Method for Extracting Arterial Pulse Waveforms from Interferometric Signals

This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based process...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 14; p. 4389
Main Authors Janek, Marian, Martincek, Ivan, Tarjanyiova, Gabriela
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.07.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors’ knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min–max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology’s performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry–Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice.
AbstractList This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors’ knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min–max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology’s performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry–Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice.
This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry-Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors' knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min-max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology's performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry-Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice.This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry-Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors' knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min-max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology's performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry-Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice.
Audience Academic
Author Janek, Marian
Tarjanyiova, Gabriela
Martincek, Ivan
AuthorAffiliation Physics Department, Faculty of Electrical Engineering and Information Technology, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; ivan.martincek@uniza.sk (I.M.); gabriela.tarjanyiova@uniza.sk (G.T.)
AuthorAffiliation_xml – name: Physics Department, Faculty of Electrical Engineering and Information Technology, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; ivan.martincek@uniza.sk (I.M.); gabriela.tarjanyiova@uniza.sk (G.T.)
Author_xml – sequence: 1
  givenname: Marian
  orcidid: 0000-0001-6367-4780
  surname: Janek
  fullname: Janek, Marian
– sequence: 2
  givenname: Ivan
  orcidid: 0000-0003-0887-2551
  surname: Martincek
  fullname: Martincek, Ivan
– sequence: 3
  givenname: Gabriela
  orcidid: 0000-0001-7657-3591
  surname: Tarjanyiova
  fullname: Tarjanyiova, Gabriela
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40732516$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AkbjAYVvbYyfxCa2qAqsWFQkQR8txxqlXSVzspIJ_j8O2qxb5MNbMM6_m65gcjGFEQl4zegqg6FnikgkBtXpGjpjgYlVzTg8e_Q_JcUpbSjkA1C_IoaAV5JzyiFx-wekmtIULsbj4PUVjJz92xTpOGL3pi69zn7D4ae4wE0MqXAxDsRlz1GH-4hS9Lb75bjR9ekmeu2zw1b09IT8-Xnw__7y6uv60OV9frayo2LTibcnQUluqsm6qRjWVoJwrUFKgslLSlgIY2dZCSSmFoFYZrhplc_3OsRJOyGan2waz1bfRDyb-0cF4_c8RYqdNnLztUZfW1s7Q1ilAgVjWIG3FpWU1FcZVi9aHndbt3AzYWhzzDPonok8jo7_RXbjTjAOlUFdZ4d29Qgy_ZkyTHnyy2PdmxDAnDRxERQVVLKNv_0O3YY7L6BYKeMmhEpk63VGdyR340YVlLfm1OHibN-989q_zeBQHxlROePO4h33xD1vOwPsdYGNIKaLbI4zq5YL0_oLgLwxTtYU
Cites_doi 10.1016/S0924-4247(98)00075-2
10.1038/s41746-019-0136-7
10.3390/s24092855
10.1109/JSEN.2020.3041782
10.1109/JSEN.2020.2997465
10.1109/TBME.2017.2722008
10.1016/j.bja.2020.09.049
10.1002/adma.202109357
10.4061/2011/164832
10.1017/CBO9781139644181
10.1016/j.nanoen.2023.108636
10.3758/s13428-020-01516-y
10.1109/JSEN.2024.3418456
10.1002/mop.32922
10.3390/s22197566
10.1016/j.optlaseng.2024.108667
10.1016/j.measurement.2023.113379
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25144389
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6cc8fa0df93e4ee6835c725c1804af76
PMC12300387
A849923119
40732516
10_3390_s25144389
Genre Journal Article
GrantInformation_xml – fundername: Slovak National Grant Agency under Project VEGA
  grantid: 1/0223/23
– fundername: EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia
  grantid: 09I05-03-V02-00009
– fundername: EU NextGenerationEU
  grantid: 09I05-03-V02-00009
– fundername: Slovak National Grant Agency
  grantid: VEGA 1/0223/23
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-2d61ec0c6968b7b9b7402293954e9c550d033a5d849555440c9a29b9c002ff163
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:39 EDT 2025
Thu Aug 21 18:34:13 EDT 2025
Wed Jul 30 23:55:35 EDT 2025
Fri Jul 25 19:28:19 EDT 2025
Tue Aug 05 03:51:46 EDT 2025
Sun Aug 03 01:53:25 EDT 2025
Wed Jul 16 16:45:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Fabry–Perot interferometer
Python-based processing
arterial pulse waveform
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-2d61ec0c6968b7b9b7402293954e9c550d033a5d849555440c9a29b9c002ff163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7657-3591
0000-0003-0887-2551
0000-0001-6367-4780
OpenAccessLink https://www.proquest.com/docview/3233262374?pq-origsite=%requestingapplication%
PMID 40732516
PQID 3233262374
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6cc8fa0df93e4ee6835c725c1804af76
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12300387
proquest_miscellaneous_3234704091
proquest_journals_3233262374
gale_infotracacademiconefile_A849923119
pubmed_primary_40732516
crossref_primary_10_3390_s25144389
PublicationCentury 2000
PublicationDate 2025-07-14
PublicationDateYYYYMMDD 2025-07-14
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_14) 1998; 69
Samartkit (ref_10) 2021; 21
Kil (ref_4) 2023; 114
Nirmalan (ref_3) 2014; 14
Xu (ref_6) 2023; 220
Meng (ref_7) 2022; 34
Makowski (ref_22) 2021; 53
Martincek (ref_11) 2024; 24
ref_21
ref_20
Saugel (ref_2) 2021; 126
Elgendi (ref_23) 2019; 2
Ghasemzadeh (ref_1) 2011; 2011
Jia (ref_5) 2018; 65
ref_18
ref_17
ref_16
Butterworth (ref_19) 1930; 7
Ushakov (ref_12) 2020; 20
ref_9
Ratanapanya (ref_15) 2025; 184
ref_8
Liu (ref_13) 2021; 63
References_xml – volume: 69
  start-page: 134
  year: 1998
  ident: ref_14
  article-title: A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer
  publication-title: Sens. Actuators Phys.
  doi: 10.1016/S0924-4247(98)00075-2
– volume: 2
  start-page: 60
  year: 2019
  ident: ref_23
  article-title: The Use of Photoplethysmography for Assessing Hypertension
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0136-7
– ident: ref_9
  doi: 10.3390/s24092855
– volume: 21
  start-page: 6195
  year: 2021
  ident: ref_10
  article-title: Validation of fiber optic-based Fabry–Perot interferometer for simultaneous heart rate and pulse pressure measurements
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3041782
– volume: 20
  start-page: 11302
  year: 2020
  ident: ref_12
  article-title: Pulse wave velocity measurement with multiplexed fiber optic Fabry–Perot interferometric sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2997465
– volume: 65
  start-page: 839
  year: 2018
  ident: ref_5
  article-title: A fiber Bragg grating sensor for radial artery pulse waveform measurement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2722008
– volume: 126
  start-page: 67
  year: 2021
  ident: ref_2
  article-title: Cardiac output estimation using pulse wave analysis physiology, algorithms, and technologies: A narrative review
  publication-title: Br. J. Anaesth.
  doi: 10.1016/j.bja.2020.09.049
– volume: 34
  start-page: 2109357
  year: 2022
  ident: ref_7
  article-title: Wearable pressure sensors for pulse wave monitoring
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109357
– volume: 7
  start-page: 536
  year: 1930
  ident: ref_19
  article-title: On the theory of filter amplifiers
  publication-title: Wirel. Eng.
– volume: 2011
  start-page: 164832
  year: 2011
  ident: ref_1
  article-title: A brief journey into the history of the arterial pulse
  publication-title: Cardiol. Res. Pract.
  doi: 10.4061/2011/164832
– ident: ref_16
  doi: 10.1017/CBO9781139644181
– volume: 114
  start-page: 108636
  year: 2023
  ident: ref_4
  article-title: Carotid artery monitoring patch using a supercapacitive pressure sensor with piezoelectricity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108636
– volume: 53
  start-page: 1689
  year: 2021
  ident: ref_22
  article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-020-01516-y
– ident: ref_17
– ident: ref_18
– volume: 24
  start-page: 25742
  year: 2024
  ident: ref_11
  article-title: Optical fiber Fabry–Perot interferometer for arterial pulse waveform measurement
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3418456
– volume: 63
  start-page: 2279
  year: 2021
  ident: ref_13
  article-title: Fast interrogation of dynamic low-finesse Fabry–Perot interferometers: A review
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.32922
– volume: 14
  start-page: 285
  year: 2014
  ident: ref_3
  article-title: Broader applications of arterial pressure waveform analysis
  publication-title: Contin. Educ. Anaesth. Crit. Care Pain
– ident: ref_21
– ident: ref_8
  doi: 10.3390/s22197566
– ident: ref_20
– volume: 184
  start-page: 108667
  year: 2025
  ident: ref_15
  article-title: A blood pressure measurement system using fiber optic-based Fabry–Perot interferometer
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2024.108667
– volume: 220
  start-page: 13379
  year: 2023
  ident: ref_6
  article-title: Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113379
SSID ssj0023338
Score 2.4523103
Snippet This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a...
This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry-Perot interferometric measurements, emphasizing a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4389
SubjectTerms Accuracy
Algorithms
Analysis
arterial pulse waveform
Arteries - physiology
Cardiovascular disease
Electrocardiography
Fabry–Perot interferometer
Heart
Heart Rate - physiology
Humans
Interferometry
Interferometry - methods
Light
Methods
Morphology
Physiological aspects
Physiology
Pulse Wave Analysis - methods
Python
Python-based processing
Sensors
Signal processing
Signal Processing, Computer-Assisted
Veins & arteries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwFLQQp3KoSktpgCKDKvUUkQ8njo8UgVArEBJFcLNsx6ZcsojdRfx85jnZ1UYcuPSaZBN7np03s47nMfZDBmmClHUqpM1S0SIWyguflpm1QVRW2rhienFZn9-I33fV3UqpL_omrLcH7oE7qp1rgsnaoErcw9dgDE4WlcubTOAp0WwbOW8hpgapVUJ59T5CJUT90RRZXFCd71H2iSb9b1_FK7lo_J3kSuI5-8Q-DoyRH_ct3WRrvvvMNlZ8BL-wPxexDjQHAeWnL7O48am7p5_E8cWv5kiA_NY8e6KoU057Snj8LzB4sisgl35-_XBPXspb7Obs9O_JeTpUSUgdEsssLdo69y5z5HIDaJWVkIRI4qoSXjkIkDYrS1O1DaQQuIPInDKFssoBphBAx76y9W7S-W-M18YF4asiiFZRIepG5IUVhbRBmcZndcIOF-jpx94MQ0NEEMR6CXHCfhGuywvIvzoeQFT1EFX9XlQT9pOiommWEWpm2CyAdpJflT5Gb4ia5njc3iJweph-U11iABQgdlIk7GB5GhOHVkNM5yfzeI2QeIWpPGHbfZyXbYbKLdEfNKMZjYBRp8Znuod_0ZwbTIBWW-XO_4Bhl30oqN4wGXmKPbY-e5r77yBBM7sfx_srj8oFag
  priority: 102
  providerName: Directory of Open Access Journals
Title Method for Extracting Arterial Pulse Waveforms from Interferometric Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/40732516
https://www.proquest.com/docview/3233262374
https://www.proquest.com/docview/3234704091
https://pubmed.ncbi.nlm.nih.gov/PMC12300387
https://doaj.org/article/6cc8fa0df93e4ee6835c725c1804af76
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9gIPiG86RmUQEk_REtuJ46dpm1om0KYJmOibZTt22Us61nban787N-0aIfGSh8SR7buz73f--B3AZxWVjUpVmVQuz2SDutBBhkzkzkVZOuXSjunZeXV6Kb9Nykm34DbvjlWu58Q0UTczT2vkB4ILRBpcKHl4_TejrFG0u9ql0HgMu0RdRlatJg8Bl8D4a8UmJDC0P5ijL5eU7bvngxJV_78T8pZH6p-W3HI_4-fwrMON7Gil6BfwKLQv4ekWm-Ar-H6WskEzhKFsdLdI15_aKf2SrIxdLNENst_2NhBQnTO6WcLSimAMRFpAXP3s59WUGJVfw-V49OvkNOtyJWQe3csi401VBJ974rpBAWunMDBEV65LGbTHMKTJhbBlU2NAhAhC5l5brp32KKYYEZS9gZ121oZ3wCrrowwlj7LRlI66lgV3kisXta1DXg3g01p65npFiWEwlCARm42IB3BMct0UIBbr9GJ2MzXdoDCV93W0eRO1QPsIFaJBr3jpizqXaEFY0xfSiqGxRlKz3ZUBbCexVpkj7A0B1AKr218rznSDcG4eTGYAHzefcfjQnohtw2yZykiFE5kuBvB2pedNmzHWFdgfbEbds4Bep_pf2qs_iaIb8QDtuaq9_7frPTzhlE-YiDrlPuwsbpbhA4KchRsmS8ZnPf46hN3j0fnFj2FaMLgHn6__tA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiHcXChgE4hQ1sZ04PlSoQJct262QaEVvJnbsbS_ZtrsL9E_xG5lxHmyExK3XdbIZz_ObODNDyGvpZeGlzCIhTRyJEmShnHARj43xIjXShBPTyWE2OhafT9KTNfK7rYXBzypbnxgcdTmz-I58mzMOSINxKd6dX0Q4NQpPV9sRGrVajN3VT0jZ5jv7H0G-bxgb7h19GEXNVIHIgiNeRKzMEmdji11hgBRlJKRQEPRUKpyyANjLmPMiLXNIHSDWitiqgimjLPgO7wG-wP_eIDcFh0iOlenDT12CxyHfq7sXwWK8PQfsIHC6eC_mhdEA_waAlQjY_zpzJdwN75I7DU6lu7Vi3SNrrrpPNla6Fz4g40mYPk0B9tK9X4tQblVN8Zag1fTLEsIu_Vb8cAiM5xQrWWh4A-kdNknA2QD069kUOzg_JMfXwsVHZL2aVW6T0KywXriUeVEqHH-di4QZwaTxqshdnA3Iq5Z7-rxuwaEhdUEW647FA_Ie-dpdgF2zww-zy6lujFBn1ua-iEuvOOijywB9WslSm-SxAI2FJ71FqWi0beRa0ZQoAJ3YJUvvwm4QECfwuK1WcLox-rn-q6ID8rJbBnPFM5iicrNluEZIcJwqGZDHtZw7miG35rAfICPvaUBvU_2V6uw0tAQH_IFnvPLJ_-l6QW6NjiYH-mD_cPyU3GY4yxibhIotsr64XLpnALAW5nnQakq-X7cZ_QEiLDbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QNwpDDAIxFPUxHbi-AGhjbXaKKsqYGJvJnbsbi_ptrZc_hq_jnOcC62QeNtrkzT2uX4ntr9DyCvpZeGlzCIhTRyJEnShnHARj43xIjXShBXTo0l2cCw-nKQnW-R3exYGt1W2MTEE6nJu8Rv5gDMOSINxKQa-2RYx3R-9O7-IsIMUrrS27TRqExm7Xz-gfFu8PdwHXb9mbDT88v4gajoMRBaC8jJiZZY4G1tkiIFhKSOhnIIEqFLhlAXwXsacF2mZQxkBeVfEVhVMGWUhjngPUAb-9xrZllgV9cj23nAy_dSVexyqv5rLiHMVDxaAJAT2Gt_IgKFRwL_pYC0fbu7VXEt-o9vkVoNa6W5tZnfIlqvukptrXIb3yPgo9KKmAILp8OcyHL6qZvhIsHE6XUESpl-L7w5h8oLiuRYavkd6h5QJ2CmAfj6bIZ_zfXJ8JXJ8QHrVvHKPCM0K64VLmRelwmbYuUiYEUwar4rcxVmfvGylp89rQg4NhQyKWHci7pM9lGt3A3Johx_mlzPduKTOrM19EZdecbBOlwEWtZKlNsljAfYLb3qDWtHo6Si1ojmwAONEziy9C7NBeJzA63ZaxekmBCz0X4PtkxfdZXBeXJEpKjdfhXuEhDCqkj55WOu5GzPYFIf5wDDyDQvYmNTmlersNBCEAxrBFV_5-P_jek6ugwvpj4eT8RNyg2FjY2QMFTukt7xcuaeAtpbmWWPWlHy7ak_6A8_vPFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+Extracting+Arterial+Pulse+Waveforms+from+Interferometric+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Janek%2C+Marian&rft.au=Martincek%2C+Ivan&rft.au=Tarjanyiova%2C+Gabriela&rft.date=2025-07-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=14&rft.spage=4389&rft_id=info:doi/10.3390%2Fs25144389&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25144389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon