LDA-based online topic detection using tensor factorization
In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely co...
Saved in:
Published in | Journal of information science Vol. 39; no. 4; pp. 459 - 469 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.08.2013
Sage Publications Bowker-Saur Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0165-5515 1741-6485 |
DOI | 10.1177/0165551512473066 |
Cover
Loading…
Abstract | In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience. |
---|---|
AbstractList | In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience. [Reprinted by permission of Sage Publications, Ltd., copyright holder.] In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience. In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience. [PUBLICATION ABSTRACT] |
Author | Guo, Xin Hao, Yongtao Huang, Zhenhua Xiang, Yang Chen, Qian |
Author_xml | – sequence: 1 givenname: Xin surname: Guo fullname: Guo, Xin email: guoxinjsj@163.com organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China – sequence: 2 givenname: Yang surname: Xiang fullname: Xiang, Yang organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China – sequence: 3 givenname: Qian surname: Chen fullname: Chen, Qian organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan, China – sequence: 4 givenname: Zhenhua surname: Huang fullname: Huang, Zhenhua organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China – sequence: 5 givenname: Yongtao surname: Hao fullname: Hao, Yongtao organization: Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27561958$$DView record in Pascal Francis |
BookMark | eNqFkc1LAzEQxYNUsH7cPS6I4GU12WaSDZ6kfkLBi56XNJ2UyJrUJD3oX29qK0hBPQxzeL83zJvZJwMfPBJyzOg5Y1JeUCYAgAFruBxRIXbIkEnOasFbGJDhSq5X-h7ZT-mFUgpqxIfkcnJ9VU91wlkVfO88VjksnKlmmNFkF3y1TM7Pq4w-hVhZbXKI7kOvpEOya3Wf8GjTD8jz7c3T-L6ePN49jK8mteGS5ZoBzhiXxgoluLRtC6WhmAFw23Kpp6ClBY5Kg5BTphBUKWqQ2xFOKR8dkLP13EUMb0tMuXt1yWDfa49hmToGoEogTtX_KG9UC02raEFPttCXsIy-BCkUK4BUbVOo0w2lk9G9jdobl7pFdK86vneNBMEUtIUTa87EkFJE2xmXv66Uo3Z9x2i3elO3_aZipFvG79l_WOq1Jek5_tj6N_4TNwifQA |
CODEN | JISCDI |
CitedBy_id | crossref_primary_10_1080_0952813X_2020_1785019 crossref_primary_10_1007_s10619_017_7199_8 crossref_primary_10_1016_j_is_2017_01_008 crossref_primary_10_1177_0165551517743645 crossref_primary_10_1177_0165551516638784 crossref_primary_10_1177_0165551514541614 crossref_primary_10_1016_j_fss_2020_05_006 crossref_primary_10_1007_s10618_021_00804_1 crossref_primary_10_1177_0165551515617393 crossref_primary_10_1007_s13369_016_2137_z crossref_primary_10_1016_j_websem_2024_100820 crossref_primary_10_1145_3449290 crossref_primary_10_1007_s40745_022_00426_4 crossref_primary_10_1177_0165551513507406 crossref_primary_10_20965_jaciii_2016_p0467 crossref_primary_10_3233_IDA_163183 crossref_primary_10_1016_j_eswa_2016_03_011 crossref_primary_10_1109_ACCESS_2018_2886366 |
Cites_doi | 10.4028/www.scientific.net/AMR.268-270.1283 10.1073/pnas.0307752101 10.1109/ICDM.2008.140 10.1016/j.csda.2004.07.015 10.1145/860435.860505 10.1145/775047.775061 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 10.1145/1998076.1998141 10.1007/978-3-642-21802-6_33 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 2015 INIST-CNRS Copyright Bowker-Saur Ltd. Aug 2013 |
Copyright_xml | – notice: The Author(s) 2013 – notice: 2015 INIST-CNRS – notice: Copyright Bowker-Saur Ltd. Aug 2013 |
DBID | AAYXX CITATION IQODW 7SC 8FD E3H F2A JQ2 L7M L~C L~D 8BP |
DOI | 10.1177/0165551512473066 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Library & Information Sciences Abstracts (LISA) - CILIP Edition |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Library & Information Sciences Abstracts (LISA) - CILIP Edition |
DatabaseTitleList | Library & Information Sciences Abstracts (LISA) - CILIP Edition CrossRef Technology Research Database Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1741-6485 |
EndPage | 469 |
ExternalDocumentID | 3041241501 27561958 10_1177_0165551512473066 10.1177_0165551512473066 |
Genre | Feature |
GroupedDBID | -TM -~X .2G .2L .DC 01A 09Z 0R~ 1OL 1~K 29K 31S 31V 31W 31X 4.4 54M 56W 5GY 5VS 77K AABOD AACKU AADIR AADUE AAGGD AAGLT AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AAWLO ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJNI ABKRH ABPNF ABQKF ABQPY ABQXT ABRHV ABUJY ABYTW ACAEP ACDXX ACFUR ACFZE ACGFS ACHQT ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ADDLC ADEBD ADEIA ADMHG ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADYCS AEDXQ AEILP AENEX AEOBU AESMA AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN B8O B8S B8T B8Z BDZRT BMVBW BPACV BYIEH CAG CBRKF CCGJY CEADM COF CS3 D-I DD0 DD~ DG~ DOPDO DU5 DV7 DV8 EBS EJD FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ J8X LPU MS~ N9A O9- P.B P2P PQQKQ Q1R Q7O Q7P Q7X RIG ROL S01 SASJQ SAUOL SBI SCNPE SFB SFC SFK SFT SGP SGU SGV SHB SHF SHM SPJ SPK SPP SQCSI SSDHQ TN5 ZPLXX ZPPRI ~32 ~A~ AAYXX ACCVC AJGYC AMNSR CITATION -MK 08R 0B8 AABMB AAGHA AAICN AAMGE AAMXZ AANGY AAWVI ABJOC ABNLC ABPTK ACTQU AEMII AERUW AEUIJ AGTGN AIFIH AIOMO ALJHS BFDSU IQODW JCYGO M4V P.9 UCJ 7SC 8FD AAPII AJVBE E3H F2A JQ2 L7M L~C L~D 8BP |
ID | FETCH-LOGICAL-c471t-15ed147cf69647f885647e6d554f847ab5a7f54e9a567b19e599e50ce4f3eb043 |
ISSN | 0165-5515 |
IngestDate | Fri Jul 11 09:26:59 EDT 2025 Tue Aug 05 08:33:00 EDT 2025 Fri Jul 25 05:53:55 EDT 2025 Sun Oct 22 16:04:52 EDT 2023 Tue Jul 01 05:17:24 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Tue Jun 17 22:29:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | LDA topic detection tensor factorization topic tensor On line Use Detection Topic |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-15ed147cf69647f885647e6d554f847ab5a7f54e9a567b19e599e50ce4f3eb043 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1419037982 |
PQPubID | 43525 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1559000409 proquest_miscellaneous_1429852890 proquest_journals_1419037982 pascalfrancis_primary_27561958 crossref_citationtrail_10_1177_0165551512473066 crossref_primary_10_1177_0165551512473066 sage_journals_10_1177_0165551512473066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: London – name: Amsterdam |
PublicationTitle | Journal of information science |
PublicationYear | 2013 |
Publisher | SAGE Publications Sage Publications Bowker-Saur Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications – name: Bowker-Saur Ltd |
References | Ma, Ma 2011; 268–270 Stegeman, Tenberge 2006; 50 Griffiths, Steyvers 2004; 101 Blei, Ng, Jordan 2003; 3 Anthes 2010; 53 Heinrich 2005 Deerwester, Dumais, Furnas, Landauer, Harshman 1990; 41 Zhang, Fan, Chen 2011; 176 Kleinberg J (bibr1-0165551512473066) 2008 Heinrich G (bibr14-0165551512473066) 2005 Cichocki A (bibr17-0165551512473066) 2009 Anthes G (bibr7-0165551512473066) 2010; 53 bibr18-0165551512473066 bibr10-0165551512473066 bibr5-0165551512473066 bibr16-0165551512473066 bibr12-0165551512473066 bibr9-0165551512473066 Blei DM (bibr8-0165551512473066) 2003; 3 bibr2-0165551512473066 Zhang J (bibr3-0165551512473066) 2005 bibr6-0165551512473066 bibr11-0165551512473066 Ahmed A (bibr4-0165551512473066) 2010 bibr15-0165551512473066 bibr13-0165551512473066 |
References_xml | – volume: 101 start-page: 5228 year: 2004 end-page: 5235 article-title: Finding scientific topics publication-title: Proceedings of the National Academy of Sciences – volume: 53 start-page: 16 year: 2010 end-page: 18 article-title: Topic models vs. unstructured data publication-title: Communications of the ACM – volume: 41 start-page: 391 year: 1990 end-page: 407 article-title: Indexing by latent semantic analysis publication-title: Journal of the American Society for Information Science – volume: 268–270 start-page: 1283 year: 2011 end-page: 1288 article-title: Combining burst detection for hot topic extraction publication-title: Advanced Materials Research – volume: 3 start-page: 993 year: 2003 end-page: 1022 article-title: Latent Dirichlet allocation publication-title: Journal of Machine Learning Research – volume: 50 start-page: 210 year: 2006 end-page: 220 article-title: Kruskal’s condition for uniqueness in Candecomp/Parafac when ranks and k-ranks coincide publication-title: Computational Statistics and Data Analysis – year: 2005 article-title: Parameter estimation for text analysis publication-title: Technical Report – volume: 176 start-page: 207 year: 2011 end-page: 212 article-title: Hot topic detection on Chinese short text publication-title: Communications in Computer and Information Science – ident: bibr11-0165551512473066 doi: 10.4028/www.scientific.net/AMR.268-270.1283 – volume-title: Nonnegative matrix and tensor factorizations – Applications to exploratory multi-way data analysis and blind source separation year: 2009 ident: bibr17-0165551512473066 – ident: bibr13-0165551512473066 doi: 10.1073/pnas.0307752101 – ident: bibr6-0165551512473066 doi: 10.1109/ICDM.2008.140 – ident: bibr15-0165551512473066 doi: 10.1016/j.csda.2004.07.015 – ident: bibr18-0165551512473066 doi: 10.1145/860435.860505 – ident: bibr2-0165551512473066 doi: 10.1145/775047.775061 – ident: bibr9-0165551512473066 doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 – ident: bibr12-0165551512473066 doi: 10.1145/1998076.1998141 – volume-title: Data stream management: Processing high-speed data streams year: 2008 ident: bibr1-0165551512473066 – year: 2005 ident: bibr14-0165551512473066 publication-title: Technical Report – start-page: 1 volume-title: Nineteenth annual conference on neural information processing systems, NIPS year: 2005 ident: bibr3-0165551512473066 – ident: bibr5-0165551512473066 – volume: 3 start-page: 993 year: 2003 ident: bibr8-0165551512473066 publication-title: Journal of Machine Learning Research – ident: bibr16-0165551512473066 – volume: 53 start-page: 16 year: 2010 ident: bibr7-0165551512473066 publication-title: Communications of the ACM – start-page: 1 volume-title: Proceedings of the 26th international conference on uncertainty in artificial intelligence year: 2010 ident: bibr4-0165551512473066 – ident: bibr10-0165551512473066 doi: 10.1007/978-3-642-21802-6_33 |
SSID | ssj0005934 |
Score | 2.184209 |
Snippet | In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully... |
SourceID | proquest pascalfrancis crossref sage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 459 |
SubjectTerms | Artificial intelligence Detection Dirichlet problem Exact sciences and technology Factorization Feature extraction General aspects Information and communication sciences Information retrieval Information science. Documentation Mathematical analysis Methods On-line systems Online Optimization Optimization techniques Sciences and techniques of general use Simulation Studies Subject fields Temporal logic Tensors Texts Time factors |
Title | LDA-based online topic detection using tensor factorization |
URI | https://journals.sagepub.com/doi/full/10.1177/0165551512473066 https://www.proquest.com/docview/1419037982 https://www.proquest.com/docview/1429852890 https://www.proquest.com/docview/1559000409 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb-jIYo_ti7tqiwSiMotaWJdmiT2EfZGMdK7SQ7iXItkQDJQmt_dK_vqeP2E7Wlm4PcYx9shLf6fTTne4OoY8yjaU2aUYyzivChKZElRUlRmoFM35JtbN3HP8SozP2Y8zHnUHfRZfUxUF5c2dcyf9wFa4BX22U7D9wtn0oXIBz4C8cgcNwfBSPf34ZEjsNVfs-4QUAycW03K90rX0F8MZZAuwm9flVKK0T4i7vAaUhj6prHCbHdodO46yq42krTuNpMDafqzD_uX0CXpGd9ORu1ATCP3DzolF9U4Mt-5D3TQ3ex3W3NTERnAD48g5q7XUpgBUimK_Is1S2PnNRECrW05wsJAb3kzDz9Vv-1u_Ow2x7s50BNgEFJdZSaYe1zYFPY75G-hRtUFhQ0AHaGJ7_PjnutgPJNOSB93-kc2kfrj9jBcI8X6hrGE3Gl0FZWaf0tgY6tHK6iV4EjuKhl5mX6ImevUI7IUgF7-HvHZ9xUO-v0VErT9jLE3byhFt5wk6esJcnvCJPb9DZt6-nn0ckFNcgJeCRmiRcVwnLSiNsLLLJcw5fWlQALw0gFlVwlRnOtFRcZEUiNZfwiUvNTKqLmKVv0WA2n-l3CBtJ85hXQnEFjSkrSpUVcVIIExsNy9UIHS7f16QMmedtAZTLSbJMNr_2hiP0qW2x8FlXHqDdXWFB28AWNrCplCK0veTJJAzea1jxAhJOM5nTCH1ob4Nqtf4yNdPzxtJQmXPriX-AhruyuyyWEdqz_O51cc8P3nos4Xv0rBuF22hQXzV6ByBwXewG6b0Fl_GmuA |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dBKqEAfIuVRI1VIPZjmZScWpxUPbWEXtRJItJeVk9gItcquIHvh1zOTOMsuCIQ4RDlknEw8dr5xPPMNwDcV-crYKOGJEAWPpQm5zouQW2U0In4emvp_x-BU9s7j4wtxMVPqy_XgzS6FVaFG9cd6OruJKSmQAlEecSrGwSnlG1hMKRmhA4vdP79-D-7jO1TkiL0Fpwb3e5SP7jGHSUtjfYPdY5u6FnOO50ysVw0_R8vwt1W8iTr5tzupUOfbB5yOr3qzFXjvnFLWbUbRKiyY8gNsupQGtsNczhLZkLmPwUfY6x90OYFgwRq6DVaNxlc5K0xVh3eVjGLqLxmFyI-uWVPYx2V9foLzo8Oz_R53pRh4juhV8UCYIoiT3ErKXLVpKvBkZIHOiEV805nQiRWxUVrIJAuUEQoPPzexjUzmx9Fn6JSj0qwBsypMfVFILTQ2DuMs10nmB5m0vjW4uPHgR2uMYe54yqlcxv9h0FKTP-goD75PW4wbjo5nZLfm7DttQDT4RLzjwUZr8GFrMlwfod8UJSoNPdieXsaJSLsrujSjCcmEKhW0b_uMjKiLtOKa2oMdGgczj3hC4S8vFfwKb3tng_6w__P0ZB3ehXXZDgpU3IBOdT0xm-g8VdmWmyZ3J1kKKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6NIiEkxH6BCKPMkyYkHkwTJ3Zi7akaq9gGCCSQ2FPlJPY0gdKKpi_763eXuC1lGkJ7iPIQO3F8dr5z_N13AB91HGrr4pSnUpY8UVZwU5SCO20NIn4hbPO_4-xcnVwn327kjefmUCyM78HJEdGqsEXNx5pm97h0Pb_H2KMQHER6xKoEB6hSK7CKOCVEB1b7Py4uzxYcDx17cW_JqcJin_Kveyzh0sbYTLCLXJvbYsn5fMD3aiBo8LLNszpplAuJeXJ7NK2x3b8f6Tr-99u9gk3vnLJ-O5pewwtbvYGuD21gB8zHLpEtmf8ovIVPp8d9TmBYslZ2g9Wj8a-ClbZuaF4VI279T0ZU-dE9axP8-OjPLbgefLn6fMJ9SgZeIIrVPJK2jJK0cIoiWF2WSTxZVaJT4hDnTC5N6mRitZEqzSNtpcYjLGziYpuHSbwNnWpU2R1gTosslKUy0mBlkeSFSfMwypULncVFTgC9mUGGhdcrp7QZd8NoJlH-qKMCOJzXGLdaHU-U3V-y8bwCyeGTAE8AezOjD2dmw3US-k9xqjMRwIf5ZZyQtMtiKjuaUhmhM0n7t0-UkU2yVlxbB3BAY-HBI_7R4N3nFnwPaxfHg-Hp1_Pv72BdNNk7iK-4B536fmq76EPV-b6fKX8A7HIMng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LDA-based+online+topic+detection+using+tensor+factorization&rft.jtitle=Journal+of+information+science&rft.au=Guo%2C+Xin&rft.au=Xiang%2C+Yang&rft.au=Chen%2C+Qian&rft.au=Huang%2C+Zhenhua&rft.date=2013-08-01&rft.pub=SAGE+Publications&rft.issn=0165-5515&rft.eissn=1741-6485&rft.volume=39&rft.issue=4&rft.spage=459&rft.epage=469&rft_id=info:doi/10.1177%2F0165551512473066&rft.externalDocID=10.1177_0165551512473066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5515&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5515&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5515&client=summon |