Diagnostic Performance of Ultrasound Computer-Aided Diagnosis Software Compared with That of Radiologists with Different Levels of Expertise for Thyroid Malignancy: A Multicenter Prospective Study

The aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This multicenter prospective study included 494 patients (565 thyroid nodules) who underwent surgery or biopsy after ultrasonography at four hospitals from Jan...

Full description

Saved in:
Bibliographic Details
Published inUltrasound in medicine & biology Vol. 47; no. 1; pp. 114 - 124
Main Authors Ye, Feng-Ying, Lyu, Guo-Rong, Li, Shang-Qing, You, Jian-Hong, Wang, Kang-Jian, Cai, Ming-Li, Su, Qi-Chen
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This multicenter prospective study included 494 patients (565 thyroid nodules) who underwent surgery or biopsy after ultrasonography at four hospitals from January 2019 to September 2019. The diagnostic performance metrics of different readers were calculated and compared with the pathologic results. The sensitivity of CAD was outstanding and was equivalent to that of a senior radiologist (90.51% vs. 88.47%, p > 0.05). The area under the curve of CAD was equivalent to that of a junior radiologist (0.748 vs. 0.739, p > 0.05). However, the specificity was only 49.63%, which was lower than those of the three radiologists (75.56%, 85.93% and 90.37% for the junior, intermediate and senior radiologists, respectively). The diagnostic performance of the junior radiologist was significantly improved with the aid of CAD (junior + CAD). The sensitivity and area under the curve of junior + CAD were improved from 72.20% to 89.93% and from 0.739 to 0.816, respectively (both p values <0.05), and the positive predictive value, negative predictive value and κ coefficient improved from 76.3% to 78.6%, 82.0% to 86.8% and 0.394 to 0.511, respectively. Though specificity slightly decreased from 75.56% to 73.33%, the difference was not statistically significant (p > 0.05). In general, the clinical application value of CAD is promising, and its instrumental value for junior radiologists is significant.
AbstractList AbstractThe aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This multicenter prospective study included 494 patients (565 thyroid nodules) who underwent surgery or biopsy after ultrasonography at four hospitals from January 2019 to September 2019. The diagnostic performance metrics of different readers were calculated and compared with the pathologic results. The sensitivity of CAD was outstanding and was equivalent to that of a senior radiologist (90.51% vs. 88.47%, p > 0.05). The area under the curve of CAD was equivalent to that of a junior radiologist (0.748 vs. 0.739, p > 0.05). However, the specificity was only 49.63%, which was lower than those of the three radiologists (75.56%, 85.93% and 90.37% for the junior, intermediate and senior radiologists, respectively). The diagnostic performance of the junior radiologist was significantly improved with the aid of CAD (junior + CAD). The sensitivity and area under the curve of junior + CAD were improved from 72.20% to 89.93% and from 0.739 to 0.816, respectively (both p values <0.05), and the positive predictive value, negative predictive value and κ coefficient improved from 76.3% to 78.6%, 82.0% to 86.8% and 0.394 to 0.511, respectively. Though specificity slightly decreased from 75.56% to 73.33%, the difference was not statistically significant ( p > 0.05). In general, the clinical application value of CAD is promising, and its instrumental value for junior radiologists is significant.
The aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This multicenter prospective study included 494 patients (565 thyroid nodules) who underwent surgery or biopsy after ultrasonography at four hospitals from January 2019 to September 2019. The diagnostic performance metrics of different readers were calculated and compared with the pathologic results. The sensitivity of CAD was outstanding and was equivalent to that of a senior radiologist (90.51% vs. 88.47%, p > 0.05). The area under the curve of CAD was equivalent to that of a junior radiologist (0.748 vs. 0.739, p > 0.05). However, the specificity was only 49.63%, which was lower than those of the three radiologists (75.56%, 85.93% and 90.37% for the junior, intermediate and senior radiologists, respectively). The diagnostic performance of the junior radiologist was significantly improved with the aid of CAD (junior + CAD). The sensitivity and area under the curve of junior + CAD were improved from 72.20% to 89.93% and from 0.739 to 0.816, respectively (both p values <0.05), and the positive predictive value, negative predictive value and κ coefficient improved from 76.3% to 78.6%, 82.0% to 86.8% and 0.394 to 0.511, respectively. Though specificity slightly decreased from 75.56% to 73.33%, the difference was not statistically significant (p > 0.05). In general, the clinical application value of CAD is promising, and its instrumental value for junior radiologists is significant.
The aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This multicenter prospective study included 494 patients (565 thyroid nodules) who underwent surgery or biopsy after ultrasonography at four hospitals from January 2019 to September 2019. The diagnostic performance metrics of different readers were calculated and compared with the pathologic results. The sensitivity of CAD was outstanding and was equivalent to that of a senior radiologist (90.51% vs. 88.47%, p > 0.05). The area under the curve of CAD was equivalent to that of a junior radiologist (0.748 vs. 0.739, p > 0.05). However, the specificity was only 49.63%, which was lower than those of the three radiologists (75.56%, 85.93% and 90.37% for the junior, intermediate and senior radiologists, respectively). The diagnostic performance of the junior radiologist was significantly improved with the aid of CAD (junior + CAD). The sensitivity and area under the curve of junior + CAD were improved from 72.20% to 89.93% and from 0.739 to 0.816, respectively (both p values <0.05), and the positive predictive value, negative predictive value and κ coefficient improved from 76.3% to 78.6%, 82.0% to 86.8% and 0.394 to 0.511, respectively. Though specificity slightly decreased from 75.56% to 73.33%, the difference was not statistically significant (p > 0.05). In general, the clinical application value of CAD is promising, and its instrumental value for junior radiologists is significant.The aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This multicenter prospective study included 494 patients (565 thyroid nodules) who underwent surgery or biopsy after ultrasonography at four hospitals from January 2019 to September 2019. The diagnostic performance metrics of different readers were calculated and compared with the pathologic results. The sensitivity of CAD was outstanding and was equivalent to that of a senior radiologist (90.51% vs. 88.47%, p > 0.05). The area under the curve of CAD was equivalent to that of a junior radiologist (0.748 vs. 0.739, p > 0.05). However, the specificity was only 49.63%, which was lower than those of the three radiologists (75.56%, 85.93% and 90.37% for the junior, intermediate and senior radiologists, respectively). The diagnostic performance of the junior radiologist was significantly improved with the aid of CAD (junior + CAD). The sensitivity and area under the curve of junior + CAD were improved from 72.20% to 89.93% and from 0.739 to 0.816, respectively (both p values <0.05), and the positive predictive value, negative predictive value and κ coefficient improved from 76.3% to 78.6%, 82.0% to 86.8% and 0.394 to 0.511, respectively. Though specificity slightly decreased from 75.56% to 73.33%, the difference was not statistically significant (p > 0.05). In general, the clinical application value of CAD is promising, and its instrumental value for junior radiologists is significant.
Author Su, Qi-Chen
You, Jian-Hong
Lyu, Guo-Rong
Wang, Kang-Jian
Ye, Feng-Ying
Li, Shang-Qing
Cai, Ming-Li
Author_xml – sequence: 1
  givenname: Feng-Ying
  surname: Ye
  fullname: Ye, Feng-Ying
  organization: Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
– sequence: 2
  givenname: Guo-Rong
  surname: Lyu
  fullname: Lyu, Guo-Rong
  email: lgr_feus@sina.com
  organization: Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, China
– sequence: 3
  givenname: Shang-Qing
  surname: Li
  fullname: Li, Shang-Qing
  organization: Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, China
– sequence: 4
  givenname: Jian-Hong
  surname: You
  fullname: You, Jian-Hong
  organization: Department of Ultrasound, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
– sequence: 5
  givenname: Kang-Jian
  surname: Wang
  fullname: Wang, Kang-Jian
  organization: Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
– sequence: 6
  givenname: Ming-Li
  surname: Cai
  fullname: Cai, Ming-Li
  organization: Department of Ultrasound, Jinjiang City Hospital, Jinjiang, China
– sequence: 7
  givenname: Qi-Chen
  surname: Su
  fullname: Su, Qi-Chen
  organization: Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
BookMark eNqNks9uEzEQxleoSKSFd7A4cdlgezfe3R4QISl_pFRUpJW4WY49m07Y2Kntbcn78WB4mx5QJaScxpK_7-fxfHOanVhnIcveMjpmlIn3m3HfRa_CFswK3ZhTTse0GVPWvMhGrK6anDfs50k2ogVl-UTw5lV2GsKGUlqJohplf-ao1taFiJpcgW-d3yqrgbiW3DySXW8Nmbntro_g8ykaMOTJg4EsXRsflIdHRaqGPGC8Jde3Kg6IH8qg69waQwyHmzm2LXiwkSzgHrowqC5-78BHDEDS88m79w4NuVQdrm1qZn9OpuQy_RN18oEnV96FHeiI90CWsTf719nLVnUB3jzVs-zm88X17Gu--P7l22y6yHVZsZgzVa2EZrqglSpKpoSB1milV7oQrKiEnpg0ppoaPWlrKEsqVKlqvuKK87opdXGWvTtwd97d9RCi3GLQ0HXKguuD5KUoBRUT3iTp-UGqU7PBQyt3HrfK7yWjcohObuS_0ckhOkkbmaJL5o_PzBqjiuhsMmB3HGJ-QKQZwz2Cl0EjpGQN-jQ6aRweh_nwDKM7tKhV9wv2EDau9zZNXDIZuKRyOazZsGU8HcqiniTAp_8Dju3iL4rA8wY
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e14780
crossref_primary_10_1210_endocr_bqac135
crossref_primary_10_1002_ird3_63
crossref_primary_10_1142_S021951942340105X
crossref_primary_10_1186_s12880_022_00874_7
crossref_primary_10_1007_s12020_024_04053_2
crossref_primary_10_1155_2021_5327331
crossref_primary_10_3390_life11111148
crossref_primary_10_1155_2022_9492056
crossref_primary_10_32604_cmc_2021_018671
crossref_primary_10_4103_jmu_jmu_182_21
crossref_primary_10_1007_s00330_021_08298_7
crossref_primary_10_1007_s13187_024_02502_0
crossref_primary_10_1089_thy_2024_0410
crossref_primary_10_2196_64649
Cites_doi 10.1016/j.ejrad.2004.11.021
10.1002/hed.25049
10.1016/j.cmpb.2011.10.001
10.1002/jum.15065
10.1016/j.cmpb.2017.12.012
10.1007/s11548-019-01991-5
10.1155/2013/965212
10.2307/2531595
10.1148/radiol.2541090460
10.1097/00019616-199106000-00009
10.1007/BF02295996
10.7863/ultra.14.09057
10.3348/kjr.2013.14.1.110
10.1148/radiol.11110206
10.1016/j.ultrasmedbio.2014.06.009
10.1097/MD.0000000000014146
10.1089/thy.2008.0354
10.1016/j.cmpb.2017.04.008
10.14366/usg.15027
10.12659/MSM.917825
10.1016/j.jacr.2017.01.046
10.7326/0003-4819-118-4-199302150-00007
10.1001/jamainternmed.2015.5231
10.1089/thy.2017.0500
10.1089/thy.2006.16.983
10.1371/journal.pone.0200721
10.7863/jum.2005.24.7.897
10.4143/crt.2018.143
10.1016/j.ejrad.2011.11.011
10.1097/RLI.0000000000000464
10.2147/RMHP.S228752
10.1007/s00330-018-5772-9
10.1016/j.media.2016.07.007
10.2214/AJR.09.2541
10.2214/AJR.18.20740
10.1007/s00330-015-3621-7
10.1038/sdata.2017.177
10.1109/JBHI.2017.2771211
10.1016/j.ultrasmedbio.2019.05.032
10.1089/thy.2017.0363
10.1111/cen.12515
10.1016/j.ejrad.2019.02.029
10.1089/thy.2015.0530
10.4158/EP161208.GL
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.ultrasmedbio.2020.09.019
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1879-291X
EndPage 124
ExternalDocumentID 10_1016_j_ultrasmedbio_2020_09_019
S0301562920304385
1_s2_0_S0301562920304385
GroupedDBID ---
--K
-DZ
.1-
.55
.FO
.GJ
0R~
123
1B1
1P~
1RT
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
AAEDT
AAEDW
AALRI
AAQFI
AAQXK
AAWTL
AAXUO
AAYWO
ABDPE
ABJNI
ABLJU
ABMAC
ABNEU
ABOCM
ABWVN
ACGFS
ACIUM
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AGCQF
AGQPQ
AHHHB
AIGII
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BELOY
C5W
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
FIRID
G-2
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M29
M41
MO0
NQ-
O9-
OI~
OU0
P2P
R2-
ROL
RPZ
SAE
SDG
SEL
SES
SEW
SSZ
WUQ
X7M
XH2
Z5R
ZGI
ZXP
ZY4
~S-
AACTN
ABTAH
ADPAM
AFCTW
RIG
AAIAV
AGZHU
AHPSJ
ALXNB
G8K
ZA5
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c471t-1a7b6c1c307a341a6defdcacbc361376c5d03080dc5f8e4406a4a82b2a22894c3
ISSN 0301-5629
1879-291X
IngestDate Tue Aug 05 10:15:30 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Tue Jul 01 01:25:05 EDT 2025
Fri Feb 23 02:45:14 EST 2024
Tue Feb 25 20:02:52 EST 2025
Tue Aug 26 19:37:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diagnostic performance
Ultrasound
Computer-aided diagnosis
Thyroid
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-1a7b6c1c307a341a6defdcacbc361376c5d03080dc5f8e4406a4a82b2a22894c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 2464606529
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2464606529
crossref_primary_10_1016_j_ultrasmedbio_2020_09_019
crossref_citationtrail_10_1016_j_ultrasmedbio_2020_09_019
elsevier_sciencedirect_doi_10_1016_j_ultrasmedbio_2020_09_019
elsevier_clinicalkeyesjournals_1_s2_0_S0301562920304385
elsevier_clinicalkey_doi_10_1016_j_ultrasmedbio_2020_09_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Ultrasound in medicine & biology
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Nishio, Sugiyama, Yakami, Ueno, Kubo, Kuroda, Togashi (bib0034) 2018; 13
Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard BG, Gilbert J, Harrison B, Johnson SJ, Giles TE. British Thyroid Association Guidelines for the Management of Thyroid Cancer. 2014;81:1–122.
Ota, Ito, Matsuzuka, Kuma, Fukata, Morita, Kobayashi, Nakamura, Kakudo, Amino (bib0035) 2006; 16
Cheng, Ni, Chou, Qin, Tiu, Chang, Huang, Shen, Chen (bib0008) 2016; 6
Yassin, Omran, El Houby, Allam (bib0047) 2018; 156
Pitoia, Miyauchi (bib0041) 2016; 26
De Nicola, Szejnfeld, Logullo, Wolosker, Souza, Chiferi (bib0012) 2005; 24
Lu, Shi, Zhao, Song, Li (bib0030) 2019; 38
Lehman, Wellman, Buist, Kerlikowske, Tosteson, Miglioretti (bib0028) 2015; 175
Park, Kim, Kim, Kim, Son, Kwak (bib0037) 2009; 193
Seo, Na, Kim, Kim, Yoon (bib0044) 2015; 25
Kwak, Koo, Youk, Kim, Moon, Son, Kim (bib0024) 2010; 254
Gharib, Papini, Garber, Duick, Harrell, Hegedüs, Paschke, Valcavi, Vitti (bib0016) 2016; 22
Jung, Won, Kong, Lee (bib0019) 2018; 50
Tessler, Middleton, Grant, Hoang, Berland, Teefey, Cronan, Beland, Desser, Frates (bib0046) 2017; 14
DeLong, DeLong, Clarke-Pearson (bib0013) 1988; 44
Kim, Kwak, Kim, Choi, Moon (bib0020) 2012; 81
Nayak, Kayal, Arya, Culli, Krishan, Agarwal, Mehndiratta (bib0033) 2019; 14
Chang KJ, Chen WH, Chen A, Chen CN, Ho MC, Tai HC, Wu MH, Tsai PW. Method for retrieving a tumor contour of an image processing system. 2013 [P]: China, CN 102156874 B. 2015-07-29.
Komatsu, Hanamura, Tsuchiya, Seki, Kuroda (bib0022) 1994; 12
Jeong, Kim, Ha, Park, Cho, Han (bib0018) 2019; 29
Russ (bib0043) 2016; 35
Acharya, Faust, Sree, Molinari, Suri (bib0001) 2012; 107
Balleyguier, Kinkel, Fermanian, Malan, Djen, Taourel, Helenon (bib0003) 2005; 54
Gao, Liu, Jiang, Song, Wang, Liu, Wang, Wu, Li, Hao (bib0014) 2018; 40
Cibas, Ali (bib0010) 2017; 27
Ardakani, Gharbali, Mohammadi (bib0002) 2015; 34
Gharib, Goellner (bib0015) 1993; 118
Choi, Kim, Kwak, Kim, Son (bib0009) 2010; 20
McNemar (bib0032) 1947; 12
Ouyang, Guo, Ouyang, Liu, Lin, Meng, Huang, Chen, Qiugen, Yang (bib0036) 2019; 113
Caruso, Mazzaferri (bib0004) 1991; 1
Kim, Ha, Han (bib0021) 2019; 45
Kooi, Litjens, Van Ginneken, Gubern-Mérida, Sánchez, Mann, den Heeten, Karssemeijer (bib0023) 2017; 35
Kwak, Jung, Baek, Baek, Choi, Choi, Jung, Kim, Kim, Kim (bib0026) 2013; 14
Da Fang, Xu, Liu, Ma, Lu (bib0011) 2019; 25
Lee, Gimenez, Hoogi, Miyake, Gorovoy, Rubin (bib0027) 2017; 4
Li, Wang, Lei, Song, Tang, Li, Gong, Zhu (bib0029) 2019; 12
Chang, Chen, Chang, Yang, Lo, Ko, Lee, Liu, Chang (bib0006) 2017; 145
Chen, Chen, Wu, Ho, Tai, Kuo, Huang, Wang, Chen, Chang (bib0007) 2014; 40
Kwak, Han, Yoon, Moon, Son, Park, Jung, Choi, Kim, Kim (bib0025) 2011; 260
Ha, Ahn, Baek, Ahn, Chung, Cho, Park (bib0017) 2017; 27
Park, Kim, La Yun, Jang, Kim, Jang, Lee, Lee (bib0038) 2019; 98
Reverter, Vázquez, Puig-Domingo (bib0042) 2019; 213
Marvasti, Yörük, Acar (bib0031) 2017; 22
Silva, Schaefer-Prokop, Jacobs, Capretti, Ciompi, van Ginneken, Pastorino, Sverzellati (bib0045) 2018; 53
Pellegriti, Frasca, Regalbuto, Squatrito, Vigneri (bib0039) 2013; 2013
Ardakani (10.1016/j.ultrasmedbio.2020.09.019_bib0002) 2015; 34
Caruso (10.1016/j.ultrasmedbio.2020.09.019_bib0004) 1991; 1
Jeong (10.1016/j.ultrasmedbio.2020.09.019_bib0018) 2019; 29
Park (10.1016/j.ultrasmedbio.2020.09.019_bib0038) 2019; 98
Reverter (10.1016/j.ultrasmedbio.2020.09.019_bib0042) 2019; 213
Ota (10.1016/j.ultrasmedbio.2020.09.019_bib0035) 2006; 16
Russ (10.1016/j.ultrasmedbio.2020.09.019_bib0043) 2016; 35
Pellegriti (10.1016/j.ultrasmedbio.2020.09.019_bib0039) 2013; 2013
Ha (10.1016/j.ultrasmedbio.2020.09.019_bib0017) 2017; 27
Lee (10.1016/j.ultrasmedbio.2020.09.019_bib0027) 2017; 4
Yassin (10.1016/j.ultrasmedbio.2020.09.019_bib0047) 2018; 156
Kooi (10.1016/j.ultrasmedbio.2020.09.019_bib0023) 2017; 35
Choi (10.1016/j.ultrasmedbio.2020.09.019_bib0009) 2010; 20
Lehman (10.1016/j.ultrasmedbio.2020.09.019_bib0028) 2015; 175
Marvasti (10.1016/j.ultrasmedbio.2020.09.019_bib0031) 2017; 22
Acharya (10.1016/j.ultrasmedbio.2020.09.019_bib0001) 2012; 107
Ouyang (10.1016/j.ultrasmedbio.2020.09.019_bib0036) 2019; 113
Balleyguier (10.1016/j.ultrasmedbio.2020.09.019_bib0003) 2005; 54
10.1016/j.ultrasmedbio.2020.09.019_bib0005
Park (10.1016/j.ultrasmedbio.2020.09.019_bib0037) 2009; 193
Kim (10.1016/j.ultrasmedbio.2020.09.019_bib0020) 2012; 81
Tessler (10.1016/j.ultrasmedbio.2020.09.019_bib0046) 2017; 14
Lu (10.1016/j.ultrasmedbio.2020.09.019_bib0030) 2019; 38
Li (10.1016/j.ultrasmedbio.2020.09.019_bib0029) 2019; 12
Nishio (10.1016/j.ultrasmedbio.2020.09.019_bib0034) 2018; 13
10.1016/j.ultrasmedbio.2020.09.019_bib0040
Chen (10.1016/j.ultrasmedbio.2020.09.019_bib0007) 2014; 40
Kim (10.1016/j.ultrasmedbio.2020.09.019_bib0021) 2019; 45
DeLong (10.1016/j.ultrasmedbio.2020.09.019_bib0013) 1988; 44
Komatsu (10.1016/j.ultrasmedbio.2020.09.019_bib0022) 1994; 12
Seo (10.1016/j.ultrasmedbio.2020.09.019_bib0044) 2015; 25
De Nicola (10.1016/j.ultrasmedbio.2020.09.019_bib0012) 2005; 24
Gharib (10.1016/j.ultrasmedbio.2020.09.019_bib0015) 1993; 118
Kwak (10.1016/j.ultrasmedbio.2020.09.019_bib0026) 2013; 14
Cibas (10.1016/j.ultrasmedbio.2020.09.019_bib0010) 2017; 27
Gao (10.1016/j.ultrasmedbio.2020.09.019_bib0014) 2018; 40
Nayak (10.1016/j.ultrasmedbio.2020.09.019_bib0033) 2019; 14
Chang (10.1016/j.ultrasmedbio.2020.09.019_bib0006) 2017; 145
Cheng (10.1016/j.ultrasmedbio.2020.09.019_bib0008) 2016; 6
McNemar (10.1016/j.ultrasmedbio.2020.09.019_bib0032) 1947; 12
Silva (10.1016/j.ultrasmedbio.2020.09.019_bib0045) 2018; 53
Kwak (10.1016/j.ultrasmedbio.2020.09.019_bib0025) 2011; 260
Pitoia (10.1016/j.ultrasmedbio.2020.09.019_bib0041) 2016; 26
Gharib (10.1016/j.ultrasmedbio.2020.09.019_bib0016) 2016; 22
Da Fang (10.1016/j.ultrasmedbio.2020.09.019_bib0011) 2019; 25
Jung (10.1016/j.ultrasmedbio.2020.09.019_bib0019) 2018; 50
Kwak (10.1016/j.ultrasmedbio.2020.09.019_bib0024) 2010; 254
References_xml – volume: 12
  start-page: 293
  year: 1994
  end-page: 299
  ident: bib0022
  article-title: Preoperative diagnosis of the follicular variant of papillary carcinoma of the thyroid: discrepancy between image and cytologic diagnoses
  publication-title: Radiat Med
– volume: 4
  year: 2017
  ident: bib0027
  article-title: A curated mammography data set for use in computer-aided detection and diagnosis research
  publication-title: Sci Data
– volume: 29
  start-page: 1978
  year: 2019
  end-page: 1985
  ident: bib0018
  article-title: Computer-aided diagnosis system for thyroid nodules on ultrasonography: Diagnostic performance and reproducibility based on the experience level of operators
  publication-title: Eur Radiol
– volume: 113
  start-page: 251
  year: 2019
  end-page: 257
  ident: bib0036
  article-title: Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules
  publication-title: Eur J Radiol
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: bib0013
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
– volume: 13
  year: 2018
  ident: bib0034
  article-title: Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning
  publication-title: PloS One
– volume: 45
  start-page: 2672
  year: 2019
  end-page: 2678
  ident: bib0021
  article-title: Real-world performance of computer-aided diagnosis system for thyroid nodules using ultrasonography
  publication-title: Ultrasound Med Biol
– volume: 213
  start-page: 169
  year: 2019
  end-page: 174
  ident: bib0042
  article-title: Diagnostic performance evaluation of a computer-assisted imaging analysis system for ultrasound risk stratification of thyroid nodules
  publication-title: AJR Am J Roentgenol
– volume: 1
  start-page: 194
  year: 1991
  end-page: 202
  ident: bib0004
  article-title: Fine needle aspiration biopsy in the management of thyroid nodules
  publication-title: Endocrinologist
– volume: 175
  start-page: 1828
  year: 2015
  end-page: 1837
  ident: bib0028
  article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection
  publication-title: JAMA Intern Med
– volume: 193
  start-page: W416
  year: 2009
  end-page: W423
  ident: bib0037
  article-title: Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules
  publication-title: AJR Am J Roentgenol
– volume: 98
  start-page: e14146
  year: 2019
  ident: bib0038
  article-title: A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radiologist
  publication-title: Medicine (Baltimore)
– volume: 40
  start-page: 2581
  year: 2014
  end-page: 2589
  ident: bib0007
  article-title: Computerized quantification of ultrasonic heterogeneity in thyroid nodules
  publication-title: Ultrasound Med Biol
– volume: 2013
  year: 2013
  ident: bib0039
  article-title: Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors
  publication-title: J Cancer Epidemiol
– volume: 20
  start-page: 167
  year: 2010
  end-page: 172
  ident: bib0009
  article-title: Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules
  publication-title: Thyroid
– volume: 22
  start-page: 1561
  year: 2017
  end-page: 1570
  ident: bib0031
  article-title: Computer-aided medical image annotation: Preliminary results with liver lesions in CT
  publication-title: IEEE J Biomed Health Informatics
– volume: 12
  start-page: 225
  year: 2019
  ident: bib0029
  article-title: Large-scale comparative analysis reveals a simple model to predict the prevalence of thyroid nodules
  publication-title: Risk Manag Healthc Policy
– volume: 145
  start-page: 45
  year: 2017
  end-page: 51
  ident: bib0006
  article-title: Computer-aided diagnosis of liver tumors on computed tomography images
  publication-title: Comput Methods Programs Biomed
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: bib0032
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
– volume: 25
  start-page: 2153
  year: 2015
  end-page: 2162
  ident: bib0044
  article-title: Ultrasound-based risk stratification for malignancy in thyroid nodules: A four-tier categorization system
  publication-title: Eur Radiol
– volume: 25
  start-page: 9409
  year: 2019
  ident: bib0011
  article-title: A predictive model to distinguish papillary thyroid carcinomas from benign thyroid nodules using ultrasonographic features: A single-center, retrospective analysis
  publication-title: Med Sci Monit
– reference: Chang KJ, Chen WH, Chen A, Chen CN, Ho MC, Tai HC, Wu MH, Tsai PW. Method for retrieving a tumor contour of an image processing system. 2013 [P]: China, CN 102156874 B. 2015-07-29.
– volume: 50
  start-page: 303
  year: 2018
  end-page: 316
  ident: bib0019
  article-title: Community of Population-Based Regional Cancer Registries. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2015
  publication-title: Cancer Res Treat
– volume: 16
  start-page: 983
  year: 2006
  end-page: 987
  ident: bib0035
  article-title: Usefulness of ultrasonography for diagnosis of malignant lymphoma of the thyroid
  publication-title: Thyroid
– volume: 40
  start-page: 778
  year: 2018
  end-page: 783
  ident: bib0014
  article-title: Computer‐aided system for diagnosing thyroid nodules on ultrasound: A comparison with radiologist‐based clinical assessments
  publication-title: Head Neck
– volume: 27
  start-page: 1550
  year: 2017
  end-page: 1557
  ident: bib0017
  article-title: Validation of three scoring risk-stratification models for thyroid nodules
  publication-title: Thyroid
– volume: 254
  start-page: 292
  year: 2010
  end-page: 300
  ident: bib0024
  article-title: Value of US correlation of a thyroid nodule with initially benign cytologic results
  publication-title: Radiology
– volume: 6
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0008
  article-title: Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
  publication-title: Sci Rep
– volume: 81
  start-page: e352
  year: 2012
  end-page: e356
  ident: bib0020
  article-title: Man to man training: Can it help improve the diagnostic performances and interobserver variabilities of thyroid ultrasonography in residents?
  publication-title: Eur J Radiol
– reference: Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard BG, Gilbert J, Harrison B, Johnson SJ, Giles TE. British Thyroid Association Guidelines for the Management of Thyroid Cancer. 2014;81:1–122.
– volume: 35
  start-page: 25
  year: 2016
  ident: bib0043
  article-title: Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: Description and reflections
  publication-title: Ultrasonography
– volume: 14
  start-page: 587
  year: 2017
  end-page: 595
  ident: bib0046
  article-title: ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White paper of the ACR TI-RADS committee
  publication-title: J Am Coll Radiol
– volume: 38
  start-page: 3291
  year: 2019
  end-page: 3300
  ident: bib0030
  article-title: Value of computer software for assisting sonographers in the diagnosis of Thyroid Imaging Reporting and Data System grade 3 and 4 thyroid space‐occupying lesions
  publication-title: J Ultrasound Med
– volume: 156
  start-page: 25
  year: 2018
  end-page: 45
  ident: bib0047
  article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review
  publication-title: Comput Methods Programs Biomed
– volume: 260
  start-page: 892
  year: 2011
  end-page: 899
  ident: bib0025
  article-title: Thyroid Imaging Reporting and Data System for US features of nodules: A step in establishing better stratification of cancer risk
  publication-title: Radiology
– volume: 54
  start-page: 90
  year: 2005
  end-page: 96
  ident: bib0003
  article-title: Computer-aided detection (CAD) in mammography: Does it help the junior or the senior radiologist?
  publication-title: Eur J Radiol
– volume: 34
  start-page: 1983
  year: 2015
  end-page: 1989
  ident: bib0002
  article-title: Classification of benign and malignant thyroid nodules using wavelet texture analysis of sonograms
  publication-title: J Ultrasound Med
– volume: 14
  start-page: 110
  year: 2013
  end-page: 117
  ident: bib0026
  article-title: Image reporting and characterization system for ultrasound features of thyroid nodules: multicentric Korean retrospective study
  publication-title: Korean J Radiol
– volume: 22
  start-page: 1
  year: 2016
  end-page: 60
  ident: bib0016
  article-title: American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules—2016 update
  publication-title: Endocr Practice
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  ident: bib0023
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med Image Anal
– volume: 107
  start-page: 233
  year: 2012
  end-page: 241
  ident: bib0001
  article-title: ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform
  publication-title: Comput Methods Programs Biomed
– volume: 27
  start-page: 1341
  year: 2017
  end-page: 1346
  ident: bib0010
  article-title: The 2017 Bethesda System for Reporting Thyroid Cytopathology
  publication-title: Thyroid
– volume: 24
  start-page: 897
  year: 2005
  end-page: 904
  ident: bib0012
  article-title: Flow pattern and vascular resistive index as predictors of malignancy risk in thyroid follicular neoplasms
  publication-title: J Ultrasound Med
– volume: 26
  start-page: 319
  year: 2016
  end-page: 321
  ident: bib0041
  article-title: 2015 American Thyroid Association guidelines for thyroid nodules and differentiated thyroid cancer and their implementation in various care settings
  publication-title: Thyroid
– volume: 14
  start-page: 1341
  year: 2019
  end-page: 1352
  ident: bib0033
  article-title: Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT
  publication-title: Int J Computer Assisted Radiol Surg
– volume: 53
  start-page: 441
  year: 2018
  end-page: 449
  ident: bib0045
  article-title: Detection of subsolid nodules in lung cancer screening: Complementary sensitivity of visual reading and computer-aided diagnosis
  publication-title: Invest Radiol
– volume: 118
  start-page: 282
  year: 1993
  end-page: 289
  ident: bib0015
  article-title: Fine-needle aspiration biopsy of the thyroid: An appraisal
  publication-title: Ann Intern Med
– volume: 54
  start-page: 90
  year: 2005
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0003
  article-title: Computer-aided detection (CAD) in mammography: Does it help the junior or the senior radiologist?
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2004.11.021
– volume: 40
  start-page: 778
  year: 2018
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0014
  article-title: Computer‐aided system for diagnosing thyroid nodules on ultrasound: A comparison with radiologist‐based clinical assessments
  publication-title: Head Neck
  doi: 10.1002/hed.25049
– volume: 107
  start-page: 233
  year: 2012
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0001
  article-title: ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2011.10.001
– volume: 38
  start-page: 3291
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0030
  article-title: Value of computer software for assisting sonographers in the diagnosis of Thyroid Imaging Reporting and Data System grade 3 and 4 thyroid space‐occupying lesions
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.15065
– volume: 156
  start-page: 25
  year: 2018
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0047
  article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.12.012
– volume: 14
  start-page: 1341
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0033
  article-title: Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT
  publication-title: Int J Computer Assisted Radiol Surg
  doi: 10.1007/s11548-019-01991-5
– volume: 2013
  year: 2013
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0039
  article-title: Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors
  publication-title: J Cancer Epidemiol
  doi: 10.1155/2013/965212
– volume: 44
  start-page: 837
  year: 1988
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0013
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 254
  start-page: 292
  year: 2010
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0024
  article-title: Value of US correlation of a thyroid nodule with initially benign cytologic results
  publication-title: Radiology
  doi: 10.1148/radiol.2541090460
– volume: 1
  start-page: 194
  year: 1991
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0004
  article-title: Fine needle aspiration biopsy in the management of thyroid nodules
  publication-title: Endocrinologist
  doi: 10.1097/00019616-199106000-00009
– volume: 12
  start-page: 153
  year: 1947
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0032
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 34
  start-page: 1983
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0002
  article-title: Classification of benign and malignant thyroid nodules using wavelet texture analysis of sonograms
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.14.09057
– volume: 14
  start-page: 110
  year: 2013
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0026
  article-title: Image reporting and characterization system for ultrasound features of thyroid nodules: multicentric Korean retrospective study
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2013.14.1.110
– volume: 260
  start-page: 892
  year: 2011
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0025
  article-title: Thyroid Imaging Reporting and Data System for US features of nodules: A step in establishing better stratification of cancer risk
  publication-title: Radiology
  doi: 10.1148/radiol.11110206
– volume: 40
  start-page: 2581
  year: 2014
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0007
  article-title: Computerized quantification of ultrasonic heterogeneity in thyroid nodules
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.06.009
– volume: 98
  start-page: e14146
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0038
  article-title: A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radiologist
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000014146
– volume: 20
  start-page: 167
  year: 2010
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0009
  article-title: Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules
  publication-title: Thyroid
  doi: 10.1089/thy.2008.0354
– volume: 145
  start-page: 45
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0006
  article-title: Computer-aided diagnosis of liver tumors on computed tomography images
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.04.008
– volume: 35
  start-page: 25
  year: 2016
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0043
  article-title: Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: Description and reflections
  publication-title: Ultrasonography
  doi: 10.14366/usg.15027
– volume: 25
  start-page: 9409
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0011
  article-title: A predictive model to distinguish papillary thyroid carcinomas from benign thyroid nodules using ultrasonographic features: A single-center, retrospective analysis
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.917825
– volume: 14
  start-page: 587
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0046
  article-title: ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White paper of the ACR TI-RADS committee
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.01.046
– volume: 118
  start-page: 282
  year: 1993
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0015
  article-title: Fine-needle aspiration biopsy of the thyroid: An appraisal
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-118-4-199302150-00007
– volume: 175
  start-page: 1828
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0028
  article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2015.5231
– volume: 27
  start-page: 1341
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0010
  article-title: The 2017 Bethesda System for Reporting Thyroid Cytopathology
  publication-title: Thyroid
  doi: 10.1089/thy.2017.0500
– volume: 12
  start-page: 293
  year: 1994
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0022
  article-title: Preoperative diagnosis of the follicular variant of papillary carcinoma of the thyroid: discrepancy between image and cytologic diagnoses
  publication-title: Radiat Med
– volume: 16
  start-page: 983
  year: 2006
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0035
  article-title: Usefulness of ultrasonography for diagnosis of malignant lymphoma of the thyroid
  publication-title: Thyroid
  doi: 10.1089/thy.2006.16.983
– volume: 13
  year: 2018
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0034
  article-title: Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning
  publication-title: PloS One
  doi: 10.1371/journal.pone.0200721
– volume: 24
  start-page: 897
  year: 2005
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0012
  article-title: Flow pattern and vascular resistive index as predictors of malignancy risk in thyroid follicular neoplasms
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2005.24.7.897
– volume: 50
  start-page: 303
  year: 2018
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0019
  article-title: Community of Population-Based Regional Cancer Registries. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2015
  publication-title: Cancer Res Treat
  doi: 10.4143/crt.2018.143
– volume: 81
  start-page: e352
  year: 2012
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0020
  article-title: Man to man training: Can it help improve the diagnostic performances and interobserver variabilities of thyroid ultrasonography in residents?
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2011.11.011
– volume: 53
  start-page: 441
  year: 2018
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0045
  article-title: Detection of subsolid nodules in lung cancer screening: Complementary sensitivity of visual reading and computer-aided diagnosis
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000464
– volume: 12
  start-page: 225
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0029
  article-title: Large-scale comparative analysis reveals a simple model to predict the prevalence of thyroid nodules
  publication-title: Risk Manag Healthc Policy
  doi: 10.2147/RMHP.S228752
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0008
  article-title: Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
  publication-title: Sci Rep
– volume: 29
  start-page: 1978
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0018
  article-title: Computer-aided diagnosis system for thyroid nodules on ultrasonography: Diagnostic performance and reproducibility based on the experience level of operators
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5772-9
– volume: 35
  start-page: 303
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0023
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.07.007
– volume: 193
  start-page: W416
  year: 2009
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0037
  article-title: Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.09.2541
– volume: 213
  start-page: 169
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0042
  article-title: Diagnostic performance evaluation of a computer-assisted imaging analysis system for ultrasound risk stratification of thyroid nodules
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.18.20740
– volume: 25
  start-page: 2153
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0044
  article-title: Ultrasound-based risk stratification for malignancy in thyroid nodules: A four-tier categorization system
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3621-7
– volume: 4
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0027
  article-title: A curated mammography data set for use in computer-aided detection and diagnosis research
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.177
– volume: 22
  start-page: 1561
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0031
  article-title: Computer-aided medical image annotation: Preliminary results with liver lesions in CT
  publication-title: IEEE J Biomed Health Informatics
  doi: 10.1109/JBHI.2017.2771211
– volume: 45
  start-page: 2672
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0021
  article-title: Real-world performance of computer-aided diagnosis system for thyroid nodules using ultrasonography
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2019.05.032
– volume: 27
  start-page: 1550
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0017
  article-title: Validation of three scoring risk-stratification models for thyroid nodules
  publication-title: Thyroid
  doi: 10.1089/thy.2017.0363
– ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0040
  doi: 10.1111/cen.12515
– ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0005
– volume: 113
  start-page: 251
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0036
  article-title: Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.02.029
– volume: 26
  start-page: 319
  year: 2016
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0041
  article-title: 2015 American Thyroid Association guidelines for thyroid nodules and differentiated thyroid cancer and their implementation in various care settings
  publication-title: Thyroid
  doi: 10.1089/thy.2015.0530
– volume: 22
  start-page: 1
  year: 2016
  ident: 10.1016/j.ultrasmedbio.2020.09.019_bib0016
  article-title: American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules—2016 update
  publication-title: Endocr Practice
  doi: 10.4158/EP161208.GL
SSID ssj0007637
Score 2.4050198
Snippet The aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This multicenter...
AbstractThe aim of the work described here was to evaluate the diagnostic performance of ultrasound thyroid computer-aided diagnosis (CAD) software. This...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms Computer-aided diagnosis
Diagnostic performance
Radiology
Thyroid
Ultrasound
Title Diagnostic Performance of Ultrasound Computer-Aided Diagnosis Software Compared with That of Radiologists with Different Levels of Expertise for Thyroid Malignancy: A Multicenter Prospective Study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0301562920304385
https://www.clinicalkey.es/playcontent/1-s2.0-S0301562920304385
https://dx.doi.org/10.1016/j.ultrasmedbio.2020.09.019
https://www.proquest.com/docview/2464606529
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLa2TiBeEAwQ5SYj8TZ5apw7iIeyARXaEKwtGk-WYydbp6pFTStUfh8_jHNsJ013kQq8RJUbx27O1-PP9neOCXkVK8l1EYL3yyVnQaI1S4pAMxjMNWBEhWGEwcnHn6PeMPh0Gp5ubZOGamkxz_bVr2vjSv7FqlAGdsUo2b-wbP1QKIDPYF-4goXhupGND61ODnOufmkEAAD_G47nM1nikUl71bkNrDvSwC5dnVG51wcP_BOFXwdrOvTBuTTqgBOpTSgL4MCFwB26w1Tme0coNTIiEJMqGQ90NnrFwflyNh2hcmM8OsNUHksb-W7CfFEHms8wNKEK7zQqxrV95Ua_R5N649_g06WLWi3yGt6dT87Y92r4RWHRcmGW-hdTdjJtFBvRQh9Xx9nXxu3g7AyO4U_CetX9bhGEe5cWQeronDXxKM72GPA765Jz6-CTOGU8Ncf01COAzfm5hnTrzj0b4OqYgWejva8MOnb942J_YV4RvBp4IfvQy47JoOtGhPWk3n3sG3aN49a0n4TbZIfDRIe3yM7Hd0ffujWbAP8f250w-1uqxLlGo3hTizeRrEt0w3CowT1y101-aNci-T7Zyie75JY9DnW5S24fO3tDoVEmq_IB-b0COW2AnE4LugILXQc5rUFOK5DTCuQUoUwR5PiIJsjtNzXIqQU53lWDnELz1IGcrkD-mnZpA-K0AXFqIP6QDD-8Hxz0mDt6hClga3PmyTiLlKdgBJTA82Sk80IrqTLlA_-NIxVqTPTU0SoskjwAViwDmfCMS86TNFD-I9KaTCf5Y0JjCX4y03GYBl4Q6gKf7HtB4Re6yDLpt0la2Uool5cfj4cZi0qAeSGadhZoZ9FJBdi5Tfy67g-bnWajWm8qSIgq_hoYgwA8b1Q7vq52XjrHWApPlFx0xBWMt8nbuqbj95a3b9zyywq_AgZB3NmUk3y6KAUPoiCCyRRPn_xnG0_JnZV_eUZa89kifw7Tjnn2wv0z_wDtZjtd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Performance+of+Ultrasound+Computer-Aided+Diagnosis+Software+Compared+with+That+of+Radiologists+with+Different+Levels+of+Expertise+for+Thyroid+Malignancy%3A+A+Multicenter+Prospective+Study&rft.jtitle=Ultrasound+in+medicine+%26+biology&rft.au=Ye%2C+Feng-Ying&rft.au=Lyu%2C+Guo-Rong&rft.au=Li%2C+Shang-Qing&rft.au=You%2C+Jian-Hong&rft.date=2021-01-01&rft.pub=Elsevier+Inc&rft.issn=0301-5629&rft.eissn=1879-291X&rft.volume=47&rft.issue=1&rft.spage=114&rft.epage=124&rft_id=info:doi/10.1016%2Fj.ultrasmedbio.2020.09.019&rft.externalDocID=S0301562920304385
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03015629%2FS0301562920X00123%2Fcov150h.gif