Facilitating public involvement in research about healthcare AI: A scoping review of empirical methods
•We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help participants engage with complex subject matter.•Most studies used participants views to make recommendations about how AI should be implemented.•...
Saved in:
Published in | International journal of medical informatics (Shannon, Ireland) Vol. 186; p. 105417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help participants engage with complex subject matter.•Most studies used participants views to make recommendations about how AI should be implemented.•Many studies still reported participants’ lack of prior knowledge about AI as a limitation.
With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance.
We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations.
Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants’ lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI.
Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants’ lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation.
This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources. |
---|---|
AbstractList | With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance.OBJECTIVEWith the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance.We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations.MATERIALS AND METHODSWe searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations.Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants' lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI.RESULTSSixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants' lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI.Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants' lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation.DISCUSSIONProvision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants' lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation.This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources.CONCLUSIONThis review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources. •We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help participants engage with complex subject matter.•Most studies used participants views to make recommendations about how AI should be implemented.•Many studies still reported participants’ lack of prior knowledge about AI as a limitation. With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance. We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations. Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants’ lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI. Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants’ lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation. This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources. With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance. We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations. Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants' lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI. Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants' lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation. This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources. |
ArticleNumber | 105417 |
Author | Bosward, Rebecca Braunack-Mayer, Annette Aquino, Yves Saint James Frost, Emma Kellie Carter, Stacy M. |
Author_xml | – sequence: 1 givenname: Emma Kellie surname: Frost fullname: Frost, Emma Kellie email: emmaf@uow.edu.au – sequence: 2 givenname: Rebecca surname: Bosward fullname: Bosward, Rebecca email: rb325@uowmail.edu.au – sequence: 3 givenname: Yves Saint James surname: Aquino fullname: Aquino, Yves Saint James email: yaquino@uow.edu.au – sequence: 4 givenname: Annette surname: Braunack-Mayer fullname: Braunack-Mayer, Annette email: abmayer@uow.edu.au – sequence: 5 givenname: Stacy M. surname: Carter fullname: Carter, Stacy M. email: stacyc@uow.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38564959$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvFDEQhC0URB7wFyIfuczi98wihFhFBCJF4gJny-Nps14848H2LMq_x8tmL7mEU7daX1VLVZfobIoTIHRNyYoSqt7tVn43wuAnt2KEiXqUgrYv0AXtWtZ0TPCzuvNONZJIdY4uc94RQtuKvULnvJNKrOX6ArlbY33wxRQ__cTz0gdvsZ_2MexhhKnUHSfIYJLdYtPHpeAtmFC21iTAm7v3eIOzjfNBnWDv4Q-ODsM4--StCXiEso1Dfo1eOhMyvHmcV-jH7efvN1-b-29f7m42940VLS0Np6xn0PW0g1a03BniJDGCyb51VAK3gjrXMtcqS3upBmXXnWLKSGWdEG7gV-jt0XdO8fcCuejRZwshmAnikjUnnCrFuFQVvX5El74mqefkR5Me9CmbCnw4AjbFnBM4bf_lFKeSjA-aEn2oQu_0qQp9qEIfq6hy9UR--vCs8NNRCDWommjS2XqYbCUT2KKH6J-3-PjEwgY_HQr5BQ__Y_AXiOG8mg |
CitedBy_id | crossref_primary_10_1080_15265161_2024_2388732 crossref_primary_10_1016_j_breast_2024_103783 crossref_primary_10_3390_pathogens13110940 |
Cites_doi | 10.1186/s12911-021-01586-8 10.1093/jamia/ocab127 10.2196/12942 10.1080/1364557032000119616 10.1177/09691413211001405 10.2196/16670 10.1186/s12911-020-01191-1 10.2196/22841 10.1111/bjd.20441 10.1016/j.arth.2019.05.021 10.1176/appi.ps.202000092 10.2196/14316 10.1097/APO.0000000000000525 10.2196/26162 10.1080/08870446.2019.1579330 10.1016/j.jacr.2018.12.043 10.1007/s10916-021-01743-6 10.2196/39742 10.1038/s41746-021-00509-1 10.1177/1932296817704442 10.2196/37611 10.15252/embr.202051278 10.1016/j.wneu.2020.03.029 10.1080/13669877.2020.1749118 10.1007/s10916-019-1420-4 10.1007/s00330-021-08214-z 10.2196/36322 10.1111/ced.14969 10.1177/14604582211011215 10.5455/medarh.2021.75.50-55 10.1016/j.healthpol.2006.07.009 10.1186/s13643-022-02012-4 10.2196/19713 10.1089/end.2020.0137 10.1177/0963662504042690 10.5694/mja2.51992 10.1145/3393527.3393561 10.1080/1523908X.2015.1053110 10.1080/0960085X.2022.2026621 10.1371/journal.pone.0235410 10.1080/15332861.2020.1832817 10.3389/fmed.2020.00233 10.1016/j.jacr.2020.09.042 10.3390/jcm11082143 10.1016/S2589-7500(21)00132-1 10.1080/10447318.2020.1861763 10.1001/jamadermatol.2019.5014 10.1177/0162243907311265 10.1007/s00146-021-01230-z 10.2196/24221 10.2196/34514 10.2196/26611 10.2196/31053 10.1038/s41598-022-20958-2 10.2147/PPA.S225952 10.1177/2058460119880315 10.1001/jamanetworkopen.2022.10309 10.2196/25856 10.1136/bmjhci-2020-100233 10.1177/0963662516629749 10.1136/bmjopen-2020-039798 10.2196/22909 10.1016/j.genhosppsych.2021.02.008 10.1016/j.jclinepi.2020.01.008 10.1038/s41598-022-05296-7 10.1016/j.giq.2021.101652 10.1016/j.jval.2021.09.004 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ijmedinf.2024.105417 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8243 |
ExternalDocumentID | 38564959 10_1016_j_ijmedinf_2024_105417 S1386505624000807 |
Genre | Journal Article Scoping Review |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABDPE ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACJTP ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SNG SPC SPCBC SSH SSV SSZ T5K UHS Z5R ~G- 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AISVY AJBFU AJOXV AMFUW G8K LCYCR NAHTW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c471t-312b2e8b18e7473fa0f50a425b7f15e3c41ff72f76c1b56d6c98626a56cf44fd3 |
IEDL.DBID | .~1 |
ISSN | 1386-5056 1872-8243 |
IngestDate | Mon Jul 21 12:02:12 EDT 2025 Mon Jul 21 06:02:35 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 03:48:16 EDT 2025 Sat Apr 27 15:44:25 EDT 2024 Tue Aug 26 16:32:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Scoping review Healthcare Artificial intelligence Public and patient involvement |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-312b2e8b18e7473fa0f50a425b7f15e3c41ff72f76c1b56d6c98626a56cf44fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1386505624000807 |
PMID | 38564959 |
PQID | 3031662356 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3031662356 pubmed_primary_38564959 crossref_citationtrail_10_1016_j_ijmedinf_2024_105417 crossref_primary_10_1016_j_ijmedinf_2024_105417 elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2024_105417 elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2024_105417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-Jun 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | International journal of medical informatics (Shannon, Ireland) |
PublicationTitleAlternate | Int J Med Inform |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Coiera, Verspoor, Hansen (b0010) 2023 Li W, Fan X, Zhu H, Wu J, Teng D. Research on the Influencing Factors of User Trust Based on Artificial Intelligence Self Diagnosis System. In: Proceedings of the ACM Turing Celebration Conference - China [Internet]. New York, NY, USA: Association for Computing Machinery; 2020 [cited 2022 Feb 9]. p. 197–202. (ACM TURC’20). Available from Zhang, Genc, Wang, Ahsen, Fan (b0380) 2021; 45 Mikalef, Conboy, Lundström, Popovič (b0005) 2022; 31 Alrefaei, Hawsawi, Almaleki, Alafif, Alzahrani, Bakhrebah (b0105) 2022; 12 Frost, Bosward, Aquino, Braunack-Mayer, Carter (b0065) 2022; 11 Macnaghten, Davies, Kearnes (b0390) 2019; 21 Yakar, Ongena, Kwee, Haan (b0330) 2021; 25 Haggenmüller, Krieghoff-Henning, Jutzi, Trapp, Kiehl, Utikal (b0170) 2021; 9 Ma, O’Riordan, Mazzer, Batterham, Bradford, Kolves (b0225) 2022; 9 Sturgis, Allum (b0395) 2004; 13 Nelson, Pérez-Chada, Creadore, Li, Lo, Manjaly (b0250) 2020; 156 de Vries, Morrissey, Duggan, Staff, Lip (b0320) 2021; 28 Zarifis, Kawalek, Azadegan (b0370) 2021; 20 Tang, Li, Fantus (b0050) 2023; 1 Bala, Keniston, Burden (b0120) 2020; 4 Reincke, Bredenoord, van Mil (b0405) 2020; 21 Montemayor, Halpern, Fairweather (b0415) 2022; 37 Richardson, Curtis, Smith, Pacyna, Zhu, Barry (b0280) 2022; 1 Jonmarker, Strand, Brandberg, Lindholm (b0185) 2019; 8 Wilson (b0025) 2022; 39 Stirling (b0410) 2008; 33 Breitbart, Choudhury, Andersen, Bunde, Breitbart, Sideri (b0125) 2020; 15 Khullar, Casalino, Qian, Lu, Krumholz, Aneja (b0195) 2022; 5 Haan, Ongena, Hommes, Kwee, Yakar (b0165) 2019; 16 Hogg HDJ, Al-Zubaidy M, Group TEMSSR, Talks J, Denniston AK, Kelly CJ, et al. Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: Systematic Review of Qualitative Evidence. Journal of Medical Internet Research. 2023 Jan 10;25(1):e39742. Ploug, Sundby, Moeslund, Holm (b0265) 2021; 23 Yang, Zeng, Peng, Jiang (b0335) 2019; 13 O’Doherty (b0055) 2022 Miller, Gilbert, Virani, Wicks (b0235) 2020; 7 Lennartz, Dratsch, Zopfs, Persigehl, Maintz, Hokamp (b0205) 2021; 23 . Ramkumar, Haeberle, Ramanathan, Cantrell, Navarro, Mont (b0270) 2019; 34 Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A, Schadendorf D, et al. Artificial Intelligence in Skin Cancer Diagnostics: The Patients’ Perspective. Frontiers in Medicine [Internet]. 2020 Jun 2 [cited 2022 Feb 9];7. Available from Aktan, Turhan, Dolu (b0090) 2022; 133 Yang, Ene, Arabi Belaghi, Koff, Stein, Santaguida (b0040) 2022; 32 McCradden, Sarker, Paprica (b0230) 2020; 10 Ongena, Yakar, Haan, Kwee (b0255) 2021; 18 Stai, Heller, McSweeney, Rickman, Blake, Vasdev (b0300) 2020; 34 Fritsch, Blankenheim, Wahl, Hetfeld, Maassen, Deffge (b0155) 2022; 1 Aggarwal, Farag, Martin, Ashrafian, Darzi (b0085) 2021 Aug 26; 23 Scott, Carter, Coiera (b0030) 2021; 28 Palmisciano, Jamjoom, Taylor, Stoyanov, Marcus (b0260) 2020; 1 Lim, Neal-Smith, Mitchell, Xerri, Chuanromanee (b0215) 2022; 47 Kosan, Krois, Wingenfeld, Deuter, Gaudin, Schwendicke (b0200) 2022; 11 Ford, Curlewis, Wongkoblap, Curcin (b0150) 2019; 6 York, Jenney, Jones (b0360) 2020; 27 Rigla, Martínez-Sarriegui, García-Sáez, Pons, Hernando (b0290) 2018; 12 Fink, Uhlmann, Hofmann, Forschner, Eigentler, Garbe (b0145) 2018; 16 Zhang, Citardi, Wang, Genc, Shan, Fan (b0375) 2021; 27 Isbanner, O’Shaughnessy, Steel, Wilcock, Carter (b0180) 2022; 24 Xiang, Zhao, Liu, Wu, Chen, Long (b0325) 2020; 1 Liu, Tsang, Huang, Lau, Chen, Sheng (b0220) 2021; 23 Clements, Thong, Zia, Moriarty, Goh (b0130) 2022; 17 Yap, Wilkinson, Chen, Han, Vaghefi, Galloway (b0340) 2022; 11 Ipsos (b0175) 2017 van der Zander, van der Ende-van Loon, Janssen, Winkens, van der Sommen, Masclee (b0365) 2022; 12 Clark, Glasziou, Del Mar, Bannach-Brown, Stehlik, Scott (b0075) 2020; 121 Simis, Madden, Cacciatore, Yeo (b0400) 2016; 25 Yarborough, Stumbo (b0345) 2021; 1 Arksey, O’Malley (b0070) 2005; 8 Aljaaf, Van Tonder, Mallucci, Al-Jumeily, Hussain, Alloghani (b0095) 2019; 43 Sangers, Wakkee, Kramer-Noels, Nijsten, Lugtenberg (b0295) 2021; 185 Pidgeon (b0060) 2021; 24 Musbahi, Syed, Le Feuvre, Cobb, Jones (b0240) 2021; 1 Almalki (b0100) 2021; 75 Antes, Burrous, Sisk, Schuelke, Keune, DuBois (b0110) 2021; 21 Yokoi, Eguchi, Fujita, Nakayachi (b0355) 2021; 37 Coalition for Health AI. Blueprint for Trustworthy AI Implementation Guidance and Assurance for Healthcare [Internet]. 2022 [cited 2023 Jun 22]. Available from Arellano Carmona, Chittamuru, Kravitz, Ramondt, Ramirez (b0115) 2022; 24 van Gils, Visser, Hendriksen, Georges, Muller, Bouwman (b0160) 2021; 5 Zhou, Shi, Lu, Wan (b0385) 2022; 3 Reger, Ammerman, Carter, Gebhardt, Rojas, Lee (b0275) 2021; 72 Tong, Sopory (b0305) 2019; 34 Abelson, Giacomini, Lehoux, Gauvin (b0020) 2007; 82 Nadarzynski, Miles, Cowie, Ridge (b0245) 2019; 1 Abdoul C, Cros P, Coutier L, Hadchouel A, Neuraz A, Burgun A, et al. Parents’ views on artificial intelligence for the daily management of childhood asthma: a survey. The Journal of Allergy and Clinical Immunology: In Practice [Internet]. 2020 Dec 1;9(4). Available from Esmaeilzadeh, Mirzaei, Dharanikota (b0140) 2021; 23 Richardson, Smith, Curtis, Watson, Zhu, Barry (b0285) 2021; 4 Esmaeilzadeh (b0135) 2020; 20 Young, Amara, Bhattacharya, Wei (b0035) 2021; 3 van der Veer, Riste, Cheraghi-Sohi, Phipps, Tully, Bozentko (b0315) 2021; 28 Ye, Xue, He, Gu, Lin, Xu (b0350) 2019; 21 Tran VT, Riveros C, Ravaud P. Patients’ Utilization and Perception of an Artificial Intelligence–Based Symptom Assessment and Advice Technology in a British Primary Care Waiting Room: Exploratory Pilot Study. npj Digit Med. 2019 Jun 14;2(1):e19713. Musbahi (10.1016/j.ijmedinf.2024.105417_b0240) 2021; 1 Montemayor (10.1016/j.ijmedinf.2024.105417_b0415) 2022; 37 Arksey (10.1016/j.ijmedinf.2024.105417_b0070) 2005; 8 Yarborough (10.1016/j.ijmedinf.2024.105417_b0345) 2021; 1 Xiang (10.1016/j.ijmedinf.2024.105417_b0325) 2020; 1 Ma (10.1016/j.ijmedinf.2024.105417_b0225) 2022; 9 Nelson (10.1016/j.ijmedinf.2024.105417_b0250) 2020; 156 Fink (10.1016/j.ijmedinf.2024.105417_b0145) 2018; 16 McCradden (10.1016/j.ijmedinf.2024.105417_b0230) 2020; 10 Zhang (10.1016/j.ijmedinf.2024.105417_b0375) 2021; 27 Almalki (10.1016/j.ijmedinf.2024.105417_b0100) 2021; 75 Rigla (10.1016/j.ijmedinf.2024.105417_b0290) 2018; 12 Nadarzynski (10.1016/j.ijmedinf.2024.105417_b0245) 2019; 1 Abelson (10.1016/j.ijmedinf.2024.105417_b0020) 2007; 82 Reger (10.1016/j.ijmedinf.2024.105417_b0275) 2021; 72 van Gils (10.1016/j.ijmedinf.2024.105417_b0160) 2021; 5 Ongena (10.1016/j.ijmedinf.2024.105417_b0255) 2021; 18 10.1016/j.ijmedinf.2024.105417_b0310 Breitbart (10.1016/j.ijmedinf.2024.105417_b0125) 2020; 15 van der Veer (10.1016/j.ijmedinf.2024.105417_b0315) 2021; 28 Yang (10.1016/j.ijmedinf.2024.105417_b0040) 2022; 32 Richardson (10.1016/j.ijmedinf.2024.105417_b0280) 2022; 1 10.1016/j.ijmedinf.2024.105417_b0190 Esmaeilzadeh (10.1016/j.ijmedinf.2024.105417_b0135) 2020; 20 Zarifis (10.1016/j.ijmedinf.2024.105417_b0370) 2021; 20 Lim (10.1016/j.ijmedinf.2024.105417_b0215) 2022; 47 Clements (10.1016/j.ijmedinf.2024.105417_b0130) 2022; 17 Miller (10.1016/j.ijmedinf.2024.105417_b0235) 2020; 7 Palmisciano (10.1016/j.ijmedinf.2024.105417_b0260) 2020; 1 10.1016/j.ijmedinf.2024.105417_b0015 O’Doherty (10.1016/j.ijmedinf.2024.105417_b0055) 2022 Antes (10.1016/j.ijmedinf.2024.105417_b0110) 2021; 21 Richardson (10.1016/j.ijmedinf.2024.105417_b0285) 2021; 4 Coiera (10.1016/j.ijmedinf.2024.105417_b0010) 2023 Reincke (10.1016/j.ijmedinf.2024.105417_b0405) 2020; 21 Stai (10.1016/j.ijmedinf.2024.105417_b0300) 2020; 34 Esmaeilzadeh (10.1016/j.ijmedinf.2024.105417_b0140) 2021; 23 Ye (10.1016/j.ijmedinf.2024.105417_b0350) 2019; 21 York (10.1016/j.ijmedinf.2024.105417_b0360) 2020; 27 Ford (10.1016/j.ijmedinf.2024.105417_b0150) 2019; 6 Clark (10.1016/j.ijmedinf.2024.105417_b0075) 2020; 121 Liu (10.1016/j.ijmedinf.2024.105417_b0220) 2021; 23 Aktan (10.1016/j.ijmedinf.2024.105417_b0090) 2022; 133 Khullar (10.1016/j.ijmedinf.2024.105417_b0195) 2022; 5 Sangers (10.1016/j.ijmedinf.2024.105417_b0295) 2021; 185 Yakar (10.1016/j.ijmedinf.2024.105417_b0330) 2021; 25 Stirling (10.1016/j.ijmedinf.2024.105417_b0410) 2008; 33 Haggenmüller (10.1016/j.ijmedinf.2024.105417_b0170) 2021; 9 Aggarwal (10.1016/j.ijmedinf.2024.105417_b0085) 2021; 23 Tong (10.1016/j.ijmedinf.2024.105417_b0305) 2019; 34 Sturgis (10.1016/j.ijmedinf.2024.105417_b0395) 2004; 13 Scott (10.1016/j.ijmedinf.2024.105417_b0030) 2021; 28 Bala (10.1016/j.ijmedinf.2024.105417_b0120) 2020; 4 Yang (10.1016/j.ijmedinf.2024.105417_b0335) 2019; 13 Pidgeon (10.1016/j.ijmedinf.2024.105417_b0060) 2021; 24 Frost (10.1016/j.ijmedinf.2024.105417_b0065) 2022; 11 10.1016/j.ijmedinf.2024.105417_b0210 Ipsos (10.1016/j.ijmedinf.2024.105417_b0175) 2017 Ramkumar (10.1016/j.ijmedinf.2024.105417_b0270) 2019; 34 Yap (10.1016/j.ijmedinf.2024.105417_b0340) 2022; 11 Aljaaf (10.1016/j.ijmedinf.2024.105417_b0095) 2019; 43 Kosan (10.1016/j.ijmedinf.2024.105417_b0200) 2022; 11 Mikalef (10.1016/j.ijmedinf.2024.105417_b0005) 2022; 31 Yokoi (10.1016/j.ijmedinf.2024.105417_b0355) 2021; 37 van der Zander (10.1016/j.ijmedinf.2024.105417_b0365) 2022; 12 Isbanner (10.1016/j.ijmedinf.2024.105417_b0180) 2022; 24 Zhou (10.1016/j.ijmedinf.2024.105417_b0385) 2022; 3 Wilson (10.1016/j.ijmedinf.2024.105417_b0025) 2022; 39 Arellano Carmona (10.1016/j.ijmedinf.2024.105417_b0115) 2022; 24 Simis (10.1016/j.ijmedinf.2024.105417_b0400) 2016; 25 Fritsch (10.1016/j.ijmedinf.2024.105417_b0155) 2022; 1 Zhang (10.1016/j.ijmedinf.2024.105417_b0380) 2021; 45 Young (10.1016/j.ijmedinf.2024.105417_b0035) 2021; 3 Macnaghten (10.1016/j.ijmedinf.2024.105417_b0390) 2019; 21 Alrefaei (10.1016/j.ijmedinf.2024.105417_b0105) 2022; 12 Jonmarker (10.1016/j.ijmedinf.2024.105417_b0185) 2019; 8 10.1016/j.ijmedinf.2024.105417_b0045 Ploug (10.1016/j.ijmedinf.2024.105417_b0265) 2021; 23 de Vries (10.1016/j.ijmedinf.2024.105417_b0320) 2021; 28 Lennartz (10.1016/j.ijmedinf.2024.105417_b0205) 2021; 23 10.1016/j.ijmedinf.2024.105417_b0080 Haan (10.1016/j.ijmedinf.2024.105417_b0165) 2019; 16 Tang (10.1016/j.ijmedinf.2024.105417_b0050) 2023; 1 |
References_xml | – volume: 12 start-page: 1405 year: 2022 ident: b0105 article-title: Genetic data sharing and artificial intelligence in the era of personalized medicine based on a cross-sectional analysis of the saudi human genome program publication-title: Sci Rep. – volume: 33 start-page: 262 year: 2008 end-page: 294 ident: b0410 article-title: “Opening up” and “closing down”: power, participation, and pluralism in the social appraisal of technology publication-title: Sci. Technol. Hum. Values – volume: 23 start-page: e24221 year: 2021 ident: b0205 article-title: Use and control of artificial intelligence in patients across the medical workflow: single-center questionnaire study of patient perspectives publication-title: J Med Internet Res. – volume: 15 start-page: e0235410 year: 2020 ident: b0125 article-title: Improved patient satisfaction and diagnostic accuracy in skin diseases with a visual clinical Decision support system—A feasibility study with general practitioners publication-title: PLoS One – volume: 21 start-page: 221 year: 2021 ident: b0110 article-title: Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey publication-title: BMC Med Inform Decis Mak. – volume: 24 start-page: e37611 year: 2022 end-page: e ident: b0180 article-title: The adoption of artificial intelligence in health Care and social Services in Australia: findings from a methodologically innovative National Survey of values and attitudes (the AVA-AI study) publication-title: J Med Internet Res. – volume: 8 start-page: 19 year: 2005 end-page: 32 ident: b0070 article-title: Scoping studies: towards a methodological framework publication-title: Int. J. Soc. Res. Methodol. – volume: 27 start-page: e100233 year: 2020 ident: b0360 article-title: Clinician and computer: a study on patient perceptions of artificial intelligence in skeletal radiography publication-title: BMJ Health Care Inform. – volume: 75 start-page: 50 year: 2021 end-page: 55 ident: b0100 article-title: Exploring the influential factors of Consumers’ willingness Toward using COVID-19 related chatbots: an empirical study publication-title: Med Arch. – volume: 13 start-page: 1867 year: 2019 end-page: 1875 ident: b0335 article-title: Attitudes of chinese cancer patients toward the clinical use of artificial intelligence publication-title: Patient Prefer Adherence. – reference: Tran VT, Riveros C, Ravaud P. Patients’ Utilization and Perception of an Artificial Intelligence–Based Symptom Assessment and Advice Technology in a British Primary Care Waiting Room: Exploratory Pilot Study. npj Digit Med. 2019 Jun 14;2(1):e19713. – volume: 5 start-page: e31053 year: 2021 ident: b0160 article-title: Assessing the views of professionals, patients, and Care Partners concerning the use of computer tools in memory clinics: international survey study publication-title: JMIR Formative Research. – volume: 28 start-page: 2128 year: 2021 end-page: 2138 ident: b0315 article-title: Trading off accuracy and explainability in AI decision-making: findings from 2 citizens’ juries publication-title: J. Am. Med. Inform. Assoc. – volume: 21 start-page: e51278 year: 2020 ident: b0405 article-title: From deficit to dialogue in science communication publication-title: EMBO Rep. – volume: 1 year: 2019 ident: b0245 article-title: Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: a mixed-methods study publication-title: Digital Health. – volume: 1 start-page: 31 year: 2021 end-page: 37 ident: b0345 article-title: Patient perspectives on acceptability of, and implementation preferences for, use of electronic health records and machine learning to identify suicide risk publication-title: Gen. Hosp. Psychiatry – reference: Coalition for Health AI. Blueprint for Trustworthy AI Implementation Guidance and Assurance for Healthcare [Internet]. 2022 [cited 2023 Jun 22]. Available from: – volume: 7 start-page: e19713 year: 2020 ident: b0235 article-title: Patients’ utilization and perception of an artificial intelligence-based symptom assessment and Advice Technology in a British Primary Care Waiting Room: exploratory pilot study publication-title: JMIR Hum. Factors – volume: 34 start-page: 1041 year: 2020 end-page: 1048 ident: b0300 article-title: Public perceptions of artificial intelligence and robotics in medicine publication-title: J. Endourol. – volume: 20 start-page: 66 year: 2021 end-page: 83 ident: b0370 article-title: Evaluating if trust and personal information privacy concerns are barriers to using health insurance that explicitly utilizes AI publication-title: J. Internet Commer. – volume: 121 start-page: 81 year: 2020 end-page: 90 ident: b0075 article-title: A full systematic review was completed in 2 weeks using automation tools: a case study publication-title: J Clin Epidemiol. – volume: 4 start-page: 1 year: 2021 end-page: 6 ident: b0285 article-title: Patient apprehensions about the use of artificial intelligence in healthcare publication-title: Npj Digit Med. – volume: 34 start-page: 828 year: 2019 end-page: 849 ident: b0305 article-title: Does integral affect influence intentions to use artificial intelligence for skin cancer screening? a test of the affect heuristic publication-title: Psychol. Health – volume: 4 start-page: e16670 year: 2020 ident: b0120 article-title: Patient perception of plain-language medical notes generated using artificial intelligence Software: pilot mixed-methods study publication-title: JMIR Form Res. – volume: 3 year: 2022 ident: b0385 article-title: Did artificial intelligence invade humans? the study on the mechanism of patients’ willingness to accept artificial intelligence medical care: from the perspective of intergroup threat theory publication-title: Front Psychol. – volume: 156 start-page: 501 year: 2020 end-page: 512 ident: b0250 article-title: Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study publication-title: JAMA Dermatol. – volume: 28 year: 2021 ident: b0030 article-title: Exploring stakeholder attitudes towards AI in clinical practice publication-title: Bmjhealth & Care Informatics. – volume: 11 start-page: 287 year: 2022 end-page: 293 ident: b0340 article-title: Patients perceptions of artificial intelligence in diabetic eye screening publication-title: Asia-Pacific Journal of Ophthalmology (philadelphia, Pa). – volume: 6 start-page: e12942 year: 2019 ident: b0150 article-title: Public opinions on using social media content to identify users with depression and Target mental health Care advertising: mixed methods survey publication-title: JMIR Mental Health. – volume: 32 start-page: 1477 year: 2022 end-page: 1495 ident: b0040 article-title: Stakeholders’ perspectives on the future of artificial intelligence in radiology: a scoping review publication-title: Eur. Radiol.. – volume: 10 start-page: e039798 year: 2020 ident: b0230 article-title: Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research publication-title: BMJ Open – volume: 82 start-page: 37 year: 2007 end-page: 50 ident: b0020 article-title: Bringing ‘the public’ into health technology assessment and coverage policy decisions: from principles to practice publication-title: Health Policy – volume: 23 start-page: e26162 year: 2021 Aug 26 ident: b0085 article-title: Patient perceptions on data Sharing and applying artificial intelligence to health Care data: cross-sectional survey publication-title: J. Med. Internet Res. – volume: 37 start-page: 1353 year: 2022 end-page: 1359 ident: b0415 article-title: In principle obstacles for empathic AI: why we can’t replace human empathy in healthcare publication-title: AI & Soc. – volume: 31 start-page: 257 year: 2022 end-page: 268 ident: b0005 article-title: Thinking responsibly about responsible AI and ‘the dark side’ of AI publication-title: Eur. J. Inf. Syst. – volume: 21 start-page: 504 year: 2019 end-page: 518 ident: b0390 article-title: Understanding public responses to emerging technologies: a Narrative approach publication-title: J. Environ. Plann. Policy Manage. – volume: 12 start-page: 260 year: 2018 end-page: 264 ident: b0290 article-title: Gestational Diabetes Management using Smart Mobile telemedicine publication-title: J Diabetes Sci Technol. – year: 2023 ident: b0010 article-title: We need to chat about artificial intelligence publication-title: Med J Aust [internet]. – volume: 72 year: 2021 ident: b0275 article-title: Patient feedback on the use of predictive analytics for suicide prevention publication-title: Psychiatr. Serv.. – reference: Hogg HDJ, Al-Zubaidy M, Group TEMSSR, Talks J, Denniston AK, Kelly CJ, et al. Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: Systematic Review of Qualitative Evidence. Journal of Medical Internet Research. 2023 Jan 10;25(1):e39742. – volume: 16 start-page: 1416 year: 2019 end-page: 1419 ident: b0165 article-title: A qualitative study to understand patient perspective on the use of artificial intelligence in radiology publication-title: J. Am. Coll. Radiol. – volume: 11 start-page: 142 year: 2022 ident: b0065 article-title: Public views on ethical issues in healthcare artificial intelligence: protocol for a scoping review publication-title: Syst. Rev. – volume: 43 start-page: 295 year: 2019 ident: b0095 article-title: Patients attitude to technology publication-title: J Med Syst. – volume: 11 start-page: 2143 year: 2022 ident: b0200 article-title: Patients’ perspectives on artificial intelligence in dentistry: a controlled study publication-title: J. Clin. Med.. – volume: 9 start-page: e22909 year: 2021 ident: b0170 article-title: Digital natives’ preferences on Mobile artificial intelligence apps for skin cancer diagnostics: survey study publication-title: JMIR Mhealth Uhealth – volume: 18 start-page: 79 year: 2021 end-page: 86 ident: b0255 article-title: Artificial intelligence in screening mammography: a population survey of women’s preferences publication-title: J. Am. Coll. Radiol. – volume: 1 year: 2020 ident: b0325 article-title: Implementation of artificial intelligence in medicine: status analysis and development suggestions publication-title: Artif. Intell. Med. – volume: 37 year: 2021 ident: b0355 article-title: Artificial intelligence is trusted less than a doctor in medical treatment Decisions: influence of perceived Care and value Similarity publication-title: International Journal of Human-Computer Interaction. – volume: 21 start-page: e14316 year: 2019 ident: b0350 article-title: Psychosocial factors affecting artificial intelligence adoption in health Care in China: cross-sectional study publication-title: J. Med. Internet Res. – volume: 133 year: 2022 ident: b0090 article-title: Attitudes and perspectives towards the preferences for artificial intelligence in psychotherapy publication-title: Computers in Human Behavior [internet]. – volume: 5 start-page: e2210309 year: 2022 ident: b0195 article-title: Perspectives of patients about artificial intelligence in health Care publication-title: JAMA Netw. Open – volume: 25 start-page: 374 year: 2021 end-page: 381 ident: b0330 article-title: Do people favor artificial intelligence over physicians? a survey among the general population and their view on artificial intelligence in medicine publication-title: Value Health – year: 2017 ident: b0175 article-title: Public views of machine Learning. findings from public research engagement conducted on behalf of the royal society. the royal publication-title: Society – volume: 45 start-page: 64 year: 2021 ident: b0380 article-title: Effect of AI explanations on human perceptions of patient-facing AI-powered Healthcare systems publication-title: J Med Syst. – volume: 47 start-page: 542 year: 2022 end-page: 546 ident: b0215 article-title: Perceptions of the use of artificial intelligence in the diagnosis of skin cancer: an outpatient survey publication-title: Clin. Exp. Dermatol.. – volume: 8 year: 2019 ident: b0185 article-title: The future of breast cancer screening: what do participants in a breast cancer screening program think about automation using artificial intelligence? publication-title: Acta Radiologica Open. – volume: 1 year: 2022 ident: b0155 article-title: Attitudes and perception of artificial intelligence in healthcare: a cross-sectional survey among patients publication-title: Digital Health. – reference: Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A, Schadendorf D, et al. Artificial Intelligence in Skin Cancer Diagnostics: The Patients’ Perspective. Frontiers in Medicine [Internet]. 2020 Jun 2 [cited 2022 Feb 9];7. Available from: – volume: 16 start-page: 854 year: 2018 end-page: 859 ident: b0145 article-title: Patient acceptance and trust in automated computer-assisted diagnosis of melanoma with dermatofluoroscopy. JDDG publication-title: J. Dtsch. Dermatol. Ges. – start-page: 1 year: 2022 end-page: 22 ident: b0055 article-title: Trust, trustworthiness, and relationships: ontological reflections on public trust in science publication-title: Journal of Responsible Innovation. – volume: 34 start-page: 2253 year: 2019 end-page: 2259 ident: b0270 article-title: Remote patient monitoring using Mobile health for Total knee arthroplasty: validation of a Wearable and machine Learning-based surveillance platform publication-title: J. Arthroplasty – volume: 24 start-page: e36322 year: 2022 end-page: e ident: b0115 article-title: Health information seeking from an intelligent web-based symptom checker: cross-sectional questionnaire study publication-title: J. Med. Internet Res. – volume: 3 start-page: e599 year: 2021 end-page: e611 ident: b0035 article-title: Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review publication-title: The Lancet Digital Health. – volume: 20 start-page: 170 year: 2020 ident: b0135 article-title: Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives publication-title: BMC Med. Inform. Decis. Mak. – volume: 1 year: 2022 ident: b0280 article-title: A framework for examining patient attitudes regarding applications of artificial intelligence in healthcare publication-title: Digital Health. – volume: 39 year: 2022 ident: b0025 article-title: Public engagement and AI: a values analysis of national strategies publication-title: Gov. Inf. q. – volume: 23 start-page: e25856 year: 2021 ident: b0140 article-title: Patients’ perceptions Toward human-ar tificial intelligence Interaction in health Care: Experimental study publication-title: J. Med. Internet Res.. – reference: Li W, Fan X, Zhu H, Wu J, Teng D. Research on the Influencing Factors of User Trust Based on Artificial Intelligence Self Diagnosis System. In: Proceedings of the ACM Turing Celebration Conference - China [Internet]. New York, NY, USA: Association for Computing Machinery; 2020 [cited 2022 Feb 9]. p. 197–202. (ACM TURC’20). Available from: – volume: 25 start-page: 400 year: 2016 end-page: 414 ident: b0400 article-title: The lure of rationality: why does the deficit model persist in science communication? publication-title: Public Underst Sci. – reference: Abdoul C, Cros P, Coutier L, Hadchouel A, Neuraz A, Burgun A, et al. Parents’ views on artificial intelligence for the daily management of childhood asthma: a survey. The Journal of Allergy and Clinical Immunology: In Practice [Internet]. 2020 Dec 1;9(4). Available from: – volume: 1 year: 2021 ident: b0240 article-title: Public patient views of artificial intelligence in healthcare: a nominal group technique study publication-title: Digital Health. – reference: . – volume: 1 year: 2023 ident: b0050 article-title: Medical artificial intelligence ethics: a systematic review of empirical studies publication-title: Digital Health. – volume: 185 start-page: 961 year: 2021 end-page: 969 ident: b0295 article-title: Views on mobile health apps for skin cancer screening in the general population: an in-depth qualitative exploration of perceived barriers and facilitators* publication-title: Br. J. Dermatol. – volume: 13 start-page: 55 year: 2004 end-page: 74 ident: b0395 article-title: Science in society: re-evaluating the deficit model of public attitudes publication-title: Public Underst. Sci. – volume: 23 start-page: e22841 year: 2021 ident: b0220 article-title: Patients’ preferences for artificial intelligence applications versus clinicians in disease diagnosis during the SARS-CoV-2 pandemic in China: discrete choice Experiment publication-title: J. Med. Internet Res. – volume: 24 start-page: 28 year: 2021 end-page: 46 ident: b0060 article-title: Engaging publics about environmental and technology risks: frames, values and deliberation publication-title: J. Risk Res. – volume: 28 start-page: 221 year: 2021 end-page: 222 ident: b0320 article-title: Screening participants’ attitudes to the introduction of artificial intelligence in breast screening publication-title: J Med Screen. – volume: 9 start-page: e34514 year: 2022 end-page: e ident: b0225 article-title: Consumer perspectives on the use of artificial intelligence technology and automation in crisis support Services: mixed methods study publication-title: JMIR Hum. Factors – volume: 12 year: 2022 ident: b0365 article-title: Artificial intelligence in (gastrointestinal) healthcare: patients’ and physicians’ perspectives publication-title: Sci Rep. – volume: 17 year: 2022 ident: b0130 article-title: A prospective study assessing patient perception of the use of artificial intelligence in radiology publication-title: APJHM [internet]. – volume: 1 start-page: e627 year: 2020 end-page: e633 ident: b0260 article-title: Attitudes of patients and their relatives Toward artificial intelligence in neurosurgery publication-title: World Neurosurg. – volume: 23 start-page: e26611 year: 2021 ident: b0265 article-title: Population preferences for performance and explainability of artificial intelligence in health Care: choice-based conjoint survey publication-title: J. Med. Internet Res. – volume: 27 year: 2021 ident: b0375 article-title: Patients’ perceptions of using artificial intelligence (AI)-based technology to comprehend radiology imaging data publication-title: Health Informatics J. – volume: 1 issue: 8 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0155 article-title: Attitudes and perception of artificial intelligence in healthcare: a cross-sectional survey among patients publication-title: Digital Health. – volume: 21 start-page: 221 issue: 1 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0110 article-title: Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey publication-title: BMC Med Inform Decis Mak. doi: 10.1186/s12911-021-01586-8 – volume: 28 start-page: 2128 issue: 10 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0315 article-title: Trading off accuracy and explainability in AI decision-making: findings from 2 citizens’ juries publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocab127 – volume: 6 start-page: e12942 issue: 11 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0150 article-title: Public opinions on using social media content to identify users with depression and Target mental health Care advertising: mixed methods survey publication-title: JMIR Mental Health. doi: 10.2196/12942 – ident: 10.1016/j.ijmedinf.2024.105417_b0080 – volume: 8 start-page: 19 issue: 1 year: 2005 ident: 10.1016/j.ijmedinf.2024.105417_b0070 article-title: Scoping studies: towards a methodological framework publication-title: Int. J. Soc. Res. Methodol. doi: 10.1080/1364557032000119616 – volume: 28 start-page: 221 issue: 3 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0320 article-title: Screening participants’ attitudes to the introduction of artificial intelligence in breast screening publication-title: J Med Screen. doi: 10.1177/09691413211001405 – volume: 4 start-page: e16670 issue: 6 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0120 article-title: Patient perception of plain-language medical notes generated using artificial intelligence Software: pilot mixed-methods study publication-title: JMIR Form Res. doi: 10.2196/16670 – volume: 20 start-page: 170 issue: 1 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0135 article-title: Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-020-01191-1 – volume: 23 start-page: e22841 issue: 2 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0220 article-title: Patients’ preferences for artificial intelligence applications versus clinicians in disease diagnosis during the SARS-CoV-2 pandemic in China: discrete choice Experiment publication-title: J. Med. Internet Res. doi: 10.2196/22841 – volume: 185 start-page: 961 issue: 5 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0295 article-title: Views on mobile health apps for skin cancer screening in the general population: an in-depth qualitative exploration of perceived barriers and facilitators* publication-title: Br. J. Dermatol. doi: 10.1111/bjd.20441 – volume: 34 start-page: 2253 issue: 10 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0270 article-title: Remote patient monitoring using Mobile health for Total knee arthroplasty: validation of a Wearable and machine Learning-based surveillance platform publication-title: J. Arthroplasty doi: 10.1016/j.arth.2019.05.021 – volume: 72 issue: 2 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0275 article-title: Patient feedback on the use of predictive analytics for suicide prevention publication-title: Psychiatr. Serv.. doi: 10.1176/appi.ps.202000092 – volume: 21 start-page: e14316 issue: 10 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0350 article-title: Psychosocial factors affecting artificial intelligence adoption in health Care in China: cross-sectional study publication-title: J. Med. Internet Res. doi: 10.2196/14316 – volume: 11 start-page: 287 issue: 3 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0340 article-title: Patients perceptions of artificial intelligence in diabetic eye screening publication-title: Asia-Pacific Journal of Ophthalmology (philadelphia, Pa). doi: 10.1097/APO.0000000000000525 – start-page: 1 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0055 article-title: Trust, trustworthiness, and relationships: ontological reflections on public trust in science publication-title: Journal of Responsible Innovation. – volume: 17 issue: 1 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0130 article-title: A prospective study assessing patient perception of the use of artificial intelligence in radiology publication-title: APJHM [internet]. – volume: 1 issue: 102 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0325 article-title: Implementation of artificial intelligence in medicine: status analysis and development suggestions publication-title: Artif. Intell. Med. – volume: 23 start-page: e26162 issue: 8 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0085 article-title: Patient perceptions on data Sharing and applying artificial intelligence to health Care data: cross-sectional survey publication-title: J. Med. Internet Res. doi: 10.2196/26162 – volume: 34 start-page: 828 issue: 7 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0305 article-title: Does integral affect influence intentions to use artificial intelligence for skin cancer screening? a test of the affect heuristic publication-title: Psychol. Health doi: 10.1080/08870446.2019.1579330 – volume: 16 start-page: 1416 issue: 10 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0165 article-title: A qualitative study to understand patient perspective on the use of artificial intelligence in radiology publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2018.12.043 – volume: 45 start-page: 64 issue: 6 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0380 article-title: Effect of AI explanations on human perceptions of patient-facing AI-powered Healthcare systems publication-title: J Med Syst. doi: 10.1007/s10916-021-01743-6 – ident: 10.1016/j.ijmedinf.2024.105417_b0045 doi: 10.2196/39742 – volume: 4 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0285 article-title: Patient apprehensions about the use of artificial intelligence in healthcare publication-title: Npj Digit Med. doi: 10.1038/s41746-021-00509-1 – volume: 12 start-page: 260 issue: 2 year: 2018 ident: 10.1016/j.ijmedinf.2024.105417_b0290 article-title: Gestational Diabetes Management using Smart Mobile telemedicine publication-title: J Diabetes Sci Technol. doi: 10.1177/1932296817704442 – volume: 28 issue: 1 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0030 article-title: Exploring stakeholder attitudes towards AI in clinical practice publication-title: Bmjhealth & Care Informatics. – volume: 24 start-page: e37611 issue: 8 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0180 article-title: The adoption of artificial intelligence in health Care and social Services in Australia: findings from a methodologically innovative National Survey of values and attitudes (the AVA-AI study) publication-title: J Med Internet Res. doi: 10.2196/37611 – volume: 21 start-page: e51278 issue: 9 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0405 article-title: From deficit to dialogue in science communication publication-title: EMBO Rep. doi: 10.15252/embr.202051278 – volume: 1 start-page: e627 issue: 138 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0260 article-title: Attitudes of patients and their relatives Toward artificial intelligence in neurosurgery publication-title: World Neurosurg. doi: 10.1016/j.wneu.2020.03.029 – volume: 24 start-page: 28 issue: 1 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0060 article-title: Engaging publics about environmental and technology risks: frames, values and deliberation publication-title: J. Risk Res. doi: 10.1080/13669877.2020.1749118 – volume: 43 start-page: 295 issue: 9 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0095 article-title: Patients attitude to technology publication-title: J Med Syst. doi: 10.1007/s10916-019-1420-4 – volume: 32 start-page: 1477 issue: 3 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0040 article-title: Stakeholders’ perspectives on the future of artificial intelligence in radiology: a scoping review publication-title: Eur. Radiol.. doi: 10.1007/s00330-021-08214-z – volume: 24 start-page: e36322 issue: 8 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0115 article-title: Health information seeking from an intelligent web-based symptom checker: cross-sectional questionnaire study publication-title: J. Med. Internet Res. doi: 10.2196/36322 – volume: 47 start-page: 542 issue: 3 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0215 article-title: Perceptions of the use of artificial intelligence in the diagnosis of skin cancer: an outpatient survey publication-title: Clin. Exp. Dermatol.. doi: 10.1111/ced.14969 – volume: 27 issue: 2 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0375 article-title: Patients’ perceptions of using artificial intelligence (AI)-based technology to comprehend radiology imaging data publication-title: Health Informatics J. doi: 10.1177/14604582211011215 – volume: 75 start-page: 50 issue: 1 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0100 article-title: Exploring the influential factors of Consumers’ willingness Toward using COVID-19 related chatbots: an empirical study publication-title: Med Arch. doi: 10.5455/medarh.2021.75.50-55 – volume: 82 start-page: 37 issue: 1 year: 2007 ident: 10.1016/j.ijmedinf.2024.105417_b0020 article-title: Bringing ‘the public’ into health technology assessment and coverage policy decisions: from principles to practice publication-title: Health Policy doi: 10.1016/j.healthpol.2006.07.009 – volume: 11 start-page: 142 issue: 1 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0065 article-title: Public views on ethical issues in healthcare artificial intelligence: protocol for a scoping review publication-title: Syst. Rev. doi: 10.1186/s13643-022-02012-4 – volume: 7 start-page: e19713 issue: 3 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0235 article-title: Patients’ utilization and perception of an artificial intelligence-based symptom assessment and Advice Technology in a British Primary Care Waiting Room: exploratory pilot study publication-title: JMIR Hum. Factors doi: 10.2196/19713 – volume: 34 start-page: 1041 issue: 10 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0300 article-title: Public perceptions of artificial intelligence and robotics in medicine publication-title: J. Endourol. doi: 10.1089/end.2020.0137 – volume: 13 start-page: 55 issue: 1 year: 2004 ident: 10.1016/j.ijmedinf.2024.105417_b0395 article-title: Science in society: re-evaluating the deficit model of public attitudes publication-title: Public Underst. Sci. doi: 10.1177/0963662504042690 – year: 2023 ident: 10.1016/j.ijmedinf.2024.105417_b0010 article-title: We need to chat about artificial intelligence publication-title: Med J Aust [internet]. doi: 10.5694/mja2.51992 – volume: 3 issue: 13 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0385 article-title: Did artificial intelligence invade humans? the study on the mechanism of patients’ willingness to accept artificial intelligence medical care: from the perspective of intergroup threat theory publication-title: Front Psychol. – ident: 10.1016/j.ijmedinf.2024.105417_b0210 doi: 10.1145/3393527.3393561 – volume: 1 issue: 7 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0240 article-title: Public patient views of artificial intelligence in healthcare: a nominal group technique study publication-title: Digital Health. – volume: 21 start-page: 504 issue: 5 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0390 article-title: Understanding public responses to emerging technologies: a Narrative approach publication-title: J. Environ. Plann. Policy Manage. doi: 10.1080/1523908X.2015.1053110 – volume: 31 start-page: 257 issue: 3 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0005 article-title: Thinking responsibly about responsible AI and ‘the dark side’ of AI publication-title: Eur. J. Inf. Syst. doi: 10.1080/0960085X.2022.2026621 – volume: 15 start-page: e0235410 issue: 7 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0125 article-title: Improved patient satisfaction and diagnostic accuracy in skin diseases with a visual clinical Decision support system—A feasibility study with general practitioners publication-title: PLoS One doi: 10.1371/journal.pone.0235410 – volume: 20 start-page: 66 issue: 1 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0370 article-title: Evaluating if trust and personal information privacy concerns are barriers to using health insurance that explicitly utilizes AI publication-title: J. Internet Commer. doi: 10.1080/15332861.2020.1832817 – ident: 10.1016/j.ijmedinf.2024.105417_b0190 doi: 10.3389/fmed.2020.00233 – ident: 10.1016/j.ijmedinf.2024.105417_b0310 doi: 10.2196/19713 – volume: 18 start-page: 79 issue: 1, Part A year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0255 article-title: Artificial intelligence in screening mammography: a population survey of women’s preferences publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2020.09.042 – volume: 11 start-page: 2143 issue: 8 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0200 article-title: Patients’ perspectives on artificial intelligence in dentistry: a controlled study publication-title: J. Clin. Med.. doi: 10.3390/jcm11082143 – year: 2017 ident: 10.1016/j.ijmedinf.2024.105417_b0175 article-title: Public views of machine Learning. findings from public research engagement conducted on behalf of the royal society. the royal publication-title: Society – volume: 3 start-page: e599 issue: 9 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0035 article-title: Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review publication-title: The Lancet Digital Health. doi: 10.1016/S2589-7500(21)00132-1 – volume: 37 issue: 10 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0355 article-title: Artificial intelligence is trusted less than a doctor in medical treatment Decisions: influence of perceived Care and value Similarity publication-title: International Journal of Human-Computer Interaction. doi: 10.1080/10447318.2020.1861763 – ident: 10.1016/j.ijmedinf.2024.105417_b0015 – volume: 156 start-page: 501 issue: 5 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0250 article-title: Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2019.5014 – volume: 1 issue: 8 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0280 article-title: A framework for examining patient attitudes regarding applications of artificial intelligence in healthcare publication-title: Digital Health. – volume: 33 start-page: 262 issue: 2 year: 2008 ident: 10.1016/j.ijmedinf.2024.105417_b0410 article-title: “Opening up” and “closing down”: power, participation, and pluralism in the social appraisal of technology publication-title: Sci. Technol. Hum. Values doi: 10.1177/0162243907311265 – volume: 37 start-page: 1353 issue: 4 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0415 article-title: In principle obstacles for empathic AI: why we can’t replace human empathy in healthcare publication-title: AI & Soc. doi: 10.1007/s00146-021-01230-z – volume: 133 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0090 article-title: Attitudes and perspectives towards the preferences for artificial intelligence in psychotherapy publication-title: Computers in Human Behavior [internet]. – volume: 16 start-page: 854 issue: 7 year: 2018 ident: 10.1016/j.ijmedinf.2024.105417_b0145 article-title: Patient acceptance and trust in automated computer-assisted diagnosis of melanoma with dermatofluoroscopy. JDDG publication-title: J. Dtsch. Dermatol. Ges. – volume: 23 start-page: e24221 issue: 2 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0205 article-title: Use and control of artificial intelligence in patients across the medical workflow: single-center questionnaire study of patient perspectives publication-title: J Med Internet Res. doi: 10.2196/24221 – volume: 9 start-page: e34514 issue: 3 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0225 article-title: Consumer perspectives on the use of artificial intelligence technology and automation in crisis support Services: mixed methods study publication-title: JMIR Hum. Factors doi: 10.2196/34514 – volume: 23 start-page: e26611 issue: 12 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0265 article-title: Population preferences for performance and explainability of artificial intelligence in health Care: choice-based conjoint survey publication-title: J. Med. Internet Res. doi: 10.2196/26611 – volume: 1 issue: 9 year: 2023 ident: 10.1016/j.ijmedinf.2024.105417_b0050 article-title: Medical artificial intelligence ethics: a systematic review of empirical studies publication-title: Digital Health. – volume: 5 start-page: e31053 issue: 12 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0160 article-title: Assessing the views of professionals, patients, and Care Partners concerning the use of computer tools in memory clinics: international survey study publication-title: JMIR Formative Research. doi: 10.2196/31053 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0365 article-title: Artificial intelligence in (gastrointestinal) healthcare: patients’ and physicians’ perspectives publication-title: Sci Rep. doi: 10.1038/s41598-022-20958-2 – volume: 13 start-page: 1867 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0335 article-title: Attitudes of chinese cancer patients toward the clinical use of artificial intelligence publication-title: Patient Prefer Adherence. doi: 10.2147/PPA.S225952 – volume: 8 issue: 12 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0185 article-title: The future of breast cancer screening: what do participants in a breast cancer screening program think about automation using artificial intelligence? publication-title: Acta Radiologica Open. doi: 10.1177/2058460119880315 – volume: 5 start-page: e2210309 issue: 5 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0195 article-title: Perspectives of patients about artificial intelligence in health Care publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2022.10309 – volume: 1 issue: 5 year: 2019 ident: 10.1016/j.ijmedinf.2024.105417_b0245 article-title: Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: a mixed-methods study publication-title: Digital Health. – volume: 23 start-page: e25856 issue: 11 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0140 article-title: Patients’ perceptions Toward human-ar tificial intelligence Interaction in health Care: Experimental study publication-title: J. Med. Internet Res.. doi: 10.2196/25856 – volume: 27 start-page: e100233 issue: 3 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0360 article-title: Clinician and computer: a study on patient perceptions of artificial intelligence in skeletal radiography publication-title: BMJ Health Care Inform. doi: 10.1136/bmjhci-2020-100233 – volume: 25 start-page: 400 issue: 4 year: 2016 ident: 10.1016/j.ijmedinf.2024.105417_b0400 article-title: The lure of rationality: why does the deficit model persist in science communication? publication-title: Public Underst Sci. doi: 10.1177/0963662516629749 – volume: 10 start-page: e039798 issue: 10 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0230 article-title: Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research publication-title: BMJ Open doi: 10.1136/bmjopen-2020-039798 – volume: 9 start-page: e22909 issue: 8 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0170 article-title: Digital natives’ preferences on Mobile artificial intelligence apps for skin cancer diagnostics: survey study publication-title: JMIR Mhealth Uhealth doi: 10.2196/22909 – volume: 1 start-page: 31 issue: 70 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0345 article-title: Patient perspectives on acceptability of, and implementation preferences for, use of electronic health records and machine learning to identify suicide risk publication-title: Gen. Hosp. Psychiatry doi: 10.1016/j.genhosppsych.2021.02.008 – volume: 121 start-page: 81 year: 2020 ident: 10.1016/j.ijmedinf.2024.105417_b0075 article-title: A full systematic review was completed in 2 weeks using automation tools: a case study publication-title: J Clin Epidemiol. doi: 10.1016/j.jclinepi.2020.01.008 – volume: 12 start-page: 1405 issue: 1 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0105 article-title: Genetic data sharing and artificial intelligence in the era of personalized medicine based on a cross-sectional analysis of the saudi human genome program publication-title: Sci Rep. doi: 10.1038/s41598-022-05296-7 – volume: 39 issue: 1 year: 2022 ident: 10.1016/j.ijmedinf.2024.105417_b0025 article-title: Public engagement and AI: a values analysis of national strategies publication-title: Gov. Inf. q. doi: 10.1016/j.giq.2021.101652 – volume: 25 start-page: 374 issue: 3 year: 2021 ident: 10.1016/j.ijmedinf.2024.105417_b0330 article-title: Do people favor artificial intelligence over physicians? a survey among the general population and their view on artificial intelligence in medicine publication-title: Value Health doi: 10.1016/j.jval.2021.09.004 |
SSID | ssj0017054 |
Score | 2.4310148 |
SecondaryResourceType | review_article |
Snippet | •We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help... With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105417 |
SubjectTerms | Artificial Intelligence Delivery of Health Care Health Facilities Healthcare Humans Public and patient involvement Scoping review |
Title | Facilitating public involvement in research about healthcare AI: A scoping review of empirical methods |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1386505624000807 https://dx.doi.org/10.1016/j.ijmedinf.2024.105417 https://www.ncbi.nlm.nih.gov/pubmed/38564959 https://www.proquest.com/docview/3031662356 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQSGgvEwzYCgwZide0TWI7Dm9VRdWOD02DSrxZdmqPVJBWUF7527mLnWiTNnXSnppGOSW5nO9Dvvv9CDnTOkuzom8jLWd9KFCsjfLUwnLneawN49JJHBS-vhHjKft2z-83yLCZhcG2yuD7vU-vvXU40wva7C3LsncbI10lxm9W5z04Uc5YhlbefWvbPBAtxhPbShHh1b9MCc-75Rx3sCuE8kwYUt6ymrjsjwHqbwloHYhGO-RjyCDpwD_kLtmw1SeyfR32yPeIG-kiQG9XP6mHsaZlBW6ohgZfwTENED8PtO5Lpg9tExgdTM7pgOKsCkr7wRa6cNQ-LcsaTYR6zumXfTIdXdwNx1FgU4gKCEArcLaJSaw0sbRQQqRO9x3va1iyJnMxt2nBYueyxGWiiA0XM1HkWO1oLgrHmJulB2SzWlT2C6HOQabkmIXSJGaz3EmTiNxAnS2ZM7lJOoQ3KlRFgBpHxotH1fSUzVWjeoWqV171HdJr5ZYebGOtRNZ8IdWMkoLzUxAP1krmreRvBvdPsqeNMShYjbjFoiu7eH1RkBDEAjJKLjrks7eS9k1SyQWUo_nhf9z5iHzAf75X7Zhsrp5f7VfIilbmpDb7E7I1GP64-o6_k8vxzTuK4Q3D |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RKrW9VPS9paVG4hp2k9iOw22FWC2P5VKQuFl21oas2uyqLNf-9s7ETtRKICpxi5KMkkw8L3nm-wD2jCnyohq5xKj5CAsU55Iyd2juokyN5UJ5RYPCs3M5veQnV-JqAw67WRhqq4y-P_j01lvHM8OozeGqroffU6KrpPjN27yneAbPOZov0Rjs_-77PAguJjDbKpnQ7X-NCS_26wVtYTeE5Zlx4rzlLXPZvRHqoQy0jUSTLXgdU0g2Dm_5BjZc8xZezOIm-TvwE1NF7O3mmgUca1Y36IdabPA1HrOI8XPD2sZkdtN3gbHx8QEbMxpWIekw2cKWnrmfq7qFE2GBdPr2PVxOji4Op0mkU0gqjEBr9LaZzZyyqXJYQ-TejLwYGbRZW_hUuLziqfdF5gtZpVbIuaxKKneMkJXn3M_zD7DZLBv3CZj3mCp57rA2Sfm89MpmsrRYaCvubWmzAYhOhbqKWONEefFDd01lC92pXpPqdVD9AIa93CqgbTwqUXR_SHezpOj9NAaERyXLXvKfFfdfsrvdYtBojrTHYhq3vLvVmBGkElNKIQfwMayS_ktyJSTWo-XnJzz5G7ycXszO9Nnx-ek2vKIroXHtC2yuf925r5gire1OawJ_ACZJDbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facilitating+public+involvement+in+research+about+healthcare+AI%3A+A+scoping+review+of+empirical+methods&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Frost%2C+Emma+Kellie&rft.au=Bosward%2C+Rebecca&rft.au=Aquino%2C+Yves+Saint+James&rft.au=Braunack-Mayer%2C+Annette&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=1386-5056&rft.volume=186&rft_id=info:doi/10.1016%2Fj.ijmedinf.2024.105417&rft.externalDocID=S1386505624000807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon |