effhzP5VhIQUbCnrVkCfWQYpVKQwSiMBbbgi-irvJga6-MpTD13qqUq6q1eVvb1GDrm2hrLGr1DPa6ZYcvQMSYq9iEFGqFOve590orVN74iHUdfQbvNgZ2N4NehqM8g73gtl7I4IhNv72BJa77P8jxbnS8-5fjM_jAjnMciOSd6MfzBNRPlrRyM6u5WiERogwONr51Y4SuHE1kqtG8zSaDt9tmii1eMPEdkr35Hk18kVhiBs-HobDtMxNdRVwoA7szSHZearelW1z3-t0FoYQxtnj5P8zwCu6XXJKYyynpA9hb_7rF18ST1uFNHxJ_AGdFEnw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BucAB8caloAUhcVrV9q7tNReUtiQRAg6USr1Z-xiHSMhOm1RC_HpmbMckQkLyxd49rHde3-zjG4C3eQipyjRKypZRahfX0qlQy0DYNk9D6kzKF5y_fM3nF_rTZXY5LLith2OVW5_YOerQel4jPybFU6XmYxEfVleSq0bx7upQQuM23Eko0rCGm-lsTLgU5V89m5Ci1P54zbFcFcyjsBODOqr-fx3yTkTaPy25E36mD-D-gBvFpBf0Q7iFzSO4t8Mm-Bia-ez0XJ7h5r2YiDPElRjIUxfyhGJVENslMEFAVXzmILb8Ta3CNkF86w8Sde_z9maNvC0lZrwbsUCxbAQ7jp_4S5zTACm_btdP4GL68fvpXA7lFKSnCLSRTKTugs9CmhOMSHKDdcIvXmexM4VVuSFjtdaoEKusNnFdmFBibUtvCkwK9RQOmrbB5yC8j5UvXXCFQh3b2FqlFSqbW49F4W0Eb7YTXK161oyKsg2WQjVKIYITnvqxAxNddx_a60U12E1F2adFckRO0-MxLX1dG0KxZeJI--oigncsuIrNkaTj7XCrgMbJxFbVxGiuWUiwKIKjrWyrwU7X1V-tiuD12EwWxtsmtkGab-6jCTUSVozgWa8K45gZ7ipCRBGYPSXZ-6n9lmb5o2PxTihW5LlJDv8_rhdwN-WSw1wuSR_Bweb6Bl8SDtq4V52y_wE4DglI
  priority: 102
  providerName: ProQuest
Title HGCS-Det: A Deep Learning-Based Solution for Localizing and Recognizing Household Garbage in Complex Scenarios
URI https://www.ncbi.nlm.nih.gov/pubmed/40573613
https://www.proquest.com/docview/3223941997
https://www.proquest.com/docview/3224644250
https://pubmed.ncbi.nlm.nih.gov/PMC12196681
https://doaj.org/article/094ae030b40b4ce29cff811591bbecf7
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ta9swED76AqP7UPbaueuCNgb75M22ZEsejJG0TcJYy2gXyDcjS3IWKE6XpNDt1-_ObyRsgxBwJIKsu9PznCU_B_A2sTbisXA-ZsvOF3lQ-Dm3hW-R2yaRjXIV0QvOF5fJeCK-TOPpDrQ1NpsJXP0ztaN6UpPlzfv7n78-Y8B_oowTU_YPK8JoLqNkF_YRkCRVcLgQ3WZCxDENq0WFtrsfwAOiK7yqbbCBSpV4_99L9AZGbZ-f3ACk4SM4bJgk69emfww7rnwCDzf0BZ9COR6dXvtnbv2R9dmZc7eskVOd-QNEL8vah2IMqSv7SrA2_42tTJeWXdVHi6rr8eJu5Wijio1of2Lm2LxktJTcuHt2jQPEjHuxegaT4fn307HfFFjwDWLS2idp9dya2EYJEoswUa4I6cKIOMiV1DxRGL5aK24DHhcqKKSyqSt0apR0oeTPYa9clO4FMGMCbtLc5pI7EehAay644zrRxklptAdv2gnObmsdjQzzDzJI1hnEgwFNfdeBpK-rHxbLWdZEUob5qHa4NOUCP8ZFqSkKhbw2DXP0x0J68I4Ml5HLoHWMbt4zwHGS1FXWV4KqGCJR8uCktW3WOl6GCxxPBR2_8eB114wxRxspunQ439RHII9E9ujBUe0K3Zhbj_JAbTnJ1k1tt5TzH5Wud4jokSQqPP7vn76Eg4jqD1PtJHECe-vlnXuFpGid92BXTiV-q-GoB_uD88tvV73qAUOvCoY_NVYOzA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEVNYidxkBDadmm3dNsDbaW9BceeLCuh7NLdiseP4jcyk8d2V0jcKuWSOIocz-eZb-zxDMDrxLlIxgp98pbRV0VQ-oV0pe-I2yaRiwod8QHno-NkcKY-jeLRBvzpzsJwWGWnE2tF7aaW18i3CXgyUxwW8WH23eeqUby72pXQaGBxiL9-kMs2f3_QJ_m-iaK9j6e7A7-tKuBbUsQLn_OJF87GLkrImoaJxjLkG6vioNCpkYkmzBqjpQtkXOqgTLXLsDSZ1SmGqaTvXoPrZHgDDiFMR5cOniR_r8leJGUWbM-ZO8iU8zas2Ly6NMC_BmDFAq5HZ66Yu707cLvlqaLXAOsubGB1D26tZC-8D9Vgf_fE7-PineiJPuJMtMlax_4O2UYnuiU3QcRYDNloTn5TqzCVE5-bwKX6fjC9mCNvg4l93v0Yo5hUghXVN_wpTqiD5M9P5w_g7EoG-iFsVtMKH4OwNpA2K1yRSlSBCYyRSqI0ibGYptZ48Kob4HzWZOnIybthKeRLKXiww0O_fIETa9cPpufjvJ2nOXm7BknxFYoui1Fmy1ITa87CgtBeph68ZcHlPP1JOta0pxion5xIK-9pxTUSiYZ5sNXJNm_1wjy_RLEHL5fNNKN5m8ZUSOPN7yhiqcRNPXjUQGHZZ6bXkhiYB3oNJGs_td5STb7WWcNDsk1JosMn_-_XC7gxOD0a5sOD48OncDPicsdcqkltwebi_AKfEQdbFM9r4Av4ctUz7S-0a0UN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ0LwgLiTMcAgEE9Rk9iJHSSEupWuY2NCjEl9yxzbKZWmpKyduPw0fh3n5NK1QuJtUl9SR5Hjc_m-Ex-fA_AqsTbisXA-RsvOF3lQ-Dm3hW-R2yaRjXIV0QHnT0fJ6ER8HMfjDfjTnYWhtMrOJ9aO2laGvpH3UPF4Kigtole0aRGfB8P3s-8-dZCindaunUajIgfu1w8M3-bv9gco69dRNPzwdXfktx0GfINOeeFTbfHcmthGCSJrmChXhHRhRBzkSmqeKNRfrRW3AY8LFRRS2dQVOjVKulByfO41uC45wibakhxfBnscY7-mkhHnadCbE4_gkmo4rOBf3SbgXzBYQcP1TM0V6BvegdstZ2X9RsnuwoYr78GtlUqG96Ec7e0e-wO3eMv6bODcjLWFWyf-DuKkZd3nN4YkmR0SgE5_4yjTpWVfmiSm-npUXcwdbYmxPdoJmTg2LRk5rTP3kx3jBDG2r-YP4ORKFvohbJZV6R4DMybgJs1tLrkTgQ605oI7rhNtnJRGe_CyW-Bs1lTsyDDSISlkSyl4sENLv7yBimzXf1Tnk6y12QwjX-3QCeYCf8ZFqSkKhQw6DXPU_EJ68IYEl5ErQOkY3Z5owHlSUa2srwT1S0RK5sF2J9us9RHz7FKjPXixHEbrpi0bXTpcb7pHIGNFnurBo0YVlnMmqs2RjXmg1pRk7aXWR8rpt7qCeIg4lSQq3Pr_vJ7DDbSx7HD_6OAJ3Iyo8zF1bRLbsLk4v3BPkY4t8me13jM4vWpD-wu7YUlD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HGCS-Det%3A+A+Deep+Learning-Based+Solution+for+Localizing+and+Recognizing+Household+Garbage+in+Complex+Scenarios&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhou%2C+Houkui&rft.au=Chen%2C+Chang&rft.au=Xia%2C+Zhongyi&rft.au=Ding%2C+Qifeng&rft.date=2025-06-14&rft.eissn=1424-8220&rft.volume=25&rft.issue=12&rft_id=info:doi/10.3390%2Fs25123726&rft_id=info%3Apmid%2F40573613&rft.externalDocID=40573613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon