Measurement of Maize Leaf Phenotypic Parameters Based on 3D Point Cloud

Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 9; p. 2854
Main Authors Su, Yuchen, Li, Ran, Wang, Miao, Li, Chen, Ou, Mingxiong, Liu, Sumei, Hou, Wenhui, Wang, Yuwei, Liu, Lu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle–late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem–leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem–leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation.
AbstractList Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle–late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem–leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem–leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation.
Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle-late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem-leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem-leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation.Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle-late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem-leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem-leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation.
Audience Academic
Author Su, Yuchen
Li, Chen
Wang, Miao
Ou, Mingxiong
Hou, Wenhui
Li, Ran
Liu, Sumei
Liu, Lu
Wang, Yuwei
AuthorAffiliation 1 School of Engineering, Anhui Agricultural University, Hefei 230036, China; yuchensu@stu.ahau.edu.cn (Y.S.); ranmaxli@stu.ahau.edu.cn (R.L.); shmilywm@stu.ahau.edu.cn (M.W.); lichen111@stu.ahau.edu.cn (C.L.); liusm1117@ahau.edu.cn (S.L.); hwh303@ahau.edu.cn (W.H.); wyw@ahau.edu.cn (Y.W.)
2 High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China; myomx@ujs.edu.cn
3 Wandong Comprehensive Experimental Station, Anhui Agricultural University, Chuzhou 239400, China
AuthorAffiliation_xml – name: 1 School of Engineering, Anhui Agricultural University, Hefei 230036, China; yuchensu@stu.ahau.edu.cn (Y.S.); ranmaxli@stu.ahau.edu.cn (R.L.); shmilywm@stu.ahau.edu.cn (M.W.); lichen111@stu.ahau.edu.cn (C.L.); liusm1117@ahau.edu.cn (S.L.); hwh303@ahau.edu.cn (W.H.); wyw@ahau.edu.cn (Y.W.)
– name: 2 High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China; myomx@ujs.edu.cn
– name: 3 Wandong Comprehensive Experimental Station, Anhui Agricultural University, Chuzhou 239400, China
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Su
  fullname: Su, Yuchen
– sequence: 2
  givenname: Ran
  surname: Li
  fullname: Li, Ran
– sequence: 3
  givenname: Miao
  surname: Wang
  fullname: Wang, Miao
– sequence: 4
  givenname: Chen
  surname: Li
  fullname: Li, Chen
– sequence: 5
  givenname: Mingxiong
  surname: Ou
  fullname: Ou, Mingxiong
– sequence: 6
  givenname: Sumei
  surname: Liu
  fullname: Liu, Sumei
– sequence: 7
  givenname: Wenhui
  orcidid: 0000-0002-7691-5018
  surname: Hou
  fullname: Hou, Wenhui
– sequence: 8
  givenname: Yuwei
  orcidid: 0000-0003-4282-9821
  surname: Wang
  fullname: Wang, Yuwei
– sequence: 9
  givenname: Lu
  orcidid: 0000-0001-8137-671X
  surname: Liu
  fullname: Liu, Lu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40363288$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AkbjAYYvtcRz7hNoFSqWt2AOcrbHjbL1K4sVOkMqvx3TLqkU-2Bo_89rvzJySozGOnpDXjJ4DaPoh85pqrmrxjJwwwcVCcU6PHp2PyWnOW0o5AKgX5FhQkMCVOiFXNx7znPzgx6mKXXWD4bevVh67an3rxzjd7YKr1phw8JNPubrE7NsqjhV8qtYxlKxlH-f2JXneYZ_9q4f9jPz48vn78uti9e3qenmxWjjRsGkBnFrpQNsasbEWpKu5dpozqK1WTUelRgbgtGh0rTRvatspDbJFdFo6B2fkeq_bRtyaXQoDpjsTMZj7QEwbg2kKrveGS1YLS4VgqhFeK20tVxK5BSqRsqZofdxr7WY7-NaVEiTsn4g-vRnDrdnEX4Zx2giueVF496CQ4s_Z58kMITvf9zj6OGdT7ILmQjasoG__Q7dxTmOp1T3FhaKSFup8T22wOAhjF8vDrqzWD8GVrnehxC8UaFVLqkRJePPYw-Hz_zpcgPd7wKWYc_LdAWHU_J0ec5ge-AOKVbIA
Cites_doi 10.1016/j.compag.2022.106702
10.1016/j.compag.2021.106310
10.3389/fpls.2019.00554
10.2134/agronj2010.0450
10.1002/aps3.11385
10.3390/s17092082
10.1016/j.optlaseng.2022.107088
10.3390/agriculture10050146
10.34133/plantphenomics.0043
10.1016/j.robot.2024.104753
10.3389/fpls.2022.1012669
10.1088/1755-1315/502/1/012008
10.1016/j.compag.2014.09.005
10.1126/science.aax5482
10.1016/j.compag.2022.107174
10.1109/TIM.2022.3212743
10.34133/plantphenomics.0117
10.34133/plantphenomics.0181
10.3389/fpls.2019.00248
10.3390/foods11152210
10.3390/app6060182
10.1016/S2095-3119(21)63697-3
10.1111/nph.17611
10.1111/jfpp.12762
10.1016/j.compag.2019.105047
10.1109/TGRS.2018.2866056
10.1016/j.fcr.2021.108361
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25092854
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_26154b0441874e989bb286a2b306a017
PMC12074292
A839856084
40363288
10_3390_s25092854
Genre Journal Article
GrantInformation_xml – fundername: Lu Liu
  grantid: Grant No.2023AH040140
– fundername: Lu Liu
  grantid: Grant No. KLAS2023KF003
– fundername: Mingxiong Ou
  grantid: Grant No. MAET202102
– fundername: University Science Research Project of Anhui Province
  grantid: grant 2023AH040140
– fundername: Open Project of Key Laboratory of Agricultural Sensors of the Ministry of Agriculture
  grantid: grant KLAS2023KF003
– fundername: Jiangsu Provincial Key Laboratory of Agricultural Equipment and Intelligent High Technology
  grantid: grant MAET202102
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-320b6c39b5aa7bb36c529c92135b987f069a133c9479589275bf8936daac96cc3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:25 EDT 2025
Thu Aug 21 18:30:08 EDT 2025
Fri Jul 11 17:53:54 EDT 2025
Fri Jul 25 10:22:14 EDT 2025
Tue Jun 10 20:56:05 EDT 2025
Sat May 17 01:30:25 EDT 2025
Tue Jul 01 04:57:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 3D point cloud
maize phenotype
digital modeling
clustering segmentation
stem and leaf segmentation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-320b6c39b5aa7bb36c529c92135b987f069a133c9479589275bf8936daac96cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8137-671X
0000-0002-7691-5018
0000-0003-4282-9821
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25092854
PMID 40363288
PQID 3203248060
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_26154b0441874e989bb286a2b306a017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074292
proquest_miscellaneous_3203924671
proquest_journals_3203248060
gale_infotracacademiconefile_A839856084
pubmed_primary_40363288
crossref_primary_10_3390_s25092854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-30
PublicationDateYYYYMMDD 2025-04-30
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhu (ref_22) 2021; 3
Chen (ref_31) 2023; 5
Wang (ref_18) 2020; 502
Wang (ref_35) 2022; 71
ref_14
Miao (ref_28) 2022; 199
Li (ref_7) 2022; 193
ref_10
Miao (ref_20) 2021; 187
Murata (ref_32) 2024; 6
Tian (ref_5) 2019; 365
Lai (ref_21) 2021; 39
Wu (ref_25) 2019; 10
Liu (ref_29) 2021; 232
ref_19
Chaivivatrakul (ref_15) 2014; 109
ref_17
Ma (ref_12) 2022; 275
ref_16
Yin (ref_6) 2011; 103
Abdelsalam (ref_11) 2024; 179
Ao (ref_26) 2021; 9
Zhu (ref_4) 2024; 11
Wang (ref_34) 2022; 71
Ma (ref_1) 2022; 21
Su (ref_23) 2019; 35
Zermas (ref_13) 2020; 172
ref_3
Li (ref_2) 2021; 33
Jin (ref_27) 2019; 57
ref_8
Wang (ref_9) 2024; 17
Qiu (ref_24) 2019; 10
Li (ref_30) 2023; 5
Wang (ref_33) 2022; 156
References_xml – volume: 193
  start-page: 106702
  year: 2022
  ident: ref_7
  article-title: Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106702
– volume: 187
  start-page: 106310
  year: 2021
  ident: ref_20
  article-title: Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106310
– volume: 10
  start-page: 554
  year: 2019
  ident: ref_24
  article-title: Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated with a “Phenomobile”
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00554
– volume: 39
  start-page: 660
  year: 2021
  ident: ref_21
  article-title: Three-Dimensional Point Cloud Segmentation for Plants
  publication-title: J. Appl. Sci.
– volume: 103
  start-page: 923
  year: 2011
  ident: ref_6
  article-title: In-Season Prediction of Corn Yield Using Plant Height under Major Production Systems
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0450
– ident: ref_14
  doi: 10.1002/aps3.11385
– ident: ref_16
  doi: 10.3390/s17092082
– volume: 156
  start-page: 107088
  year: 2022
  ident: ref_33
  article-title: Motion-induced error reduction for phase-shifting profilometry with phase probability equalization
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2022.107088
– volume: 11
  start-page: 50
  year: 2024
  ident: ref_4
  article-title: Enhanced detection algorithm for apple bruises using structured light imaging
  publication-title: Artif. Intell. Agric.
– ident: ref_10
  doi: 10.3390/agriculture10050146
– volume: 9
  start-page: 1239
  year: 2021
  ident: ref_26
  article-title: Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks
  publication-title: Crop J.
– volume: 5
  start-page: 0043
  year: 2023
  ident: ref_30
  article-title: Multi-source data fusion improves time-series phenotype accuracy in maize under a field high-throughput phenotyping platform
  publication-title: Plant Phenomics
  doi: 10.34133/plantphenomics.0043
– volume: 71
  start-page: 5005509
  year: 2022
  ident: ref_34
  article-title: Nonlinear Correction for Fringe Projection Profilometry with Shifted-Phase Histogram Equalization
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 179
  start-page: 104753
  year: 2024
  ident: ref_11
  article-title: Depth accuracy analysis of the ZED 2i Stereo Camera in an indoor Environment
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2024.104753
– ident: ref_19
  doi: 10.3389/fpls.2022.1012669
– volume: 35
  start-page: 125
  year: 2019
  ident: ref_23
  article-title: Extraction of phenotypic information of maize plants in field by terrestrial laser scanning
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 502
  start-page: 012008
  year: 2020
  ident: ref_18
  article-title: The evolution of LiDAR and its application in high precision measurement
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/502/1/012008
– volume: 109
  start-page: 109
  year: 2014
  ident: ref_15
  article-title: Automatic morphological trait characterization for corn plants via 3D holographic reconstruction
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.09.005
– volume: 365
  start-page: 658
  year: 2019
  ident: ref_5
  article-title: Teosinte ligule allele narrows plant architecture and enhances high-density maize yields
  publication-title: Science
  doi: 10.1126/science.aax5482
– volume: 17
  start-page: 105
  year: 2024
  ident: ref_9
  article-title: High-throughput analysis of maize azimuth and spacing from Lidar data
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 199
  start-page: 107174
  year: 2022
  ident: ref_28
  article-title: Measurement method of maize morphological parameters based on point cloud image conversion
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107174
– volume: 71
  start-page: 5023810
  year: 2022
  ident: ref_35
  article-title: Efficient Half-Period Phase Histogram Equalization for General Phase-Shifting Algorithms with Phase Shift Errors
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3212743
– volume: 5
  start-page: 0117
  year: 2023
  ident: ref_31
  article-title: Point cloud completion of plant leaves under occlusion conditions based on deep learning
  publication-title: Plant Phenomics
  doi: 10.34133/plantphenomics.0117
– volume: 6
  start-page: 0181
  year: 2024
  ident: ref_32
  article-title: Three-dimensional leaf edge reconstruction combining two-and three-dimensional approaches
  publication-title: Plant Phenomics
  doi: 10.34133/plantphenomics.0181
– volume: 10
  start-page: 248
  year: 2019
  ident: ref_25
  article-title: An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00248
– ident: ref_3
  doi: 10.3390/foods11152210
– ident: ref_8
  doi: 10.3390/app6060182
– volume: 21
  start-page: 2159
  year: 2022
  ident: ref_1
  article-title: Historical trends in maize morphology from the 1950s to the 2010s in China
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(21)63697-3
– volume: 232
  start-page: 941
  year: 2021
  ident: ref_29
  article-title: Canopy occupation volume as an indicator of canopy photosynthetic capacity
  publication-title: New Phytol.
  doi: 10.1111/nph.17611
– ident: ref_17
  doi: 10.1111/jfpp.12762
– volume: 3
  start-page: 75
  year: 2021
  ident: ref_22
  article-title: Tassel segmentation of maize point cloud based on super voxels clustering and local features
  publication-title: Smart Agric.
– volume: 33
  start-page: 742
  year: 2021
  ident: ref_2
  article-title: Estimation of summer maize biomass based on a crop growth mode
  publication-title: Emir. J. Food Agric. (EJFA)
– volume: 172
  start-page: 105047
  year: 2020
  ident: ref_13
  article-title: 3D model processing for high throughput phenotype extraction—The case of corn
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105047
– volume: 57
  start-page: 1336
  year: 2019
  ident: ref_27
  article-title: Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2866056
– volume: 275
  start-page: 108361
  year: 2022
  ident: ref_12
  article-title: Developing a 3D clumping index model to improve optical measurement accuracy of crop leaf area index
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2021.108361
SSID ssj0023338
Score 2.4520004
Snippet Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2854
SubjectTerms 3D point cloud
Accuracy
Algorithms
Cameras
Clustering
clustering segmentation
Corn
Crops
Deep learning
digital modeling
Genotype & phenotype
Imaging, Three-Dimensional - methods
Lasers
Leaves
maize phenotype
Measurement
Morphology
Optical radar
Phenotype
Plant Leaves - anatomy & histology
Remote sensing
stem and leaf segmentation
Zea mays - anatomy & histology
Zea mays - growth & development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAaKEl9CGDkDhFzfqV8bFPKsSiPVCpN2vsOOpKKKno7qH99R0n2e1GHLhwjR3F_ib2N-PHN4x9wVp5KMs6r0VUuYpR5zbIIgeaL1FKWYku89z0p7m-Ud9v9e1Gqq90JqyXB-6BOyEPXytfEGtDqaIF670Ag8KTr4v0O6XZlzhvFUwNoRZ9BXodIUlB_ckDEb1NdwVH7NOJ9P89FW9w0fic5AbxXL1lbwaPkZ_2Ld1hr2Kzy15v6Ai-Y9-mLyt9vK35FOdPkf-IWPPZXWzaxeP9PPAZpoNYSU2TnxF3VbxtuLzgs3ZOb53_bpfVe3Zzdfnr_DofMiTkgUhlkUtReBOk9Rqx9F6aoIUNVkyk9hbKujAWKQgNVpVWgxWl9jU5KKZCDNaEIPfYVtM28QPjBWpdQ2GgQqWUIHyFDF4DUKQKVcCMfV4h5-57IQxHAUSC163hzdhZwnRdIWlXdw_Iom6wqPuXRTP2NVnEpRFGsAccLgpQO5NWlTslnw7IUQP63OHKaG4Yeg9OppzwinpSZOzTupgGTdoJwSa2y74OBZ6mnGRsv7fxus0qbW0LgIzByPqjTo1LmvldJ8w9EWmlwYqP_wOGA7YtUq7hbufqkG0t_izjETlAC3_c_evPBcb-2A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBNoK4OQOEXN-pXxqWpLtxVi0R6o1JtlO067EoqX7u4Bfj3jJJtuhMQ1TmRnxvPyjL8h5JOthYOyrPOaBZGLEGSuPS9yQH1pOecVazvPzb6ryyvx9Vpe9wduq76scqsTW0VdRZ_OyI94avUtoFDF8fJXnrpGpexq30LjIXk0QUuTSrpgejEEXDgXdGhCHEP7oxWae51uDI5sUAvV_69C3rFI42rJHfMzfUae9n4jPekY_Zw8CM0L8mQHTfAluZjdn_fRWNOZXfwJ9FuwNZ3fhiaufy8Xns5tKsdKmJr0FC1YRWND-Rc6jwv86uxn3FSvyNX0_MfZZd73Scg9mpZ1jqRxynPtpLWlc1x5ybTXbMKl01DWhdIWQ1GvRaklaFZKV6OboiprvVbe89dkr4lNeEtoYaWskchQWSEEY44z7p0EwHgVKm8z8nFLObPs4DAMhhGJvGYgb0ZOE02HFxKCdfsg3t2YXiAMRm5SuAK9MShF0KCdY6Aszlgoi2oiI58TR0ySMyS7t_11AVxnQqwyJ-jZAbprgNPtb5lmegFcmfvtkpEPwzCKTsqH2CbETfcOhp-qnGTkTcfjYc0iJbgZQEZgxP3RT41HmsVtC889Yem8QbN3_1_Xe_KYpV7CbWZqn-yt7zbhAB2ctTtsd_Ffo2n4FA
  priority: 102
  providerName: ProQuest
Title Measurement of Maize Leaf Phenotypic Parameters Based on 3D Point Cloud
URI https://www.ncbi.nlm.nih.gov/pubmed/40363288
https://www.proquest.com/docview/3203248060
https://www.proquest.com/docview/3203924671
https://pubmed.ncbi.nlm.nih.gov/PMC12074292
https://doaj.org/article/26154b0441874e989bb286a2b306a017
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7t4wIHxJvAUhmExCmQ-u0DQttluytEVxWiUm-R7ThspVWydFuJ5dczTtLSCMQlh8SR7RnbM5_H_gbgjS2500qVaUkDT3kIIjWeZanG9dIyxgraZJ6bXMjzGf88F_M92OTY7AR4809oF_NJzZZX737-uP2IE_5DRJwI2d_foBk38SbgPhyiQVIxkcGEb4MJFKvULalQv3jPFDWM_X-vyzuGqX9ocscKje_Dvc59JMetvh_AXqgewt0dUsFHcDb5s-1H6pJM7OJXIF-CLcn0MlT16vZ64cnUxlNZkVqTjNCQFaSuCPtEpvUC_zq5qtfFY5iNT7-dnKdduoTUo4VZpYxmTnpmnLBWOcekF9R4Q4dMOKNVmUljEZF6w5UR2lAlXIneiiys9UZ6z57AQVVX4RmQzApR6kzqwnLOKXWMMu-E1ghbdeFtAq83ksuvW1aMHNFEFG--FW8CoyjTbYFIZN28qJff825e5AjgBHcZOmVa8WC0cY5qabHGTFpcLRJ4GzWSxwGAYve2uzWA7YzEVfkxOngavTaN1R1tlJZvhlHOYoJ4jj3JEni1_YwzKIZFbBXqdVsGUahUwwSetjretpnHODfVOgHd036vU_0v1eKyYeke0rjtYOjz_7frBdyhMaVwE6A6goPVch1eop-zcgPYV3OFTz0-G8Dh6PRi-nXQ7BkMmvH9G7jQ_e4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATgg3gRaMAjEKWrWj8Q-oKoPtlu6W-2hlXoLtuPQlVCydHeFykfxjYzz6kZI3HqNHT9mPC-PZwbgg865kUmShzl1POTOiVBZFoUS-aVmjGW0qjw3OY1H5_zrhbjYgD9tLIx_VtnyxIpRZ6X1d-Q7zJf65jKKo935z9BXjfLe1baERn0sTtz1LzTZFp-PDxG_Hykdfjk7GIVNVYHQIiNehjiQiS1TRmidGMNiK6iyig6YMGiA51GsNBpuVvFECaloIkyOQj3OtLYqtpbhuHfgLmcoyX1k-vCoM_Bwb7LOXoSN0c4C1QvlIxR7Mq8qDfCvAFiTgP3XmWvibvgIHjZ6KtmrD9Zj2HDFE3iwlr3wKRxNbu4XSZmTiZ79dmTsdE6ml64ol9fzmSVT7Z9_-RyeZB8lZkbKgrBDMi1n-NfBj3KVPYPzW4Hgc9gsysK9BBJpIXJEqsw055xSwyizRkiJ9rHMrA7gfQu5dF6n30jRbPHgTTvwBrDvYdp18Bmzqw_l1fe0IcAULUXBTYTan0y4U1IZQ2WsccYo1siWAvjkMZJ6ukawW92EJ-A6fYasdA81SYnqocTptlqkpQ3BL9Kb4xnAu64ZSdX7X3ThylXdB83dOBkE8KLGcbdm7h3qVMoAZA_7vU31W4rZZZUOfED9_Yair_6_rrdwb3Q2Gafj49OT13Cf-jrGlVdsCzaXVyu3jcrV0rypTjSBb7dNQn8BujYz4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgEE9RU18S-wGhdV3Z2FpFiEl7y2zHYZWmpFtbofHT-HUcJ2nXCom3vcaOL-f4XD5fzgH4oAtuZJIUYUEdD7lzIlSWRaFEfakZYzmtM8-NxvHBCf92Kk634M_yLYy_VrnUibWizivr98i7zKf65jKKo27RXotIB8Mv08vQZ5DyJ63LdBrNEjly178Qvs0-Hw6Q1x8pHe7_2DsI2wwDoUWlPA-xURNbpozQOjGGxVZQZRXtMWEQjBdRrDSCOKt4ooRUNBGmQAMf51pbFVvLsN07sJ14VNSB7f7-OP2-gns4U9nEMmJMRd0ZOhvKv1fcsIB1ooB_zcGaPdy8q7lm_IYP4UHrtZLdZpk9gi1XPob7a7EMn8DX0c1uI6kKMtKT344cO12Q9NyV1fx6OrEk1f4ymI_oSfpoP3NSlYQNSFpN8K-9i2qRP4WTW6HhM-iUVeleAIm0EAWyWOaac06pYZRZI6REtCxzqwN4v6RcNm2CcWQIYjx5sxV5A-h7mq4q-PjZ9Yfq6mfWimOGuFFwE6EvKBPulFTGUBlr7DGKNSqpAD55jmReypHsVrePFXCcPl5Wtot-pURnUWJ3O0umZa34z7KbxRrAu1UxCq4_jdGlqxZNHQS_cdIL4HnD49WYuT9ep1IGIDe4vzGpzZJycl4HB-9Rv9uh6Mv_j-st3EXxyY4Px0ev4B71SY3rI7Id6MyvFu41elpz86Zd0gTObluK_gJMWDlz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+Maize+Leaf+Phenotypic+Parameters+Based+on+3D+Point+Cloud&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Su+Yuchen&rft.au=Li%2C+Ran&rft.au=Wang%2C+Miao&rft.au=Chen%2C+Li&rft.date=2025-04-30&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft.spage=2854&rft_id=info:doi/10.3390%2Fs25092854&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon