S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification
Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underl...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 5; pp. 1351 - 1356 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.02.2016
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.1525356113 |
Cover
Loading…
Abstract | Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal–derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions. |
---|---|
AbstractList | The sphingosine 1-phosphate receptor (S1PR1) is known to act by multiple mechanisms: limiting lymphocyte egress from secondary lymphoid organs, suppressing proinflammatory endothelial cell function, and acting directly on neurons and astrocytes. Here, we report that sphingosine 1-phosphate (S1P)-S1PR1 signaling in plasmacytoid dendritic cells (pDCs) directly inhibits IFN-α autoamplification by induced degradation of the interferon alpha receptor 1 (IFNAR1) receptor and suppression of signal transducer and activator of transcription 1 (STAT1) signaling. An endosomal regulatory interaction of a lipid G-protein coupled receptor (GPCR) and IFNAR1 balances effective and detrimental components of immune responses and provides a previously unidentified pathway that contributes to significant and unexpected efficacy in clinical trials in multiple sclerosis, ulcerative colitis, psoriasis, and likely other diseases with aberrant IFN-α signatures.
Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal–derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions. Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal-derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions. Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal-derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-a production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions. |
Author | Teijaro, John R. Studer, Sean Matsuki, Kosuke Taniguchi, Tadatsugu Rosen, Hugh Oldstone, Michael B. A. Negishi, Hideo Leaf, Nora Kiosses, William B. Nguyen, Nhan |
Author_xml | – sequence: 1 givenname: John R. surname: Teijaro fullname: Teijaro, John R. organization: Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 – sequence: 2 givenname: Sean surname: Studer fullname: Studer, Sean organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 – sequence: 3 givenname: Nora surname: Leaf fullname: Leaf, Nora organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 – sequence: 4 givenname: William B. surname: Kiosses fullname: Kiosses, William B. organization: Core Microscopy Facility, The Scripps Research Institute, La Jolla, CA 92037 – sequence: 5 givenname: Nhan surname: Nguyen fullname: Nguyen, Nhan organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 – sequence: 6 givenname: Kosuke surname: Matsuki fullname: Matsuki, Kosuke organization: Department of Molecular Immunology, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan – sequence: 7 givenname: Hideo surname: Negishi fullname: Negishi, Hideo organization: Department of Molecular Immunology, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan – sequence: 8 givenname: Tadatsugu surname: Taniguchi fullname: Taniguchi, Tadatsugu organization: Department of Molecular Immunology, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan – sequence: 9 givenname: Michael B. A. surname: Oldstone fullname: Oldstone, Michael B. A. organization: Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 – sequence: 10 givenname: Hugh surname: Rosen fullname: Rosen, Hugh organization: Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26787880$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rFTEUxYNU7Gt17UqZpZtpc_N_NkIpVgtFpeo6ZDLJM2Vm8kwyQj-WX6SfqTN9fbUKgqsQ7u8czr3nAO2NcXQIvQR8BFjS481o8hFwwikXAPQJWgFuoBaswXtohTGRtWKE7aODnK8wxg1X-BnaJ0IqqRReofUX-HwJ9eC6YIrrqvOzjyeXUHVunUxnSohjNcRu6udhrja9yYOx1yWGbkbGLoUSbGVd31dhLC55l-JY3_yqzFSiGTZ98MHeuTxHT73ps3tx_x6ib2fvvp5-qC8-vT8_PbmoLZNQaiBt56wQwjBGGq-8asC0tjWStdAxJb2hrQDuJHgOTLTEO9GCAiKwn3_0EL3d-m6mdl7KurEk0-tNCoNJ1zqaoP-cjOG7XsefmkkmpRCzwZt7gxR_TC4XPYS8bGhGF6esQUqqKBDe_AcqiFBUwoK-fhzrIc-uiBngW8CmmHNyXttQ7i43pwy9BqyXwvVSuP5d-Kw7_ku3s_63YhdlGTzQQDXXQDnMwKstcJVLTI-iMiEF5vQWnm_Dlg |
CitedBy_id | crossref_primary_10_1002_eji_202049073 crossref_primary_10_1096_fj_201902847R crossref_primary_10_4049_jimmunol_1601959 crossref_primary_10_1093_femsre_fuaa066 crossref_primary_10_1016_j_biopha_2023_115536 crossref_primary_10_3389_fimmu_2018_01828 crossref_primary_10_1097_SHK_0000000000001376 crossref_primary_10_3389_fimmu_2023_1292679 crossref_primary_10_1074_jbc_R116_774562 crossref_primary_10_3389_fimmu_2018_01946 crossref_primary_10_1134_S0022093023040105 crossref_primary_10_1016_j_prostaglandins_2021_106584 crossref_primary_10_1002_JLB_2MIR0817_342R crossref_primary_10_3390_cells10092175 crossref_primary_10_1111_imm_12888 crossref_primary_10_1016_j_hsr_2024_100177 crossref_primary_10_1016_j_plipres_2023_101251 crossref_primary_10_1016_j_gene_2020_144417 crossref_primary_10_1073_pnas_1700878114 crossref_primary_10_1038_s41564_019_0582_7 crossref_primary_10_1126_science_aar5551 crossref_primary_10_1172_jci_insight_125067 crossref_primary_10_1016_j_intimp_2024_113526 crossref_primary_10_1016_j_celrep_2023_113545 crossref_primary_10_4049_jimmunol_1900912 crossref_primary_10_1016_j_jpba_2024_116399 crossref_primary_10_4049_jimmunol_2101085 crossref_primary_10_1038_cti_2017_32 crossref_primary_10_1038_s41392_023_01630_1 crossref_primary_10_1371_journal_ppat_1010794 crossref_primary_10_1016_j_cyto_2019_154871 crossref_primary_10_1038_s41584_022_00784_6 crossref_primary_10_3389_fimmu_2020_01102 crossref_primary_10_1371_journal_pone_0193236 crossref_primary_10_1111_cmi_12836 crossref_primary_10_15252_emmm_202013533 crossref_primary_10_1016_j_bbi_2018_10_009 crossref_primary_10_1007_s12250_019_00085_5 crossref_primary_10_3390_cells9040886 crossref_primary_10_1186_s12864_022_09013_6 crossref_primary_10_3390_ijms24021456 crossref_primary_10_1002_rmv_2415 crossref_primary_10_1016_j_celrep_2022_111742 crossref_primary_10_3389_fmed_2023_1265398 crossref_primary_10_1038_s41589_023_01527_8 |
Cites_doi | 10.1126/science.1235208 10.1111/j.1365-2249.2011.04439.x 10.1146/annurev.immunol.23.021704.115843 10.1126/science.1187029 10.1089/10430340050015734 10.1084/jem.20101664 10.1073/pnas.1400593111 10.1073/pnas.1222798110 10.1111/bph.12207 10.1038/nchembio.547 10.1016/j.immuni.2007.11.017 10.4049/jimmunol.1201477 10.2217/imt.12.117 10.1038/nchembio804 10.1016/j.cell.2011.08.015 10.1084/jem.20050500 10.1038/nature03547 10.1073/pnas.1408148111 10.1007/s12026-011-8240-z 10.1126/science.1070238 10.1073/pnas.0812689106 10.1128/JVI.00464-14 10.1073/pnas.1107024108 10.1126/science.1235214 10.1124/mol.112.082958 10.1074/jbc.M610581200 10.4049/jimmunol.170.9.4465 10.1146/annurev-biochem-062411-130916 10.1038/ncomms4864 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
DOI | 10.1073/pnas.1525356113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | S1PR1-IFNAR1 turnover blunts IFN-α amplification |
EISSN | 1091-6490 |
EndPage | 1356 |
ExternalDocumentID | PMC4747766 26787880 10_1073_pnas_1525356113 113_5_1351 26467605 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH084512 – fundername: NIAID NIH HHS grantid: R01 AI099699 – fundername: NIAID NIH HHS grantid: U54AI057160 – fundername: NIAID NIH HHS grantid: AI099699 – fundername: NIAID NIH HHS grantid: AI009484 – fundername: NIAID NIH HHS grantid: R01 AI009484 – fundername: NIAID NIH HHS grantid: U54 AI057160 – fundername: NIMH NIH HHS grantid: MH084512 – fundername: HHS | National Institutes of Health (NIH) grantid: MH084512 – fundername: HHS | National Institutes of Health (NIH) grantid: AI099699 – fundername: HHS | National Institutes of Health (NIH) grantid: AI009484 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX AFOSN CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
ID | FETCH-LOGICAL-c471t-12bdec666a4429f8f891abcba74b1d487fa3b615e71f5146b2fe6b181260f6b23 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:24:10 EDT 2025 Fri Jul 11 01:58:18 EDT 2025 Fri Jul 11 15:54:36 EDT 2025 Thu Apr 03 07:09:36 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Tue Jul 01 01:53:39 EDT 2025 Wed Nov 11 00:29:26 EST 2020 Sun Aug 24 12:11:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | S1PR1 plasmacytoid dendritic cell interferon-α sphingosine 1-phosphate IFNAR1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-12bdec666a4429f8f891abcba74b1d487fa3b615e71f5146b2fe6b181260f6b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: J.R.T., S.S., T.T., M.B.A.O., and H.R. designed research; J.R.T., S.S., N.L., W.B.K., N.N., K.M., and H.N. performed research; J.R.T., S.S., T.T., M.B.A.O., and H.R. analyzed data; and J.R.T., S.S., M.B.A.O., and H.R. wrote the paper. Contributed by Michael B. A. Oldstone, December 23, 2015 (sent for review November 16, 2015; reviewed by Arturo Casadevall and Herbert W. Virgin) 1J.R.T. and S.S. contributed equally to this work. Reviewers: A.C., Johns Hopkins Bloomberg School of Public Health; and H.W.V., Washington University. |
OpenAccessLink | https://www.pnas.org/content/pnas/113/5/1351.full.pdf |
PMID | 26787880 |
PQID | 1762683719 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1773831259 pnas_primary_113_5_1351 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4747766 jstor_primary_26467605 crossref_citationtrail_10_1073_pnas_1525356113 proquest_miscellaneous_1762683719 pubmed_primary_26787880 crossref_primary_10_1073_pnas_1525356113 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-02 |
PublicationDateYYYYMMDD | 2016-02-02 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 12707322 - J Immunol. 2003 May 1;170(9):4465-74 21762123 - Clin Exp Immunol. 2011 Oct;166(1):46-54 23527695 - Annu Rev Biochem. 2013;82:637-62 23204443 - Mol Pharmacol. 2013 Feb;83(2):316-21 19164548 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1560-5 24889626 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8925-30 21901448 - Immunol Res. 2011 Oct;51(1):15-25 23580528 - Science. 2013 Apr 12;340(6129):202-7 23148757 - Immunotherapy. 2012 Oct;4(10):1053-61 23587004 - Br J Pharmacol. 2013 Jul;169(5):1114-29 16829954 - Nat Chem Biol. 2006 Aug;2(8):434-41 10724033 - Hum Gene Ther. 2000 Mar 1;11(4):547-54 15815647 - Nature. 2005 Apr 21;434(7036):1035-40 15771573 - Annu Rev Immunol. 2005;23:307-36 20847273 - Science. 2010 Sep 17;329(5998):1530-4 20837696 - J Exp Med. 2010 Sep 27;207(10):2053-63 21445057 - Nat Chem Biol. 2011 May;7(5):254-6 21925319 - Cell. 2011 Sep 16;146(6):980-91 15998792 - J Exp Med. 2005 Jul 4;202(1):135-43 11923495 - Science. 2002 Apr 12;296(5566):346-9 24844667 - Nat Commun. 2014;5:3864 23580529 - Science. 2013 Apr 12;340(6129):207-11 17218309 - J Biol Chem. 2007 Mar 9;282(10):7254-64 21715659 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12018-23 23175700 - J Immunol. 2012 Dec 15;189(12):5976-84 24672024 - J Virol. 2014 Jun;88(11):6281-93 24572573 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3799-804 23382217 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2940-5 18164221 - Immunity. 2008 Jan;28(1):122-33 |
References_xml | – ident: e_1_3_3_5_2 doi: 10.1126/science.1235208 – ident: e_1_3_3_26_2 doi: 10.1111/j.1365-2249.2011.04439.x – ident: e_1_3_3_1_2 doi: 10.1146/annurev.immunol.23.021704.115843 – ident: e_1_3_3_15_2 doi: 10.1126/science.1187029 – ident: e_1_3_3_29_2 doi: 10.1089/10430340050015734 – ident: e_1_3_3_6_2 doi: 10.1084/jem.20101664 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.1400593111 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.1222798110 – ident: e_1_3_3_17_2 doi: 10.1111/bph.12207 – ident: e_1_3_3_11_2 doi: 10.1038/nchembio.547 – ident: e_1_3_3_12_2 doi: 10.1016/j.immuni.2007.11.017 – ident: e_1_3_3_8_2 doi: 10.4049/jimmunol.1201477 – ident: e_1_3_3_25_2 doi: 10.2217/imt.12.117 – ident: e_1_3_3_28_2 doi: 10.1038/nchembio804 – ident: e_1_3_3_4_2 doi: 10.1016/j.cell.2011.08.015 – ident: e_1_3_3_24_2 doi: 10.1084/jem.20050500 – ident: e_1_3_3_14_2 doi: 10.1038/nature03547 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.1408148111 – ident: e_1_3_3_21_2 doi: 10.1007/s12026-011-8240-z – ident: e_1_3_3_27_2 doi: 10.1126/science.1070238 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0812689106 – ident: e_1_3_3_20_2 doi: 10.1128/JVI.00464-14 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.1107024108 – ident: e_1_3_3_2_2 doi: 10.1126/science.1235214 – ident: e_1_3_3_13_2 doi: 10.1124/mol.112.082958 – ident: e_1_3_3_18_2 doi: 10.1074/jbc.M610581200 – ident: e_1_3_3_19_2 doi: 10.4049/jimmunol.170.9.4465 – ident: e_1_3_3_16_2 doi: 10.1146/annurev-biochem-062411-130916 – ident: e_1_3_3_3_2 doi: 10.1038/ncomms4864 – reference: 23580528 - Science. 2013 Apr 12;340(6129):202-7 – reference: 15998792 - J Exp Med. 2005 Jul 4;202(1):135-43 – reference: 24672024 - J Virol. 2014 Jun;88(11):6281-93 – reference: 23175700 - J Immunol. 2012 Dec 15;189(12):5976-84 – reference: 12707322 - J Immunol. 2003 May 1;170(9):4465-74 – reference: 23204443 - Mol Pharmacol. 2013 Feb;83(2):316-21 – reference: 23527695 - Annu Rev Biochem. 2013;82:637-62 – reference: 21762123 - Clin Exp Immunol. 2011 Oct;166(1):46-54 – reference: 21445057 - Nat Chem Biol. 2011 May;7(5):254-6 – reference: 23580529 - Science. 2013 Apr 12;340(6129):207-11 – reference: 24889626 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8925-30 – reference: 20847273 - Science. 2010 Sep 17;329(5998):1530-4 – reference: 17218309 - J Biol Chem. 2007 Mar 9;282(10):7254-64 – reference: 23382217 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2940-5 – reference: 18164221 - Immunity. 2008 Jan;28(1):122-33 – reference: 15815647 - Nature. 2005 Apr 21;434(7036):1035-40 – reference: 24572573 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3799-804 – reference: 20837696 - J Exp Med. 2010 Sep 27;207(10):2053-63 – reference: 21925319 - Cell. 2011 Sep 16;146(6):980-91 – reference: 19164548 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1560-5 – reference: 11923495 - Science. 2002 Apr 12;296(5566):346-9 – reference: 21901448 - Immunol Res. 2011 Oct;51(1):15-25 – reference: 23587004 - Br J Pharmacol. 2013 Jul;169(5):1114-29 – reference: 10724033 - Hum Gene Ther. 2000 Mar 1;11(4):547-54 – reference: 16829954 - Nat Chem Biol. 2006 Aug;2(8):434-41 – reference: 23148757 - Immunotherapy. 2012 Oct;4(10):1053-61 – reference: 21715659 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12018-23 – reference: 24844667 - Nat Commun. 2014;5:3864 – reference: 15771573 - Annu Rev Immunol. 2005;23:307-36 |
SSID | ssj0009580 |
Score | 2.4008355 |
Snippet | Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine... The sphingosine 1-phosphate receptor (S1PR1) is known to act by multiple mechanisms: limiting lymphocyte egress from secondary lymphoid organs, suppressing... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1351 |
SubjectTerms | Animals Biological Sciences Dendritic Cells - metabolism Interferon-alpha - metabolism Mice Mice, Knockout Proteolysis Receptor, Interferon alpha-beta - genetics Receptor, Interferon alpha-beta - metabolism Receptors, Lysosphingolipid - physiology |
Title | S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification |
URI | https://www.jstor.org/stable/26467605 http://www.pnas.org/content/113/5/1351.abstract https://www.ncbi.nlm.nih.gov/pubmed/26787880 https://www.proquest.com/docview/1762683719 https://www.proquest.com/docview/1773831259 https://pubmed.ncbi.nlm.nih.gov/PMC4747766 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGChvBQkVlpUZanzsNNjWbUssJRqaaXeItuxoQgS1McBzvwh_gi_iRk7SdOloIVL1KQTJ8p8Gc84M_MR8iTUgmUsiX0TJBoClLjry4xr7ISpuIpVFtk67jcjdjqNXs3iWav1vZG1tF7JY_VtZ13J_2gVjoFesUr2HzRbDwoH4DfoF7agYdheSsfv6Pic-rb4Ax3Hl8NR_5x2Muz_4KiSkOgG-bn0Eumil5-F-roq5hmI5JnlOOjgwr3tGbEwelHk_uHJ4PA57Yj1qhCYbG7KNb2mEzuuJ71llWIwqtYU-5sKldJsLDt-Zzza8B1P9PyjcNU1Nm2n_tSEKY0lDZhuZgoJU35gqmeQ1_MCv1Xb_EC3XlSSR5fLF9RlPDv7q53JBY_FZ5EjDa1tsitQLcEXNywsMgo2ZmvYZTtnAjBdSF-ci6WleAKxasytntujt-lwenaWTgazyRVyNYBgA3kwXsxoo3Vz0q2aQvHw2YUht_wZl9KKfXJBaFfMcjH1tuHLTG6Q62UQ4vUdovZJS-c3yX6lL--o7EX-9BZ5vw0xz0HMa0DMqyHmNSHm1RDzEGJeA2I_f3i_wes2mQ4Hk5NTv-Tm8BW4MyufBjLTCmJfEYFHYxKT9KiQSgoeSQovODcilOAta04N-ORMBkYzie4k6xrYCw_IXl7k-i7xTMYFUzJRRsYRywKhwU0NeFcZY-Je0muT4-oJp6psXI_8KZ9Sm0DBwxSfdrpRSZsc1Sd8cT1b_ix6YFVWy0F8wDiE-G1yx4rW59MwjVMEX5s8rtSaginGZyhyXaxhWHAsWBJy2vubDA-TEKKKHl7BQqFxbZg9YT5tE74FkloAW8Fv_5PPP9iW8BGPOGfs3iXu7T65tnkPH5C91WKtH4JjvZKPLO5_AXrB000 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S1PR1-mediated+IFNAR1+degradation+modulates+plasmacytoid+dendritic+cell+interferon-%CE%B1+autoamplification&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Teijaro%2C+John+R&rft.au=Studer%2C+Sean&rft.au=Leaf%2C+Nora&rft.au=Kiosses%2C+William+B&rft.date=2016-02-02&rft.eissn=1091-6490&rft.volume=113&rft.issue=5&rft.spage=1351&rft.epage=1356&rft_id=info:doi/10.1073%2Fpnas.1525356113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F5.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F5.cover.gif |