HGCS-Det: A Deep Learning-Based Solution for Localizing and Recognizing Household Garbage in Complex Scenarios
With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 12; p. 3726 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.06.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25123726 |
Cover
Loading…
Abstract | With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model’s attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification. |
---|---|
AbstractList | With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model's attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification.With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model's attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification. With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the interference of complex environments, coupled with the influence of the irregular features of garbage, garbage detection in complex scenarios still faces significant challenges. Moreover, some of the existing research suffer from shortcomings in either their precision or real-time performance, particularly when applied to complex garbage detection scenarios. Therefore, this paper proposes a model based on YOLOv8, namely HGCS-Det, for detecting garbage in complex scenarios. The HGCS-Det model is designed as follows: Firstly, the normalization attention module is introduced to calibrate the model’s attention to targets and to suppress the environmental noise interference information. Additionally, to weigh the attention-feature contributions, an Attention Feature Fusion module is employed to complement the attention weights of each channel. Subsequently, an Instance Boundary Reinforcement module is established to capture the fine-grained features of garbage by combining strong gradient information with semantic information. Finally, the Slide Loss function is applied to dynamically weight hard samples arising from the complex detection environments to improve the recognition accuracy of hard samples. With only a slight increase in parameters (3.02M), HGCS-Det achieves a 93.6% mean average precision (mAP) and 86 FPS on the public HGI30 dataset, which is a 3.33% higher mAP value than from YOLOv12, and outperforms the state-of-the-art (SOTA) methods in both efficiency and applicability. Notably, HGCS-Det maintains a lightweight architecture while enhancing the detection accuracy, enabling real-time performance even in resource-constrained environments. These characteristics significantly improve its practical applicability, making the model well suited for deployment in embedded devices and real-world garbage classification systems. This method can serve as a valuable technical reference for the engineering application of garbage classification. |
Audience | Academic |
Author | Wang, Qun Zhang, Guangqun He, Tao Xia, Zhongyi Liao, Qinqin Hu, Junguo Chen, Chang Ding, Qifeng Hu, Haoji Zhou, Houkui Yu, Huimin |
AuthorAffiliation | 2 Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China 1 College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China 3 College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 311300, China 5 State Key Laboratory of CAD & CG, Hangzhou 310027, China 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China |
AuthorAffiliation_xml | – name: 3 College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 311300, China – name: 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China – name: 1 College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China – name: 5 State Key Laboratory of CAD & CG, Hangzhou 310027, China – name: 2 Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, China |
Author_xml | – sequence: 1 givenname: Houkui orcidid: 0000-0001-7915-8684 surname: Zhou fullname: Zhou, Houkui – sequence: 2 givenname: Chang surname: Chen fullname: Chen, Chang – sequence: 3 givenname: Zhongyi surname: Xia fullname: Xia, Zhongyi – sequence: 4 givenname: Qifeng surname: Ding fullname: Ding, Qifeng – sequence: 5 givenname: Qinqin surname: Liao fullname: Liao, Qinqin – sequence: 6 givenname: Qun surname: Wang fullname: Wang, Qun – sequence: 7 givenname: Huimin surname: Yu fullname: Yu, Huimin – sequence: 8 givenname: Haoji surname: Hu fullname: Hu, Haoji – sequence: 9 givenname: Guangqun surname: Zhang fullname: Zhang, Guangqun – sequence: 10 givenname: Junguo surname: Hu fullname: Hu, Junguo – sequence: 11 givenname: Tao orcidid: 0000-0001-5304-3010 surname: He fullname: He, Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40573613$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUk1vEzEQXaEi-gEH_gCyxAUOW_y5a3NBIYWkUiQkAmfL6x1vXW3s1N4g4NfjkBK1yJbsmXl-njd659VJiAGq6iXBl4wp_C5TQShrafOkOiOc8lpSik8e3E-r85xvMaaMMfmsOuVYtKwh7KwKy8V8XV_B9B7N0BXAFq3ApODDUH80GXq0juNu8jEgFxNaRWtG_7tUkQk9-go2DuEQL-Muw00ce7QwqTMDIB_QPG62I_xEawvBJB_z8-qpM2OGF_fnRfX986dv82W9-rK4ns9WteUtmWomhOx6K3ratJyQRoIj-8BygTvZGtbIVjFjJOsxE05i18pegTPKyhZIyy6q6wNvH82t3ia_MemXjsbrv4mYBm3S5O0IGituADPc8bItUGWdk4QIRboOrNtzfThwbXfdBvoiZUpmfET6uBL8jR7iD00oUU0jSWF4c8-Q4t0O8qQ3PlsYRxOgjE0zSnnDORW4QF__B72NuxTKrPYopjhRat_S5QE1mKLABxfLx7asHjbeFnM4X_IzyYVijcCqPHj1UMOx-X9GKIC3B4BNMecE7gghWO9Npo8mY38AhjLBVA |
Cites_doi | 10.1109/CVPR52729.2023.00721 10.3390/electronics14020356 10.1023/B:VISI.0000013087.49260.fb 10.1109/CVPR.2017.690 10.1007/s10163-023-01597-9 10.1109/ICCV.2017.324 10.1007/978-3-319-46448-0 10.26599/TST.2021.9010072 10.1007/978-3-030-01234-2_1 10.1016/j.jclepro.2023.137558 10.1109/TGRS.2020.3023928 10.1016/j.resconrec.2022.106235 10.1016/j.imavis.2024.105276 10.1109/CVPR42600.2020.01155 10.1109/ICCV.2017.167 10.1109/CVPR46437.2021.00841 10.1109/CVPR46437.2021.01350 10.1109/ICCV.2017.74 10.1109/KCIC.2018.8628499 10.1016/j.jenvman.2021.112591 10.1016/j.jclepro.2022.135816 10.1007/s44196-023-00314-6 10.1596/978-1-4648-1329-0 10.1023/B:VISI.0000029664.99615.94 10.1109/ICCV51070.2023.01225 10.1109/CVPR.2018.00745 10.1016/j.wasman.2021.12.001 10.1016/j.jclepro.2022.131096 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25123726 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_094ae030b40b4ce29cff811591bbecf7 PMC12196681 A845936509 40573613 10_3390_s25123726 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: No. LY24F020005 – fundername: Zhejiang Provincial Department of Education grantid: Y202147814 – fundername: Zhejiang Undergraduate Innovation Plan grantid: 2024R412A032 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-3558bdc5d26741168ef15d26c450b87a368793aa83d035f80f78d9efa9c87e173 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 18:34:12 EDT 2025 Fri Jul 11 16:58:25 EDT 2025 Fri Jul 25 09:11:43 EDT 2025 Tue Jul 01 05:44:03 EDT 2025 Mon Jun 30 02:54:48 EDT 2025 Tue Aug 05 12:07:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | instance boundary reinforcement garbage detection Slide Loss attention-feature fusion normalization attention |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-3558bdc5d26741168ef15d26c450b87a368793aa83d035f80f78d9efa9c87e173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5304-3010 0000-0001-7915-8684 |
OpenAccessLink | https://www.proquest.com/docview/3223941997?pq-origsite=%requestingapplication% |
PMID | 40573613 |
PQID | 3223941997 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_094ae030b40b4ce29cff811591bbecf7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12196681 proquest_miscellaneous_3224644250 proquest_journals_3223941997 gale_infotracacademiconefile_A845936509 pubmed_primary_40573613 crossref_primary_10_3390_s25123726 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-14 |
PublicationDateYYYYMMDD | 2025-06-14 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_32 ref_31 ref_30 Wang (ref_16) 2024; 24 ref_17 ref_39 ref_38 ref_15 Sun (ref_19) 2021; 59 ref_37 Mao (ref_21) 2022; 344 Lun (ref_24) 2023; 16 Chen (ref_18) 2023; 414 Lee (ref_20) 2022; 14 Viola (ref_7) 2004; 57 Wu (ref_26) 2022; 27 ref_44 ref_43 ref_42 ref_41 Zhang (ref_22) 2022; 181 Majchrowska (ref_23) 2022; 138 ref_1 ref_29 ref_28 Chu (ref_2) 2023; 25 ref_27 Pan (ref_10) 2024; 151 Lowe (ref_4) 2004; 60 ref_9 ref_8 Li (ref_25) 2023; 388 Zhang (ref_3) 2021; 290 ref_5 Li (ref_40) 2020; 33 ref_6 |
References_xml | – ident: ref_28 – ident: ref_29 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_30 – ident: ref_5 – ident: ref_17 doi: 10.3390/electronics14020356 – volume: 57 start-page: 137 year: 2004 ident: ref_7 article-title: Robust Real-Time Face Detection publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref_9 doi: 10.1109/CVPR.2017.690 – volume: 25 start-page: 1333 year: 2023 ident: ref_2 article-title: Assessing the Implementation Effect of Shanghai’s Compulsory Municipal Solid Waste Classification Policy publication-title: J. Mater. Cycles Waste Manag. doi: 10.1007/s10163-023-01597-9 – ident: ref_34 – ident: ref_39 doi: 10.1109/ICCV.2017.324 – ident: ref_11 – ident: ref_12 doi: 10.1007/978-3-319-46448-0 – volume: 27 start-page: 793 year: 2022 ident: ref_26 article-title: New Benchmark for Household Garbage Image Recognition publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2021.9010072 – volume: 33 start-page: 21002 year: 2020 ident: ref_40 article-title: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_14 – ident: ref_31 doi: 10.1007/978-3-030-01234-2_1 – volume: 414 start-page: 137558 year: 2023 ident: ref_18 article-title: Classification and Recycling of Recyclable Garbage Based on Deep Learning publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.137558 – volume: 59 start-page: 6154 year: 2021 ident: ref_19 article-title: SRAF-Net: Shape Robust Anchor-Free Network for Garbage Dumps in Remote Sensing Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3023928 – ident: ref_42 – volume: 181 start-page: 106235 year: 2022 ident: ref_22 article-title: A Multi-Label Waste Detection Model Based on Transfer Learning publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2022.106235 – ident: ref_44 – volume: 151 start-page: 105276 year: 2024 ident: ref_10 article-title: LVD-YOLO: An Efficient Lightweight Vehicle Detection Model for Intelligent Transportation Systems publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2024.105276 – ident: ref_36 doi: 10.1109/CVPR42600.2020.01155 – ident: ref_32 doi: 10.1109/ICCV.2017.167 – ident: ref_41 doi: 10.1109/CVPR46437.2021.00841 – ident: ref_6 – ident: ref_37 doi: 10.1109/CVPR46437.2021.01350 – ident: ref_38 doi: 10.1109/ICCV.2017.74 – ident: ref_8 doi: 10.1109/KCIC.2018.8628499 – ident: ref_27 – volume: 290 start-page: 112591 year: 2021 ident: ref_3 article-title: Determinants Affecting Residents’ Waste Classification Intention and Behavior: A Study Based on TPB and A-B-C Methodology publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112591 – volume: 14 start-page: 405 year: 2022 ident: ref_20 article-title: A Highly Efficient Garbage Pick-Up Embedded System Based on Improved SSD Neural Network Using Robotic Arms publication-title: Appl. Intell. Syst. – volume: 388 start-page: 135816 year: 2023 ident: ref_25 article-title: An Accurate and Adaptable Deep Learning-Based Solution to Floating Litter Cleaning up and Its Effectiveness on Environmental Recovery publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135816 – ident: ref_15 – volume: 16 start-page: 139 year: 2023 ident: ref_24 article-title: Skip-YOLO: Domestic Garbage Detection Using Deep Learning Method in Complex Multi-Scenes publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-023-00314-6 – ident: ref_13 – ident: ref_1 doi: 10.1596/978-1-4648-1329-0 – volume: 60 start-page: 91 year: 2004 ident: ref_4 article-title: Distinctive Image Features from Scale-Invariant Keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref_33 doi: 10.1109/ICCV51070.2023.01225 – ident: ref_43 – volume: 24 start-page: 1234 year: 2024 ident: ref_16 article-title: LWCNet: A Lightweight and Efficient Algorithm for Household Waste Detection and Classification Based on Deep Learning publication-title: Sensors – ident: ref_35 doi: 10.1109/CVPR.2018.00745 – volume: 138 start-page: 274 year: 2022 ident: ref_23 article-title: Deep Learning-Based Waste Detection in Natural and Urban Environments publication-title: Waste Manag. doi: 10.1016/j.wasman.2021.12.001 – volume: 344 start-page: 131096 year: 2022 ident: ref_21 article-title: Deep Learning Networks for Real-Time Regional Domestic Waste Detection publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131096 |
SSID | ssj0023338 |
Score | 2.449901 |
Snippet | With the rise of deep learning technology, intelligent garbage detection provides a new idea for garbage classification management. However, due to the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 3726 |
SubjectTerms | Accuracy Algorithms attention-feature fusion Attentional bias Classification Consumption Datasets Deep learning Efficiency Embedded systems garbage detection instance boundary reinforcement Localization normalization attention Refuse and refuse disposal Remote sensing Semantics Slide Loss |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BggxC4mQ1iR3H4bZtaVcIOFAq9Wb5Y9KuhLIVu5Uqfj0zSXaVFQcuSHvJOlKcGY_fm9h-A_DepFSqSqOkbBmlDnkrg0qtTMRtTZnKYEs-4Pz1m5lf6M-X1eWk1BfvCRvkgQfDHVL64ZFGYtD0i1g2sW0t0ZimCPT4tj9HTpi3SabGVEtR5jXoCClK6g9XjOKqZgWFCfr0Iv1_T8UTLNrdJzkBntNH8HBkjGI29HQf7mH3GB5MdASfQDc_Oz6XJ7j-KGbiBPFGjLKpV_KIUCqJzccvQRRVfGH4WvymVuG7JL4PW4j66_nydoW8ICXOeB3iCsWiEzxl_MQ7cU4dpMx6uXoKF6effhzP5VhIQUbCnrVkCfWQYpVKQwSiMBbbgi-irvJga6-MpTD13qqUq6q1eVvb1GDrm2hrLGr1DPa6ZYcvQMSYq9iEFGqFOve590orVN74iHUdfQbvNgZ2N4NehqM8g73gtl7I4IhNv72BJa77P8jxbnS8-5fjM_jAjnMciOSd6MfzBNRPlrRyM6u5WiERogwONr51Y4SuHE1kqtG8zSaDt9tmii1eMPEdkr35Hk18kVhiBs-HobDtMxNdRVwoA7szSHZearelW1z3-t0FoYQxtnj5P8zwCu6XXJKYyynpA9hb_7rF18ST1uFNHxJ_AGdFEnw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BucAB8caloAUhcVrV9q7tNReUtiQRAg6USr1Z-xiHSMhOm1RC_HpmbMckQkLyxd49rHde3-zjG4C3eQipyjRKypZRahfX0qlQy0DYNk9D6kzKF5y_fM3nF_rTZXY5LLith2OVW5_YOerQel4jPybFU6XmYxEfVleSq0bx7upQQuM23Eko0rCGm-lsTLgU5V89m5Ci1P54zbFcFcyjsBODOqr-fx3yTkTaPy25E36mD-D-gBvFpBf0Q7iFzSO4t8Mm-Bia-ez0XJ7h5r2YiDPElRjIUxfyhGJVENslMEFAVXzmILb8Ta3CNkF86w8Sde_z9maNvC0lZrwbsUCxbAQ7jp_4S5zTACm_btdP4GL68fvpXA7lFKSnCLSRTKTugs9CmhOMSHKDdcIvXmexM4VVuSFjtdaoEKusNnFdmFBibUtvCkwK9RQOmrbB5yC8j5UvXXCFQh3b2FqlFSqbW49F4W0Eb7YTXK161oyKsg2WQjVKIYITnvqxAxNddx_a60U12E1F2adFckRO0-MxLX1dG0KxZeJI--oigncsuIrNkaTj7XCrgMbJxFbVxGiuWUiwKIKjrWyrwU7X1V-tiuD12EwWxtsmtkGab-6jCTUSVozgWa8K45gZ7ipCRBGYPSXZ-6n9lmb5o2PxTihW5LlJDv8_rhdwN-WSw1wuSR_Bweb6Bl8SDtq4V52y_wE4DglI priority: 102 providerName: ProQuest |
Title | HGCS-Det: A Deep Learning-Based Solution for Localizing and Recognizing Household Garbage in Complex Scenarios |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40573613 https://www.proquest.com/docview/3223941997 https://www.proquest.com/docview/3224644250 https://pubmed.ncbi.nlm.nih.gov/PMC12196681 https://doaj.org/article/094ae030b40b4ce29cff811591bbecf7 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ta9swED76AqP7UPbaueuCNgb75M22ZEsejJG0TcJYy2gXyDcjS3IWKE6XpNDt1-_ObyRsgxBwJIKsu9PznCU_B_A2sTbisXA-ZsvOF3lQ-Dm3hW-R2yaRjXIV0QvOF5fJeCK-TOPpDrQ1NpsJXP0ztaN6UpPlzfv7n78-Y8B_oowTU_YPK8JoLqNkF_YRkCRVcLgQ3WZCxDENq0WFtrsfwAOiK7yqbbCBSpV4_99L9AZGbZ-f3ACk4SM4bJgk69emfww7rnwCDzf0BZ9COR6dXvtnbv2R9dmZc7eskVOd-QNEL8vah2IMqSv7SrA2_42tTJeWXdVHi6rr8eJu5Wijio1of2Lm2LxktJTcuHt2jQPEjHuxegaT4fn307HfFFjwDWLS2idp9dya2EYJEoswUa4I6cKIOMiV1DxRGL5aK24DHhcqKKSyqSt0apR0oeTPYa9clO4FMGMCbtLc5pI7EehAay644zrRxklptAdv2gnObmsdjQzzDzJI1hnEgwFNfdeBpK-rHxbLWdZEUob5qHa4NOUCP8ZFqSkKhbw2DXP0x0J68I4Ml5HLoHWMbt4zwHGS1FXWV4KqGCJR8uCktW3WOl6GCxxPBR2_8eB114wxRxspunQ439RHII9E9ujBUe0K3Zhbj_JAbTnJ1k1tt5TzH5Wud4jokSQqPP7vn76Eg4jqD1PtJHECe-vlnXuFpGid92BXTiV-q-GoB_uD88tvV73qAUOvCoY_NVYOzA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEVNYidxkBDadmm3dNsDbaW9BceeLCuh7NLdiseP4jcyk8d2V0jcKuWSOIocz-eZb-zxDMDrxLlIxgp98pbRV0VQ-oV0pe-I2yaRiwod8QHno-NkcKY-jeLRBvzpzsJwWGWnE2tF7aaW18i3CXgyUxwW8WH23eeqUby72pXQaGBxiL9-kMs2f3_QJ_m-iaK9j6e7A7-tKuBbUsQLn_OJF87GLkrImoaJxjLkG6vioNCpkYkmzBqjpQtkXOqgTLXLsDSZ1SmGqaTvXoPrZHgDDiFMR5cOniR_r8leJGUWbM-ZO8iU8zas2Ly6NMC_BmDFAq5HZ66Yu707cLvlqaLXAOsubGB1D26tZC-8D9Vgf_fE7-PineiJPuJMtMlax_4O2UYnuiU3QcRYDNloTn5TqzCVE5-bwKX6fjC9mCNvg4l93v0Yo5hUghXVN_wpTqiD5M9P5w_g7EoG-iFsVtMKH4OwNpA2K1yRSlSBCYyRSqI0ibGYptZ48Kob4HzWZOnIybthKeRLKXiww0O_fIETa9cPpufjvJ2nOXm7BknxFYoui1Fmy1ITa87CgtBeph68ZcHlPP1JOta0pxion5xIK-9pxTUSiYZ5sNXJNm_1wjy_RLEHL5fNNKN5m8ZUSOPN7yhiqcRNPXjUQGHZZ6bXkhiYB3oNJGs_td5STb7WWcNDsk1JosMn_-_XC7gxOD0a5sOD48OncDPicsdcqkltwebi_AKfEQdbFM9r4Av4ctUz7S-0a0UN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ0LwgLiTMcAgEE9Rk9iJHSSEupWuY2NCjEl9yxzbKZWmpKyduPw0fh3n5NK1QuJtUl9SR5Hjc_m-Ex-fA_AqsTbisXA-RsvOF3lQ-Dm3hW-R2yaRjXIV0QHnT0fJ6ER8HMfjDfjTnYWhtMrOJ9aO2laGvpH3UPF4Kigtole0aRGfB8P3s-8-dZCindaunUajIgfu1w8M3-bv9gco69dRNPzwdXfktx0GfINOeeFTbfHcmthGCSJrmChXhHRhRBzkSmqeKNRfrRW3AY8LFRRS2dQVOjVKulByfO41uC45wibakhxfBnscY7-mkhHnadCbE4_gkmo4rOBf3SbgXzBYQcP1TM0V6BvegdstZ2X9RsnuwoYr78GtlUqG96Ec7e0e-wO3eMv6bODcjLWFWyf-DuKkZd3nN4YkmR0SgE5_4yjTpWVfmiSm-npUXcwdbYmxPdoJmTg2LRk5rTP3kx3jBDG2r-YP4ORKFvohbJZV6R4DMybgJs1tLrkTgQ605oI7rhNtnJRGe_CyW-Bs1lTsyDDSISlkSyl4sENLv7yBimzXf1Tnk6y12QwjX-3QCeYCf8ZFqSkKhQw6DXPU_EJ68IYEl5ErQOkY3Z5owHlSUa2srwT1S0RK5sF2J9us9RHz7FKjPXixHEbrpi0bXTpcb7pHIGNFnurBo0YVlnMmqs2RjXmg1pRk7aXWR8rpt7qCeIg4lSQq3Pr_vJ7DDbSx7HD_6OAJ3Iyo8zF1bRLbsLk4v3BPkY4t8me13jM4vWpD-wu7YUlD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HGCS-Det%3A+A+Deep+Learning-Based+Solution+for+Localizing+and+Recognizing+Household+Garbage+in+Complex+Scenarios&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhou%2C+Houkui&rft.au=Chen%2C+Chang&rft.au=Xia%2C+Zhongyi&rft.au=Ding%2C+Qifeng&rft.date=2025-06-14&rft.eissn=1424-8220&rft.volume=25&rft.issue=12&rft_id=info:doi/10.3390%2Fs25123726&rft_id=info%3Apmid%2F40573613&rft.externalDocID=40573613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |