Measurement of Maize Leaf Phenotypic Parameters Based on 3D Point Cloud
Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2854 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle–late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem–leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem–leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation. |
---|---|
AbstractList | Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle–late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem–leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem–leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation. Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle-late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem-leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem-leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation.Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle-late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem-leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem-leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation. |
Audience | Academic |
Author | Su, Yuchen Li, Chen Wang, Miao Ou, Mingxiong Hou, Wenhui Li, Ran Liu, Sumei Liu, Lu Wang, Yuwei |
AuthorAffiliation | 1 School of Engineering, Anhui Agricultural University, Hefei 230036, China; yuchensu@stu.ahau.edu.cn (Y.S.); ranmaxli@stu.ahau.edu.cn (R.L.); shmilywm@stu.ahau.edu.cn (M.W.); lichen111@stu.ahau.edu.cn (C.L.); liusm1117@ahau.edu.cn (S.L.); hwh303@ahau.edu.cn (W.H.); wyw@ahau.edu.cn (Y.W.) 2 High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China; myomx@ujs.edu.cn 3 Wandong Comprehensive Experimental Station, Anhui Agricultural University, Chuzhou 239400, China |
AuthorAffiliation_xml | – name: 1 School of Engineering, Anhui Agricultural University, Hefei 230036, China; yuchensu@stu.ahau.edu.cn (Y.S.); ranmaxli@stu.ahau.edu.cn (R.L.); shmilywm@stu.ahau.edu.cn (M.W.); lichen111@stu.ahau.edu.cn (C.L.); liusm1117@ahau.edu.cn (S.L.); hwh303@ahau.edu.cn (W.H.); wyw@ahau.edu.cn (Y.W.) – name: 2 High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China; myomx@ujs.edu.cn – name: 3 Wandong Comprehensive Experimental Station, Anhui Agricultural University, Chuzhou 239400, China |
Author_xml | – sequence: 1 givenname: Yuchen surname: Su fullname: Su, Yuchen – sequence: 2 givenname: Ran surname: Li fullname: Li, Ran – sequence: 3 givenname: Miao surname: Wang fullname: Wang, Miao – sequence: 4 givenname: Chen surname: Li fullname: Li, Chen – sequence: 5 givenname: Mingxiong surname: Ou fullname: Ou, Mingxiong – sequence: 6 givenname: Sumei surname: Liu fullname: Liu, Sumei – sequence: 7 givenname: Wenhui orcidid: 0000-0002-7691-5018 surname: Hou fullname: Hou, Wenhui – sequence: 8 givenname: Yuwei orcidid: 0000-0003-4282-9821 surname: Wang fullname: Wang, Yuwei – sequence: 9 givenname: Lu orcidid: 0000-0001-8137-671X surname: Liu fullname: Liu, Lu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40363288$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URD_gwB9AkbjAYYvtcRz7hNoFSqWt2AOcrbHjbL1K4sVOkMqvx3TLqkU-2Bo_89rvzJySozGOnpDXjJ4DaPoh85pqrmrxjJwwwcVCcU6PHp2PyWnOW0o5AKgX5FhQkMCVOiFXNx7znPzgx6mKXXWD4bevVh67an3rxzjd7YKr1phw8JNPubrE7NsqjhV8qtYxlKxlH-f2JXneYZ_9q4f9jPz48vn78uti9e3qenmxWjjRsGkBnFrpQNsasbEWpKu5dpozqK1WTUelRgbgtGh0rTRvatspDbJFdFo6B2fkeq_bRtyaXQoDpjsTMZj7QEwbg2kKrveGS1YLS4VgqhFeK20tVxK5BSqRsqZofdxr7WY7-NaVEiTsn4g-vRnDrdnEX4Zx2giueVF496CQ4s_Z58kMITvf9zj6OGdT7ILmQjasoG__Q7dxTmOp1T3FhaKSFup8T22wOAhjF8vDrqzWD8GVrnehxC8UaFVLqkRJePPYw-Hz_zpcgPd7wKWYc_LdAWHU_J0ec5ge-AOKVbIA |
Cites_doi | 10.1016/j.compag.2022.106702 10.1016/j.compag.2021.106310 10.3389/fpls.2019.00554 10.2134/agronj2010.0450 10.1002/aps3.11385 10.3390/s17092082 10.1016/j.optlaseng.2022.107088 10.3390/agriculture10050146 10.34133/plantphenomics.0043 10.1016/j.robot.2024.104753 10.3389/fpls.2022.1012669 10.1088/1755-1315/502/1/012008 10.1016/j.compag.2014.09.005 10.1126/science.aax5482 10.1016/j.compag.2022.107174 10.1109/TIM.2022.3212743 10.34133/plantphenomics.0117 10.34133/plantphenomics.0181 10.3389/fpls.2019.00248 10.3390/foods11152210 10.3390/app6060182 10.1016/S2095-3119(21)63697-3 10.1111/nph.17611 10.1111/jfpp.12762 10.1016/j.compag.2019.105047 10.1109/TGRS.2018.2866056 10.1016/j.fcr.2021.108361 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25092854 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_26154b0441874e989bb286a2b306a017 PMC12074292 A839856084 40363288 10_3390_s25092854 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Lu Liu grantid: Grant No.2023AH040140 – fundername: Lu Liu grantid: Grant No. KLAS2023KF003 – fundername: Mingxiong Ou grantid: Grant No. MAET202102 – fundername: University Science Research Project of Anhui Province grantid: grant 2023AH040140 – fundername: Open Project of Key Laboratory of Agricultural Sensors of the Ministry of Agriculture grantid: grant KLAS2023KF003 – fundername: Jiangsu Provincial Key Laboratory of Agricultural Equipment and Intelligent High Technology grantid: grant MAET202102 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-320b6c39b5aa7bb36c529c92135b987f069a133c9479589275bf8936daac96cc3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:25 EDT 2025 Thu Aug 21 18:30:08 EDT 2025 Fri Jul 11 17:53:54 EDT 2025 Fri Jul 25 10:22:14 EDT 2025 Tue Jun 10 20:56:05 EDT 2025 Sat May 17 01:30:25 EDT 2025 Tue Jul 01 04:57:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | 3D point cloud maize phenotype digital modeling clustering segmentation stem and leaf segmentation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-320b6c39b5aa7bb36c529c92135b987f069a133c9479589275bf8936daac96cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8137-671X 0000-0002-7691-5018 0000-0003-4282-9821 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25092854 |
PMID | 40363288 |
PQID | 3203248060 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26154b0441874e989bb286a2b306a017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074292 proquest_miscellaneous_3203924671 proquest_journals_3203248060 gale_infotracacademiconefile_A839856084 pubmed_primary_40363288 crossref_primary_10_3390_s25092854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-30 |
PublicationDateYYYYMMDD | 2025-04-30 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhu (ref_22) 2021; 3 Chen (ref_31) 2023; 5 Wang (ref_18) 2020; 502 Wang (ref_35) 2022; 71 ref_14 Miao (ref_28) 2022; 199 Li (ref_7) 2022; 193 ref_10 Miao (ref_20) 2021; 187 Murata (ref_32) 2024; 6 Tian (ref_5) 2019; 365 Lai (ref_21) 2021; 39 Wu (ref_25) 2019; 10 Liu (ref_29) 2021; 232 ref_19 Chaivivatrakul (ref_15) 2014; 109 ref_17 Ma (ref_12) 2022; 275 ref_16 Yin (ref_6) 2011; 103 Abdelsalam (ref_11) 2024; 179 Ao (ref_26) 2021; 9 Zhu (ref_4) 2024; 11 Wang (ref_34) 2022; 71 Ma (ref_1) 2022; 21 Su (ref_23) 2019; 35 Zermas (ref_13) 2020; 172 ref_3 Li (ref_2) 2021; 33 Jin (ref_27) 2019; 57 ref_8 Wang (ref_9) 2024; 17 Qiu (ref_24) 2019; 10 Li (ref_30) 2023; 5 Wang (ref_33) 2022; 156 |
References_xml | – volume: 193 start-page: 106702 year: 2022 ident: ref_7 article-title: Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106702 – volume: 187 start-page: 106310 year: 2021 ident: ref_20 article-title: Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106310 – volume: 10 start-page: 554 year: 2019 ident: ref_24 article-title: Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated with a “Phenomobile” publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00554 – volume: 39 start-page: 660 year: 2021 ident: ref_21 article-title: Three-Dimensional Point Cloud Segmentation for Plants publication-title: J. Appl. Sci. – volume: 103 start-page: 923 year: 2011 ident: ref_6 article-title: In-Season Prediction of Corn Yield Using Plant Height under Major Production Systems publication-title: Agron. J. doi: 10.2134/agronj2010.0450 – ident: ref_14 doi: 10.1002/aps3.11385 – ident: ref_16 doi: 10.3390/s17092082 – volume: 156 start-page: 107088 year: 2022 ident: ref_33 article-title: Motion-induced error reduction for phase-shifting profilometry with phase probability equalization publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2022.107088 – volume: 11 start-page: 50 year: 2024 ident: ref_4 article-title: Enhanced detection algorithm for apple bruises using structured light imaging publication-title: Artif. Intell. Agric. – ident: ref_10 doi: 10.3390/agriculture10050146 – volume: 9 start-page: 1239 year: 2021 ident: ref_26 article-title: Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks publication-title: Crop J. – volume: 5 start-page: 0043 year: 2023 ident: ref_30 article-title: Multi-source data fusion improves time-series phenotype accuracy in maize under a field high-throughput phenotyping platform publication-title: Plant Phenomics doi: 10.34133/plantphenomics.0043 – volume: 71 start-page: 5005509 year: 2022 ident: ref_34 article-title: Nonlinear Correction for Fringe Projection Profilometry with Shifted-Phase Histogram Equalization publication-title: IEEE Trans. Instrum. Meas. – volume: 179 start-page: 104753 year: 2024 ident: ref_11 article-title: Depth accuracy analysis of the ZED 2i Stereo Camera in an indoor Environment publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2024.104753 – ident: ref_19 doi: 10.3389/fpls.2022.1012669 – volume: 35 start-page: 125 year: 2019 ident: ref_23 article-title: Extraction of phenotypic information of maize plants in field by terrestrial laser scanning publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 502 start-page: 012008 year: 2020 ident: ref_18 article-title: The evolution of LiDAR and its application in high precision measurement publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/502/1/012008 – volume: 109 start-page: 109 year: 2014 ident: ref_15 article-title: Automatic morphological trait characterization for corn plants via 3D holographic reconstruction publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.09.005 – volume: 365 start-page: 658 year: 2019 ident: ref_5 article-title: Teosinte ligule allele narrows plant architecture and enhances high-density maize yields publication-title: Science doi: 10.1126/science.aax5482 – volume: 17 start-page: 105 year: 2024 ident: ref_9 article-title: High-throughput analysis of maize azimuth and spacing from Lidar data publication-title: Int. J. Agric. Biol. Eng. – volume: 199 start-page: 107174 year: 2022 ident: ref_28 article-title: Measurement method of maize morphological parameters based on point cloud image conversion publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107174 – volume: 71 start-page: 5023810 year: 2022 ident: ref_35 article-title: Efficient Half-Period Phase Histogram Equalization for General Phase-Shifting Algorithms with Phase Shift Errors publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3212743 – volume: 5 start-page: 0117 year: 2023 ident: ref_31 article-title: Point cloud completion of plant leaves under occlusion conditions based on deep learning publication-title: Plant Phenomics doi: 10.34133/plantphenomics.0117 – volume: 6 start-page: 0181 year: 2024 ident: ref_32 article-title: Three-dimensional leaf edge reconstruction combining two-and three-dimensional approaches publication-title: Plant Phenomics doi: 10.34133/plantphenomics.0181 – volume: 10 start-page: 248 year: 2019 ident: ref_25 article-title: An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00248 – ident: ref_3 doi: 10.3390/foods11152210 – ident: ref_8 doi: 10.3390/app6060182 – volume: 21 start-page: 2159 year: 2022 ident: ref_1 article-title: Historical trends in maize morphology from the 1950s to the 2010s in China publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(21)63697-3 – volume: 232 start-page: 941 year: 2021 ident: ref_29 article-title: Canopy occupation volume as an indicator of canopy photosynthetic capacity publication-title: New Phytol. doi: 10.1111/nph.17611 – ident: ref_17 doi: 10.1111/jfpp.12762 – volume: 3 start-page: 75 year: 2021 ident: ref_22 article-title: Tassel segmentation of maize point cloud based on super voxels clustering and local features publication-title: Smart Agric. – volume: 33 start-page: 742 year: 2021 ident: ref_2 article-title: Estimation of summer maize biomass based on a crop growth mode publication-title: Emir. J. Food Agric. (EJFA) – volume: 172 start-page: 105047 year: 2020 ident: ref_13 article-title: 3D model processing for high throughput phenotype extraction—The case of corn publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105047 – volume: 57 start-page: 1336 year: 2019 ident: ref_27 article-title: Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2866056 – volume: 275 start-page: 108361 year: 2022 ident: ref_12 article-title: Developing a 3D clumping index model to improve optical measurement accuracy of crop leaf area index publication-title: Field Crops Res. doi: 10.1016/j.fcr.2021.108361 |
SSID | ssj0023338 |
Score | 2.4520004 |
Snippet | Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2854 |
SubjectTerms | 3D point cloud Accuracy Algorithms Cameras Clustering clustering segmentation Corn Crops Deep learning digital modeling Genotype & phenotype Imaging, Three-Dimensional - methods Lasers Leaves maize phenotype Measurement Morphology Optical radar Phenotype Plant Leaves - anatomy & histology Remote sensing stem and leaf segmentation Zea mays - anatomy & histology Zea mays - growth & development |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAaKEl9CGDkDhFzfqV8bFPKsSiPVCpN2vsOOpKKKno7qH99R0n2e1GHLhwjR3F_ib2N-PHN4x9wVp5KMs6r0VUuYpR5zbIIgeaL1FKWYku89z0p7m-Ud9v9e1Gqq90JqyXB-6BOyEPXytfEGtDqaIF670Ag8KTr4v0O6XZlzhvFUwNoRZ9BXodIUlB_ckDEb1NdwVH7NOJ9P89FW9w0fic5AbxXL1lbwaPkZ_2Ld1hr2Kzy15v6Ai-Y9-mLyt9vK35FOdPkf-IWPPZXWzaxeP9PPAZpoNYSU2TnxF3VbxtuLzgs3ZOb53_bpfVe3Zzdfnr_DofMiTkgUhlkUtReBOk9Rqx9F6aoIUNVkyk9hbKujAWKQgNVpVWgxWl9jU5KKZCDNaEIPfYVtM28QPjBWpdQ2GgQqWUIHyFDF4DUKQKVcCMfV4h5-57IQxHAUSC163hzdhZwnRdIWlXdw_Iom6wqPuXRTP2NVnEpRFGsAccLgpQO5NWlTslnw7IUQP63OHKaG4Yeg9OppzwinpSZOzTupgGTdoJwSa2y74OBZ6mnGRsv7fxus0qbW0LgIzByPqjTo1LmvldJ8w9EWmlwYqP_wOGA7YtUq7hbufqkG0t_izjETlAC3_c_evPBcb-2A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBNoK4OQOEXN-pXxqWpLtxVi0R6o1JtlO067EoqX7u4Bfj3jJJtuhMQ1TmRnxvPyjL8h5JOthYOyrPOaBZGLEGSuPS9yQH1pOecVazvPzb6ryyvx9Vpe9wduq76scqsTW0VdRZ_OyI94avUtoFDF8fJXnrpGpexq30LjIXk0QUuTSrpgejEEXDgXdGhCHEP7oxWae51uDI5sUAvV_69C3rFI42rJHfMzfUae9n4jPekY_Zw8CM0L8mQHTfAluZjdn_fRWNOZXfwJ9FuwNZ3fhiaufy8Xns5tKsdKmJr0FC1YRWND-Rc6jwv86uxn3FSvyNX0_MfZZd73Scg9mpZ1jqRxynPtpLWlc1x5ybTXbMKl01DWhdIWQ1GvRaklaFZKV6OboiprvVbe89dkr4lNeEtoYaWskchQWSEEY44z7p0EwHgVKm8z8nFLObPs4DAMhhGJvGYgb0ZOE02HFxKCdfsg3t2YXiAMRm5SuAK9MShF0KCdY6Aszlgoi2oiI58TR0ySMyS7t_11AVxnQqwyJ-jZAbprgNPtb5lmegFcmfvtkpEPwzCKTsqH2CbETfcOhp-qnGTkTcfjYc0iJbgZQEZgxP3RT41HmsVtC889Yem8QbN3_1_Xe_KYpV7CbWZqn-yt7zbhAB2ctTtsd_Ffo2n4FA priority: 102 providerName: ProQuest |
Title | Measurement of Maize Leaf Phenotypic Parameters Based on 3D Point Cloud |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40363288 https://www.proquest.com/docview/3203248060 https://www.proquest.com/docview/3203924671 https://pubmed.ncbi.nlm.nih.gov/PMC12074292 https://doaj.org/article/26154b0441874e989bb286a2b306a017 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7t4wIHxJvAUhmExCmQ-u0DQttluytEVxWiUm-R7ThspVWydFuJ5dczTtLSCMQlh8SR7RnbM5_H_gbgjS2500qVaUkDT3kIIjWeZanG9dIyxgraZJ6bXMjzGf88F_M92OTY7AR4809oF_NJzZZX737-uP2IE_5DRJwI2d_foBk38SbgPhyiQVIxkcGEb4MJFKvULalQv3jPFDWM_X-vyzuGqX9ocscKje_Dvc59JMetvh_AXqgewt0dUsFHcDb5s-1H6pJM7OJXIF-CLcn0MlT16vZ64cnUxlNZkVqTjNCQFaSuCPtEpvUC_zq5qtfFY5iNT7-dnKdduoTUo4VZpYxmTnpmnLBWOcekF9R4Q4dMOKNVmUljEZF6w5UR2lAlXIneiiys9UZ6z57AQVVX4RmQzApR6kzqwnLOKXWMMu-E1ghbdeFtAq83ksuvW1aMHNFEFG--FW8CoyjTbYFIZN28qJff825e5AjgBHcZOmVa8WC0cY5qabHGTFpcLRJ4GzWSxwGAYve2uzWA7YzEVfkxOngavTaN1R1tlJZvhlHOYoJ4jj3JEni1_YwzKIZFbBXqdVsGUahUwwSetjretpnHODfVOgHd036vU_0v1eKyYeke0rjtYOjz_7frBdyhMaVwE6A6goPVch1eop-zcgPYV3OFTz0-G8Dh6PRi-nXQ7BkMmvH9G7jQ_e4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATgg3gRaMAjEKWrWj8Q-oKoPtlu6W-2hlXoLtuPQlVCydHeFykfxjYzz6kZI3HqNHT9mPC-PZwbgg865kUmShzl1POTOiVBZFoUS-aVmjGW0qjw3OY1H5_zrhbjYgD9tLIx_VtnyxIpRZ6X1d-Q7zJf65jKKo935z9BXjfLe1baERn0sTtz1LzTZFp-PDxG_Hykdfjk7GIVNVYHQIiNehjiQiS1TRmidGMNiK6iyig6YMGiA51GsNBpuVvFECaloIkyOQj3OtLYqtpbhuHfgLmcoyX1k-vCoM_Bwb7LOXoSN0c4C1QvlIxR7Mq8qDfCvAFiTgP3XmWvibvgIHjZ6KtmrD9Zj2HDFE3iwlr3wKRxNbu4XSZmTiZ79dmTsdE6ml64ol9fzmSVT7Z9_-RyeZB8lZkbKgrBDMi1n-NfBj3KVPYPzW4Hgc9gsysK9BBJpIXJEqsw055xSwyizRkiJ9rHMrA7gfQu5dF6n30jRbPHgTTvwBrDvYdp18Bmzqw_l1fe0IcAULUXBTYTan0y4U1IZQ2WsccYo1siWAvjkMZJ6ukawW92EJ-A6fYasdA81SYnqocTptlqkpQ3BL9Kb4xnAu64ZSdX7X3ThylXdB83dOBkE8KLGcbdm7h3qVMoAZA_7vU31W4rZZZUOfED9_Yair_6_rrdwb3Q2Gafj49OT13Cf-jrGlVdsCzaXVyu3jcrV0rypTjSBb7dNQn8BujYz4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgEE9RU18S-wGhdV3Z2FpFiEl7y2zHYZWmpFtbofHT-HUcJ2nXCom3vcaOL-f4XD5fzgH4oAtuZJIUYUEdD7lzIlSWRaFEfakZYzmtM8-NxvHBCf92Kk634M_yLYy_VrnUibWizivr98i7zKf65jKKo27RXotIB8Mv08vQZ5DyJ63LdBrNEjly178Qvs0-Hw6Q1x8pHe7_2DsI2wwDoUWlPA-xURNbpozQOjGGxVZQZRXtMWEQjBdRrDSCOKt4ooRUNBGmQAMf51pbFVvLsN07sJ14VNSB7f7-OP2-gns4U9nEMmJMRd0ZOhvKv1fcsIB1ooB_zcGaPdy8q7lm_IYP4UHrtZLdZpk9gi1XPob7a7EMn8DX0c1uI6kKMtKT344cO12Q9NyV1fx6OrEk1f4ymI_oSfpoP3NSlYQNSFpN8K-9i2qRP4WTW6HhM-iUVeleAIm0EAWyWOaac06pYZRZI6REtCxzqwN4v6RcNm2CcWQIYjx5sxV5A-h7mq4q-PjZ9Yfq6mfWimOGuFFwE6EvKBPulFTGUBlr7DGKNSqpAD55jmReypHsVrePFXCcPl5Wtot-pURnUWJ3O0umZa34z7KbxRrAu1UxCq4_jdGlqxZNHQS_cdIL4HnD49WYuT9ep1IGIDe4vzGpzZJycl4HB-9Rv9uh6Mv_j-st3EXxyY4Px0ev4B71SY3rI7Id6MyvFu41elpz86Zd0gTObluK_gJMWDlz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+Maize+Leaf+Phenotypic+Parameters+Based+on+3D+Point+Cloud&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Su+Yuchen&rft.au=Li%2C+Ran&rft.au=Wang%2C+Miao&rft.au=Chen%2C+Li&rft.date=2025-04-30&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft.spage=2854&rft_id=info:doi/10.3390%2Fs25092854&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |