Method for Extracting Arterial Pulse Waveforms from Interferometric Signals
This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based process...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 14; p. 4389 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors’ knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min–max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology’s performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry–Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice. |
---|---|
AbstractList | This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors’ knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min–max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology’s performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry–Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice. This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry-Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors' knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min-max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology's performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry-Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice.This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry-Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors' knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min-max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology's performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry-Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice. |
Audience | Academic |
Author | Janek, Marian Tarjanyiova, Gabriela Martincek, Ivan |
AuthorAffiliation | Physics Department, Faculty of Electrical Engineering and Information Technology, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; ivan.martincek@uniza.sk (I.M.); gabriela.tarjanyiova@uniza.sk (G.T.) |
AuthorAffiliation_xml | – name: Physics Department, Faculty of Electrical Engineering and Information Technology, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; ivan.martincek@uniza.sk (I.M.); gabriela.tarjanyiova@uniza.sk (G.T.) |
Author_xml | – sequence: 1 givenname: Marian orcidid: 0000-0001-6367-4780 surname: Janek fullname: Janek, Marian – sequence: 2 givenname: Ivan orcidid: 0000-0003-0887-2551 surname: Martincek fullname: Martincek, Ivan – sequence: 3 givenname: Gabriela orcidid: 0000-0001-7657-3591 surname: Tarjanyiova fullname: Tarjanyiova, Gabriela |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40732516$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URD_gwB9AkbjAYVvbYyfxCa2qAqsWFQkQR8txxqlXSVzspIJ_j8O2qxb5MNbMM6_m65gcjGFEQl4zegqg6FnikgkBtXpGjpjgYlVzTg8e_Q_JcUpbSjkA1C_IoaAV5JzyiFx-wekmtIULsbj4PUVjJz92xTpOGL3pi69zn7D4ae4wE0MqXAxDsRlz1GH-4hS9Lb75bjR9ekmeu2zw1b09IT8-Xnw__7y6uv60OV9frayo2LTibcnQUluqsm6qRjWVoJwrUFKgslLSlgIY2dZCSSmFoFYZrhplc_3OsRJOyGan2waz1bfRDyb-0cF4_c8RYqdNnLztUZfW1s7Q1ilAgVjWIG3FpWU1FcZVi9aHndbt3AzYWhzzDPonok8jo7_RXbjTjAOlUFdZ4d29Qgy_ZkyTHnyy2PdmxDAnDRxERQVVLKNv_0O3YY7L6BYKeMmhEpk63VGdyR340YVlLfm1OHibN-989q_zeBQHxlROePO4h33xD1vOwPsdYGNIKaLbI4zq5YL0_oLgLwxTtYU |
Cites_doi | 10.1016/S0924-4247(98)00075-2 10.1038/s41746-019-0136-7 10.3390/s24092855 10.1109/JSEN.2020.3041782 10.1109/JSEN.2020.2997465 10.1109/TBME.2017.2722008 10.1016/j.bja.2020.09.049 10.1002/adma.202109357 10.4061/2011/164832 10.1017/CBO9781139644181 10.1016/j.nanoen.2023.108636 10.3758/s13428-020-01516-y 10.1109/JSEN.2024.3418456 10.1002/mop.32922 10.3390/s22197566 10.1016/j.optlaseng.2024.108667 10.1016/j.measurement.2023.113379 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25144389 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_6cc8fa0df93e4ee6835c725c1804af76 PMC12300387 A849923119 40732516 10_3390_s25144389 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Slovak National Grant Agency under Project VEGA grantid: 1/0223/23 – fundername: EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia grantid: 09I05-03-V02-00009 – fundername: EU NextGenerationEU grantid: 09I05-03-V02-00009 – fundername: Slovak National Grant Agency grantid: VEGA 1/0223/23 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB 3V. 7XB 8FK AZQEC DWQXO K9. M48 PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-2d61ec0c6968b7b9b7402293954e9c550d033a5d849555440c9a29b9c002ff163 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:39 EDT 2025 Thu Aug 21 18:34:13 EDT 2025 Wed Jul 30 23:55:35 EDT 2025 Fri Jul 25 19:28:19 EDT 2025 Tue Aug 05 03:51:46 EDT 2025 Sun Aug 03 01:53:25 EDT 2025 Wed Jul 16 16:45:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Fabry–Perot interferometer Python-based processing arterial pulse waveform |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-2d61ec0c6968b7b9b7402293954e9c550d033a5d849555440c9a29b9c002ff163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7657-3591 0000-0003-0887-2551 0000-0001-6367-4780 |
OpenAccessLink | https://www.proquest.com/docview/3233262374?pq-origsite=%requestingapplication% |
PMID | 40732516 |
PQID | 3233262374 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6cc8fa0df93e4ee6835c725c1804af76 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12300387 proquest_miscellaneous_3234704091 proquest_journals_3233262374 gale_infotracacademiconefile_A849923119 pubmed_primary_40732516 crossref_primary_10_3390_s25144389 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-14 |
PublicationDateYYYYMMDD | 2025-07-14 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wang (ref_14) 1998; 69 Samartkit (ref_10) 2021; 21 Kil (ref_4) 2023; 114 Nirmalan (ref_3) 2014; 14 Xu (ref_6) 2023; 220 Meng (ref_7) 2022; 34 Makowski (ref_22) 2021; 53 Martincek (ref_11) 2024; 24 ref_21 ref_20 Saugel (ref_2) 2021; 126 Elgendi (ref_23) 2019; 2 Ghasemzadeh (ref_1) 2011; 2011 Jia (ref_5) 2018; 65 ref_18 ref_17 ref_16 Butterworth (ref_19) 1930; 7 Ushakov (ref_12) 2020; 20 ref_9 Ratanapanya (ref_15) 2025; 184 ref_8 Liu (ref_13) 2021; 63 |
References_xml | – volume: 69 start-page: 134 year: 1998 ident: ref_14 article-title: A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer publication-title: Sens. Actuators Phys. doi: 10.1016/S0924-4247(98)00075-2 – volume: 2 start-page: 60 year: 2019 ident: ref_23 article-title: The Use of Photoplethysmography for Assessing Hypertension publication-title: npj Digit. Med. doi: 10.1038/s41746-019-0136-7 – ident: ref_9 doi: 10.3390/s24092855 – volume: 21 start-page: 6195 year: 2021 ident: ref_10 article-title: Validation of fiber optic-based Fabry–Perot interferometer for simultaneous heart rate and pulse pressure measurements publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3041782 – volume: 20 start-page: 11302 year: 2020 ident: ref_12 article-title: Pulse wave velocity measurement with multiplexed fiber optic Fabry–Perot interferometric sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2997465 – volume: 65 start-page: 839 year: 2018 ident: ref_5 article-title: A fiber Bragg grating sensor for radial artery pulse waveform measurement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2722008 – volume: 126 start-page: 67 year: 2021 ident: ref_2 article-title: Cardiac output estimation using pulse wave analysis physiology, algorithms, and technologies: A narrative review publication-title: Br. J. Anaesth. doi: 10.1016/j.bja.2020.09.049 – volume: 34 start-page: 2109357 year: 2022 ident: ref_7 article-title: Wearable pressure sensors for pulse wave monitoring publication-title: Adv. Mater. doi: 10.1002/adma.202109357 – volume: 7 start-page: 536 year: 1930 ident: ref_19 article-title: On the theory of filter amplifiers publication-title: Wirel. Eng. – volume: 2011 start-page: 164832 year: 2011 ident: ref_1 article-title: A brief journey into the history of the arterial pulse publication-title: Cardiol. Res. Pract. doi: 10.4061/2011/164832 – ident: ref_16 doi: 10.1017/CBO9781139644181 – volume: 114 start-page: 108636 year: 2023 ident: ref_4 article-title: Carotid artery monitoring patch using a supercapacitive pressure sensor with piezoelectricity publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108636 – volume: 53 start-page: 1689 year: 2021 ident: ref_22 article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing publication-title: Behav. Res. Methods doi: 10.3758/s13428-020-01516-y – ident: ref_17 – ident: ref_18 – volume: 24 start-page: 25742 year: 2024 ident: ref_11 article-title: Optical fiber Fabry–Perot interferometer for arterial pulse waveform measurement publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3418456 – volume: 63 start-page: 2279 year: 2021 ident: ref_13 article-title: Fast interrogation of dynamic low-finesse Fabry–Perot interferometers: A review publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.32922 – volume: 14 start-page: 285 year: 2014 ident: ref_3 article-title: Broader applications of arterial pressure waveform analysis publication-title: Contin. Educ. Anaesth. Crit. Care Pain – ident: ref_21 – ident: ref_8 doi: 10.3390/s22197566 – ident: ref_20 – volume: 184 start-page: 108667 year: 2025 ident: ref_15 article-title: A blood pressure measurement system using fiber optic-based Fabry–Perot interferometer publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2024.108667 – volume: 220 start-page: 13379 year: 2023 ident: ref_6 article-title: Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound publication-title: Measurement doi: 10.1016/j.measurement.2023.113379 |
SSID | ssj0023338 |
Score | 2.4523103 |
Snippet | This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a... This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry-Perot interferometric measurements, emphasizing a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 4389 |
SubjectTerms | Accuracy Algorithms Analysis arterial pulse waveform Arteries - physiology Cardiovascular disease Electrocardiography Fabry–Perot interferometer Heart Heart Rate - physiology Humans Interferometry Interferometry - methods Light Methods Morphology Physiological aspects Physiology Pulse Wave Analysis - methods Python Python-based processing Sensors Signal processing Signal Processing, Computer-Assisted Veins & arteries |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwFLQQp3KoSktpgCKDKvUUkQ8njo8UgVArEBJFcLNsx6ZcsojdRfx85jnZ1UYcuPSaZBN7np03s47nMfZDBmmClHUqpM1S0SIWyguflpm1QVRW2rhienFZn9-I33fV3UqpL_omrLcH7oE7qp1rgsnaoErcw9dgDE4WlcubTOAp0WwbOW8hpgapVUJ59T5CJUT90RRZXFCd71H2iSb9b1_FK7lo_J3kSuI5-8Q-DoyRH_ct3WRrvvvMNlZ8BL-wPxexDjQHAeWnL7O48am7p5_E8cWv5kiA_NY8e6KoU057Snj8LzB4sisgl35-_XBPXspb7Obs9O_JeTpUSUgdEsssLdo69y5z5HIDaJWVkIRI4qoSXjkIkDYrS1O1DaQQuIPInDKFssoBphBAx76y9W7S-W-M18YF4asiiFZRIepG5IUVhbRBmcZndcIOF-jpx94MQ0NEEMR6CXHCfhGuywvIvzoeQFT1EFX9XlQT9pOiommWEWpm2CyAdpJflT5Gb4ia5njc3iJweph-U11iABQgdlIk7GB5GhOHVkNM5yfzeI2QeIWpPGHbfZyXbYbKLdEfNKMZjYBRp8Znuod_0ZwbTIBWW-XO_4Bhl30oqN4wGXmKPbY-e5r77yBBM7sfx_srj8oFag priority: 102 providerName: Directory of Open Access Journals |
Title | Method for Extracting Arterial Pulse Waveforms from Interferometric Signals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40732516 https://www.proquest.com/docview/3233262374 https://www.proquest.com/docview/3234704091 https://pubmed.ncbi.nlm.nih.gov/PMC12300387 https://doaj.org/article/6cc8fa0df93e4ee6835c725c1804af76 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9gIPiG86RmUQEk_REtuJ46dpm1om0KYJmOibZTt22Us61nban787N-0aIfGSh8SR7buz73f--B3AZxWVjUpVmVQuz2SDutBBhkzkzkVZOuXSjunZeXV6Kb9Nykm34DbvjlWu58Q0UTczT2vkB4ILRBpcKHl4_TejrFG0u9ql0HgMu0RdRlatJg8Bl8D4a8UmJDC0P5ijL5eU7bvngxJV_78T8pZH6p-W3HI_4-fwrMON7Gil6BfwKLQv4ekWm-Ar-H6WskEzhKFsdLdI15_aKf2SrIxdLNENst_2NhBQnTO6WcLSimAMRFpAXP3s59WUGJVfw-V49OvkNOtyJWQe3csi401VBJ974rpBAWunMDBEV65LGbTHMKTJhbBlU2NAhAhC5l5brp32KKYYEZS9gZ121oZ3wCrrowwlj7LRlI66lgV3kisXta1DXg3g01p65npFiWEwlCARm42IB3BMct0UIBbr9GJ2MzXdoDCV93W0eRO1QPsIFaJBr3jpizqXaEFY0xfSiqGxRlKz3ZUBbCexVpkj7A0B1AKr218rznSDcG4eTGYAHzefcfjQnohtw2yZykiFE5kuBvB2pedNmzHWFdgfbEbds4Bep_pf2qs_iaIb8QDtuaq9_7frPTzhlE-YiDrlPuwsbpbhA4KchRsmS8ZnPf46hN3j0fnFj2FaMLgHn6__tA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiHcXChgE4hQ1sZ04PlSoQJct262QaEVvJnbsbS_ZtrsL9E_xG5lxHmyExK3XdbIZz_ObODNDyGvpZeGlzCIhTRyJEmShnHARj43xIjXShBPTyWE2OhafT9KTNfK7rYXBzypbnxgcdTmz-I58mzMOSINxKd6dX0Q4NQpPV9sRGrVajN3VT0jZ5jv7H0G-bxgb7h19GEXNVIHIgiNeRKzMEmdji11hgBRlJKRQEPRUKpyyANjLmPMiLXNIHSDWitiqgimjLPgO7wG-wP_eIDcFh0iOlenDT12CxyHfq7sXwWK8PQfsIHC6eC_mhdEA_waAlQjY_zpzJdwN75I7DU6lu7Vi3SNrrrpPNla6Fz4g40mYPk0B9tK9X4tQblVN8Zag1fTLEsIu_Vb8cAiM5xQrWWh4A-kdNknA2QD069kUOzg_JMfXwsVHZL2aVW6T0KywXriUeVEqHH-di4QZwaTxqshdnA3Iq5Z7-rxuwaEhdUEW647FA_Ie-dpdgF2zww-zy6lujFBn1ua-iEuvOOijywB9WslSm-SxAI2FJ71FqWi0beRa0ZQoAJ3YJUvvwm4QECfwuK1WcLox-rn-q6ID8rJbBnPFM5iicrNluEZIcJwqGZDHtZw7miG35rAfICPvaUBvU_2V6uw0tAQH_IFnvPLJ_-l6QW6NjiYH-mD_cPyU3GY4yxibhIotsr64XLpnALAW5nnQakq-X7cZ_QEiLDbI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QNwpDDAIxFPUxHbi-AGhjbXaKKsqYGJvJnbsbi_ptrZc_hq_jnOcC62QeNtrkzT2uX4ntr9DyCvpZeGlzCIhTRyJEnShnHARj43xIjXShBXTo0l2cCw-nKQnW-R3exYGt1W2MTEE6nJu8Rv5gDMOSINxKQa-2RYx3R-9O7-IsIMUrrS27TRqExm7Xz-gfFu8PdwHXb9mbDT88v4gajoMRBaC8jJiZZY4G1tkiIFhKSOhnIIEqFLhlAXwXsacF2mZQxkBeVfEVhVMGWUhjngPUAb-9xrZllgV9cj23nAy_dSVexyqv5rLiHMVDxaAJAT2Gt_IgKFRwL_pYC0fbu7VXEt-o9vkVoNa6W5tZnfIlqvukptrXIb3yPgo9KKmAILp8OcyHL6qZvhIsHE6XUESpl-L7w5h8oLiuRYavkd6h5QJ2CmAfj6bIZ_zfXJ8JXJ8QHrVvHKPCM0K64VLmRelwmbYuUiYEUwar4rcxVmfvGylp89rQg4NhQyKWHci7pM9lGt3A3Johx_mlzPduKTOrM19EZdecbBOlwEWtZKlNsljAfYLb3qDWtHo6Si1ojmwAONEziy9C7NBeJzA63ZaxekmBCz0X4PtkxfdZXBeXJEpKjdfhXuEhDCqkj55WOu5GzPYFIf5wDDyDQvYmNTmlersNBCEAxrBFV_5-P_jek6ugwvpj4eT8RNyg2FjY2QMFTukt7xcuaeAtpbmWWPWlHy7ak_6A8_vPFo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+Extracting+Arterial+Pulse+Waveforms+from+Interferometric+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Janek%2C+Marian&rft.au=Martincek%2C+Ivan&rft.au=Tarjanyiova%2C+Gabriela&rft.date=2025-07-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=14&rft.spage=4389&rft_id=info:doi/10.3390%2Fs25144389&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25144389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |