LDA-based online topic detection using tensor factorization

In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely co...

Full description

Saved in:
Bibliographic Details
Published inJournal of information science Vol. 39; no. 4; pp. 459 - 469
Main Authors Guo, Xin, Xiang, Yang, Chen, Qian, Huang, Zhenhua, Hao, Yongtao
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.08.2013
Sage Publications
Bowker-Saur Ltd
Subjects
Online AccessGet full text
ISSN0165-5515
1741-6485
DOI10.1177/0165551512473066

Cover

Loading…
Abstract In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience.
AbstractList In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience. [Reprinted by permission of Sage Publications, Ltd., copyright holder.]
In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience.
In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience. [PUBLICATION ABSTRACT]
Author Guo, Xin
Hao, Yongtao
Huang, Zhenhua
Xiang, Yang
Chen, Qian
Author_xml – sequence: 1
  givenname: Xin
  surname: Guo
  fullname: Guo, Xin
  email: guoxinjsj@163.com
  organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China
– sequence: 2
  givenname: Yang
  surname: Xiang
  fullname: Xiang, Yang
  organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China
– sequence: 3
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan, China
– sequence: 4
  givenname: Zhenhua
  surname: Huang
  fullname: Huang, Zhenhua
  organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China
– sequence: 5
  givenname: Yongtao
  surname: Hao
  fullname: Hao, Yongtao
  organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27561958$$DView record in Pascal Francis
BookMark eNqFkc1LAzEQxYNUsH7cPS6I4GU12WaSDZ6kfkLBi56XNJ2UyJrUJD3oX29qK0hBPQxzeL83zJvZJwMfPBJyzOg5Y1JeUCYAgAFruBxRIXbIkEnOasFbGJDhSq5X-h7ZT-mFUgpqxIfkcnJ9VU91wlkVfO88VjksnKlmmNFkF3y1TM7Pq4w-hVhZbXKI7kOvpEOya3Wf8GjTD8jz7c3T-L6ePN49jK8mteGS5ZoBzhiXxgoluLRtC6WhmAFw23Kpp6ClBY5Kg5BTphBUKWqQ2xFOKR8dkLP13EUMb0tMuXt1yWDfa49hmToGoEogTtX_KG9UC02raEFPttCXsIy-BCkUK4BUbVOo0w2lk9G9jdobl7pFdK86vneNBMEUtIUTa87EkFJE2xmXv66Uo3Z9x2i3elO3_aZipFvG79l_WOq1Jek5_tj6N_4TNwifQA
CODEN JISCDI
CitedBy_id crossref_primary_10_1080_0952813X_2020_1785019
crossref_primary_10_1007_s10619_017_7199_8
crossref_primary_10_1016_j_is_2017_01_008
crossref_primary_10_1177_0165551517743645
crossref_primary_10_1177_0165551516638784
crossref_primary_10_1177_0165551514541614
crossref_primary_10_1016_j_fss_2020_05_006
crossref_primary_10_1007_s10618_021_00804_1
crossref_primary_10_1177_0165551515617393
crossref_primary_10_1007_s13369_016_2137_z
crossref_primary_10_1016_j_websem_2024_100820
crossref_primary_10_1145_3449290
crossref_primary_10_1007_s40745_022_00426_4
crossref_primary_10_1177_0165551513507406
crossref_primary_10_20965_jaciii_2016_p0467
crossref_primary_10_3233_IDA_163183
crossref_primary_10_1016_j_eswa_2016_03_011
crossref_primary_10_1109_ACCESS_2018_2886366
Cites_doi 10.4028/www.scientific.net/AMR.268-270.1283
10.1073/pnas.0307752101
10.1109/ICDM.2008.140
10.1016/j.csda.2004.07.015
10.1145/860435.860505
10.1145/775047.775061
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
10.1145/1998076.1998141
10.1007/978-3-642-21802-6_33
ContentType Journal Article
Copyright The Author(s) 2013
2015 INIST-CNRS
Copyright Bowker-Saur Ltd. Aug 2013
Copyright_xml – notice: The Author(s) 2013
– notice: 2015 INIST-CNRS
– notice: Copyright Bowker-Saur Ltd. Aug 2013
DBID AAYXX
CITATION
IQODW
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
8BP
DOI 10.1177/0165551512473066
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA) - CILIP Edition
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA) - CILIP Edition
DatabaseTitleList Library & Information Sciences Abstracts (LISA) - CILIP Edition
CrossRef
Technology Research Database
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1741-6485
EndPage 469
ExternalDocumentID 3041241501
27561958
10_1177_0165551512473066
10.1177_0165551512473066
Genre Feature
GroupedDBID -TM
-~X
.2G
.2L
.DC
01A
09Z
0R~
1OL
1~K
29K
31S
31V
31W
31X
4.4
54M
56W
5GY
5VS
77K
AABOD
AACKU
AADIR
AADUE
AAGGD
AAGLT
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AAWLO
ABAWP
ABCCA
ABCJG
ABEIX
ABFXH
ABHQH
ABIDT
ABJNI
ABKRH
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUJY
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGFS
ACHQT
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUIR
ADDLC
ADEBD
ADEIA
ADMHG
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADYCS
AEDXQ
AEILP
AENEX
AEOBU
AESMA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BDZRT
BMVBW
BPACV
BYIEH
CAG
CBRKF
CCGJY
CEADM
COF
CS3
D-I
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
EBS
EJD
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
J8X
LPU
MS~
N9A
O9-
P.B
P2P
PQQKQ
Q1R
Q7O
Q7P
Q7X
RIG
ROL
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFK
SFT
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPK
SPP
SQCSI
SSDHQ
TN5
ZPLXX
ZPPRI
~32
~A~
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
-MK
08R
0B8
AABMB
AAGHA
AAICN
AAMGE
AAMXZ
AANGY
AAWVI
ABJOC
ABNLC
ABPTK
ACTQU
AEMII
AERUW
AEUIJ
AGTGN
AIFIH
AIOMO
ALJHS
BFDSU
IQODW
JCYGO
M4V
P.9
UCJ
7SC
8FD
AAPII
AJVBE
E3H
F2A
JQ2
L7M
L~C
L~D
8BP
ID FETCH-LOGICAL-c471t-15ed147cf69647f885647e6d554f847ab5a7f54e9a567b19e599e50ce4f3eb043
ISSN 0165-5515
IngestDate Fri Jul 11 09:26:59 EDT 2025
Tue Aug 05 08:33:00 EDT 2025
Fri Jul 25 05:53:55 EDT 2025
Sun Oct 22 16:04:52 EDT 2023
Tue Jul 01 05:17:24 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Tue Jun 17 22:29:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords LDA
topic detection
tensor factorization
topic tensor
On line
Use
Detection
Topic
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-15ed147cf69647f885647e6d554f847ab5a7f54e9a567b19e599e50ce4f3eb043
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1419037982
PQPubID 43525
PageCount 11
ParticipantIDs proquest_miscellaneous_1559000409
proquest_miscellaneous_1429852890
proquest_journals_1419037982
pascalfrancis_primary_27561958
crossref_citationtrail_10_1177_0165551512473066
crossref_primary_10_1177_0165551512473066
sage_journals_10_1177_0165551512473066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
– name: Amsterdam
PublicationTitle Journal of information science
PublicationYear 2013
Publisher SAGE Publications
Sage Publications
Bowker-Saur Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications
– name: Bowker-Saur Ltd
References Ma, Ma 2011; 268–270
Stegeman, Tenberge 2006; 50
Griffiths, Steyvers 2004; 101
Blei, Ng, Jordan 2003; 3
Anthes 2010; 53
Heinrich 2005
Deerwester, Dumais, Furnas, Landauer, Harshman 1990; 41
Zhang, Fan, Chen 2011; 176
Kleinberg J (bibr1-0165551512473066) 2008
Heinrich G (bibr14-0165551512473066) 2005
Cichocki A (bibr17-0165551512473066) 2009
Anthes G (bibr7-0165551512473066) 2010; 53
bibr18-0165551512473066
bibr10-0165551512473066
bibr5-0165551512473066
bibr16-0165551512473066
bibr12-0165551512473066
bibr9-0165551512473066
Blei DM (bibr8-0165551512473066) 2003; 3
bibr2-0165551512473066
Zhang J (bibr3-0165551512473066) 2005
bibr6-0165551512473066
bibr11-0165551512473066
Ahmed A (bibr4-0165551512473066) 2010
bibr15-0165551512473066
bibr13-0165551512473066
References_xml – volume: 101
  start-page: 5228
  year: 2004
  end-page: 5235
  article-title: Finding scientific topics
  publication-title: Proceedings of the National Academy of Sciences
– volume: 53
  start-page: 16
  year: 2010
  end-page: 18
  article-title: Topic models vs. unstructured data
  publication-title: Communications of the ACM
– volume: 41
  start-page: 391
  year: 1990
  end-page: 407
  article-title: Indexing by latent semantic analysis
  publication-title: Journal of the American Society for Information Science
– volume: 268–270
  start-page: 1283
  year: 2011
  end-page: 1288
  article-title: Combining burst detection for hot topic extraction
  publication-title: Advanced Materials Research
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  article-title: Latent Dirichlet allocation
  publication-title: Journal of Machine Learning Research
– volume: 50
  start-page: 210
  year: 2006
  end-page: 220
  article-title: Kruskal’s condition for uniqueness in Candecomp/Parafac when ranks and k-ranks coincide
  publication-title: Computational Statistics and Data Analysis
– year: 2005
  article-title: Parameter estimation for text analysis
  publication-title: Technical Report
– volume: 176
  start-page: 207
  year: 2011
  end-page: 212
  article-title: Hot topic detection on Chinese short text
  publication-title: Communications in Computer and Information Science
– ident: bibr11-0165551512473066
  doi: 10.4028/www.scientific.net/AMR.268-270.1283
– volume-title: Nonnegative matrix and tensor factorizations – Applications to exploratory multi-way data analysis and blind source separation
  year: 2009
  ident: bibr17-0165551512473066
– ident: bibr13-0165551512473066
  doi: 10.1073/pnas.0307752101
– ident: bibr6-0165551512473066
  doi: 10.1109/ICDM.2008.140
– ident: bibr15-0165551512473066
  doi: 10.1016/j.csda.2004.07.015
– ident: bibr18-0165551512473066
  doi: 10.1145/860435.860505
– ident: bibr2-0165551512473066
  doi: 10.1145/775047.775061
– ident: bibr9-0165551512473066
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– ident: bibr12-0165551512473066
  doi: 10.1145/1998076.1998141
– volume-title: Data stream management: Processing high-speed data streams
  year: 2008
  ident: bibr1-0165551512473066
– year: 2005
  ident: bibr14-0165551512473066
  publication-title: Technical Report
– start-page: 1
  volume-title: Nineteenth annual conference on neural information processing systems, NIPS
  year: 2005
  ident: bibr3-0165551512473066
– ident: bibr5-0165551512473066
– volume: 3
  start-page: 993
  year: 2003
  ident: bibr8-0165551512473066
  publication-title: Journal of Machine Learning Research
– ident: bibr16-0165551512473066
– volume: 53
  start-page: 16
  year: 2010
  ident: bibr7-0165551512473066
  publication-title: Communications of the ACM
– start-page: 1
  volume-title: Proceedings of the 26th international conference on uncertainty in artificial intelligence
  year: 2010
  ident: bibr4-0165551512473066
– ident: bibr10-0165551512473066
  doi: 10.1007/978-3-642-21802-6_33
SSID ssj0005934
Score 2.184209
Snippet In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully...
SourceID proquest
pascalfrancis
crossref
sage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 459
SubjectTerms Artificial intelligence
Detection
Dirichlet problem
Exact sciences and technology
Factorization
Feature extraction
General aspects
Information and communication sciences
Information retrieval
Information science. Documentation
Mathematical analysis
Methods
On-line systems
Online
Optimization
Optimization techniques
Sciences and techniques of general use
Simulation
Studies
Subject fields
Temporal logic
Tensors
Texts
Time factors
Title LDA-based online topic detection using tensor factorization
URI https://journals.sagepub.com/doi/full/10.1177/0165551512473066
https://www.proquest.com/docview/1419037982
https://www.proquest.com/docview/1429852890
https://www.proquest.com/docview/1559000409
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb-jIYo_ti7tqiwSiMotaWJdmiT2EfZGMdK7SQ7iXItkQDJQmt_dK_vqeP2E7Wlm4PcYx9shLf6fTTne4OoY8yjaU2aUYyzivChKZElRUlRmoFM35JtbN3HP8SozP2Y8zHnUHfRZfUxUF5c2dcyf9wFa4BX22U7D9wtn0oXIBz4C8cgcNwfBSPf34ZEjsNVfs-4QUAycW03K90rX0F8MZZAuwm9flVKK0T4i7vAaUhj6prHCbHdodO46yq42krTuNpMDafqzD_uX0CXpGd9ORu1ATCP3DzolF9U4Mt-5D3TQ3ex3W3NTERnAD48g5q7XUpgBUimK_Is1S2PnNRECrW05wsJAb3kzDz9Vv-1u_Ow2x7s50BNgEFJdZSaYe1zYFPY75G-hRtUFhQ0AHaGJ7_PjnutgPJNOSB93-kc2kfrj9jBcI8X6hrGE3Gl0FZWaf0tgY6tHK6iV4EjuKhl5mX6ImevUI7IUgF7-HvHZ9xUO-v0VErT9jLE3byhFt5wk6esJcnvCJPb9DZt6-nn0ckFNcgJeCRmiRcVwnLSiNsLLLJcw5fWlQALw0gFlVwlRnOtFRcZEUiNZfwiUvNTKqLmKVv0WA2n-l3CBtJ85hXQnEFjSkrSpUVcVIIExsNy9UIHS7f16QMmedtAZTLSbJMNr_2hiP0qW2x8FlXHqDdXWFB28AWNrCplCK0veTJJAzea1jxAhJOM5nTCH1ob4Nqtf4yNdPzxtJQmXPriX-AhruyuyyWEdqz_O51cc8P3nos4Xv0rBuF22hQXzV6ByBwXewG6b0Fl_GmuA
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dBKqEAfIuVRI1VIPZjmZScWpxUPbWEXtRJItJeVk9gItcquIHvh1zOTOMsuCIQ4RDlknEw8dr5xPPMNwDcV-crYKOGJEAWPpQm5zouQW2U0In4emvp_x-BU9s7j4wtxMVPqy_XgzS6FVaFG9cd6OruJKSmQAlEecSrGwSnlG1hMKRmhA4vdP79-D-7jO1TkiL0Fpwb3e5SP7jGHSUtjfYPdY5u6FnOO50ysVw0_R8vwt1W8iTr5tzupUOfbB5yOr3qzFXjvnFLWbUbRKiyY8gNsupQGtsNczhLZkLmPwUfY6x90OYFgwRq6DVaNxlc5K0xVh3eVjGLqLxmFyI-uWVPYx2V9foLzo8Oz_R53pRh4juhV8UCYIoiT3ErKXLVpKvBkZIHOiEV805nQiRWxUVrIJAuUEQoPPzexjUzmx9Fn6JSj0qwBsypMfVFILTQ2DuMs10nmB5m0vjW4uPHgR2uMYe54yqlcxv9h0FKTP-goD75PW4wbjo5nZLfm7DttQDT4RLzjwUZr8GFrMlwfod8UJSoNPdieXsaJSLsrujSjCcmEKhW0b_uMjKiLtOKa2oMdGgczj3hC4S8vFfwKb3tng_6w__P0ZB3ehXXZDgpU3IBOdT0xm-g8VdmWmyZ3J1kKKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6NIiEkxH6BCKPMkyYkHkwTJ3Zi7akaq9gGCCSQ2FPlJPY0gdKKpi_763eXuC1lGkJ7iPIQO3F8dr5z_N13AB91HGrr4pSnUpY8UVZwU5SCO20NIn4hbPO_4-xcnVwn327kjefmUCyM78HJEdGqsEXNx5pm97h0Pb_H2KMQHER6xKoEB6hSK7CKOCVEB1b7Py4uzxYcDx17cW_JqcJin_Kveyzh0sbYTLCLXJvbYsn5fMD3aiBo8LLNszpplAuJeXJ7NK2x3b8f6Tr-99u9gk3vnLJ-O5pewwtbvYGuD21gB8zHLpEtmf8ovIVPp8d9TmBYslZ2g9Wj8a-ClbZuaF4VI279T0ZU-dE9axP8-OjPLbgefLn6fMJ9SgZeIIrVPJK2jJK0cIoiWF2WSTxZVaJT4hDnTC5N6mRitZEqzSNtpcYjLGziYpuHSbwNnWpU2R1gTosslKUy0mBlkeSFSfMwypULncVFTgC9mUGGhdcrp7QZd8NoJlH-qKMCOJzXGLdaHU-U3V-y8bwCyeGTAE8AezOjD2dmw3US-k9xqjMRwIf5ZZyQtMtiKjuaUhmhM0n7t0-UkU2yVlxbB3BAY-HBI_7R4N3nFnwPaxfHg-Hp1_Pv72BdNNk7iK-4B536fmq76EPV-b6fKX8A7HIMng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LDA-based+online+topic+detection+using+tensor+factorization&rft.jtitle=Journal+of+information+science&rft.au=Guo%2C+Xin&rft.au=Xiang%2C+Yang&rft.au=Chen%2C+Qian&rft.au=Huang%2C+Zhenhua&rft.date=2013-08-01&rft.pub=SAGE+Publications&rft.issn=0165-5515&rft.eissn=1741-6485&rft.volume=39&rft.issue=4&rft.spage=459&rft.epage=469&rft_id=info:doi/10.1177%2F0165551512473066&rft.externalDocID=10.1177_0165551512473066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5515&client=summon