Facilitating public involvement in research about healthcare AI: A scoping review of empirical methods

•We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help participants engage with complex subject matter.•Most studies used participants views to make recommendations about how AI should be implemented.•...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of medical informatics (Shannon, Ireland) Vol. 186; p. 105417
Main Authors Frost, Emma Kellie, Bosward, Rebecca, Aquino, Yves Saint James, Braunack-Mayer, Annette, Carter, Stacy M.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help participants engage with complex subject matter.•Most studies used participants views to make recommendations about how AI should be implemented.•Many studies still reported participants’ lack of prior knowledge about AI as a limitation. With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance. We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations. Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants’ lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI. Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants’ lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation. This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources.
AbstractList With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance.OBJECTIVEWith the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance.We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations.MATERIALS AND METHODSWe searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations.Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants' lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI.RESULTSSixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants' lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI.Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants' lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation.DISCUSSIONProvision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants' lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation.This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources.CONCLUSIONThis review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources.
•We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help participants engage with complex subject matter.•Most studies used participants views to make recommendations about how AI should be implemented.•Many studies still reported participants’ lack of prior knowledge about AI as a limitation. With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance. We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations. Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants’ lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI. Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants’ lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation. This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources.
With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of empirical studies on public views on HCAI. We map how studies provided participants with information about HCAI, and we examine the extent to which studies framed publics as active contributors to HCAI governance. We searched 5 academic databases and Google Advanced for empirical studies investigating public views on HCAI. We extracted information including study aims, research instruments, and recommendations. Sixty-two studies were included. Most were quantitative (N = 42). Most (N = 47) reported providing participants with background information about HCAI. Despite this, studies often reported participants' lack of prior knowledge about HCAI as a limitation. Over three quarters (N = 48) of the studies made recommendations that envisaged public views being used to guide governance of AI. Provision of background information is an important component of facilitating research with publics on HCAI. The high proportion of studies reporting participants' lack of knowledge about HCAI as a limitation reflects the need for more guidance on how information should be presented. A minority of studies adopted technocratic positions that construed publics as passive beneficiaries of AI, rather than as active stakeholders in HCAI design and implementation. This review draws attention to how public roles in HCAI governance are constructed in empirical studies. To facilitate active participation, we recommend that research with publics on HCAI consider methodological designs that expose participants to diverse information sources.
ArticleNumber 105417
Author Bosward, Rebecca
Braunack-Mayer, Annette
Aquino, Yves Saint James
Frost, Emma Kellie
Carter, Stacy M.
Author_xml – sequence: 1
  givenname: Emma Kellie
  surname: Frost
  fullname: Frost, Emma Kellie
  email: emmaf@uow.edu.au
– sequence: 2
  givenname: Rebecca
  surname: Bosward
  fullname: Bosward, Rebecca
  email: rb325@uowmail.edu.au
– sequence: 3
  givenname: Yves Saint James
  surname: Aquino
  fullname: Aquino, Yves Saint James
  email: yaquino@uow.edu.au
– sequence: 4
  givenname: Annette
  surname: Braunack-Mayer
  fullname: Braunack-Mayer, Annette
  email: abmayer@uow.edu.au
– sequence: 5
  givenname: Stacy M.
  surname: Carter
  fullname: Carter, Stacy M.
  email: stacyc@uow.edu.au
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38564959$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvFDEQhC0URB7wFyIfuczi98wihFhFBCJF4gJny-Nps14848H2LMq_x8tmL7mEU7daX1VLVZfobIoTIHRNyYoSqt7tVn43wuAnt2KEiXqUgrYv0AXtWtZ0TPCzuvNONZJIdY4uc94RQtuKvULnvJNKrOX6ArlbY33wxRQ__cTz0gdvsZ_2MexhhKnUHSfIYJLdYtPHpeAtmFC21iTAm7v3eIOzjfNBnWDv4Q-ODsM4--StCXiEso1Dfo1eOhMyvHmcV-jH7efvN1-b-29f7m42940VLS0Np6xn0PW0g1a03BniJDGCyb51VAK3gjrXMtcqS3upBmXXnWLKSGWdEG7gV-jt0XdO8fcCuejRZwshmAnikjUnnCrFuFQVvX5El74mqefkR5Me9CmbCnw4AjbFnBM4bf_lFKeSjA-aEn2oQu_0qQp9qEIfq6hy9UR--vCs8NNRCDWommjS2XqYbCUT2KKH6J-3-PjEwgY_HQr5BQ__Y_AXiOG8mg
CitedBy_id crossref_primary_10_1080_15265161_2024_2388732
crossref_primary_10_1016_j_breast_2024_103783
crossref_primary_10_3390_pathogens13110940
Cites_doi 10.1186/s12911-021-01586-8
10.1093/jamia/ocab127
10.2196/12942
10.1080/1364557032000119616
10.1177/09691413211001405
10.2196/16670
10.1186/s12911-020-01191-1
10.2196/22841
10.1111/bjd.20441
10.1016/j.arth.2019.05.021
10.1176/appi.ps.202000092
10.2196/14316
10.1097/APO.0000000000000525
10.2196/26162
10.1080/08870446.2019.1579330
10.1016/j.jacr.2018.12.043
10.1007/s10916-021-01743-6
10.2196/39742
10.1038/s41746-021-00509-1
10.1177/1932296817704442
10.2196/37611
10.15252/embr.202051278
10.1016/j.wneu.2020.03.029
10.1080/13669877.2020.1749118
10.1007/s10916-019-1420-4
10.1007/s00330-021-08214-z
10.2196/36322
10.1111/ced.14969
10.1177/14604582211011215
10.5455/medarh.2021.75.50-55
10.1016/j.healthpol.2006.07.009
10.1186/s13643-022-02012-4
10.2196/19713
10.1089/end.2020.0137
10.1177/0963662504042690
10.5694/mja2.51992
10.1145/3393527.3393561
10.1080/1523908X.2015.1053110
10.1080/0960085X.2022.2026621
10.1371/journal.pone.0235410
10.1080/15332861.2020.1832817
10.3389/fmed.2020.00233
10.1016/j.jacr.2020.09.042
10.3390/jcm11082143
10.1016/S2589-7500(21)00132-1
10.1080/10447318.2020.1861763
10.1001/jamadermatol.2019.5014
10.1177/0162243907311265
10.1007/s00146-021-01230-z
10.2196/24221
10.2196/34514
10.2196/26611
10.2196/31053
10.1038/s41598-022-20958-2
10.2147/PPA.S225952
10.1177/2058460119880315
10.1001/jamanetworkopen.2022.10309
10.2196/25856
10.1136/bmjhci-2020-100233
10.1177/0963662516629749
10.1136/bmjopen-2020-039798
10.2196/22909
10.1016/j.genhosppsych.2021.02.008
10.1016/j.jclinepi.2020.01.008
10.1038/s41598-022-05296-7
10.1016/j.giq.2021.101652
10.1016/j.jval.2021.09.004
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ijmedinf.2024.105417
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8243
ExternalDocumentID 38564959
10_1016_j_ijmedinf_2024_105417
S1386505624000807
Genre Journal Article
Scoping Review
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABDPE
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACJTP
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNG
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
Z5R
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AISVY
AJBFU
AJOXV
AMFUW
G8K
LCYCR
NAHTW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c471t-312b2e8b18e7473fa0f50a425b7f15e3c41ff72f76c1b56d6c98626a56cf44fd3
IEDL.DBID .~1
ISSN 1386-5056
1872-8243
IngestDate Mon Jul 21 12:02:12 EDT 2025
Mon Jul 21 06:02:35 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Tue Jul 01 03:48:16 EDT 2025
Sat Apr 27 15:44:25 EDT 2024
Tue Aug 26 16:32:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Scoping review
Healthcare
Artificial intelligence
Public and patient involvement
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-312b2e8b18e7473fa0f50a425b7f15e3c41ff72f76c1b56d6c98626a56cf44fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1386505624000807
PMID 38564959
PQID 3031662356
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3031662356
pubmed_primary_38564959
crossref_citationtrail_10_1016_j_ijmedinf_2024_105417
crossref_primary_10_1016_j_ijmedinf_2024_105417
elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2024_105417
elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2024_105417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-Jun
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle International journal of medical informatics (Shannon, Ireland)
PublicationTitleAlternate Int J Med Inform
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Coiera, Verspoor, Hansen (b0010) 2023
Li W, Fan X, Zhu H, Wu J, Teng D. Research on the Influencing Factors of User Trust Based on Artificial Intelligence Self Diagnosis System. In: Proceedings of the ACM Turing Celebration Conference - China [Internet]. New York, NY, USA: Association for Computing Machinery; 2020 [cited 2022 Feb 9]. p. 197–202. (ACM TURC’20). Available from
Zhang, Genc, Wang, Ahsen, Fan (b0380) 2021; 45
Mikalef, Conboy, Lundström, Popovič (b0005) 2022; 31
Alrefaei, Hawsawi, Almaleki, Alafif, Alzahrani, Bakhrebah (b0105) 2022; 12
Frost, Bosward, Aquino, Braunack-Mayer, Carter (b0065) 2022; 11
Macnaghten, Davies, Kearnes (b0390) 2019; 21
Yakar, Ongena, Kwee, Haan (b0330) 2021; 25
Haggenmüller, Krieghoff-Henning, Jutzi, Trapp, Kiehl, Utikal (b0170) 2021; 9
Ma, O’Riordan, Mazzer, Batterham, Bradford, Kolves (b0225) 2022; 9
Sturgis, Allum (b0395) 2004; 13
Nelson, Pérez-Chada, Creadore, Li, Lo, Manjaly (b0250) 2020; 156
de Vries, Morrissey, Duggan, Staff, Lip (b0320) 2021; 28
Zarifis, Kawalek, Azadegan (b0370) 2021; 20
Tang, Li, Fantus (b0050) 2023; 1
Bala, Keniston, Burden (b0120) 2020; 4
Reincke, Bredenoord, van Mil (b0405) 2020; 21
Montemayor, Halpern, Fairweather (b0415) 2022; 37
Richardson, Curtis, Smith, Pacyna, Zhu, Barry (b0280) 2022; 1
Jonmarker, Strand, Brandberg, Lindholm (b0185) 2019; 8
Wilson (b0025) 2022; 39
Stirling (b0410) 2008; 33
Breitbart, Choudhury, Andersen, Bunde, Breitbart, Sideri (b0125) 2020; 15
Khullar, Casalino, Qian, Lu, Krumholz, Aneja (b0195) 2022; 5
Haan, Ongena, Hommes, Kwee, Yakar (b0165) 2019; 16
Hogg HDJ, Al-Zubaidy M, Group TEMSSR, Talks J, Denniston AK, Kelly CJ, et al. Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: Systematic Review of Qualitative Evidence. Journal of Medical Internet Research. 2023 Jan 10;25(1):e39742.
Ploug, Sundby, Moeslund, Holm (b0265) 2021; 23
Yang, Zeng, Peng, Jiang (b0335) 2019; 13
O’Doherty (b0055) 2022
Miller, Gilbert, Virani, Wicks (b0235) 2020; 7
Lennartz, Dratsch, Zopfs, Persigehl, Maintz, Hokamp (b0205) 2021; 23
.
Ramkumar, Haeberle, Ramanathan, Cantrell, Navarro, Mont (b0270) 2019; 34
Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A, Schadendorf D, et al. Artificial Intelligence in Skin Cancer Diagnostics: The Patients’ Perspective. Frontiers in Medicine [Internet]. 2020 Jun 2 [cited 2022 Feb 9];7. Available from
Aktan, Turhan, Dolu (b0090) 2022; 133
Yang, Ene, Arabi Belaghi, Koff, Stein, Santaguida (b0040) 2022; 32
McCradden, Sarker, Paprica (b0230) 2020; 10
Ongena, Yakar, Haan, Kwee (b0255) 2021; 18
Stai, Heller, McSweeney, Rickman, Blake, Vasdev (b0300) 2020; 34
Fritsch, Blankenheim, Wahl, Hetfeld, Maassen, Deffge (b0155) 2022; 1
Aggarwal, Farag, Martin, Ashrafian, Darzi (b0085) 2021 Aug 26; 23
Scott, Carter, Coiera (b0030) 2021; 28
Palmisciano, Jamjoom, Taylor, Stoyanov, Marcus (b0260) 2020; 1
Lim, Neal-Smith, Mitchell, Xerri, Chuanromanee (b0215) 2022; 47
Kosan, Krois, Wingenfeld, Deuter, Gaudin, Schwendicke (b0200) 2022; 11
Ford, Curlewis, Wongkoblap, Curcin (b0150) 2019; 6
York, Jenney, Jones (b0360) 2020; 27
Rigla, Martínez-Sarriegui, García-Sáez, Pons, Hernando (b0290) 2018; 12
Fink, Uhlmann, Hofmann, Forschner, Eigentler, Garbe (b0145) 2018; 16
Zhang, Citardi, Wang, Genc, Shan, Fan (b0375) 2021; 27
Isbanner, O’Shaughnessy, Steel, Wilcock, Carter (b0180) 2022; 24
Xiang, Zhao, Liu, Wu, Chen, Long (b0325) 2020; 1
Liu, Tsang, Huang, Lau, Chen, Sheng (b0220) 2021; 23
Clements, Thong, Zia, Moriarty, Goh (b0130) 2022; 17
Yap, Wilkinson, Chen, Han, Vaghefi, Galloway (b0340) 2022; 11
Ipsos (b0175) 2017
van der Zander, van der Ende-van Loon, Janssen, Winkens, van der Sommen, Masclee (b0365) 2022; 12
Clark, Glasziou, Del Mar, Bannach-Brown, Stehlik, Scott (b0075) 2020; 121
Simis, Madden, Cacciatore, Yeo (b0400) 2016; 25
Yarborough, Stumbo (b0345) 2021; 1
Arksey, O’Malley (b0070) 2005; 8
Aljaaf, Van Tonder, Mallucci, Al-Jumeily, Hussain, Alloghani (b0095) 2019; 43
Sangers, Wakkee, Kramer-Noels, Nijsten, Lugtenberg (b0295) 2021; 185
Pidgeon (b0060) 2021; 24
Musbahi, Syed, Le Feuvre, Cobb, Jones (b0240) 2021; 1
Almalki (b0100) 2021; 75
Antes, Burrous, Sisk, Schuelke, Keune, DuBois (b0110) 2021; 21
Yokoi, Eguchi, Fujita, Nakayachi (b0355) 2021; 37
Coalition for Health AI. Blueprint for Trustworthy AI Implementation Guidance and Assurance for Healthcare [Internet]. 2022 [cited 2023 Jun 22]. Available from
Arellano Carmona, Chittamuru, Kravitz, Ramondt, Ramirez (b0115) 2022; 24
van Gils, Visser, Hendriksen, Georges, Muller, Bouwman (b0160) 2021; 5
Zhou, Shi, Lu, Wan (b0385) 2022; 3
Reger, Ammerman, Carter, Gebhardt, Rojas, Lee (b0275) 2021; 72
Tong, Sopory (b0305) 2019; 34
Abelson, Giacomini, Lehoux, Gauvin (b0020) 2007; 82
Nadarzynski, Miles, Cowie, Ridge (b0245) 2019; 1
Abdoul C, Cros P, Coutier L, Hadchouel A, Neuraz A, Burgun A, et al. Parents’ views on artificial intelligence for the daily management of childhood asthma: a survey. The Journal of Allergy and Clinical Immunology: In Practice [Internet]. 2020 Dec 1;9(4). Available from
Esmaeilzadeh, Mirzaei, Dharanikota (b0140) 2021; 23
Richardson, Smith, Curtis, Watson, Zhu, Barry (b0285) 2021; 4
Esmaeilzadeh (b0135) 2020; 20
Young, Amara, Bhattacharya, Wei (b0035) 2021; 3
van der Veer, Riste, Cheraghi-Sohi, Phipps, Tully, Bozentko (b0315) 2021; 28
Ye, Xue, He, Gu, Lin, Xu (b0350) 2019; 21
Tran VT, Riveros C, Ravaud P. Patients’ Utilization and Perception of an Artificial Intelligence–Based Symptom Assessment and Advice Technology in a British Primary Care Waiting Room: Exploratory Pilot Study. npj Digit Med. 2019 Jun 14;2(1):e19713.
Musbahi (10.1016/j.ijmedinf.2024.105417_b0240) 2021; 1
Montemayor (10.1016/j.ijmedinf.2024.105417_b0415) 2022; 37
Arksey (10.1016/j.ijmedinf.2024.105417_b0070) 2005; 8
Yarborough (10.1016/j.ijmedinf.2024.105417_b0345) 2021; 1
Xiang (10.1016/j.ijmedinf.2024.105417_b0325) 2020; 1
Ma (10.1016/j.ijmedinf.2024.105417_b0225) 2022; 9
Nelson (10.1016/j.ijmedinf.2024.105417_b0250) 2020; 156
Fink (10.1016/j.ijmedinf.2024.105417_b0145) 2018; 16
McCradden (10.1016/j.ijmedinf.2024.105417_b0230) 2020; 10
Zhang (10.1016/j.ijmedinf.2024.105417_b0375) 2021; 27
Almalki (10.1016/j.ijmedinf.2024.105417_b0100) 2021; 75
Rigla (10.1016/j.ijmedinf.2024.105417_b0290) 2018; 12
Nadarzynski (10.1016/j.ijmedinf.2024.105417_b0245) 2019; 1
Abelson (10.1016/j.ijmedinf.2024.105417_b0020) 2007; 82
Reger (10.1016/j.ijmedinf.2024.105417_b0275) 2021; 72
van Gils (10.1016/j.ijmedinf.2024.105417_b0160) 2021; 5
Ongena (10.1016/j.ijmedinf.2024.105417_b0255) 2021; 18
10.1016/j.ijmedinf.2024.105417_b0310
Breitbart (10.1016/j.ijmedinf.2024.105417_b0125) 2020; 15
van der Veer (10.1016/j.ijmedinf.2024.105417_b0315) 2021; 28
Yang (10.1016/j.ijmedinf.2024.105417_b0040) 2022; 32
Richardson (10.1016/j.ijmedinf.2024.105417_b0280) 2022; 1
10.1016/j.ijmedinf.2024.105417_b0190
Esmaeilzadeh (10.1016/j.ijmedinf.2024.105417_b0135) 2020; 20
Zarifis (10.1016/j.ijmedinf.2024.105417_b0370) 2021; 20
Lim (10.1016/j.ijmedinf.2024.105417_b0215) 2022; 47
Clements (10.1016/j.ijmedinf.2024.105417_b0130) 2022; 17
Miller (10.1016/j.ijmedinf.2024.105417_b0235) 2020; 7
Palmisciano (10.1016/j.ijmedinf.2024.105417_b0260) 2020; 1
10.1016/j.ijmedinf.2024.105417_b0015
O’Doherty (10.1016/j.ijmedinf.2024.105417_b0055) 2022
Antes (10.1016/j.ijmedinf.2024.105417_b0110) 2021; 21
Richardson (10.1016/j.ijmedinf.2024.105417_b0285) 2021; 4
Coiera (10.1016/j.ijmedinf.2024.105417_b0010) 2023
Reincke (10.1016/j.ijmedinf.2024.105417_b0405) 2020; 21
Stai (10.1016/j.ijmedinf.2024.105417_b0300) 2020; 34
Esmaeilzadeh (10.1016/j.ijmedinf.2024.105417_b0140) 2021; 23
Ye (10.1016/j.ijmedinf.2024.105417_b0350) 2019; 21
York (10.1016/j.ijmedinf.2024.105417_b0360) 2020; 27
Ford (10.1016/j.ijmedinf.2024.105417_b0150) 2019; 6
Clark (10.1016/j.ijmedinf.2024.105417_b0075) 2020; 121
Liu (10.1016/j.ijmedinf.2024.105417_b0220) 2021; 23
Aktan (10.1016/j.ijmedinf.2024.105417_b0090) 2022; 133
Khullar (10.1016/j.ijmedinf.2024.105417_b0195) 2022; 5
Sangers (10.1016/j.ijmedinf.2024.105417_b0295) 2021; 185
Yakar (10.1016/j.ijmedinf.2024.105417_b0330) 2021; 25
Stirling (10.1016/j.ijmedinf.2024.105417_b0410) 2008; 33
Haggenmüller (10.1016/j.ijmedinf.2024.105417_b0170) 2021; 9
Aggarwal (10.1016/j.ijmedinf.2024.105417_b0085) 2021; 23
Tong (10.1016/j.ijmedinf.2024.105417_b0305) 2019; 34
Sturgis (10.1016/j.ijmedinf.2024.105417_b0395) 2004; 13
Scott (10.1016/j.ijmedinf.2024.105417_b0030) 2021; 28
Bala (10.1016/j.ijmedinf.2024.105417_b0120) 2020; 4
Yang (10.1016/j.ijmedinf.2024.105417_b0335) 2019; 13
Pidgeon (10.1016/j.ijmedinf.2024.105417_b0060) 2021; 24
Frost (10.1016/j.ijmedinf.2024.105417_b0065) 2022; 11
10.1016/j.ijmedinf.2024.105417_b0210
Ipsos (10.1016/j.ijmedinf.2024.105417_b0175) 2017
Ramkumar (10.1016/j.ijmedinf.2024.105417_b0270) 2019; 34
Yap (10.1016/j.ijmedinf.2024.105417_b0340) 2022; 11
Aljaaf (10.1016/j.ijmedinf.2024.105417_b0095) 2019; 43
Kosan (10.1016/j.ijmedinf.2024.105417_b0200) 2022; 11
Mikalef (10.1016/j.ijmedinf.2024.105417_b0005) 2022; 31
Yokoi (10.1016/j.ijmedinf.2024.105417_b0355) 2021; 37
van der Zander (10.1016/j.ijmedinf.2024.105417_b0365) 2022; 12
Isbanner (10.1016/j.ijmedinf.2024.105417_b0180) 2022; 24
Zhou (10.1016/j.ijmedinf.2024.105417_b0385) 2022; 3
Wilson (10.1016/j.ijmedinf.2024.105417_b0025) 2022; 39
Arellano Carmona (10.1016/j.ijmedinf.2024.105417_b0115) 2022; 24
Simis (10.1016/j.ijmedinf.2024.105417_b0400) 2016; 25
Fritsch (10.1016/j.ijmedinf.2024.105417_b0155) 2022; 1
Zhang (10.1016/j.ijmedinf.2024.105417_b0380) 2021; 45
Young (10.1016/j.ijmedinf.2024.105417_b0035) 2021; 3
Macnaghten (10.1016/j.ijmedinf.2024.105417_b0390) 2019; 21
Alrefaei (10.1016/j.ijmedinf.2024.105417_b0105) 2022; 12
Jonmarker (10.1016/j.ijmedinf.2024.105417_b0185) 2019; 8
10.1016/j.ijmedinf.2024.105417_b0045
Ploug (10.1016/j.ijmedinf.2024.105417_b0265) 2021; 23
de Vries (10.1016/j.ijmedinf.2024.105417_b0320) 2021; 28
Lennartz (10.1016/j.ijmedinf.2024.105417_b0205) 2021; 23
10.1016/j.ijmedinf.2024.105417_b0080
Haan (10.1016/j.ijmedinf.2024.105417_b0165) 2019; 16
Tang (10.1016/j.ijmedinf.2024.105417_b0050) 2023; 1
References_xml – volume: 12
  start-page: 1405
  year: 2022
  ident: b0105
  article-title: Genetic data sharing and artificial intelligence in the era of personalized medicine based on a cross-sectional analysis of the saudi human genome program
  publication-title: Sci Rep.
– volume: 33
  start-page: 262
  year: 2008
  end-page: 294
  ident: b0410
  article-title: “Opening up” and “closing down”: power, participation, and pluralism in the social appraisal of technology
  publication-title: Sci. Technol. Hum. Values
– volume: 23
  start-page: e24221
  year: 2021
  ident: b0205
  article-title: Use and control of artificial intelligence in patients across the medical workflow: single-center questionnaire study of patient perspectives
  publication-title: J Med Internet Res.
– volume: 15
  start-page: e0235410
  year: 2020
  ident: b0125
  article-title: Improved patient satisfaction and diagnostic accuracy in skin diseases with a visual clinical Decision support system—A feasibility study with general practitioners
  publication-title: PLoS One
– volume: 21
  start-page: 221
  year: 2021
  ident: b0110
  article-title: Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey
  publication-title: BMC Med Inform Decis Mak.
– volume: 24
  start-page: e37611
  year: 2022
  end-page: e
  ident: b0180
  article-title: The adoption of artificial intelligence in health Care and social Services in Australia: findings from a methodologically innovative National Survey of values and attitudes (the AVA-AI study)
  publication-title: J Med Internet Res.
– volume: 8
  start-page: 19
  year: 2005
  end-page: 32
  ident: b0070
  article-title: Scoping studies: towards a methodological framework
  publication-title: Int. J. Soc. Res. Methodol.
– volume: 27
  start-page: e100233
  year: 2020
  ident: b0360
  article-title: Clinician and computer: a study on patient perceptions of artificial intelligence in skeletal radiography
  publication-title: BMJ Health Care Inform.
– volume: 75
  start-page: 50
  year: 2021
  end-page: 55
  ident: b0100
  article-title: Exploring the influential factors of Consumers’ willingness Toward using COVID-19 related chatbots: an empirical study
  publication-title: Med Arch.
– volume: 13
  start-page: 1867
  year: 2019
  end-page: 1875
  ident: b0335
  article-title: Attitudes of chinese cancer patients toward the clinical use of artificial intelligence
  publication-title: Patient Prefer Adherence.
– reference: Tran VT, Riveros C, Ravaud P. Patients’ Utilization and Perception of an Artificial Intelligence–Based Symptom Assessment and Advice Technology in a British Primary Care Waiting Room: Exploratory Pilot Study. npj Digit Med. 2019 Jun 14;2(1):e19713.
– volume: 5
  start-page: e31053
  year: 2021
  ident: b0160
  article-title: Assessing the views of professionals, patients, and Care Partners concerning the use of computer tools in memory clinics: international survey study
  publication-title: JMIR Formative Research.
– volume: 28
  start-page: 2128
  year: 2021
  end-page: 2138
  ident: b0315
  article-title: Trading off accuracy and explainability in AI decision-making: findings from 2 citizens’ juries
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 21
  start-page: e51278
  year: 2020
  ident: b0405
  article-title: From deficit to dialogue in science communication
  publication-title: EMBO Rep.
– volume: 1
  year: 2019
  ident: b0245
  article-title: Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: a mixed-methods study
  publication-title: Digital Health.
– volume: 1
  start-page: 31
  year: 2021
  end-page: 37
  ident: b0345
  article-title: Patient perspectives on acceptability of, and implementation preferences for, use of electronic health records and machine learning to identify suicide risk
  publication-title: Gen. Hosp. Psychiatry
– reference: Coalition for Health AI. Blueprint for Trustworthy AI Implementation Guidance and Assurance for Healthcare [Internet]. 2022 [cited 2023 Jun 22]. Available from:
– volume: 7
  start-page: e19713
  year: 2020
  ident: b0235
  article-title: Patients’ utilization and perception of an artificial intelligence-based symptom assessment and Advice Technology in a British Primary Care Waiting Room: exploratory pilot study
  publication-title: JMIR Hum. Factors
– volume: 34
  start-page: 1041
  year: 2020
  end-page: 1048
  ident: b0300
  article-title: Public perceptions of artificial intelligence and robotics in medicine
  publication-title: J. Endourol.
– volume: 20
  start-page: 66
  year: 2021
  end-page: 83
  ident: b0370
  article-title: Evaluating if trust and personal information privacy concerns are barriers to using health insurance that explicitly utilizes AI
  publication-title: J. Internet Commer.
– volume: 121
  start-page: 81
  year: 2020
  end-page: 90
  ident: b0075
  article-title: A full systematic review was completed in 2 weeks using automation tools: a case study
  publication-title: J Clin Epidemiol.
– volume: 4
  start-page: 1
  year: 2021
  end-page: 6
  ident: b0285
  article-title: Patient apprehensions about the use of artificial intelligence in healthcare
  publication-title: Npj Digit Med.
– volume: 34
  start-page: 828
  year: 2019
  end-page: 849
  ident: b0305
  article-title: Does integral affect influence intentions to use artificial intelligence for skin cancer screening? a test of the affect heuristic
  publication-title: Psychol. Health
– volume: 4
  start-page: e16670
  year: 2020
  ident: b0120
  article-title: Patient perception of plain-language medical notes generated using artificial intelligence Software: pilot mixed-methods study
  publication-title: JMIR Form Res.
– volume: 3
  year: 2022
  ident: b0385
  article-title: Did artificial intelligence invade humans? the study on the mechanism of patients’ willingness to accept artificial intelligence medical care: from the perspective of intergroup threat theory
  publication-title: Front Psychol.
– volume: 156
  start-page: 501
  year: 2020
  end-page: 512
  ident: b0250
  article-title: Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study
  publication-title: JAMA Dermatol.
– volume: 28
  year: 2021
  ident: b0030
  article-title: Exploring stakeholder attitudes towards AI in clinical practice
  publication-title: Bmjhealth & Care Informatics.
– volume: 11
  start-page: 287
  year: 2022
  end-page: 293
  ident: b0340
  article-title: Patients perceptions of artificial intelligence in diabetic eye screening
  publication-title: Asia-Pacific Journal of Ophthalmology (philadelphia, Pa).
– volume: 6
  start-page: e12942
  year: 2019
  ident: b0150
  article-title: Public opinions on using social media content to identify users with depression and Target mental health Care advertising: mixed methods survey
  publication-title: JMIR Mental Health.
– volume: 32
  start-page: 1477
  year: 2022
  end-page: 1495
  ident: b0040
  article-title: Stakeholders’ perspectives on the future of artificial intelligence in radiology: a scoping review
  publication-title: Eur. Radiol..
– volume: 10
  start-page: e039798
  year: 2020
  ident: b0230
  article-title: Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research
  publication-title: BMJ Open
– volume: 82
  start-page: 37
  year: 2007
  end-page: 50
  ident: b0020
  article-title: Bringing ‘the public’ into health technology assessment and coverage policy decisions: from principles to practice
  publication-title: Health Policy
– volume: 23
  start-page: e26162
  year: 2021 Aug 26
  ident: b0085
  article-title: Patient perceptions on data Sharing and applying artificial intelligence to health Care data: cross-sectional survey
  publication-title: J. Med. Internet Res.
– volume: 37
  start-page: 1353
  year: 2022
  end-page: 1359
  ident: b0415
  article-title: In principle obstacles for empathic AI: why we can’t replace human empathy in healthcare
  publication-title: AI & Soc.
– volume: 31
  start-page: 257
  year: 2022
  end-page: 268
  ident: b0005
  article-title: Thinking responsibly about responsible AI and ‘the dark side’ of AI
  publication-title: Eur. J. Inf. Syst.
– volume: 21
  start-page: 504
  year: 2019
  end-page: 518
  ident: b0390
  article-title: Understanding public responses to emerging technologies: a Narrative approach
  publication-title: J. Environ. Plann. Policy Manage.
– volume: 12
  start-page: 260
  year: 2018
  end-page: 264
  ident: b0290
  article-title: Gestational Diabetes Management using Smart Mobile telemedicine
  publication-title: J Diabetes Sci Technol.
– year: 2023
  ident: b0010
  article-title: We need to chat about artificial intelligence
  publication-title: Med J Aust [internet].
– volume: 72
  year: 2021
  ident: b0275
  article-title: Patient feedback on the use of predictive analytics for suicide prevention
  publication-title: Psychiatr. Serv..
– reference: Hogg HDJ, Al-Zubaidy M, Group TEMSSR, Talks J, Denniston AK, Kelly CJ, et al. Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: Systematic Review of Qualitative Evidence. Journal of Medical Internet Research. 2023 Jan 10;25(1):e39742.
– volume: 16
  start-page: 1416
  year: 2019
  end-page: 1419
  ident: b0165
  article-title: A qualitative study to understand patient perspective on the use of artificial intelligence in radiology
  publication-title: J. Am. Coll. Radiol.
– volume: 11
  start-page: 142
  year: 2022
  ident: b0065
  article-title: Public views on ethical issues in healthcare artificial intelligence: protocol for a scoping review
  publication-title: Syst. Rev.
– volume: 43
  start-page: 295
  year: 2019
  ident: b0095
  article-title: Patients attitude to technology
  publication-title: J Med Syst.
– volume: 11
  start-page: 2143
  year: 2022
  ident: b0200
  article-title: Patients’ perspectives on artificial intelligence in dentistry: a controlled study
  publication-title: J. Clin. Med..
– volume: 9
  start-page: e22909
  year: 2021
  ident: b0170
  article-title: Digital natives’ preferences on Mobile artificial intelligence apps for skin cancer diagnostics: survey study
  publication-title: JMIR Mhealth Uhealth
– volume: 18
  start-page: 79
  year: 2021
  end-page: 86
  ident: b0255
  article-title: Artificial intelligence in screening mammography: a population survey of women’s preferences
  publication-title: J. Am. Coll. Radiol.
– volume: 1
  year: 2020
  ident: b0325
  article-title: Implementation of artificial intelligence in medicine: status analysis and development suggestions
  publication-title: Artif. Intell. Med.
– volume: 37
  year: 2021
  ident: b0355
  article-title: Artificial intelligence is trusted less than a doctor in medical treatment Decisions: influence of perceived Care and value Similarity
  publication-title: International Journal of Human-Computer Interaction.
– volume: 21
  start-page: e14316
  year: 2019
  ident: b0350
  article-title: Psychosocial factors affecting artificial intelligence adoption in health Care in China: cross-sectional study
  publication-title: J. Med. Internet Res.
– volume: 133
  year: 2022
  ident: b0090
  article-title: Attitudes and perspectives towards the preferences for artificial intelligence in psychotherapy
  publication-title: Computers in Human Behavior [internet].
– volume: 5
  start-page: e2210309
  year: 2022
  ident: b0195
  article-title: Perspectives of patients about artificial intelligence in health Care
  publication-title: JAMA Netw. Open
– volume: 25
  start-page: 374
  year: 2021
  end-page: 381
  ident: b0330
  article-title: Do people favor artificial intelligence over physicians? a survey among the general population and their view on artificial intelligence in medicine
  publication-title: Value Health
– year: 2017
  ident: b0175
  article-title: Public views of machine Learning. findings from public research engagement conducted on behalf of the royal society. the royal
  publication-title: Society
– volume: 45
  start-page: 64
  year: 2021
  ident: b0380
  article-title: Effect of AI explanations on human perceptions of patient-facing AI-powered Healthcare systems
  publication-title: J Med Syst.
– volume: 47
  start-page: 542
  year: 2022
  end-page: 546
  ident: b0215
  article-title: Perceptions of the use of artificial intelligence in the diagnosis of skin cancer: an outpatient survey
  publication-title: Clin. Exp. Dermatol..
– volume: 8
  year: 2019
  ident: b0185
  article-title: The future of breast cancer screening: what do participants in a breast cancer screening program think about automation using artificial intelligence?
  publication-title: Acta Radiologica Open.
– volume: 1
  year: 2022
  ident: b0155
  article-title: Attitudes and perception of artificial intelligence in healthcare: a cross-sectional survey among patients
  publication-title: Digital Health.
– reference: Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A, Schadendorf D, et al. Artificial Intelligence in Skin Cancer Diagnostics: The Patients’ Perspective. Frontiers in Medicine [Internet]. 2020 Jun 2 [cited 2022 Feb 9];7. Available from:
– volume: 16
  start-page: 854
  year: 2018
  end-page: 859
  ident: b0145
  article-title: Patient acceptance and trust in automated computer-assisted diagnosis of melanoma with dermatofluoroscopy. JDDG
  publication-title: J. Dtsch. Dermatol. Ges.
– start-page: 1
  year: 2022
  end-page: 22
  ident: b0055
  article-title: Trust, trustworthiness, and relationships: ontological reflections on public trust in science
  publication-title: Journal of Responsible Innovation.
– volume: 34
  start-page: 2253
  year: 2019
  end-page: 2259
  ident: b0270
  article-title: Remote patient monitoring using Mobile health for Total knee arthroplasty: validation of a Wearable and machine Learning-based surveillance platform
  publication-title: J. Arthroplasty
– volume: 24
  start-page: e36322
  year: 2022
  end-page: e
  ident: b0115
  article-title: Health information seeking from an intelligent web-based symptom checker: cross-sectional questionnaire study
  publication-title: J. Med. Internet Res.
– volume: 3
  start-page: e599
  year: 2021
  end-page: e611
  ident: b0035
  article-title: Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review
  publication-title: The Lancet Digital Health.
– volume: 20
  start-page: 170
  year: 2020
  ident: b0135
  article-title: Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 1
  year: 2022
  ident: b0280
  article-title: A framework for examining patient attitudes regarding applications of artificial intelligence in healthcare
  publication-title: Digital Health.
– volume: 39
  year: 2022
  ident: b0025
  article-title: Public engagement and AI: a values analysis of national strategies
  publication-title: Gov. Inf. q.
– volume: 23
  start-page: e25856
  year: 2021
  ident: b0140
  article-title: Patients’ perceptions Toward human-ar tificial intelligence Interaction in health Care: Experimental study
  publication-title: J. Med. Internet Res..
– reference: Li W, Fan X, Zhu H, Wu J, Teng D. Research on the Influencing Factors of User Trust Based on Artificial Intelligence Self Diagnosis System. In: Proceedings of the ACM Turing Celebration Conference - China [Internet]. New York, NY, USA: Association for Computing Machinery; 2020 [cited 2022 Feb 9]. p. 197–202. (ACM TURC’20). Available from:
– volume: 25
  start-page: 400
  year: 2016
  end-page: 414
  ident: b0400
  article-title: The lure of rationality: why does the deficit model persist in science communication?
  publication-title: Public Underst Sci.
– reference: Abdoul C, Cros P, Coutier L, Hadchouel A, Neuraz A, Burgun A, et al. Parents’ views on artificial intelligence for the daily management of childhood asthma: a survey. The Journal of Allergy and Clinical Immunology: In Practice [Internet]. 2020 Dec 1;9(4). Available from:
– volume: 1
  year: 2021
  ident: b0240
  article-title: Public patient views of artificial intelligence in healthcare: a nominal group technique study
  publication-title: Digital Health.
– reference: .
– volume: 1
  year: 2023
  ident: b0050
  article-title: Medical artificial intelligence ethics: a systematic review of empirical studies
  publication-title: Digital Health.
– volume: 185
  start-page: 961
  year: 2021
  end-page: 969
  ident: b0295
  article-title: Views on mobile health apps for skin cancer screening in the general population: an in-depth qualitative exploration of perceived barriers and facilitators*
  publication-title: Br. J. Dermatol.
– volume: 13
  start-page: 55
  year: 2004
  end-page: 74
  ident: b0395
  article-title: Science in society: re-evaluating the deficit model of public attitudes
  publication-title: Public Underst. Sci.
– volume: 23
  start-page: e22841
  year: 2021
  ident: b0220
  article-title: Patients’ preferences for artificial intelligence applications versus clinicians in disease diagnosis during the SARS-CoV-2 pandemic in China: discrete choice Experiment
  publication-title: J. Med. Internet Res.
– volume: 24
  start-page: 28
  year: 2021
  end-page: 46
  ident: b0060
  article-title: Engaging publics about environmental and technology risks: frames, values and deliberation
  publication-title: J. Risk Res.
– volume: 28
  start-page: 221
  year: 2021
  end-page: 222
  ident: b0320
  article-title: Screening participants’ attitudes to the introduction of artificial intelligence in breast screening
  publication-title: J Med Screen.
– volume: 9
  start-page: e34514
  year: 2022
  end-page: e
  ident: b0225
  article-title: Consumer perspectives on the use of artificial intelligence technology and automation in crisis support Services: mixed methods study
  publication-title: JMIR Hum. Factors
– volume: 12
  year: 2022
  ident: b0365
  article-title: Artificial intelligence in (gastrointestinal) healthcare: patients’ and physicians’ perspectives
  publication-title: Sci Rep.
– volume: 17
  year: 2022
  ident: b0130
  article-title: A prospective study assessing patient perception of the use of artificial intelligence in radiology
  publication-title: APJHM [internet].
– volume: 1
  start-page: e627
  year: 2020
  end-page: e633
  ident: b0260
  article-title: Attitudes of patients and their relatives Toward artificial intelligence in neurosurgery
  publication-title: World Neurosurg.
– volume: 23
  start-page: e26611
  year: 2021
  ident: b0265
  article-title: Population preferences for performance and explainability of artificial intelligence in health Care: choice-based conjoint survey
  publication-title: J. Med. Internet Res.
– volume: 27
  year: 2021
  ident: b0375
  article-title: Patients’ perceptions of using artificial intelligence (AI)-based technology to comprehend radiology imaging data
  publication-title: Health Informatics J.
– volume: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0155
  article-title: Attitudes and perception of artificial intelligence in healthcare: a cross-sectional survey among patients
  publication-title: Digital Health.
– volume: 21
  start-page: 221
  issue: 1
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0110
  article-title: Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey
  publication-title: BMC Med Inform Decis Mak.
  doi: 10.1186/s12911-021-01586-8
– volume: 28
  start-page: 2128
  issue: 10
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0315
  article-title: Trading off accuracy and explainability in AI decision-making: findings from 2 citizens’ juries
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocab127
– volume: 6
  start-page: e12942
  issue: 11
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0150
  article-title: Public opinions on using social media content to identify users with depression and Target mental health Care advertising: mixed methods survey
  publication-title: JMIR Mental Health.
  doi: 10.2196/12942
– ident: 10.1016/j.ijmedinf.2024.105417_b0080
– volume: 8
  start-page: 19
  issue: 1
  year: 2005
  ident: 10.1016/j.ijmedinf.2024.105417_b0070
  article-title: Scoping studies: towards a methodological framework
  publication-title: Int. J. Soc. Res. Methodol.
  doi: 10.1080/1364557032000119616
– volume: 28
  start-page: 221
  issue: 3
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0320
  article-title: Screening participants’ attitudes to the introduction of artificial intelligence in breast screening
  publication-title: J Med Screen.
  doi: 10.1177/09691413211001405
– volume: 4
  start-page: e16670
  issue: 6
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0120
  article-title: Patient perception of plain-language medical notes generated using artificial intelligence Software: pilot mixed-methods study
  publication-title: JMIR Form Res.
  doi: 10.2196/16670
– volume: 20
  start-page: 170
  issue: 1
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0135
  article-title: Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-01191-1
– volume: 23
  start-page: e22841
  issue: 2
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0220
  article-title: Patients’ preferences for artificial intelligence applications versus clinicians in disease diagnosis during the SARS-CoV-2 pandemic in China: discrete choice Experiment
  publication-title: J. Med. Internet Res.
  doi: 10.2196/22841
– volume: 185
  start-page: 961
  issue: 5
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0295
  article-title: Views on mobile health apps for skin cancer screening in the general population: an in-depth qualitative exploration of perceived barriers and facilitators*
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.20441
– volume: 34
  start-page: 2253
  issue: 10
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0270
  article-title: Remote patient monitoring using Mobile health for Total knee arthroplasty: validation of a Wearable and machine Learning-based surveillance platform
  publication-title: J. Arthroplasty
  doi: 10.1016/j.arth.2019.05.021
– volume: 72
  issue: 2
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0275
  article-title: Patient feedback on the use of predictive analytics for suicide prevention
  publication-title: Psychiatr. Serv..
  doi: 10.1176/appi.ps.202000092
– volume: 21
  start-page: e14316
  issue: 10
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0350
  article-title: Psychosocial factors affecting artificial intelligence adoption in health Care in China: cross-sectional study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/14316
– volume: 11
  start-page: 287
  issue: 3
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0340
  article-title: Patients perceptions of artificial intelligence in diabetic eye screening
  publication-title: Asia-Pacific Journal of Ophthalmology (philadelphia, Pa).
  doi: 10.1097/APO.0000000000000525
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0055
  article-title: Trust, trustworthiness, and relationships: ontological reflections on public trust in science
  publication-title: Journal of Responsible Innovation.
– volume: 17
  issue: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0130
  article-title: A prospective study assessing patient perception of the use of artificial intelligence in radiology
  publication-title: APJHM [internet].
– volume: 1
  issue: 102
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0325
  article-title: Implementation of artificial intelligence in medicine: status analysis and development suggestions
  publication-title: Artif. Intell. Med.
– volume: 23
  start-page: e26162
  issue: 8
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0085
  article-title: Patient perceptions on data Sharing and applying artificial intelligence to health Care data: cross-sectional survey
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26162
– volume: 34
  start-page: 828
  issue: 7
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0305
  article-title: Does integral affect influence intentions to use artificial intelligence for skin cancer screening? a test of the affect heuristic
  publication-title: Psychol. Health
  doi: 10.1080/08870446.2019.1579330
– volume: 16
  start-page: 1416
  issue: 10
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0165
  article-title: A qualitative study to understand patient perspective on the use of artificial intelligence in radiology
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2018.12.043
– volume: 45
  start-page: 64
  issue: 6
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0380
  article-title: Effect of AI explanations on human perceptions of patient-facing AI-powered Healthcare systems
  publication-title: J Med Syst.
  doi: 10.1007/s10916-021-01743-6
– ident: 10.1016/j.ijmedinf.2024.105417_b0045
  doi: 10.2196/39742
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0285
  article-title: Patient apprehensions about the use of artificial intelligence in healthcare
  publication-title: Npj Digit Med.
  doi: 10.1038/s41746-021-00509-1
– volume: 12
  start-page: 260
  issue: 2
  year: 2018
  ident: 10.1016/j.ijmedinf.2024.105417_b0290
  article-title: Gestational Diabetes Management using Smart Mobile telemedicine
  publication-title: J Diabetes Sci Technol.
  doi: 10.1177/1932296817704442
– volume: 28
  issue: 1
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0030
  article-title: Exploring stakeholder attitudes towards AI in clinical practice
  publication-title: Bmjhealth & Care Informatics.
– volume: 24
  start-page: e37611
  issue: 8
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0180
  article-title: The adoption of artificial intelligence in health Care and social Services in Australia: findings from a methodologically innovative National Survey of values and attitudes (the AVA-AI study)
  publication-title: J Med Internet Res.
  doi: 10.2196/37611
– volume: 21
  start-page: e51278
  issue: 9
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0405
  article-title: From deficit to dialogue in science communication
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051278
– volume: 1
  start-page: e627
  issue: 138
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0260
  article-title: Attitudes of patients and their relatives Toward artificial intelligence in neurosurgery
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2020.03.029
– volume: 24
  start-page: 28
  issue: 1
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0060
  article-title: Engaging publics about environmental and technology risks: frames, values and deliberation
  publication-title: J. Risk Res.
  doi: 10.1080/13669877.2020.1749118
– volume: 43
  start-page: 295
  issue: 9
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0095
  article-title: Patients attitude to technology
  publication-title: J Med Syst.
  doi: 10.1007/s10916-019-1420-4
– volume: 32
  start-page: 1477
  issue: 3
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0040
  article-title: Stakeholders’ perspectives on the future of artificial intelligence in radiology: a scoping review
  publication-title: Eur. Radiol..
  doi: 10.1007/s00330-021-08214-z
– volume: 24
  start-page: e36322
  issue: 8
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0115
  article-title: Health information seeking from an intelligent web-based symptom checker: cross-sectional questionnaire study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/36322
– volume: 47
  start-page: 542
  issue: 3
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0215
  article-title: Perceptions of the use of artificial intelligence in the diagnosis of skin cancer: an outpatient survey
  publication-title: Clin. Exp. Dermatol..
  doi: 10.1111/ced.14969
– volume: 27
  issue: 2
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0375
  article-title: Patients’ perceptions of using artificial intelligence (AI)-based technology to comprehend radiology imaging data
  publication-title: Health Informatics J.
  doi: 10.1177/14604582211011215
– volume: 75
  start-page: 50
  issue: 1
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0100
  article-title: Exploring the influential factors of Consumers’ willingness Toward using COVID-19 related chatbots: an empirical study
  publication-title: Med Arch.
  doi: 10.5455/medarh.2021.75.50-55
– volume: 82
  start-page: 37
  issue: 1
  year: 2007
  ident: 10.1016/j.ijmedinf.2024.105417_b0020
  article-title: Bringing ‘the public’ into health technology assessment and coverage policy decisions: from principles to practice
  publication-title: Health Policy
  doi: 10.1016/j.healthpol.2006.07.009
– volume: 11
  start-page: 142
  issue: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0065
  article-title: Public views on ethical issues in healthcare artificial intelligence: protocol for a scoping review
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-022-02012-4
– volume: 7
  start-page: e19713
  issue: 3
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0235
  article-title: Patients’ utilization and perception of an artificial intelligence-based symptom assessment and Advice Technology in a British Primary Care Waiting Room: exploratory pilot study
  publication-title: JMIR Hum. Factors
  doi: 10.2196/19713
– volume: 34
  start-page: 1041
  issue: 10
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0300
  article-title: Public perceptions of artificial intelligence and robotics in medicine
  publication-title: J. Endourol.
  doi: 10.1089/end.2020.0137
– volume: 13
  start-page: 55
  issue: 1
  year: 2004
  ident: 10.1016/j.ijmedinf.2024.105417_b0395
  article-title: Science in society: re-evaluating the deficit model of public attitudes
  publication-title: Public Underst. Sci.
  doi: 10.1177/0963662504042690
– year: 2023
  ident: 10.1016/j.ijmedinf.2024.105417_b0010
  article-title: We need to chat about artificial intelligence
  publication-title: Med J Aust [internet].
  doi: 10.5694/mja2.51992
– volume: 3
  issue: 13
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0385
  article-title: Did artificial intelligence invade humans? the study on the mechanism of patients’ willingness to accept artificial intelligence medical care: from the perspective of intergroup threat theory
  publication-title: Front Psychol.
– ident: 10.1016/j.ijmedinf.2024.105417_b0210
  doi: 10.1145/3393527.3393561
– volume: 1
  issue: 7
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0240
  article-title: Public patient views of artificial intelligence in healthcare: a nominal group technique study
  publication-title: Digital Health.
– volume: 21
  start-page: 504
  issue: 5
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0390
  article-title: Understanding public responses to emerging technologies: a Narrative approach
  publication-title: J. Environ. Plann. Policy Manage.
  doi: 10.1080/1523908X.2015.1053110
– volume: 31
  start-page: 257
  issue: 3
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0005
  article-title: Thinking responsibly about responsible AI and ‘the dark side’ of AI
  publication-title: Eur. J. Inf. Syst.
  doi: 10.1080/0960085X.2022.2026621
– volume: 15
  start-page: e0235410
  issue: 7
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0125
  article-title: Improved patient satisfaction and diagnostic accuracy in skin diseases with a visual clinical Decision support system—A feasibility study with general practitioners
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0235410
– volume: 20
  start-page: 66
  issue: 1
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0370
  article-title: Evaluating if trust and personal information privacy concerns are barriers to using health insurance that explicitly utilizes AI
  publication-title: J. Internet Commer.
  doi: 10.1080/15332861.2020.1832817
– ident: 10.1016/j.ijmedinf.2024.105417_b0190
  doi: 10.3389/fmed.2020.00233
– ident: 10.1016/j.ijmedinf.2024.105417_b0310
  doi: 10.2196/19713
– volume: 18
  start-page: 79
  issue: 1, Part A
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0255
  article-title: Artificial intelligence in screening mammography: a population survey of women’s preferences
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2020.09.042
– volume: 11
  start-page: 2143
  issue: 8
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0200
  article-title: Patients’ perspectives on artificial intelligence in dentistry: a controlled study
  publication-title: J. Clin. Med..
  doi: 10.3390/jcm11082143
– year: 2017
  ident: 10.1016/j.ijmedinf.2024.105417_b0175
  article-title: Public views of machine Learning. findings from public research engagement conducted on behalf of the royal society. the royal
  publication-title: Society
– volume: 3
  start-page: e599
  issue: 9
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0035
  article-title: Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review
  publication-title: The Lancet Digital Health.
  doi: 10.1016/S2589-7500(21)00132-1
– volume: 37
  issue: 10
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0355
  article-title: Artificial intelligence is trusted less than a doctor in medical treatment Decisions: influence of perceived Care and value Similarity
  publication-title: International Journal of Human-Computer Interaction.
  doi: 10.1080/10447318.2020.1861763
– ident: 10.1016/j.ijmedinf.2024.105417_b0015
– volume: 156
  start-page: 501
  issue: 5
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0250
  article-title: Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2019.5014
– volume: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0280
  article-title: A framework for examining patient attitudes regarding applications of artificial intelligence in healthcare
  publication-title: Digital Health.
– volume: 33
  start-page: 262
  issue: 2
  year: 2008
  ident: 10.1016/j.ijmedinf.2024.105417_b0410
  article-title: “Opening up” and “closing down”: power, participation, and pluralism in the social appraisal of technology
  publication-title: Sci. Technol. Hum. Values
  doi: 10.1177/0162243907311265
– volume: 37
  start-page: 1353
  issue: 4
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0415
  article-title: In principle obstacles for empathic AI: why we can’t replace human empathy in healthcare
  publication-title: AI & Soc.
  doi: 10.1007/s00146-021-01230-z
– volume: 133
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0090
  article-title: Attitudes and perspectives towards the preferences for artificial intelligence in psychotherapy
  publication-title: Computers in Human Behavior [internet].
– volume: 16
  start-page: 854
  issue: 7
  year: 2018
  ident: 10.1016/j.ijmedinf.2024.105417_b0145
  article-title: Patient acceptance and trust in automated computer-assisted diagnosis of melanoma with dermatofluoroscopy. JDDG
  publication-title: J. Dtsch. Dermatol. Ges.
– volume: 23
  start-page: e24221
  issue: 2
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0205
  article-title: Use and control of artificial intelligence in patients across the medical workflow: single-center questionnaire study of patient perspectives
  publication-title: J Med Internet Res.
  doi: 10.2196/24221
– volume: 9
  start-page: e34514
  issue: 3
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0225
  article-title: Consumer perspectives on the use of artificial intelligence technology and automation in crisis support Services: mixed methods study
  publication-title: JMIR Hum. Factors
  doi: 10.2196/34514
– volume: 23
  start-page: e26611
  issue: 12
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0265
  article-title: Population preferences for performance and explainability of artificial intelligence in health Care: choice-based conjoint survey
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26611
– volume: 1
  issue: 9
  year: 2023
  ident: 10.1016/j.ijmedinf.2024.105417_b0050
  article-title: Medical artificial intelligence ethics: a systematic review of empirical studies
  publication-title: Digital Health.
– volume: 5
  start-page: e31053
  issue: 12
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0160
  article-title: Assessing the views of professionals, patients, and Care Partners concerning the use of computer tools in memory clinics: international survey study
  publication-title: JMIR Formative Research.
  doi: 10.2196/31053
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0365
  article-title: Artificial intelligence in (gastrointestinal) healthcare: patients’ and physicians’ perspectives
  publication-title: Sci Rep.
  doi: 10.1038/s41598-022-20958-2
– volume: 13
  start-page: 1867
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0335
  article-title: Attitudes of chinese cancer patients toward the clinical use of artificial intelligence
  publication-title: Patient Prefer Adherence.
  doi: 10.2147/PPA.S225952
– volume: 8
  issue: 12
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0185
  article-title: The future of breast cancer screening: what do participants in a breast cancer screening program think about automation using artificial intelligence?
  publication-title: Acta Radiologica Open.
  doi: 10.1177/2058460119880315
– volume: 5
  start-page: e2210309
  issue: 5
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0195
  article-title: Perspectives of patients about artificial intelligence in health Care
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2022.10309
– volume: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.ijmedinf.2024.105417_b0245
  article-title: Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: a mixed-methods study
  publication-title: Digital Health.
– volume: 23
  start-page: e25856
  issue: 11
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0140
  article-title: Patients’ perceptions Toward human-ar tificial intelligence Interaction in health Care: Experimental study
  publication-title: J. Med. Internet Res..
  doi: 10.2196/25856
– volume: 27
  start-page: e100233
  issue: 3
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0360
  article-title: Clinician and computer: a study on patient perceptions of artificial intelligence in skeletal radiography
  publication-title: BMJ Health Care Inform.
  doi: 10.1136/bmjhci-2020-100233
– volume: 25
  start-page: 400
  issue: 4
  year: 2016
  ident: 10.1016/j.ijmedinf.2024.105417_b0400
  article-title: The lure of rationality: why does the deficit model persist in science communication?
  publication-title: Public Underst Sci.
  doi: 10.1177/0963662516629749
– volume: 10
  start-page: e039798
  issue: 10
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0230
  article-title: Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-039798
– volume: 9
  start-page: e22909
  issue: 8
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0170
  article-title: Digital natives’ preferences on Mobile artificial intelligence apps for skin cancer diagnostics: survey study
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/22909
– volume: 1
  start-page: 31
  issue: 70
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0345
  article-title: Patient perspectives on acceptability of, and implementation preferences for, use of electronic health records and machine learning to identify suicide risk
  publication-title: Gen. Hosp. Psychiatry
  doi: 10.1016/j.genhosppsych.2021.02.008
– volume: 121
  start-page: 81
  year: 2020
  ident: 10.1016/j.ijmedinf.2024.105417_b0075
  article-title: A full systematic review was completed in 2 weeks using automation tools: a case study
  publication-title: J Clin Epidemiol.
  doi: 10.1016/j.jclinepi.2020.01.008
– volume: 12
  start-page: 1405
  issue: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0105
  article-title: Genetic data sharing and artificial intelligence in the era of personalized medicine based on a cross-sectional analysis of the saudi human genome program
  publication-title: Sci Rep.
  doi: 10.1038/s41598-022-05296-7
– volume: 39
  issue: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2024.105417_b0025
  article-title: Public engagement and AI: a values analysis of national strategies
  publication-title: Gov. Inf. q.
  doi: 10.1016/j.giq.2021.101652
– volume: 25
  start-page: 374
  issue: 3
  year: 2021
  ident: 10.1016/j.ijmedinf.2024.105417_b0330
  article-title: Do people favor artificial intelligence over physicians? a survey among the general population and their view on artificial intelligence in medicine
  publication-title: Value Health
  doi: 10.1016/j.jval.2021.09.004
SSID ssj0017054
Score 2.4310148
SecondaryResourceType review_article
Snippet •We analysed the methods and reporting of studies exploring patient views on healthcare AI.•Most studies used vignettes or background information to help...
With the recent increase in research into public views on healthcare artificial intelligence (HCAI), the objective of this review is to examine the methods of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105417
SubjectTerms Artificial Intelligence
Delivery of Health Care
Health Facilities
Healthcare
Humans
Public and patient involvement
Scoping review
Title Facilitating public involvement in research about healthcare AI: A scoping review of empirical methods
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1386505624000807
https://dx.doi.org/10.1016/j.ijmedinf.2024.105417
https://www.ncbi.nlm.nih.gov/pubmed/38564959
https://www.proquest.com/docview/3031662356
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQSGgvEwzYCgwZide0TWI7Dm9VRdWOD02DSrxZdmqPVJBWUF7527mLnWiTNnXSnppGOSW5nO9Dvvv9CDnTOkuzom8jLWd9KFCsjfLUwnLneawN49JJHBS-vhHjKft2z-83yLCZhcG2yuD7vU-vvXU40wva7C3LsncbI10lxm9W5z04Uc5YhlbefWvbPBAtxhPbShHh1b9MCc-75Rx3sCuE8kwYUt6ymrjsjwHqbwloHYhGO-RjyCDpwD_kLtmw1SeyfR32yPeIG-kiQG9XP6mHsaZlBW6ohgZfwTENED8PtO5Lpg9tExgdTM7pgOKsCkr7wRa6cNQ-LcsaTYR6zumXfTIdXdwNx1FgU4gKCEArcLaJSaw0sbRQQqRO9x3va1iyJnMxt2nBYueyxGWiiA0XM1HkWO1oLgrHmJulB2SzWlT2C6HOQabkmIXSJGaz3EmTiNxAnS2ZM7lJOoQ3KlRFgBpHxotH1fSUzVWjeoWqV171HdJr5ZYebGOtRNZ8IdWMkoLzUxAP1krmreRvBvdPsqeNMShYjbjFoiu7eH1RkBDEAjJKLjrks7eS9k1SyQWUo_nhf9z5iHzAf75X7Zhsrp5f7VfIilbmpDb7E7I1GP64-o6_k8vxzTuK4Q3D
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RKrW9VPS9paVG4hp2k9iOw22FWC2P5VKQuFl21oas2uyqLNf-9s7ETtRKICpxi5KMkkw8L3nm-wD2jCnyohq5xKj5CAsU55Iyd2juokyN5UJ5RYPCs3M5veQnV-JqAw67WRhqq4y-P_j01lvHM8OozeGqroffU6KrpPjN27yneAbPOZov0Rjs_-77PAguJjDbKpnQ7X-NCS_26wVtYTeE5Zlx4rzlLXPZvRHqoQy0jUSTLXgdU0g2Dm_5BjZc8xZezOIm-TvwE1NF7O3mmgUca1Y36IdabPA1HrOI8XPD2sZkdtN3gbHx8QEbMxpWIekw2cKWnrmfq7qFE2GBdPr2PVxOji4Op0mkU0gqjEBr9LaZzZyyqXJYQ-TejLwYGbRZW_hUuLziqfdF5gtZpVbIuaxKKneMkJXn3M_zD7DZLBv3CZj3mCp57rA2Sfm89MpmsrRYaCvubWmzAYhOhbqKWONEefFDd01lC92pXpPqdVD9AIa93CqgbTwqUXR_SHezpOj9NAaERyXLXvKfFfdfsrvdYtBojrTHYhq3vLvVmBGkElNKIQfwMayS_ktyJSTWo-XnJzz5G7ycXszO9Nnx-ek2vKIroXHtC2yuf925r5gire1OawJ_ACZJDbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facilitating+public+involvement+in+research+about+healthcare+AI%3A+A+scoping+review+of+empirical+methods&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Frost%2C+Emma+Kellie&rft.au=Bosward%2C+Rebecca&rft.au=Aquino%2C+Yves+Saint+James&rft.au=Braunack-Mayer%2C+Annette&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=1386-5056&rft.volume=186&rft_id=info:doi/10.1016%2Fj.ijmedinf.2024.105417&rft.externalDocID=S1386505624000807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon