Application of Collocation BEM for Axisymmetric Transmission Problems in Electro- and Magnetostatics

This paper considers the numerical solution of boundary integral equations for an exterior transmission problem in a three-dimensional axisymmetric domain. The resulting potential problem is formulated in a meridian plane as the second kind integral equation for a boundary potential and the first ki...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling and analysis Vol. 21; no. 1; pp. 16 - 34
Main Authors Lavrova, Olga, Polevikov, Viktor
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.01.2016
Vilnius Gediminas Technical University
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper considers the numerical solution of boundary integral equations for an exterior transmission problem in a three-dimensional axisymmetric domain. The resulting potential problem is formulated in a meridian plane as the second kind integral equation for a boundary potential and the first kind integral equation for a boundary flux. The numerical method is an axisymmetric collocation with equal order approximations of the boundary unknowns on a polygonal boundary. The complete elliptic integrals of the kernels are approximated by polynomials. An asymptotic kernels behavior is analyzed for accurate numerical evaluation of integrals. A piecewise-constant midpoint collocation and a piecewise-linear nodal collocation on a circular arc and on its polygonal interpolation are used for test computations on uniform meshes. We analyze empirically the influence of the polygonal boundary interpolation to the accuracy and the convergence of the presented method. We have found that the polygonal boundary interpolation does not change the convergence behavior on the smooth boundary for the piecewise-constant and the piecewise-linear collocation.
AbstractList This paper considers the numerical solution of boundary integral equations for an exterior transmission problem in a three-dimensional axisymmetric domain. The resulting potential problem is formulated in a meridian plane as the second kind integral equation for a boundary potential and the first kind integral equation for a boundary flux. The numerical method is an axisymmetric collocation with equal order approximations of the boundary unknowns on a polygonal boundary. The complete elliptic integrals of the kernels are approximated by polynomials. An asymptotic kernels behavior is analyzed for accurate numerical evaluation of integrals. A piecewise-constant midpoint collocation and a piecewise-linear nodal collocation on a circular arc and on its polygonal interpolation are used for test computations on uniform meshes. We analyze empirically the influence of the polygonal boundary interpolation to the accuracy and the convergence of the presented method. We have found that the polygonal boundary interpolation does not change the convergence behavior on the smooth boundary for the piecewise-constant and the piecewise-linear collocation.
This paper considers the numerical solution of boundary integral equations for an exterior transmission problem in a three-dimensional axisymmetric domain. The resulting potential problem is formulated in a meridian plane as the second kind integral equation for a boundary potential and the first kind integral equation for a boundary flux. The numerical method is an axisymmetric collocation with equal order approximations of the boundary unknowns on a polygonal boundary. The complete elliptic integrals of the kernels are approximated by polynomials. An asymptotic kernels behavior is analyzed for accurate numerical evaluation of integrals. A piecewise-constant midpoint collocation and a piecewise-linear nodal collocation on a circular arc and on its polygonal interpolation are used for test computations on uniform meshes. We analyze empirically the influence of the polygonal boundary interpolation to the accuracy and the convergence of the presented method. We have found that the polygonal boundary interpolation does not change the convergence behavior on the smooth boundary for the piecewise-constant and the piecewise-linear collocation.Keywords: transmission problem, Laplace equation, weakly singular integral equation, boundary element method, axisymmetric collocation, polygonal boundary.AMS Subject Classification: 35J05; 65N38.
Audience Academic
Author Lavrova, Olga
Polevikov, Viktor
Author_xml – sequence: 1
  givenname: Olga
  surname: Lavrova
  fullname: Lavrova, Olga
  email: lavrovaolga@mail.ru
  organization: Faculty of Mechanics and Mathematics, Belarusian State University
– sequence: 2
  givenname: Viktor
  surname: Polevikov
  fullname: Polevikov, Viktor
  organization: Faculty of Applied Mathematics and Informatics, Belarusian State University
BookMark eNp9UctuEzEUHaFWog8-AWkkNmwm-Dlj7whRgEqtyqKsLT8jRx472BNK_h4PE2BXeXHtq3OOz73nurmIKdqmeQvBCjPSf4CYox5xtEIA9isIESOMvWquYE9YhykEF_VeMd0Met1cl7IHgFLEwFVj1odD8FpOPsU2uXaTQkjn56ftQ-tSbte_fDmNo52y1-1TlrGMvpQZ8S0nFexYWh_bbbB6yqlrZTTtg9xFO6UyVSVdbptLJ0Oxb871pvn-efu0-drdP36526zvO00GOHWI0J5xCIixiChDMQeaIkwMVpZrAJhWijpqJcQKScuJYoMDHBJlkcYS4JvmbtE1Se7FIftR5pNI0os_jZR3QuZqKFgxQCmJQ8r1RBMqgaLAaQ4oNgxohEzVer9oHXL6cbRlEnVobUOQ0aZjEZD1pDqkA6vQ1QLdyarso0tTlroeY0eva1bO1_6aDgDygUFcCXQh6JxKydb98wqBmCMVfyMVc6TiHGnlvVt4P32IvprYp2OOdaP_x-Kz-scFNTvJo3xOORgxyVNI2dX0tC8Cv_zRbwrttuc
Cites_doi 10.1109/TMAG.2007.892304
10.1016/j.expthermflusci.2014.01.010
10.1007/978-3-642-25670-7_4
10.1109/20.717566
10.1090/S0025-5718-1987-0906182-9
10.1007/s10404-007-0150-y
10.1051/m2an/1988220203431
10.1007/BF01389582
10.22364/mhd.44.2.12
10.1088/0953-8984/18/38/S09
10.1016/S0955-7997(97)00001-5
10.1007/s002110050107
ContentType Journal Article
Copyright Vilnius Gediminas Technical University, 2016 2016
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
COPYRIGHT 2016 Vilnius Gediminas Technical University
Copyright_xml – notice: Vilnius Gediminas Technical University, 2016 2016
– notice: Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
– notice: COPYRIGHT 2016 Vilnius Gediminas Technical University
DBID ABJBJ
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOA
DOI 10.3846/13926292.2016.1128488
DatabaseName VILNIUS TECH Press Open Access Scientific Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef


Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1648-3510
EndPage 34
ExternalDocumentID oai_doaj_org_article_71aa4f2bf64c45a0b50fc9053d80c22d
A570197813
10_3846_13926292_2016_1128488
oai:ojs2.journals.vilniustech.lt:article/793
1128488
Genre Article
GrantInformation_xml – fundername: Belarusian Republican Foundation for Fundamental Research
  grantid: the project 1.5.03.2
  funderid: 10.13039/100007595
GroupedDBID .7F
.QJ
4.4
5GY
AAENE
ABCCY
ABDBF
ABFIM
ABJNI
ABPEM
ABTAI
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADCVX
AENEX
AGMYJ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AVBZW
BCNDV
CE4
CS3
DU5
EBS
EJD
EN8
ESX
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IAO
IEA
ITC
J.P
M4Z
NA5
NY~
O9-
OK1
P2P
S-T
TDBHL
TFL
TFT
TFW
TR2
TUS
UT5
UU3
~8M
~S~
ABJBJ
AMVHM
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c471t-245689104de24bd5390c5234d3be9c008cbb5f5ea13b2ae94b87f0914be2c3a03
IEDL.DBID DOA
ISSN 1392-6292
IngestDate Wed Aug 27 01:23:50 EDT 2025
Fri Jul 11 01:27:57 EDT 2025
Tue Jun 10 20:43:33 EDT 2025
Tue Jul 01 04:16:25 EDT 2025
Tue Aug 12 21:21:57 EDT 2025
Wed Dec 25 09:03:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords transmission problem
Laplace equation
boundary element method
polygonal boundary
axisymmetric collocation
weakly singular integral equation
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-245689104de24bd5390c5234d3be9c008cbb5f5ea13b2ae94b87f0914be2c3a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/71aa4f2bf64c45a0b50fc9053d80c22d
PQID 1864539578
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1864539578
gale_infotracacademiconefile_A570197813
crossref_primary_10_3846_13926292_2016_1128488
vilnius_journals_article_793
informaworld_taylorfrancis_310_3846_13926292_2016_1128488
doaj_primary_oai_doaj_org_article_71aa4f2bf64c45a0b50fc9053d80c22d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-02
PublicationDateYYYYMMDD 2016-01-02
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-02
  day: 02
PublicationDecade 2010
PublicationTitle Mathematical modelling and analysis
PublicationTitleAbbrev MMA
PublicationYear 2016
Publisher Taylor & Francis
Vilnius Gediminas Technical University
Publisher_xml – name: Taylor & Francis
– name: Vilnius Gediminas Technical University
References CIT0012
Bernardin L. (CIT0004) 2011
Rosensweig R.E. (CIT0017) 1997
Sutradhar A. (CIT0019) 2008
Lavrova O. (CIT0011) 2006
Abramowitz M. (CIT0001) 1965
CIT0014
CIT0002
CIT0005
CIT0016
Lavrova O. (CIT0013) 2008; 44
CIT0015
CIT0007
CIT0018
CIT0006
Arnold D.N. (CIT0003) 1985; 47
CIT0008
Landau L.D. (CIT0010) 1960
References_xml – ident: CIT0006
  doi: 10.1109/TMAG.2007.892304
– volume-title: Handbook of mathematical functions
  year: 1965
  ident: CIT0001
– ident: CIT0018
  doi: 10.1016/j.expthermflusci.2014.01.010
– ident: CIT0002
  doi: 10.1007/978-3-642-25670-7_4
– ident: CIT0014
  doi: 10.1109/20.717566
– volume-title: Ferrohydrodynamics
  year: 1997
  ident: CIT0017
– ident: CIT0007
  doi: 10.1090/S0025-5718-1987-0906182-9
– ident: CIT0015
  doi: 10.1007/s10404-007-0150-y
– ident: CIT0016
  doi: 10.1051/m2an/1988220203431
– volume: 47
  issue: 3
  year: 1985
  ident: CIT0003
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01389582
– year: 2008
  ident: CIT0019
  publication-title: Symmetric Galerkin Boundary Element Method
– year: 2011
  ident: CIT0004
  publication-title: Maple 15
– volume: 44
  start-page: 3
  issue: 2
  year: 2008
  ident: CIT0013
  publication-title: Magnetohydrodynamics
  doi: 10.22364/mhd.44.2.12
– ident: CIT0012
  doi: 10.1088/0953-8984/18/38/S09
– ident: CIT0005
  doi: 10.1016/S0955-7997(97)00001-5
– volume-title: Electrodynamics of Continuous Media (translated from the Russian by J. B. Sykes and J. S. Bell)
  year: 1960
  ident: CIT0010
– volume-title: Numerical methods for axisymmetric equilibrium magnetic-fluid shapes
  year: 2006
  ident: CIT0011
– ident: CIT0008
  doi: 10.1007/s002110050107
SSID ssj0055280
Score 1.9927529
Snippet This paper considers the numerical solution of boundary integral equations for an exterior transmission problem in a three-dimensional axisymmetric domain. The...
SourceID doaj
proquest
gale
crossref
vilnius
informaworld
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 16
SubjectTerms Approximation
Axisymmetric
axisymmetric collocation
Boundaries
Boundary element method
Collocation
Integral equations
Interpolation
Kernels
Laplace equation
Mathematical models
Mathematical research
polygonal boundary
Symmetry
transmission problem
weakly singular integral equation
Title Application of Collocation BEM for Axisymmetric Transmission Problems in Electro- and Magnetostatics
URI https://www.tandfonline.com/doi/abs/10.3846/13926292.2016.1128488
https://journals.vilniustech.lt/index.php/MMA/article/view/793
https://www.proquest.com/docview/1864539578
https://doaj.org/article/71aa4f2bf64c45a0b50fc9053d80c22d
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlodAeQvqim6ZBhUJPbrx62PLR2-4SClt6aCA3oWcxNHaJvSX5952xvNnNKZceLYz1-MYzI43mG0I-IrlkiKbIQlnETChfZkaaPLMy5FKiTRGYnLz-Xlxcim9X8mqv1BfeCUv0wGnhzsu5MSIyGwvhBHzFyjy6CkTHq9wx5lH7gs3bbqaSDoZeVMoPrlhWsIql3B0OxvYc27AJr3UVmEGjxFh2ZWeVRvL-exX9gMH0gR_69G_zu202_Z5BWh2To8mTpHWawQvyJLQvyfM9fsFXxNe78DTtIsVTgm56XCzXFHqk9W3T311fY2EtR0fLBcjjERr9kWrN9LRp6TJVy8moaT1dm19tGDrMRWpc_5pcrpY_v1xkU1mFzIElGjIMdSrwEoQPTFgveZU72I4Kz22oHPgEzloZZTBzbpkJlbCqjLDEwgbmuMn5G3LQdm14S6gAdyA6lhfGBRG8Uj4WJrgYg8yNLM2MfN4uq_6T2DM07DoQB73FQSMOesJhRha4-PcvI_n12AAioSeR0I-JxIx8Qug0AjfcGGemTAMYM5Jd6VoiB32p5nxGqn109TCeksRU0kTzR4b6YSsKGoDBOItpQ7fp9VwVQmL8E945nWRET6qh382i4if_Y7bvyDMc1ngsxE7JwXCzCe_BURrsGTmsF18Xq7Px3_gH6kMOOA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Collocation+BEM+for+Axisymmetric+Transmission+Problems+in+Electro-+and+Magnetostatics&rft.jtitle=Mathematical+modelling+and+analysis&rft.au=Olga+Lavrova&rft.au=Viktor+Polevikov&rft.date=2016-01-02&rft.pub=Vilnius+Gediminas+Technical+University&rft.issn=1392-6292&rft.eissn=1648-3510&rft.volume=21&rft.issue=1&rft_id=info:doi/10.3846%2F13926292.2016.1128488&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_71aa4f2bf64c45a0b50fc9053d80c22d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-6292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-6292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-6292&client=summon