S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification

Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underl...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 5; pp. 1351 - 1356
Main Authors Teijaro, John R., Studer, Sean, Leaf, Nora, Kiosses, William B., Nguyen, Nhan, Matsuki, Kosuke, Negishi, Hideo, Taniguchi, Tadatsugu, Oldstone, Michael B. A., Rosen, Hugh
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.02.2016
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.1525356113

Cover

Loading…
Abstract Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal–derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions.
AbstractList The sphingosine 1-phosphate receptor (S1PR1) is known to act by multiple mechanisms: limiting lymphocyte egress from secondary lymphoid organs, suppressing proinflammatory endothelial cell function, and acting directly on neurons and astrocytes. Here, we report that sphingosine 1-phosphate (S1P)-S1PR1 signaling in plasmacytoid dendritic cells (pDCs) directly inhibits IFN-α autoamplification by induced degradation of the interferon alpha receptor 1 (IFNAR1) receptor and suppression of signal transducer and activator of transcription 1 (STAT1) signaling. An endosomal regulatory interaction of a lipid G-protein coupled receptor (GPCR) and IFNAR1 balances effective and detrimental components of immune responses and provides a previously unidentified pathway that contributes to significant and unexpected efficacy in clinical trials in multiple sclerosis, ulcerative colitis, psoriasis, and likely other diseases with aberrant IFN-α signatures. Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal–derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions.
Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal-derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions.
Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal-derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-a production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions.
Author Teijaro, John R.
Studer, Sean
Matsuki, Kosuke
Taniguchi, Tadatsugu
Rosen, Hugh
Oldstone, Michael B. A.
Negishi, Hideo
Leaf, Nora
Kiosses, William B.
Nguyen, Nhan
Author_xml – sequence: 1
  givenname: John R.
  surname: Teijaro
  fullname: Teijaro, John R.
  organization: Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 2
  givenname: Sean
  surname: Studer
  fullname: Studer, Sean
  organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 3
  givenname: Nora
  surname: Leaf
  fullname: Leaf, Nora
  organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 4
  givenname: William B.
  surname: Kiosses
  fullname: Kiosses, William B.
  organization: Core Microscopy Facility, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 5
  givenname: Nhan
  surname: Nguyen
  fullname: Nguyen, Nhan
  organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 6
  givenname: Kosuke
  surname: Matsuki
  fullname: Matsuki, Kosuke
  organization: Department of Molecular Immunology, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
– sequence: 7
  givenname: Hideo
  surname: Negishi
  fullname: Negishi, Hideo
  organization: Department of Molecular Immunology, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
– sequence: 8
  givenname: Tadatsugu
  surname: Taniguchi
  fullname: Taniguchi, Tadatsugu
  organization: Department of Molecular Immunology, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
– sequence: 9
  givenname: Michael B. A.
  surname: Oldstone
  fullname: Oldstone, Michael B. A.
  organization: Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 10
  givenname: Hugh
  surname: Rosen
  fullname: Rosen, Hugh
  organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26787880$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rFTEUxYNU7Gt17UqZpZtpc_N_NkIpVgtFpeo6ZDLJM2Vm8kwyQj-WX6SfqTN9fbUKgqsQ7u8czr3nAO2NcXQIvQR8BFjS481o8hFwwikXAPQJWgFuoBaswXtohTGRtWKE7aODnK8wxg1X-BnaJ0IqqRReofUX-HwJ9eC6YIrrqvOzjyeXUHVunUxnSohjNcRu6udhrja9yYOx1yWGbkbGLoUSbGVd31dhLC55l-JY3_yqzFSiGTZ98MHeuTxHT73ps3tx_x6ib2fvvp5-qC8-vT8_PbmoLZNQaiBt56wQwjBGGq-8asC0tjWStdAxJb2hrQDuJHgOTLTEO9GCAiKwn3_0EL3d-m6mdl7KurEk0-tNCoNJ1zqaoP-cjOG7XsefmkkmpRCzwZt7gxR_TC4XPYS8bGhGF6esQUqqKBDe_AcqiFBUwoK-fhzrIc-uiBngW8CmmHNyXttQ7i43pwy9BqyXwvVSuP5d-Kw7_ku3s_63YhdlGTzQQDXXQDnMwKstcJVLTI-iMiEF5vQWnm_Dlg
CitedBy_id crossref_primary_10_1002_eji_202049073
crossref_primary_10_1096_fj_201902847R
crossref_primary_10_4049_jimmunol_1601959
crossref_primary_10_1093_femsre_fuaa066
crossref_primary_10_1016_j_biopha_2023_115536
crossref_primary_10_3389_fimmu_2018_01828
crossref_primary_10_1097_SHK_0000000000001376
crossref_primary_10_3389_fimmu_2023_1292679
crossref_primary_10_1074_jbc_R116_774562
crossref_primary_10_3389_fimmu_2018_01946
crossref_primary_10_1134_S0022093023040105
crossref_primary_10_1016_j_prostaglandins_2021_106584
crossref_primary_10_1002_JLB_2MIR0817_342R
crossref_primary_10_3390_cells10092175
crossref_primary_10_1111_imm_12888
crossref_primary_10_1016_j_hsr_2024_100177
crossref_primary_10_1016_j_plipres_2023_101251
crossref_primary_10_1016_j_gene_2020_144417
crossref_primary_10_1073_pnas_1700878114
crossref_primary_10_1038_s41564_019_0582_7
crossref_primary_10_1126_science_aar5551
crossref_primary_10_1172_jci_insight_125067
crossref_primary_10_1016_j_intimp_2024_113526
crossref_primary_10_1016_j_celrep_2023_113545
crossref_primary_10_4049_jimmunol_1900912
crossref_primary_10_1016_j_jpba_2024_116399
crossref_primary_10_4049_jimmunol_2101085
crossref_primary_10_1038_cti_2017_32
crossref_primary_10_1038_s41392_023_01630_1
crossref_primary_10_1371_journal_ppat_1010794
crossref_primary_10_1016_j_cyto_2019_154871
crossref_primary_10_1038_s41584_022_00784_6
crossref_primary_10_3389_fimmu_2020_01102
crossref_primary_10_1371_journal_pone_0193236
crossref_primary_10_1111_cmi_12836
crossref_primary_10_15252_emmm_202013533
crossref_primary_10_1016_j_bbi_2018_10_009
crossref_primary_10_1007_s12250_019_00085_5
crossref_primary_10_3390_cells9040886
crossref_primary_10_1186_s12864_022_09013_6
crossref_primary_10_3390_ijms24021456
crossref_primary_10_1002_rmv_2415
crossref_primary_10_1016_j_celrep_2022_111742
crossref_primary_10_3389_fmed_2023_1265398
crossref_primary_10_1038_s41589_023_01527_8
Cites_doi 10.1126/science.1235208
10.1111/j.1365-2249.2011.04439.x
10.1146/annurev.immunol.23.021704.115843
10.1126/science.1187029
10.1089/10430340050015734
10.1084/jem.20101664
10.1073/pnas.1400593111
10.1073/pnas.1222798110
10.1111/bph.12207
10.1038/nchembio.547
10.1016/j.immuni.2007.11.017
10.4049/jimmunol.1201477
10.2217/imt.12.117
10.1038/nchembio804
10.1016/j.cell.2011.08.015
10.1084/jem.20050500
10.1038/nature03547
10.1073/pnas.1408148111
10.1007/s12026-011-8240-z
10.1126/science.1070238
10.1073/pnas.0812689106
10.1128/JVI.00464-14
10.1073/pnas.1107024108
10.1126/science.1235214
10.1124/mol.112.082958
10.1074/jbc.M610581200
10.4049/jimmunol.170.9.4465
10.1146/annurev-biochem-062411-130916
10.1038/ncomms4864
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
5PM
DOI 10.1073/pnas.1525356113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate S1PR1-IFNAR1 turnover blunts IFN-α amplification
EISSN 1091-6490
EndPage 1356
ExternalDocumentID PMC4747766
26787880
10_1073_pnas_1525356113
113_5_1351
26467605
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH084512
– fundername: NIAID NIH HHS
  grantid: R01 AI099699
– fundername: NIAID NIH HHS
  grantid: U54AI057160
– fundername: NIAID NIH HHS
  grantid: AI099699
– fundername: NIAID NIH HHS
  grantid: AI009484
– fundername: NIAID NIH HHS
  grantid: R01 AI009484
– fundername: NIAID NIH HHS
  grantid: U54 AI057160
– fundername: NIMH NIH HHS
  grantid: MH084512
– fundername: HHS | National Institutes of Health (NIH)
  grantid: MH084512
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI099699
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI009484
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
5PM
ID FETCH-LOGICAL-c471t-12bdec666a4429f8f891abcba74b1d487fa3b615e71f5146b2fe6b181260f6b23
ISSN 0027-8424
IngestDate Thu Aug 21 18:24:10 EDT 2025
Fri Jul 11 01:58:18 EDT 2025
Fri Jul 11 15:54:36 EDT 2025
Thu Apr 03 07:09:36 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Tue Jul 01 01:53:39 EDT 2025
Wed Nov 11 00:29:26 EST 2020
Sun Aug 24 12:11:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords S1PR1
plasmacytoid dendritic cell
interferon-α
sphingosine 1-phosphate
IFNAR1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-12bdec666a4429f8f891abcba74b1d487fa3b615e71f5146b2fe6b181260f6b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.R.T., S.S., T.T., M.B.A.O., and H.R. designed research; J.R.T., S.S., N.L., W.B.K., N.N., K.M., and H.N. performed research; J.R.T., S.S., T.T., M.B.A.O., and H.R. analyzed data; and J.R.T., S.S., M.B.A.O., and H.R. wrote the paper.
Contributed by Michael B. A. Oldstone, December 23, 2015 (sent for review November 16, 2015; reviewed by Arturo Casadevall and Herbert W. Virgin)
1J.R.T. and S.S. contributed equally to this work.
Reviewers: A.C., Johns Hopkins Bloomberg School of Public Health; and H.W.V., Washington University.
OpenAccessLink https://www.pnas.org/content/pnas/113/5/1351.full.pdf
PMID 26787880
PQID 1762683719
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1773831259
pnas_primary_113_5_1351
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4747766
jstor_primary_26467605
crossref_citationtrail_10_1073_pnas_1525356113
proquest_miscellaneous_1762683719
pubmed_primary_26787880
crossref_primary_10_1073_pnas_1525356113
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-02
PublicationDateYYYYMMDD 2016-02-02
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
12707322 - J Immunol. 2003 May 1;170(9):4465-74
21762123 - Clin Exp Immunol. 2011 Oct;166(1):46-54
23527695 - Annu Rev Biochem. 2013;82:637-62
23204443 - Mol Pharmacol. 2013 Feb;83(2):316-21
19164548 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1560-5
24889626 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8925-30
21901448 - Immunol Res. 2011 Oct;51(1):15-25
23580528 - Science. 2013 Apr 12;340(6129):202-7
23148757 - Immunotherapy. 2012 Oct;4(10):1053-61
23587004 - Br J Pharmacol. 2013 Jul;169(5):1114-29
16829954 - Nat Chem Biol. 2006 Aug;2(8):434-41
10724033 - Hum Gene Ther. 2000 Mar 1;11(4):547-54
15815647 - Nature. 2005 Apr 21;434(7036):1035-40
15771573 - Annu Rev Immunol. 2005;23:307-36
20847273 - Science. 2010 Sep 17;329(5998):1530-4
20837696 - J Exp Med. 2010 Sep 27;207(10):2053-63
21445057 - Nat Chem Biol. 2011 May;7(5):254-6
21925319 - Cell. 2011 Sep 16;146(6):980-91
15998792 - J Exp Med. 2005 Jul 4;202(1):135-43
11923495 - Science. 2002 Apr 12;296(5566):346-9
24844667 - Nat Commun. 2014;5:3864
23580529 - Science. 2013 Apr 12;340(6129):207-11
17218309 - J Biol Chem. 2007 Mar 9;282(10):7254-64
21715659 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12018-23
23175700 - J Immunol. 2012 Dec 15;189(12):5976-84
24672024 - J Virol. 2014 Jun;88(11):6281-93
24572573 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3799-804
23382217 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2940-5
18164221 - Immunity. 2008 Jan;28(1):122-33
References_xml – ident: e_1_3_3_5_2
  doi: 10.1126/science.1235208
– ident: e_1_3_3_26_2
  doi: 10.1111/j.1365-2249.2011.04439.x
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.immunol.23.021704.115843
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1187029
– ident: e_1_3_3_29_2
  doi: 10.1089/10430340050015734
– ident: e_1_3_3_6_2
  doi: 10.1084/jem.20101664
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1400593111
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.1222798110
– ident: e_1_3_3_17_2
  doi: 10.1111/bph.12207
– ident: e_1_3_3_11_2
  doi: 10.1038/nchembio.547
– ident: e_1_3_3_12_2
  doi: 10.1016/j.immuni.2007.11.017
– ident: e_1_3_3_8_2
  doi: 10.4049/jimmunol.1201477
– ident: e_1_3_3_25_2
  doi: 10.2217/imt.12.117
– ident: e_1_3_3_28_2
  doi: 10.1038/nchembio804
– ident: e_1_3_3_4_2
  doi: 10.1016/j.cell.2011.08.015
– ident: e_1_3_3_24_2
  doi: 10.1084/jem.20050500
– ident: e_1_3_3_14_2
  doi: 10.1038/nature03547
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.1408148111
– ident: e_1_3_3_21_2
  doi: 10.1007/s12026-011-8240-z
– ident: e_1_3_3_27_2
  doi: 10.1126/science.1070238
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0812689106
– ident: e_1_3_3_20_2
  doi: 10.1128/JVI.00464-14
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.1107024108
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1235214
– ident: e_1_3_3_13_2
  doi: 10.1124/mol.112.082958
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M610581200
– ident: e_1_3_3_19_2
  doi: 10.4049/jimmunol.170.9.4465
– ident: e_1_3_3_16_2
  doi: 10.1146/annurev-biochem-062411-130916
– ident: e_1_3_3_3_2
  doi: 10.1038/ncomms4864
– reference: 23580528 - Science. 2013 Apr 12;340(6129):202-7
– reference: 15998792 - J Exp Med. 2005 Jul 4;202(1):135-43
– reference: 24672024 - J Virol. 2014 Jun;88(11):6281-93
– reference: 23175700 - J Immunol. 2012 Dec 15;189(12):5976-84
– reference: 12707322 - J Immunol. 2003 May 1;170(9):4465-74
– reference: 23204443 - Mol Pharmacol. 2013 Feb;83(2):316-21
– reference: 23527695 - Annu Rev Biochem. 2013;82:637-62
– reference: 21762123 - Clin Exp Immunol. 2011 Oct;166(1):46-54
– reference: 21445057 - Nat Chem Biol. 2011 May;7(5):254-6
– reference: 23580529 - Science. 2013 Apr 12;340(6129):207-11
– reference: 24889626 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8925-30
– reference: 20847273 - Science. 2010 Sep 17;329(5998):1530-4
– reference: 17218309 - J Biol Chem. 2007 Mar 9;282(10):7254-64
– reference: 23382217 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2940-5
– reference: 18164221 - Immunity. 2008 Jan;28(1):122-33
– reference: 15815647 - Nature. 2005 Apr 21;434(7036):1035-40
– reference: 24572573 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3799-804
– reference: 20837696 - J Exp Med. 2010 Sep 27;207(10):2053-63
– reference: 21925319 - Cell. 2011 Sep 16;146(6):980-91
– reference: 19164548 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1560-5
– reference: 11923495 - Science. 2002 Apr 12;296(5566):346-9
– reference: 21901448 - Immunol Res. 2011 Oct;51(1):15-25
– reference: 23587004 - Br J Pharmacol. 2013 Jul;169(5):1114-29
– reference: 10724033 - Hum Gene Ther. 2000 Mar 1;11(4):547-54
– reference: 16829954 - Nat Chem Biol. 2006 Aug;2(8):434-41
– reference: 23148757 - Immunotherapy. 2012 Oct;4(10):1053-61
– reference: 21715659 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12018-23
– reference: 24844667 - Nat Commun. 2014;5:3864
– reference: 15771573 - Annu Rev Immunol. 2005;23:307-36
SSID ssj0009580
Score 2.4008355
Snippet Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine...
The sphingosine 1-phosphate receptor (S1PR1) is known to act by multiple mechanisms: limiting lymphocyte egress from secondary lymphoid organs, suppressing...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1351
SubjectTerms Animals
Biological Sciences
Dendritic Cells - metabolism
Interferon-alpha - metabolism
Mice
Mice, Knockout
Proteolysis
Receptor, Interferon alpha-beta - genetics
Receptor, Interferon alpha-beta - metabolism
Receptors, Lysosphingolipid - physiology
Title S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification
URI https://www.jstor.org/stable/26467605
http://www.pnas.org/content/113/5/1351.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26787880
https://www.proquest.com/docview/1762683719
https://www.proquest.com/docview/1773831259
https://pubmed.ncbi.nlm.nih.gov/PMC4747766
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGChvBQkVlpUZanzsNNjWbUssJRqaaXeItuxoQgS1McBzvwh_gi_iRk7SdOloIVL1KQTJ8p8Gc84M_MR8iTUgmUsiX0TJBoClLjry4xr7ISpuIpVFtk67jcjdjqNXs3iWav1vZG1tF7JY_VtZ13J_2gVjoFesUr2HzRbDwoH4DfoF7agYdheSsfv6Pic-rb4Ax3Hl8NR_5x2Muz_4KiSkOgG-bn0Eumil5-F-roq5hmI5JnlOOjgwr3tGbEwelHk_uHJ4PA57Yj1qhCYbG7KNb2mEzuuJ71llWIwqtYU-5sKldJsLDt-Zzza8B1P9PyjcNU1Nm2n_tSEKY0lDZhuZgoJU35gqmeQ1_MCv1Xb_EC3XlSSR5fLF9RlPDv7q53JBY_FZ5EjDa1tsitQLcEXNywsMgo2ZmvYZTtnAjBdSF-ci6WleAKxasytntujt-lwenaWTgazyRVyNYBgA3kwXsxoo3Vz0q2aQvHw2YUht_wZl9KKfXJBaFfMcjH1tuHLTG6Q62UQ4vUdovZJS-c3yX6lL--o7EX-9BZ5vw0xz0HMa0DMqyHmNSHm1RDzEGJeA2I_f3i_wes2mQ4Hk5NTv-Tm8BW4MyufBjLTCmJfEYFHYxKT9KiQSgoeSQovODcilOAta04N-ORMBkYzie4k6xrYCw_IXl7k-i7xTMYFUzJRRsYRywKhwU0NeFcZY-Je0muT4-oJp6psXI_8KZ9Sm0DBwxSfdrpRSZsc1Sd8cT1b_ix6YFVWy0F8wDiE-G1yx4rW59MwjVMEX5s8rtSaginGZyhyXaxhWHAsWBJy2vubDA-TEKKKHl7BQqFxbZg9YT5tE74FkloAW8Fv_5PPP9iW8BGPOGfs3iXu7T65tnkPH5C91WKtH4JjvZKPLO5_AXrB000
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S1PR1-mediated+IFNAR1+degradation+modulates+plasmacytoid+dendritic+cell+interferon-%CE%B1+autoamplification&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Teijaro%2C+John+R&rft.au=Studer%2C+Sean&rft.au=Leaf%2C+Nora&rft.au=Kiosses%2C+William+B&rft.date=2016-02-02&rft.eissn=1091-6490&rft.volume=113&rft.issue=5&rft.spage=1351&rft.epage=1356&rft_id=info:doi/10.1073%2Fpnas.1525356113&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F5.cover.gif