Knowledge based convolutional transformer for joint estimation of PM2.5 and O3 concentrations

Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM 2.5...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 25340 - 16
Main Authors Ren, Ying, Wang, Siyuan, Xia, Bisheng, Xia, Biesheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM 2.5 and O 3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM 2.5 -O 3 interaction module, and the weighted loss function designed with the correlation between PM 2.5 and O 3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM 2.5 :RMSE = 6.136 µg/m³, O 3 :RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM 2.5 :R 2  = 0.923, O 3 :R 2  = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields.
AbstractList Abstract Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields.
Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields.
Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields.Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM2.5 and O3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM2.5-O3 interaction module, and the weighted loss function designed with the correlation between PM2.5 and O3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM2.5:RMSE = 6.136 µg/m³, O3:RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM2.5:R2 = 0.923, O3:R2 = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields.
Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this problem, this study proposes a Convolutional Transformer (Convtrans) model that incorporates knowledge to make a collaborative estimation of PM 2.5 and O 3 by combining ground, satellite, and reanalysis data. Knowledge is introduced into the model by the shared and specific inputs, the PM 2.5 -O 3 interaction module, and the weighted loss function designed with the correlation between PM 2.5 and O 3 concentrations. To verify the accuracy of the Convtrans model, its prediction result was compared with that of CNN-LSTM, Transformer, RF, and XGB models. Estimating the pollutant concentration in typical Chinese cities, the cross-validation results show that Convtrans has the minimum error (PM 2.5 :RMSE = 6.136 µg/m³, O 3 :RMSE = 8.250 µg/m³) and the highest prediction accuracy (PM 2.5 :R 2  = 0.923, O 3 :R 2  = 0.898). Finally, a map of pollutant concentrations was drawn according to the pollutant concentration values predicted by the model, showing the spatial variations of pollutant. This study indicates that it is feasible to integrate knowledge into a data-driven model for a joint estimation of atmospheric pollutant concentrations. In addition, the joint estimation framework for pollutants proposed in this study can be applied to multivariate retrieval or estimation in multiple fields.
ArticleNumber 25340
Author Ren, Ying
Xia, Biesheng
Wang, Siyuan
Xia, Bisheng
Author_xml – sequence: 1
  givenname: Ying
  surname: Ren
  fullname: Ren, Ying
  organization: College of Mathematics and Computer Science, Yan’an University
– sequence: 2
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: College of Mathematics and Computer Science, Yan’an University
– sequence: 3
  givenname: Bisheng
  surname: Xia
  fullname: Xia, Bisheng
  email: bishengxia@163.com
  organization: College of Mathematics and Computer Science, Yan’an University
– sequence: 4
  givenname: Biesheng
  surname: Xia
  fullname: Xia, Biesheng
  organization: College of Mathematics and Computer Science, Yan’an University
BookMark eNp9kktP3TAQhS1EBZTyB1hZYtNNqD1-JF5VFeKlUtFFu6wsx5nc5irXBjsB9d_Xl6BSuqg3Y3nO-TQenbdkN8SAhBxzdsqZaD5kyZVpKgaqMopxU6kdcgBMqgoEwO5f931ylPOalaPASG72yL5kWpla6QPy43OIjyN2K6Sty9hRH8NDHOdpiMGNdEou5D6mDSZaCl3HIUwU8zRs3FZCY0-_foFTRV3o6K3Y2j2GYtt28zvypndjxqPneki-X5x_O7uqbm4vr88-3VRe1nyqhEQw2jSyEd61TioUrZFouK6BaQOoNfeuE1iu0jfYOO17LlrF-8YrhuKQXC_cLrq1vUtluvTLRjfYp4eYVtalafAjWjSyQQAN2AspBWuxdxK0rkVtnJOisD4urLu53WC3_GZ8BX3dCcNPu4oPlgMoY7QshPfPhBTv57Isuxmyx3F0AeOcrQDBgCvBoUhP_pGu45zK5hcV44rzuqhgUfkUc07Y_5mGM7tNg13SYEsa7FMarComsZhyEYcVphf0f1y_AaJ2tyw
Cites_doi 10.1016/j.cja.2019.07.011
10.1016/j.envpol.2018.08.029
10.5194/gmd-2022-64
10.1007/s11063-020-10327-3
10.3390/rs14122762
10.1016/j.cosrev.2021.100379
10.1021/acs.est.3c03317
10.3390/rs12020264
10.1016/j.uclim.2021.100837
10.1016/j.isprsjprs.2020.06.019
10.1016/j.neucom.2017.11.077
10.1016/j.atmosenv.2022.119297
10.1007/s40726-020-00170-4
10.1039/c8pp90059k
10.1016/j.envres.2017.11.020
10.1080/10408340500207482
10.1016/j.scs.2023.104951
10.1038/s41597-019-0055-0
10.1016/j.atmosres.2021.105633
10.1002/int.22370
10.1016/j.apr.2023.101703
10.1016/j.rse.2014.08.008
10.1016/j.scitotenv.2020.144502
10.1016/j.jes.2022.10.033
10.1016/j.scitotenv.2021.152449
10.1016/j.jclepro.2022.130988
10.4209/aaqr.200471
10.1016/j.ijepes.2021.107744
10.1016/j.buildenv.2021.108436
10.1007/s41095-022-0274-8
10.1038/s41377-021-00680-w
10.2166/hydro.2008.015
10.1038/s41377-021-00630-6
10.1016/j.atmosres.2013.08.015
10.1016/j.energy.2023.126781
10.1016/j.ecoenv.2023.114960
10.1016/j.scitotenv.2022.156312
10.1007/s00521-021-06007-5
10.1002/2017GL075710
10.1016/j.eswa.2022.118707
10.1016/j.ins.2019.10.069
10.1016/j.scitotenv.2021.145392
10.1029/2021JD035227
10.1016/j.atmosenv.2009.06.040
10.1016/j.atmosenv.2023.119957
10.1016/j.atmosenv.2019.05.049
10.1093/nar/gkab016
10.1186/s40537-014-0007-7
10.1016/j.ymssp.2021.108201
10.1016/j.chemosphere.2023.138830
10.1016/j.apr.2023.101866
10.1016/j.envpol.2022.120392
10.1016/j.cageo.2021.104869
10.1016/S2542-5196(20)30298-9
10.1016/j.asoc.2023.110955
10.1016/j.jenvman.2021.114210
10.1016/j.scitotenv.2020.144241
10.1016/j.petrol.2021.109202
10.1016/j.scitotenv.2022.153309
10.3390/rs14225841
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-95019-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_e948e2262ef34430befa42667379aa43
PMC12259964
10_1038_s41598_025_95019_5
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GrantInformation_xml – fundername: Yan 'an University Doctoral Program
  grantid: No.20504306
– fundername: Yan 'an City Science and Technology Development Program
  grantid: No.203010096
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PJZUB
3V.
7XB
88A
8FK
AARCD
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c471t-34e29698483caba45e3b94e916720692e661cad3e92e4c8e8a6cf13b51f8c50e3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:24 EDT 2025
Thu Aug 21 18:23:05 EDT 2025
Tue Aug 26 08:54:18 EDT 2025
Wed Aug 13 06:21:14 EDT 2025
Thu Jul 24 01:50:36 EDT 2025
Tue Jul 15 01:10:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Convtrans
Joint Estimation
PM
Knowledge
O
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-34e29698483caba45e3b94e916720692e661cad3e92e4c8e8a6cf13b51f8c50e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/e948e2262ef34430befa42667379aa43
PMID 40659756
PQID 3230015117
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e948e2262ef34430befa42667379aa43
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12259964
proquest_miscellaneous_3230215312
proquest_journals_3230015117
crossref_primary_10_1038_s41598_025_95019_5
springer_journals_10_1038_s41598_025_95019_5
PublicationCentury 2000
PublicationDate 2025-07-14
PublicationDateYYYYMMDD 2025-07-14
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References H Dai (95019_CR34) 2023; 257
A Pandey (95019_CR4) 2021; 5
AF Bais (95019_CR44) 2019; 18
T Li (95019_CR54) 2020; 167
M Zhu (95019_CR55) 2023; 211
J Dong (95019_CR36) 2022; 315
Y Ren (95019_CR22) 2023; 14
Z Liu (95019_CR10) 2021; 772
Y Xiao (95019_CR59) 2021; 36
S Wang (95019_CR24) 2023; 331
MO Turkoglu (95019_CR26) 2021; 44
J Sun (95019_CR12) 2021; 762
D Cao (95019_CR63) 2022; 208
W Duan (95019_CR16) 2022; 820
R Li (95019_CR23) 2023; 269
KR Baker (95019_CR35) 2023; 57
J Shin (95019_CR60) 2023; 310
W Wang (95019_CR30) 2022; 8
A Haldorai (95019_CR47) 2021; 53
95019_CR58
J Shao (95019_CR48) 2020; 33
X Wang (95019_CR50) 2022; 813
Q Xu (95019_CR13) 2021; 765
Y Luo (95019_CR49) 2022; 838
MM Najafabadi (95019_CR56) 2015; 2
X Zhang (95019_CR1) 2022; 346
Y Xu (95019_CR7) 2018; 242
D Wang (95019_CR46) 2021; 49
K Han (95019_CR29) 2021; 34
C Zuo (95019_CR65) 2022; 11
Y Zhang (95019_CR51) 2023; 123
S Wang (95019_CR17) 2023; 14
C Wu (95019_CR67) 2022; 207
SR Shams (95019_CR32) 2021; 37
A Rahman (95019_CR3) 2019; 212
L Zhang (95019_CR33) 2021; 155
Y Li (95019_CR6) 2021; 7
L Li (95019_CR39) 2020; 12
DP Solomatine (95019_CR37) 2008; 10
M Michulec (95019_CR40) 2005; 35
J Zhang (95019_CR20) 2020; 33
J Chen (95019_CR15) 2022; 112
V Barzegar (95019_CR21) 2022; 164
Q Xu (95019_CR38) 2022; 14
J Cai (95019_CR57) 2018; 300
S Dong (95019_CR64) 2021; 40
M Todorovic (95019_CR53) 2023; 149
95019_CR9
J Li (95019_CR11) 2022; 303
CW Lu (95019_CR2) 2021; 10
RA Hamad (95019_CR45) 2021; 33
95019_CR31
L Qi (95019_CR42) 2022; 14
X Jurado (95019_CR66) 2023; 99
95019_CR62
L Huang (95019_CR41) 2021; 258
R Sivarethinamohan (95019_CR5) 2021; 37
MA Akbarzadeh (95019_CR52) 2018; 161
Y Zhang (95019_CR19) 2022; 136
MM Hassan (95019_CR25) 2020; 513
T Li (95019_CR14) 2021; 101
MA Ali (95019_CR43) 2022; 288
95019_CR28
W Song (95019_CR8) 2014; 154
F Cifuentes (95019_CR18) 2021; 21
Y Zhang (95019_CR68) 2019; 6
J Tao (95019_CR61) 2014; 135
DL Crouse (95019_CR27) 2009; 43
References_xml – volume: 112
  start-page: 102955
  year: 2022
  ident: 95019_CR15
  publication-title: Int. J. Appl. Earth Obs Geoinf.
– volume: 33
  start-page: 439
  year: 2020
  ident: 95019_CR20
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2019.07.011
– volume: 242
  start-page: 1417
  year: 2018
  ident: 95019_CR7
  publication-title: Environ. Pollut
  doi: 10.1016/j.envpol.2018.08.029
– ident: 95019_CR58
  doi: 10.5194/gmd-2022-64
– volume: 53
  start-page: 2385
  year: 2021
  ident: 95019_CR47
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10327-3
– volume: 14
  start-page: 2762
  year: 2022
  ident: 95019_CR42
  publication-title: Remote Sens.
  doi: 10.3390/rs14122762
– volume: 37
  start-page: 2725
  year: 2021
  ident: 95019_CR5
  publication-title: Mater. Today: Proc.
– volume: 40
  start-page: 100379
  year: 2021
  ident: 95019_CR64
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100379
– volume: 57
  start-page: 14626
  year: 2023
  ident: 95019_CR35
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c03317
– volume: 12
  start-page: 264
  year: 2020
  ident: 95019_CR39
  publication-title: Remote Sens.
  doi: 10.3390/rs12020264
– volume: 37
  start-page: 100837
  year: 2021
  ident: 95019_CR32
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2021.100837
– volume: 167
  start-page: 178
  year: 2020
  ident: 95019_CR54
  publication-title: ISPRS J. Photogramm Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.019
– volume: 300
  start-page: 70
  year: 2018
  ident: 95019_CR57
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 288
  start-page: 119297
  year: 2022
  ident: 95019_CR43
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119297
– volume: 7
  start-page: 72
  year: 2021
  ident: 95019_CR6
  publication-title: Curr. Pollut Rep.
  doi: 10.1007/s40726-020-00170-4
– volume: 18
  start-page: 602
  year: 2019
  ident: 95019_CR44
  publication-title: Photochem. Photobiol Sci.
  doi: 10.1039/c8pp90059k
– volume: 161
  start-page: 299
  year: 2018
  ident: 95019_CR52
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.11.020
– ident: 95019_CR31
– volume: 35
  start-page: 117
  year: 2005
  ident: 95019_CR40
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408340500207482
– volume: 33
  start-page: 13434
  year: 2020
  ident: 95019_CR48
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 99
  start-page: 104951
  year: 2023
  ident: 95019_CR66
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2023.104951
– volume: 6
  start-page: 52
  year: 2019
  ident: 95019_CR68
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0055-0
– volume: 258
  start-page: 105633
  year: 2021
  ident: 95019_CR41
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2021.105633
– volume: 36
  start-page: 2036
  year: 2021
  ident: 95019_CR59
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22370
– volume: 14
  start-page: 101703
  year: 2023
  ident: 95019_CR22
  publication-title: Atmos. Pollut Res.
  doi: 10.1016/j.apr.2023.101703
– volume: 154
  start-page: 1
  year: 2014
  ident: 95019_CR8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.008
– volume: 762
  start-page: 144502
  year: 2021
  ident: 95019_CR12
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144502
– volume: 123
  start-page: 545
  year: 2023
  ident: 95019_CR51
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2022.10.033
– volume: 813
  start-page: 152449
  year: 2022
  ident: 95019_CR50
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152449
– volume: 346
  start-page: 130988
  year: 2022
  ident: 95019_CR1
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130988
– volume: 21
  start-page: 200471
  year: 2021
  ident: 95019_CR18
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.200471
– volume: 136
  start-page: 107744
  year: 2022
  ident: 95019_CR19
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107744
– volume: 44
  start-page: 4081
  year: 2021
  ident: 95019_CR26
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 207
  start-page: 108436
  year: 2022
  ident: 95019_CR67
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108436
– ident: 95019_CR28
– volume: 8
  start-page: 415
  year: 2022
  ident: 95019_CR30
  publication-title: Comput. Visual Media
  doi: 10.1007/s41095-022-0274-8
– volume: 11
  start-page: 1
  year: 2022
  ident: 95019_CR65
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00680-w
– volume: 10
  start-page: 3
  year: 2008
  ident: 95019_CR37
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2008.015
– volume: 10
  start-page: 190
  year: 2021
  ident: 95019_CR2
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00630-6
– volume: 135
  start-page: 48
  year: 2014
  ident: 95019_CR61
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2013.08.015
– volume: 269
  start-page: 126781
  year: 2023
  ident: 95019_CR23
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126781
– volume: 257
  start-page: 114960
  year: 2023
  ident: 95019_CR34
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2023.114960
– volume: 838
  start-page: 156312
  year: 2022
  ident: 95019_CR49
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.156312
– volume: 33
  start-page: 13705
  year: 2021
  ident: 95019_CR45
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06007-5
– ident: 95019_CR9
  doi: 10.1002/2017GL075710
– volume: 211
  start-page: 118707
  year: 2023
  ident: 95019_CR55
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118707
– volume: 513
  start-page: 386
  year: 2020
  ident: 95019_CR25
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.069
– volume: 772
  start-page: 145392
  year: 2021
  ident: 95019_CR10
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145392
– volume: 34
  start-page: 15908
  year: 2021
  ident: 95019_CR29
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 95019_CR62
  doi: 10.1029/2021JD035227
– volume: 43
  start-page: 5075
  year: 2009
  ident: 95019_CR27
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.06.040
– volume: 310
  start-page: 119957
  year: 2023
  ident: 95019_CR60
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119957
– volume: 212
  start-page: 290
  year: 2019
  ident: 95019_CR3
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.05.049
– volume: 49
  start-page: e46
  year: 2021
  ident: 95019_CR46
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab016
– volume: 2
  start-page: 1
  year: 2015
  ident: 95019_CR56
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 164
  start-page: 108201
  year: 2022
  ident: 95019_CR21
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2021.108201
– volume: 331
  start-page: 138830
  year: 2023
  ident: 95019_CR24
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.138830
– volume: 101
  start-page: 102356
  year: 2021
  ident: 95019_CR14
  publication-title: Int. J. Appl. Earth Obs Geoinf.
– volume: 14
  start-page: 101866
  year: 2023
  ident: 95019_CR17
  publication-title: Atmos. Pollut Res.
  doi: 10.1016/j.apr.2023.101866
– volume: 315
  start-page: 120392
  year: 2022
  ident: 95019_CR36
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120392
– volume: 155
  start-page: 104869
  year: 2021
  ident: 95019_CR33
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104869
– volume: 5
  start-page: e25
  year: 2021
  ident: 95019_CR4
  publication-title: Lancet Planet. Health
  doi: 10.1016/S2542-5196(20)30298-9
– volume: 149
  start-page: 110955
  year: 2023
  ident: 95019_CR53
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110955
– volume: 303
  start-page: 114210
  year: 2022
  ident: 95019_CR11
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.114210
– volume: 765
  start-page: 144241
  year: 2021
  ident: 95019_CR13
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144241
– volume: 208
  start-page: 109202
  year: 2022
  ident: 95019_CR63
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109202
– volume: 820
  start-page: 153309
  year: 2022
  ident: 95019_CR16
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153309
– volume: 14
  start-page: 5841
  year: 2022
  ident: 95019_CR38
  publication-title: Remote Sens.
  doi: 10.3390/rs14225841
SSID ssj0000529419
Score 2.452008
Snippet Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve this...
Abstract Most of the methods for predicting air pollutant concentrations are targeting at single pollutants, which is time-consuming and laborious. To solve...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25340
SubjectTerms 639/705
704/106/35
Aerosols
Air pollution
Convtrans
Deep learning
Design
Environmental monitoring
Humanities and Social Sciences
Humidity
Joint Estimation
Knowledge
Machine learning
multidisciplinary
Neural networks
Particulate matter
PM2.5
Pollutants
Radiation
Remote sensing
Science
Science (multidisciplinary)
Spatial variations
Time series
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCIkLYnyIsjEFiRuUNY3TJicEE9MEGnBg0rugKE1dGId2vNcd9t9j9-NNncROrZpUTW3H_sVObCFeZ0VdVABNqhqsUgAX08AZh0KtaUnkYsTAroHTr8XJGXxemdXkcNtM2ypnnTgo6rqL7CM_1ISVyXQpVb6_-Jty1SiOrk4lNO6Ke5y6jKW6XJVbHwtHsUC56axMpu3hhuwVnynLTeoMoZvULOzRkLZ_gTVv7pS8ES4drNDxI_Fwgo_yw8jvXXEH28fi_lhQ8uqJ-PlldpFJNk-15E3lk3DRa_2MUnEt6SL_dOdtLznPxniAUXaN_H6avzMytLX8pvn1cUyDdD4VZ8effhydpFMBhTSSzelTDZi7wlmwOoYqgEFdOUBChGWeFS5HMs6RuIJ0C9GiDUVslK6Mamw0GepnYqftWnwuJJk6Q_oIY60iqGhcXqlSO1tkFmoiZCLezGT0F2OeDD_Et7X1I9E9Ed0PRPcmER-Z0tuenON6eNCtf_lpynh0YJHQYY6NBtBZhU1gPFHq0oUAOhH7M5_8NPE2_lpMEvFq20xThuMgocXucuxDSEerPBF2wd_FgJYt7fnvIfm2IgVIa0RIxNtZFK6__v8_fnH7YPfEg5yFkjN2wr7Y6deX-JLQTl8dDCL9D908_Ls
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29b9UwELdKK0ZUCojQgozEBoHYPif2-EBU1UMFJKjUBVmOc4EyJOg1HfjvOTvJQ6naoVOi2Facu4vv5_syY6-KsilrgDYXLdY5gA25jxWHfKNoS2RDQB9NA6efy5MzWJ_r8x0m51yYFLSfSlqmZXqODnt3SYomJoNJnVtNsCTX99heLNVOsr23Wq2_rbeWlei7AmGnDJlCmRsGL7RQKta_QJjX4yOvOUmT7jneZw8m0MhX4zQfsh3sDtj98RjJv4_Yj0-zYYxHpdTwGEo-iRQNG2ZsihtOF_67v-gGHqtrjGmLvG_511P5VnPfNfyLisPHOSWZfMzOjj9-_3CST8cm5IE0zZArQGlLa8Co4GsPGlVtAQkHVrIorURSyYF4gXQLwaDxZWiFqrVoTdAFqidst-s7fMo4KThNqxCGRgQQQVtZi0pZUxYGGiJkxl7PZHR_xuoYLnm1lXEj0R0R3SWiO52x95HS256xsnV60G9-uonTDi0YJEwosVUAqqix9RFFVKqy3oPK2NHMJzf9bpdO0UaKcI0QVcZebpvpR4neD99hfzX2IXyjhMyYWfB3MaFlS3fxK5XcFrTs0c4QMvZmFoX_b7_9i5_drfthtBrEYMoqF3DEdofNFT4nzDPULyYh_wcGB_wW
  priority: 102
  providerName: Springer Nature
Title Knowledge based convolutional transformer for joint estimation of PM2.5 and O3 concentrations
URI https://link.springer.com/article/10.1038/s41598-025-95019-5
https://www.proquest.com/docview/3230015117
https://www.proquest.com/docview/3230215312
https://pubmed.ncbi.nlm.nih.gov/PMC12259964
https://doaj.org/article/e948e2262ef34430befa42667379aa43
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BERIXxKcIlJWRuEFobI8T-7hdtaoWtVRApb0gy3EcUQ5Z1KYH_j3jOClNJcSFkyPbUewZO-_56xngbVE2ZY3Y5rwNdY5ofO6i4pBrJA2JjPfBxamB45Py6AzXG7W5cdVX3BOW5IGT4faCQR2II4jQSkRZ1KF1EVUqWRnncND5JMy7MZhKqt7CIDfjKZlC6r1LQqp4mkyo3CjiNbmaIdEg2D9jmbf3SN5aKB3w5_ARPByJI1umAj-GO6F7AvfTVZK_nsK3j9PkGIvA1LC4nXxsVvRaP_HTcMEoYD-2513PosJGOrrIti07PRYfFHNdwz7J-Hoq09Aun8HZ4cHX1VE-Xp2Qe0KbPpcYhCmNRi29qx2qIGuDgbhgJYrSiECw7MkfgR7R66Bd6Vsua8Vb7VUR5HPY6bZdeAGMQE7Rnyj4hnvkXhlR80oaXRYaGzJkBu8mM9qfSSHDDivbUttkdEtGt4PRrcpgP1r6OmdUtx4iyOd29Ln9l88z2J38ZMcud2klDaaI23BeZfDmOpk6S1wBcV3YXqU8xHEkFxnomX9nBZqndOffB9ltTr8-Gh1iBu-npvDn63-v8cv_UeNX8EDEphsVPXEXdvqLq_Ca2FBfL-ButakWcG-5XH9ZU7h_cHL6mWJX5WoxdIrfhFcJuA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviKcaKGAkOEFo_ErsQ4V4VVu2Wzi00l6Q6zgOlENSdlOh_qn-RsZ5bJVKcOspUWwnzngenz32DMDLJC3SXIgypqXPYyG0i22IOGQLjlMi7Zy3YWlgdpBOjsSXuZyvwcVwFiZsqxx0Yquoi9qFNfJtjlgZTRel2bvT33HIGhW8q0MKjY4tpv78D07Zljt7n3B8XzG2-_nw4yTuswrEDhVxE3PhmU61Eoo7m1shPc-18AiTMpakmnm0WA676vFWOOWVTV1JeS5pqZxMPMf33oCbaHiTMNnL5tlqTSd4zQTV_dmchKvtJdrHcIaNyVhLRFOxHNm_Nk3ACNte3Zl5xT3bWr3du3Cnh6vkfcdf92DNV_fhVpfA8vwBfJ8OS3IkmMOChE3sPTNjs2ZAxX5B8EJ-1SdVQ0Jcj-7AJKlL8m3G3kpiq4J85aF516dWGh7C0bWQ9hGsV3XlN4GgaZWo_7wrqBPUSc1ymnGt0kSJAgkZweuBjOa0i8thWn86V6YjukGim5boRkbwIVB6VTPE1G4f1IsfphdR47VQHtEo8yUXgie5L23ALxnPtLWCR7A1jJPpBX1pLtkygherYhTR4Hexla_PujqIrDhlEajR-I46NC6pTn62wb4pKlyck4oI3gyscPn1f__x4_939jncnhzO9s3-3sH0CWywwKAhWqjYgvVmceafItJq8mctexM4vm55-gvYszkv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE8RKGAkOEHY-JXYB4Qo7apl6bJCVOqlMo7jQDkkZTcV6l_j1zHOY6utBLeeEsV24ozn8dljzwC8SNIizYUoY1r6PBZCu9iGiEO24Dgl0s55G5YGDmbp3qH4eCSPNuDPcBYmbKscdGKrqIvahTXyMUesjKaL0mxc9tsi5juTd6e_4pBBKnhah3QaHYtM_flvnL4t3-7v4Fi_ZGyy-_XDXtxnGIgdKuUm5sIznWolFHc2t0J6nmvhETJlLEk182i9HHbb461wyiubupLyXNJSOZl4ju-9BptZmBWNYHN7dzb_slrhCT40QXV_UifharxEaxlOtDEZa4nYKpZr1rBNGrCGdC_v07zkrG1t4OQ23OrBK3nfcdsd2PDVXbjepbM8vwfH02GBjgTjWJCwpb1nbWzWDBjZLwheyM_6pGpIiPLRHZ8kdUnmB-yNJLYqyGcemnd9amXjPhxeCXEfwKiqK_8QCBpaidrQu4I6QZ3ULKcZ1ypNlCiQkBG8GshoTrsoHab1rnNlOqIbJLppiW5kBNuB0quaIcJ2-6BefDe9wBqvhfKITZkvuRA8yX1pA5rJeKatFTyCrWGcTC_2S3PBpBE8XxWjwAYvjK18fdbVQZzFKYtArY3vWofWS6qTH23ob4rqF2eoIoLXAytcfP3ff_zo_519BjdQlsyn_dn0MdxkgT9D6FCxBaNmceafIOxq8qc9fxP4dtUi9RfcnD7K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+based+convolutional+transformer+for+joint+estimation+of+PM2.5+and+O3+concentrations&rft.jtitle=Scientific+reports&rft.au=Ying+Ren&rft.au=Siyuan+Wang&rft.au=Bisheng+Xia&rft.au=Biesheng+Xia&rft.date=2025-07-14&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41598-025-95019-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e948e2262ef34430befa42667379aa43
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon