Knowledge based convolutional transformer for joint estimation of PM2.5 and O3 concentrations
Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM 2.5...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 25340 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM
2.5
and O
3
by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM
2.5
-O
3
interaction module, and the weighted loss function designed with the correlation between PM
2.5
and O
3
concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM
2.5
:RMSE = 6.136 µg/m³, O
3
:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM
2.5
:R
2
= 0.923, O
3
:R
2
= 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields. |
---|---|
AbstractList | Abstract Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields. Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields. Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields.Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields. Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM 2.5 and O 3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM 2.5 -O 3 interaction module, and the weighted loss function designed with the correlation between PM 2.5 and O 3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM 2.5 :RMSE = 6.136 µg/m³, O 3 :RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM 2.5 :R 2 = 0.923, O 3 :R 2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields. |
ArticleNumber | 25340 |
Author | Ren, Ying Xia, Biesheng Wang, Siyuan Xia, Bisheng |
Author_xml | – sequence: 1 givenname: Ying surname: Ren fullname: Ren, Ying organization: College of Mathematics and Computer Science, Yan’an University – sequence: 2 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: College of Mathematics and Computer Science, Yan’an University – sequence: 3 givenname: Bisheng surname: Xia fullname: Xia, Bisheng email: bishengxia@163.com organization: College of Mathematics and Computer Science, Yan’an University – sequence: 4 givenname: Biesheng surname: Xia fullname: Xia, Biesheng organization: College of Mathematics and Computer Science, Yan’an University |
BookMark | eNp9kktP3TAQhS1EBZTyB1hZYtNNqD1-JF5VFeKlUtFFu6wsx5nc5irXBjsB9d_Xl6BSuqg3Y3nO-TQenbdkN8SAhBxzdsqZaD5kyZVpKgaqMopxU6kdcgBMqgoEwO5f931ylPOalaPASG72yL5kWpla6QPy43OIjyN2K6Sty9hRH8NDHOdpiMGNdEou5D6mDSZaCl3HIUwU8zRs3FZCY0-_foFTRV3o6K3Y2j2GYtt28zvypndjxqPneki-X5x_O7uqbm4vr88-3VRe1nyqhEQw2jSyEd61TioUrZFouK6BaQOoNfeuE1iu0jfYOO17LlrF-8YrhuKQXC_cLrq1vUtluvTLRjfYp4eYVtalafAjWjSyQQAN2AspBWuxdxK0rkVtnJOisD4urLu53WC3_GZ8BX3dCcNPu4oPlgMoY7QshPfPhBTv57Isuxmyx3F0AeOcrQDBgCvBoUhP_pGu45zK5hcV44rzuqhgUfkUc07Y_5mGM7tNg13SYEsa7FMarComsZhyEYcVphf0f1y_AaJ2tyw |
Cites_doi | 10.1016/j.cja.2019.07.011 10.1016/j.envpol.2018.08.029 10.5194/gmd-2022-64 10.1007/s11063-020-10327-3 10.3390/rs14122762 10.1016/j.cosrev.2021.100379 10.1021/acs.est.3c03317 10.3390/rs12020264 10.1016/j.uclim.2021.100837 10.1016/j.isprsjprs.2020.06.019 10.1016/j.neucom.2017.11.077 10.1016/j.atmosenv.2022.119297 10.1007/s40726-020-00170-4 10.1039/c8pp90059k 10.1016/j.envres.2017.11.020 10.1080/10408340500207482 10.1016/j.scs.2023.104951 10.1038/s41597-019-0055-0 10.1016/j.atmosres.2021.105633 10.1002/int.22370 10.1016/j.apr.2023.101703 10.1016/j.rse.2014.08.008 10.1016/j.scitotenv.2020.144502 10.1016/j.jes.2022.10.033 10.1016/j.scitotenv.2021.152449 10.1016/j.jclepro.2022.130988 10.4209/aaqr.200471 10.1016/j.ijepes.2021.107744 10.1016/j.buildenv.2021.108436 10.1007/s41095-022-0274-8 10.1038/s41377-021-00680-w 10.2166/hydro.2008.015 10.1038/s41377-021-00630-6 10.1016/j.atmosres.2013.08.015 10.1016/j.energy.2023.126781 10.1016/j.ecoenv.2023.114960 10.1016/j.scitotenv.2022.156312 10.1007/s00521-021-06007-5 10.1002/2017GL075710 10.1016/j.eswa.2022.118707 10.1016/j.ins.2019.10.069 10.1016/j.scitotenv.2021.145392 10.1029/2021JD035227 10.1016/j.atmosenv.2009.06.040 10.1016/j.atmosenv.2023.119957 10.1016/j.atmosenv.2019.05.049 10.1093/nar/gkab016 10.1186/s40537-014-0007-7 10.1016/j.ymssp.2021.108201 10.1016/j.chemosphere.2023.138830 10.1016/j.apr.2023.101866 10.1016/j.envpol.2022.120392 10.1016/j.cageo.2021.104869 10.1016/S2542-5196(20)30298-9 10.1016/j.asoc.2023.110955 10.1016/j.jenvman.2021.114210 10.1016/j.scitotenv.2020.144241 10.1016/j.petrol.2021.109202 10.1016/j.scitotenv.2022.153309 10.3390/rs14225841 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-95019-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : Directory of Open Access Journals [open access] |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_e948e2262ef34430befa42667379aa43 PMC12259964 10_1038_s41598_025_95019_5 |
GeographicLocations | Beijing China China |
GeographicLocations_xml | – name: China – name: Beijing China |
GrantInformation_xml | – fundername: Yan 'an University Doctoral Program grantid: No.20504306 – fundername: Yan 'an City Science and Technology Development Program grantid: No.203010096 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PJZUB 3V. 7XB 88A 8FK AARCD K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c471t-34e29698483caba45e3b94e916720692e661cad3e92e4c8e8a6cf13b51f8c50e3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Thu Aug 21 18:23:05 EDT 2025 Tue Aug 26 08:54:18 EDT 2025 Wed Aug 13 06:21:14 EDT 2025 Thu Jul 24 01:50:36 EDT 2025 Tue Jul 15 01:10:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Convtrans Joint Estimation PM Knowledge O |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-34e29698483caba45e3b94e916720692e661cad3e92e4c8e8a6cf13b51f8c50e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/e948e2262ef34430befa42667379aa43 |
PMID | 40659756 |
PQID | 3230015117 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e948e2262ef34430befa42667379aa43 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12259964 proquest_miscellaneous_3230215312 proquest_journals_3230015117 crossref_primary_10_1038_s41598_025_95019_5 springer_journals_10_1038_s41598_025_95019_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-14 |
PublicationDateYYYYMMDD | 2025-07-14 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | H Dai (95019_CR34) 2023; 257 A Pandey (95019_CR4) 2021; 5 AF Bais (95019_CR44) 2019; 18 T Li (95019_CR54) 2020; 167 M Zhu (95019_CR55) 2023; 211 J Dong (95019_CR36) 2022; 315 Y Ren (95019_CR22) 2023; 14 Z Liu (95019_CR10) 2021; 772 Y Xiao (95019_CR59) 2021; 36 S Wang (95019_CR24) 2023; 331 MO Turkoglu (95019_CR26) 2021; 44 J Sun (95019_CR12) 2021; 762 D Cao (95019_CR63) 2022; 208 W Duan (95019_CR16) 2022; 820 R Li (95019_CR23) 2023; 269 KR Baker (95019_CR35) 2023; 57 J Shin (95019_CR60) 2023; 310 W Wang (95019_CR30) 2022; 8 A Haldorai (95019_CR47) 2021; 53 95019_CR58 J Shao (95019_CR48) 2020; 33 X Wang (95019_CR50) 2022; 813 Q Xu (95019_CR13) 2021; 765 Y Luo (95019_CR49) 2022; 838 MM Najafabadi (95019_CR56) 2015; 2 X Zhang (95019_CR1) 2022; 346 Y Xu (95019_CR7) 2018; 242 D Wang (95019_CR46) 2021; 49 K Han (95019_CR29) 2021; 34 C Zuo (95019_CR65) 2022; 11 Y Zhang (95019_CR51) 2023; 123 S Wang (95019_CR17) 2023; 14 C Wu (95019_CR67) 2022; 207 SR Shams (95019_CR32) 2021; 37 A Rahman (95019_CR3) 2019; 212 L Zhang (95019_CR33) 2021; 155 Y Li (95019_CR6) 2021; 7 L Li (95019_CR39) 2020; 12 DP Solomatine (95019_CR37) 2008; 10 M Michulec (95019_CR40) 2005; 35 J Zhang (95019_CR20) 2020; 33 J Chen (95019_CR15) 2022; 112 V Barzegar (95019_CR21) 2022; 164 Q Xu (95019_CR38) 2022; 14 J Cai (95019_CR57) 2018; 300 S Dong (95019_CR64) 2021; 40 M Todorovic (95019_CR53) 2023; 149 95019_CR9 J Li (95019_CR11) 2022; 303 CW Lu (95019_CR2) 2021; 10 RA Hamad (95019_CR45) 2021; 33 95019_CR31 L Qi (95019_CR42) 2022; 14 X Jurado (95019_CR66) 2023; 99 95019_CR62 L Huang (95019_CR41) 2021; 258 R Sivarethinamohan (95019_CR5) 2021; 37 MA Akbarzadeh (95019_CR52) 2018; 161 Y Zhang (95019_CR19) 2022; 136 MM Hassan (95019_CR25) 2020; 513 T Li (95019_CR14) 2021; 101 MA Ali (95019_CR43) 2022; 288 95019_CR28 W Song (95019_CR8) 2014; 154 F Cifuentes (95019_CR18) 2021; 21 Y Zhang (95019_CR68) 2019; 6 J Tao (95019_CR61) 2014; 135 DL Crouse (95019_CR27) 2009; 43 |
References_xml | – volume: 112 start-page: 102955 year: 2022 ident: 95019_CR15 publication-title: Int. J. Appl. Earth Obs Geoinf. – volume: 33 start-page: 439 year: 2020 ident: 95019_CR20 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.07.011 – volume: 242 start-page: 1417 year: 2018 ident: 95019_CR7 publication-title: Environ. Pollut doi: 10.1016/j.envpol.2018.08.029 – ident: 95019_CR58 doi: 10.5194/gmd-2022-64 – volume: 53 start-page: 2385 year: 2021 ident: 95019_CR47 publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10327-3 – volume: 14 start-page: 2762 year: 2022 ident: 95019_CR42 publication-title: Remote Sens. doi: 10.3390/rs14122762 – volume: 37 start-page: 2725 year: 2021 ident: 95019_CR5 publication-title: Mater. Today: Proc. – volume: 40 start-page: 100379 year: 2021 ident: 95019_CR64 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100379 – volume: 57 start-page: 14626 year: 2023 ident: 95019_CR35 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c03317 – volume: 12 start-page: 264 year: 2020 ident: 95019_CR39 publication-title: Remote Sens. doi: 10.3390/rs12020264 – volume: 37 start-page: 100837 year: 2021 ident: 95019_CR32 publication-title: Urban Clim. doi: 10.1016/j.uclim.2021.100837 – volume: 167 start-page: 178 year: 2020 ident: 95019_CR54 publication-title: ISPRS J. Photogramm Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.019 – volume: 300 start-page: 70 year: 2018 ident: 95019_CR57 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 288 start-page: 119297 year: 2022 ident: 95019_CR43 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119297 – volume: 7 start-page: 72 year: 2021 ident: 95019_CR6 publication-title: Curr. Pollut Rep. doi: 10.1007/s40726-020-00170-4 – volume: 18 start-page: 602 year: 2019 ident: 95019_CR44 publication-title: Photochem. Photobiol Sci. doi: 10.1039/c8pp90059k – volume: 161 start-page: 299 year: 2018 ident: 95019_CR52 publication-title: Environ. Res. doi: 10.1016/j.envres.2017.11.020 – ident: 95019_CR31 – volume: 35 start-page: 117 year: 2005 ident: 95019_CR40 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408340500207482 – volume: 33 start-page: 13434 year: 2020 ident: 95019_CR48 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 99 start-page: 104951 year: 2023 ident: 95019_CR66 publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2023.104951 – volume: 6 start-page: 52 year: 2019 ident: 95019_CR68 publication-title: Sci. Data doi: 10.1038/s41597-019-0055-0 – volume: 258 start-page: 105633 year: 2021 ident: 95019_CR41 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2021.105633 – volume: 36 start-page: 2036 year: 2021 ident: 95019_CR59 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22370 – volume: 14 start-page: 101703 year: 2023 ident: 95019_CR22 publication-title: Atmos. Pollut Res. doi: 10.1016/j.apr.2023.101703 – volume: 154 start-page: 1 year: 2014 ident: 95019_CR8 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.008 – volume: 762 start-page: 144502 year: 2021 ident: 95019_CR12 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144502 – volume: 123 start-page: 545 year: 2023 ident: 95019_CR51 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2022.10.033 – volume: 813 start-page: 152449 year: 2022 ident: 95019_CR50 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152449 – volume: 346 start-page: 130988 year: 2022 ident: 95019_CR1 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.130988 – volume: 21 start-page: 200471 year: 2021 ident: 95019_CR18 publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.200471 – volume: 136 start-page: 107744 year: 2022 ident: 95019_CR19 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107744 – volume: 44 start-page: 4081 year: 2021 ident: 95019_CR26 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 207 start-page: 108436 year: 2022 ident: 95019_CR67 publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108436 – ident: 95019_CR28 – volume: 8 start-page: 415 year: 2022 ident: 95019_CR30 publication-title: Comput. Visual Media doi: 10.1007/s41095-022-0274-8 – volume: 11 start-page: 1 year: 2022 ident: 95019_CR65 publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00680-w – volume: 10 start-page: 3 year: 2008 ident: 95019_CR37 publication-title: J. Hydroinf. doi: 10.2166/hydro.2008.015 – volume: 10 start-page: 190 year: 2021 ident: 95019_CR2 publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00630-6 – volume: 135 start-page: 48 year: 2014 ident: 95019_CR61 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2013.08.015 – volume: 269 start-page: 126781 year: 2023 ident: 95019_CR23 publication-title: Energy doi: 10.1016/j.energy.2023.126781 – volume: 257 start-page: 114960 year: 2023 ident: 95019_CR34 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2023.114960 – volume: 838 start-page: 156312 year: 2022 ident: 95019_CR49 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.156312 – volume: 33 start-page: 13705 year: 2021 ident: 95019_CR45 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06007-5 – ident: 95019_CR9 doi: 10.1002/2017GL075710 – volume: 211 start-page: 118707 year: 2023 ident: 95019_CR55 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118707 – volume: 513 start-page: 386 year: 2020 ident: 95019_CR25 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.069 – volume: 772 start-page: 145392 year: 2021 ident: 95019_CR10 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145392 – volume: 34 start-page: 15908 year: 2021 ident: 95019_CR29 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 95019_CR62 doi: 10.1029/2021JD035227 – volume: 43 start-page: 5075 year: 2009 ident: 95019_CR27 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.06.040 – volume: 310 start-page: 119957 year: 2023 ident: 95019_CR60 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119957 – volume: 212 start-page: 290 year: 2019 ident: 95019_CR3 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.05.049 – volume: 49 start-page: e46 year: 2021 ident: 95019_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab016 – volume: 2 start-page: 1 year: 2015 ident: 95019_CR56 publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 164 start-page: 108201 year: 2022 ident: 95019_CR21 publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2021.108201 – volume: 331 start-page: 138830 year: 2023 ident: 95019_CR24 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138830 – volume: 101 start-page: 102356 year: 2021 ident: 95019_CR14 publication-title: Int. J. Appl. Earth Obs Geoinf. – volume: 14 start-page: 101866 year: 2023 ident: 95019_CR17 publication-title: Atmos. Pollut Res. doi: 10.1016/j.apr.2023.101866 – volume: 315 start-page: 120392 year: 2022 ident: 95019_CR36 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120392 – volume: 155 start-page: 104869 year: 2021 ident: 95019_CR33 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104869 – volume: 5 start-page: e25 year: 2021 ident: 95019_CR4 publication-title: Lancet Planet. Health doi: 10.1016/S2542-5196(20)30298-9 – volume: 149 start-page: 110955 year: 2023 ident: 95019_CR53 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110955 – volume: 303 start-page: 114210 year: 2022 ident: 95019_CR11 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.114210 – volume: 765 start-page: 144241 year: 2021 ident: 95019_CR13 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144241 – volume: 208 start-page: 109202 year: 2022 ident: 95019_CR63 publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.109202 – volume: 820 start-page: 153309 year: 2022 ident: 95019_CR16 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153309 – volume: 14 start-page: 5841 year: 2022 ident: 95019_CR38 publication-title: Remote Sens. doi: 10.3390/rs14225841 |
SSID | ssj0000529419 |
Score | 2.452008 |
Snippet | Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this... Abstract Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 25340 |
SubjectTerms | 639/705 704/106/35 Aerosols Air pollution Convtrans Deep learning Design Environmental monitoring Humanities and Social Sciences Humidity Joint Estimation Knowledge Machine learning multidisciplinary Neural networks Particulate matter PM2.5 Pollutants Radiation Remote sensing Science Science (multidisciplinary) Spatial variations Time series VOCs Volatile organic compounds |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCIkLYnyIsjEFiRuUNY3TJicEE9MEGnBg0rugKE1dGId2vNcd9t9j9-NNncROrZpUTW3H_sVObCFeZ0VdVABNqhqsUgAX08AZh0KtaUnkYsTAroHTr8XJGXxemdXkcNtM2ypnnTgo6rqL7CM_1ISVyXQpVb6_-Jty1SiOrk4lNO6Ke5y6jKW6XJVbHwtHsUC56axMpu3hhuwVnynLTeoMoZvULOzRkLZ_gTVv7pS8ES4drNDxI_Fwgo_yw8jvXXEH28fi_lhQ8uqJ-PlldpFJNk-15E3lk3DRa_2MUnEt6SL_dOdtLznPxniAUXaN_H6avzMytLX8pvn1cUyDdD4VZ8effhydpFMBhTSSzelTDZi7wlmwOoYqgEFdOUBChGWeFS5HMs6RuIJ0C9GiDUVslK6Mamw0GepnYqftWnwuJJk6Q_oIY60iqGhcXqlSO1tkFmoiZCLezGT0F2OeDD_Et7X1I9E9Ed0PRPcmER-Z0tuenON6eNCtf_lpynh0YJHQYY6NBtBZhU1gPFHq0oUAOhH7M5_8NPE2_lpMEvFq20xThuMgocXucuxDSEerPBF2wd_FgJYt7fnvIfm2IgVIa0RIxNtZFK6__v8_fnH7YPfEg5yFkjN2wr7Y6deX-JLQTl8dDCL9D908_Ls priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29b9UwELdKK0ZUCojQgozEBoHYPif2-EBU1UMFJKjUBVmOc4EyJOg1HfjvOTvJQ6naoVOi2Facu4vv5_syY6-KsilrgDYXLdY5gA25jxWHfKNoS2RDQB9NA6efy5MzWJ_r8x0m51yYFLSfSlqmZXqODnt3SYomJoNJnVtNsCTX99heLNVOsr23Wq2_rbeWlei7AmGnDJlCmRsGL7RQKta_QJjX4yOvOUmT7jneZw8m0MhX4zQfsh3sDtj98RjJv4_Yj0-zYYxHpdTwGEo-iRQNG2ZsihtOF_67v-gGHqtrjGmLvG_511P5VnPfNfyLisPHOSWZfMzOjj9-_3CST8cm5IE0zZArQGlLa8Co4GsPGlVtAQkHVrIorURSyYF4gXQLwaDxZWiFqrVoTdAFqidst-s7fMo4KThNqxCGRgQQQVtZi0pZUxYGGiJkxl7PZHR_xuoYLnm1lXEj0R0R3SWiO52x95HS256xsnV60G9-uonTDi0YJEwosVUAqqix9RFFVKqy3oPK2NHMJzf9bpdO0UaKcI0QVcZebpvpR4neD99hfzX2IXyjhMyYWfB3MaFlS3fxK5XcFrTs0c4QMvZmFoX_b7_9i5_drfthtBrEYMoqF3DEdofNFT4nzDPULyYh_wcGB_wW priority: 102 providerName: Springer Nature |
Title | Knowledge based convolutional transformer for joint estimation of PM2.5 and O3 concentrations |
URI | https://link.springer.com/article/10.1038/s41598-025-95019-5 https://www.proquest.com/docview/3230015117 https://www.proquest.com/docview/3230215312 https://pubmed.ncbi.nlm.nih.gov/PMC12259964 https://doaj.org/article/e948e2262ef34430befa42667379aa43 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BERIXxKcIlJWRuEFobI8T-7hdtaoWtVRApb0gy3EcUQ5Z1KYH_j3jOClNJcSFkyPbUewZO-_56xngbVE2ZY3Y5rwNdY5ofO6i4pBrJA2JjPfBxamB45Py6AzXG7W5cdVX3BOW5IGT4faCQR2II4jQSkRZ1KF1EVUqWRnncND5JMy7MZhKqt7CIDfjKZlC6r1LQqp4mkyo3CjiNbmaIdEg2D9jmbf3SN5aKB3w5_ARPByJI1umAj-GO6F7AvfTVZK_nsK3j9PkGIvA1LC4nXxsVvRaP_HTcMEoYD-2513PosJGOrrIti07PRYfFHNdwz7J-Hoq09Aun8HZ4cHX1VE-Xp2Qe0KbPpcYhCmNRi29qx2qIGuDgbhgJYrSiECw7MkfgR7R66Bd6Vsua8Vb7VUR5HPY6bZdeAGMQE7Rnyj4hnvkXhlR80oaXRYaGzJkBu8mM9qfSSHDDivbUttkdEtGt4PRrcpgP1r6OmdUtx4iyOd29Ln9l88z2J38ZMcud2klDaaI23BeZfDmOpk6S1wBcV3YXqU8xHEkFxnomX9nBZqndOffB9ltTr8-Gh1iBu-npvDn63-v8cv_UeNX8EDEphsVPXEXdvqLq_Ca2FBfL-ButakWcG-5XH9ZU7h_cHL6mWJX5WoxdIrfhFcJuA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviKcaKGAkOEFo_ErsQ4V4VVu2Wzi00l6Q6zgOlENSdlOh_qn-RsZ5bJVKcOspUWwnzngenz32DMDLJC3SXIgypqXPYyG0i22IOGQLjlMi7Zy3YWlgdpBOjsSXuZyvwcVwFiZsqxx0Yquoi9qFNfJtjlgZTRel2bvT33HIGhW8q0MKjY4tpv78D07Zljt7n3B8XzG2-_nw4yTuswrEDhVxE3PhmU61Eoo7m1shPc-18AiTMpakmnm0WA676vFWOOWVTV1JeS5pqZxMPMf33oCbaHiTMNnL5tlqTSd4zQTV_dmchKvtJdrHcIaNyVhLRFOxHNm_Nk3ACNte3Zl5xT3bWr3du3Cnh6vkfcdf92DNV_fhVpfA8vwBfJ8OS3IkmMOChE3sPTNjs2ZAxX5B8EJ-1SdVQ0Jcj-7AJKlL8m3G3kpiq4J85aF516dWGh7C0bWQ9hGsV3XlN4GgaZWo_7wrqBPUSc1ymnGt0kSJAgkZweuBjOa0i8thWn86V6YjukGim5boRkbwIVB6VTPE1G4f1IsfphdR47VQHtEo8yUXgie5L23ALxnPtLWCR7A1jJPpBX1pLtkygherYhTR4Hexla_PujqIrDhlEajR-I46NC6pTn62wb4pKlyck4oI3gyscPn1f__x4_939jncnhzO9s3-3sH0CWywwKAhWqjYgvVmceafItJq8mctexM4vm55-gvYszkv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE8RKGAkOEHY-JXYB4Qo7apl6bJCVOqlMo7jQDkkZTcV6l_j1zHOY6utBLeeEsV24ozn8dljzwC8SNIizYUoY1r6PBZCu9iGiEO24Dgl0s55G5YGDmbp3qH4eCSPNuDPcBYmbKscdGKrqIvahTXyMUesjKaL0mxc9tsi5juTd6e_4pBBKnhah3QaHYtM_flvnL4t3-7v4Fi_ZGyy-_XDXtxnGIgdKuUm5sIznWolFHc2t0J6nmvhETJlLEk182i9HHbb461wyiubupLyXNJSOZl4ju-9BptZmBWNYHN7dzb_slrhCT40QXV_UifharxEaxlOtDEZa4nYKpZr1rBNGrCGdC_v07zkrG1t4OQ23OrBK3nfcdsd2PDVXbjepbM8vwfH02GBjgTjWJCwpb1nbWzWDBjZLwheyM_6pGpIiPLRHZ8kdUnmB-yNJLYqyGcemnd9amXjPhxeCXEfwKiqK_8QCBpaidrQu4I6QZ3ULKcZ1ypNlCiQkBG8GshoTrsoHab1rnNlOqIbJLppiW5kBNuB0quaIcJ2-6BefDe9wBqvhfKITZkvuRA8yX1pA5rJeKatFTyCrWGcTC_2S3PBpBE8XxWjwAYvjK18fdbVQZzFKYtArY3vWofWS6qTH23ob4rqF2eoIoLXAytcfP3ff_zo_519BjdQlsyn_dn0MdxkgT9D6FCxBaNmceafIOxq8qc9fxP4dtUi9RfcnD7K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+based+convolutional+transformer+for+joint+estimation+of+PM2.5+and+O3+concentrations&rft.jtitle=Scientific+reports&rft.au=Ying+Ren&rft.au=Siyuan+Wang&rft.au=Bisheng+Xia&rft.au=Biesheng+Xia&rft.date=2025-07-14&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41598-025-95019-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e948e2262ef34430befa42667379aa43 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |