Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions
The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 8; p. 3292 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
07.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1420-3049 |
DOI | 10.3390/molecules28083292 |
Cover
Loading…
Abstract | The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed. |
---|---|
AbstractList | The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed. The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed. The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C 3 N 4 ) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C 3 N 4 in the electrocatalytic reduction of CO 2 . This review focuses on the synthesis and functionalization of g-C 3 N 4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO 2 . The modification of g-C 3 N 4 -based catalysts for enhanced CO 2 reduction is critically reviewed. In addition, opportunities for future research on g-C 3 N 4 -based catalysts for electrocatalytic CO 2 reduction are discussed. |
Author | Mao, Xinyi Li, Hongzhe Yan, Zijun Wu, Tao Zhu, Huiwen Chen, Quhan Guo, Zeyu Guo, Ruitang |
AuthorAffiliation | 3 Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China 2 Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China 1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China 4 Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China |
AuthorAffiliation_xml | – name: 2 Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China – name: 4 Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China – name: 1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China – name: 3 Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China |
Author_xml | – sequence: 1 givenname: Xinyi surname: Mao fullname: Mao, Xinyi – sequence: 2 givenname: Ruitang surname: Guo fullname: Guo, Ruitang – sequence: 3 givenname: Quhan orcidid: 0000-0003-0895-9470 surname: Chen fullname: Chen, Quhan – sequence: 4 givenname: Huiwen surname: Zhu fullname: Zhu, Huiwen – sequence: 5 givenname: Hongzhe surname: Li fullname: Li, Hongzhe – sequence: 6 givenname: Zijun surname: Yan fullname: Yan, Zijun – sequence: 7 givenname: Zeyu surname: Guo fullname: Guo, Zeyu – sequence: 8 givenname: Tao orcidid: 0000-0001-6469-9613 surname: Wu fullname: Wu, Tao |
BookMark | eNp1UltrFDEUDlKx7eoP8C3giy-juc0k8yR1qLVQLCz6HDLJSZtldrImmUL_fbPdCrbiUw4n3yXnyzlFR3OcAaH3lHzivCeft3ECu0yQmSKKs569QidUMNJwIvqjv-pjdJrzhhBGBW3foGMuKSUt606QXoOFueAzd2dmCxmHGV8ks7sNJVg8mDTGGf8IJQUH-KvJ4PB5NS0pNoMpZrrPJWMfEx6uGV6DW2wJlbEG81jkt-i1N1OGd0_nCv36dv5z-N5cXV9cDmdXjRWSloZS77q2t5RZIoRhlrWi9rzk3ium2paPbARQvgMOvZLCOT4ar5ylnDlD-QpdHnRdNBu9S2Fr0r2OJujHRkw32qQ60gRaWsmk6KQ3RAnRSyVsS_jImSTOcEeq1peD1m4Zt-D2-SQzPRN9fjOHW30T7zQlVHSq7avCxyeFFH8vkIvehmxhmswMccm6_pfsGWdib_bhBXQTlzTXrPaomgmXdfoVkgeUTTHnBF7bUMw-4fqAMFVnvd8I_c9GVCZ9wfwzx_85D6d3vDY |
CitedBy_id | crossref_primary_10_1007_s11581_024_06032_z crossref_primary_10_1016_j_ccr_2024_215831 crossref_primary_10_1016_j_diamond_2024_111940 crossref_primary_10_1039_D3RA06109D crossref_primary_10_3390_catal14030175 crossref_primary_10_1016_j_efmat_2024_10_001 crossref_primary_10_1016_j_nxmate_2025_100550 crossref_primary_10_1007_s12598_024_03057_1 crossref_primary_10_1016_j_apcata_2023_119445 crossref_primary_10_1016_j_ica_2024_122395 crossref_primary_10_1016_j_cjsc_2024_100469 crossref_primary_10_1016_j_jiec_2024_12_026 crossref_primary_10_1021_acssuschemeng_4c05008 crossref_primary_10_1016_j_mcat_2025_114992 crossref_primary_10_1002_cey2_513 crossref_primary_10_1002_cphc_202400766 crossref_primary_10_1016_j_colsurfa_2024_135739 |
Cites_doi | 10.1016/j.apcatb.2021.120052 10.1002/smll.202203589 10.1007/s11244-018-0965-7 10.1016/j.apsusc.2015.08.173 10.1073/pnas.2120088119 10.1016/j.matpr.2020.05.567 10.1021/acscatal.6b01534 10.1039/C4CS00236A 10.1016/j.materresbull.2021.111228 10.1021/acs.chemrev.7b00776 10.1002/cssc.201902483 10.1016/j.ces.2022.117757 10.1016/j.apsusc.2020.148120 10.1016/j.cej.2014.08.072 10.1016/j.matchemphys.2017.03.008 10.1039/D0NR00818D 10.1002/smll.202205388 10.1016/j.electacta.2021.138831 10.1021/acs.jpcc.8b09430 10.1039/C5NR02905H 10.1016/j.apcatb.2019.117789 10.1021/acsnano.7b01908 10.1039/C7DT04912A 10.1016/j.jcis.2021.11.052 10.1016/j.cej.2021.131402 10.1007/s12649-020-01283-z 10.3390/ijms232214381 10.1016/j.jece.2019.102984 10.1039/D1GC01303C 10.1016/j.apsusc.2020.147563 10.1016/j.jcis.2013.03.034 10.1039/D0CS00332H 10.1039/C5RA07284K 10.1002/chem.201601674 10.1038/s41929-018-0182-6 10.1002/adma.202008180 10.1002/cctc.201200229 10.1039/C5CS00767D 10.1002/smll.201804224 10.1021/jp300123z 10.1038/nmat2317 10.1039/C4NR05732E 10.1016/j.matt.2020.04.002 10.1038/s41570-018-0010-1 10.1016/j.scib.2018.07.005 10.1007/s40820-019-0293-x 10.1002/adfm.200700783 10.1021/acs.iecr.2c00152 10.1016/j.jcis.2019.12.091 10.1039/c2jm00097k 10.1021/acsanm.1c02896 10.1002/advs.201600189 10.1016/j.jiec.2022.08.015 10.1016/j.jcis.2021.10.136 10.1021/acs.chemrev.6b00075 10.3390/catal9010024 10.1002/ange.201905803 10.3390/nano9040568 10.1002/adma.201504766 10.1038/461472a 10.1016/j.apsusc.2021.149779 10.1002/jlac.18340100102 10.1016/j.chempr.2017.09.009 10.1016/j.chemosphere.2016.07.064 10.1007/s12274-021-3725-0 10.1002/adma.201803625 10.1007/s40820-022-00794-9 10.1016/j.jcis.2021.08.061 10.1039/c2cy20049j 10.1021/acscatal.7b01551 10.1021/acsami.8b12108 10.1016/j.apcatb.2013.09.039 10.1021/jacs.7b10817 10.1002/asia.201601178 10.1002/cssc.202002427 10.1039/C5CS00729A 10.1021/acsomega.1c07298 10.1016/j.apmate.2022.100055 10.1002/smll.201906880 10.1016/j.apcatb.2016.03.055 10.1039/b800274f 10.1016/j.rser.2021.111209 10.1016/j.nanoen.2020.104833 10.1002/cssc.201402118 10.1016/j.mtphys.2019.100176 10.1016/j.cattod.2020.12.008 10.1021/acs.inorgchem.1c02456 10.1016/j.scitotenv.2020.136633 10.1021/acsenergylett.8b01594 10.1002/smll.202007245 10.1007/s12274-017-1866-y 10.1016/j.electacta.2021.138766 10.1021/ja709992s 10.1002/anie.202101818 10.1016/j.colsurfa.2020.124835 10.1016/j.jallcom.2019.06.185 10.1021/ja809307s 10.1039/D0TA00556H 10.1039/c2ee21234j 10.1038/s41467-020-18143-y 10.1002/chem.202000708 10.1021/acs.jpclett.5b01559 10.1016/j.colsurfa.2021.126756 10.1016/S1872-2067(17)62839-0 10.1039/C8CS00479J 10.1007/s40843-020-1304-3 10.1002/anie.202109329 10.1016/j.apcatb.2019.118391 10.1021/acs.chemrev.8b00400 10.1016/j.ijhydene.2021.10.024 10.1039/C3CS60323G 10.1021/acscatal.0c00243 10.1002/adma.202000014 10.1021/acs.inorgchem.0c01977 10.1080/10643389.2020.1734433 10.1021/acscatal.8b03789 10.1016/j.jhazmat.2015.03.041 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules28083292 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_7c727467fa08449784c503b3270da3d0 PMC10146859 10_3390_molecules28083292 |
GrantInformation_xml | – fundername: Zhejiang Provincial Department of Science and Technology grantid: 2020E10018 – fundername: Development and Reform Commission of Ningbo Municipality grantid: 2021C03162 – fundername: Ningbo Science and Technology Bureau grantid: 2022S122; 2022R015 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c471t-11fd659c12c044a2c25411ff73ff828553b2bee8f6e3e9874dd3baf8dc132da13 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:30:51 EDT 2025 Thu Aug 21 18:37:37 EDT 2025 Fri Jul 11 03:20:50 EDT 2025 Fri Jul 25 20:07:14 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jul 01 01:22:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-11fd659c12c044a2c25411ff73ff828553b2bee8f6e3e9874dd3baf8dc132da13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0895-9470 0000-0001-6469-9613 |
OpenAccessLink | https://www.proquest.com/docview/2806593755?pq-origsite=%requestingapplication% |
PMID | 37110526 |
PQID | 2806593755 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7c727467fa08449784c503b3270da3d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10146859 proquest_miscellaneous_2807923240 proquest_journals_2806593755 crossref_citationtrail_10_3390_molecules28083292 crossref_primary_10_3390_molecules28083292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230407 |
PublicationDateYYYYMMDD | 2023-04-07 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230407 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yang (ref_93) 2022; 606 Lu (ref_74) 2016; 22 Zhang (ref_76) 2018; 11 Ong (ref_42) 2020; 26 Li (ref_85) 2021; 556 Woyessa (ref_98) 2021; 291 ref_97 Chen (ref_45) 2014; 147 Wang (ref_86) 2021; 60 Tian (ref_18) 2014; 7 Tong (ref_24) 2015; 260 Wang (ref_116) 2018; 47 Ding (ref_103) 2020; 268 Jia (ref_39) 2016; 3 Dong (ref_60) 2013; 401 Shi (ref_105) 2015; 293 Zhao (ref_99) 2017; 8 Liu (ref_23) 2021; 51 Zhang (ref_63) 2012; 22 Zhang (ref_87) 2018; 8 Dong (ref_94) 2022; 119 Wang (ref_81) 2018; 2 ref_29 Wang (ref_106) 2016; 11 Mishra (ref_108) 2021; 35 Jin (ref_14) 2021; 60 Wang (ref_17) 2009; 8 Wu (ref_72) 2021; 624 Lu (ref_43) 2021; 23 Piao (ref_46) 2022; 14 Liu (ref_65) 2016; 45 Li (ref_6) 2019; 119 Tang (ref_22) 2020; 564 Zhang (ref_91) 2022; 7 Zhang (ref_37) 2016; 162 Ren (ref_30) 2018; 10 Cao (ref_113) 2019; 7 Liu (ref_110) 2018; 118 Hu (ref_114) 2019; 256 Guo (ref_36) 2019; 12 Mulik (ref_88) 2021; 370 Wang (ref_26) 2020; 16 Wang (ref_83) 2017; 38 Nazir (ref_92) 2020; 598 Wang (ref_77) 2009; 131 Praus (ref_71) 2017; 193 Patel (ref_84) 2018; 122 Holst (ref_104) 2008; 130 Kuhl (ref_54) 2012; 5 Shen (ref_117) 2022; 15 Yuan (ref_73) 2015; 7 ref_89 Hu (ref_95) 2022; 115 Vinu (ref_57) 2008; 18 Liu (ref_53) 2016; 7 Alothman (ref_32) 2020; 12 Jensen (ref_9) 2021; 147 Sun (ref_66) 2015; 44 Dong (ref_64) 2012; 2 Chen (ref_44) 2020; 73 Mulik (ref_90) 2021; 538 Liebig (ref_15) 1834; 10 Niu (ref_58) 2018; 3 Gu (ref_59) 2015; 5 Zhi (ref_35) 2019; 15 Feng (ref_38) 2020; 32 Hu (ref_118) 2022; 18 Sun (ref_79) 2017; 3 An (ref_111) 2012; 4 Rafrafi (ref_8) 2020; 12 Han (ref_25) 2021; 33 Wang (ref_62) 2020; 2 Chen (ref_109) 2022; 47 Kang (ref_7) 2021; 138 Teixeira (ref_16) 2018; 47 Kortlever (ref_5) 2015; 6 Qiao (ref_4) 2014; 43 Ghane (ref_27) 2020; 534 Wang (ref_75) 2018; 63 Handoko (ref_50) 2018; 1 Weng (ref_47) 2019; 131 Feng (ref_100) 2020; 11 Alfaro (ref_13) 2018; 9 Ye (ref_19) 2015; 358 Aggarwal (ref_21) 2021; 425 Wang (ref_11) 2020; 8 Pei (ref_107) 2017; 11 Li (ref_20) 2019; 802 Chen (ref_69) 2020; 12 Sharma (ref_3) 2020; 713 Shkrob (ref_56) 2012; 116 Jiao (ref_78) 2017; 139 ref_115 Lei (ref_52) 2022; 8 Li (ref_101) 2020; 59 Hussain (ref_102) 2022; 258 Li (ref_40) 2022; 609 Zhang (ref_68) 2021; 14 Le (ref_12) 2018; 61 Wang (ref_2) 2020; 63 Li (ref_31) 2021; 17 Wang (ref_33) 2018; 31 Zhu (ref_51) 2016; 28 Steffen (ref_1) 2009; 461 Ma (ref_80) 2020; 10 Hu (ref_41) 2022; 608 Ong (ref_49) 2016; 116 Zhao (ref_55) 2019; 11 Bhowmik (ref_112) 2021; 4 Sagara (ref_28) 2016; 192 Wang (ref_61) 2014; 7 Lu (ref_70) 2022; 61 Jiao (ref_10) 2020; 49 Zhang (ref_96) 2021; 390 Thomas (ref_67) 2008; 18 Zhang (ref_82) 2021; 60 Zhang (ref_48) 2021; 390 Xu (ref_34) 2016; 45 |
References_xml | – volume: 291 start-page: 120052 year: 2021 ident: ref_98 article-title: Nanocomposite catalyst of graphitic carbon nitride and Cu/Fe mixed metal oxide for electrochemical CO2 reduction to CO publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120052 – volume: 18 start-page: e2203589 year: 2022 ident: ref_118 article-title: Recent Progress of Diatomic Catalysts: General Design Fundamentals and Diversified Catalytic Applications publication-title: Small doi: 10.1002/smll.202203589 – volume: 61 start-page: 1537 year: 2018 ident: ref_12 article-title: CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts publication-title: Top. Catal. doi: 10.1007/s11244-018-0965-7 – volume: 358 start-page: 15 year: 2015 ident: ref_19 article-title: A review on g-C3N4 for photocatalytic water splitting and CO2 reduction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.173 – volume: 119 start-page: e2120088119 year: 2022 ident: ref_94 article-title: Revealing synergetic structural activation of a CuAu surface during water–gas shift reaction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2120088119 – volume: 35 start-page: 258 year: 2021 ident: ref_108 article-title: Phosphorous, boron and sulfur doped g-C3N4 nanosheet: Synthesis, characterization, and comparative study towards photocatalytic hydrogen generation publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.05.567 – volume: 7 start-page: 34 year: 2016 ident: ref_53 article-title: Catalysis by Supported Single Metal Atoms publication-title: ACS Catal. doi: 10.1021/acscatal.6b01534 – volume: 44 start-page: 623 year: 2015 ident: ref_66 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 138 start-page: 111228 year: 2021 ident: ref_7 article-title: Highly selective metal-organic framework-based electrocatalyst for the electrochemical reduction of CO2 to CO publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2021.111228 – volume: 118 start-page: 4981 year: 2018 ident: ref_110 article-title: Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00776 – volume: 12 start-page: 5126 year: 2019 ident: ref_36 article-title: Electrochemical CO(2) Reduction to C(1) Products on Single Nickel/Cobalt/Iron-Doped Graphitic Carbon Nitride: A DFT Study publication-title: ChemSusChem doi: 10.1002/cssc.201902483 – volume: 258 start-page: 117757 year: 2022 ident: ref_102 article-title: Synthesis of Cu-g-C3N4/MoS2 composite as a catalyst for electrochemical CO2 reduction to alcohols publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117757 – volume: 538 start-page: 148120 year: 2021 ident: ref_90 article-title: Electrocatalytic and catalytic CO2 hydrogenation on ZnO/g-C3N4 hybrid nanoelectrodes publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148120 – volume: 260 start-page: 117 year: 2015 ident: ref_24 article-title: Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.08.072 – volume: 193 start-page: 438 year: 2017 ident: ref_71 article-title: Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.03.008 – volume: 12 start-page: 8477 year: 2020 ident: ref_32 article-title: Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co(3)O(4)-g-C(3)N(4) nanomaterials for the oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/D0NR00818D – ident: ref_115 doi: 10.1002/smll.202205388 – volume: 390 start-page: 138831 year: 2021 ident: ref_48 article-title: Ultra-stable oxygen species in Ag nanoparticles anchored on g-C3N4 for enhanced electrochemical reduction of CO2 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138831 – volume: 122 start-page: 29307 year: 2018 ident: ref_84 article-title: Theoretical approaches to describing the oxygen reduction reaction activity of single-atom catalysts publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09430 – volume: 7 start-page: 12343 year: 2015 ident: ref_73 article-title: High-yield synthesis and optical properties of gC 3 N 4 publication-title: Nanoscale doi: 10.1039/C5NR02905H – volume: 256 start-page: 117789 year: 2019 ident: ref_114 article-title: Novel g-C3N4/BiOClxI1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117789 – volume: 11 start-page: 6004 year: 2017 ident: ref_107 article-title: Component Matters: Paving the Roadmap toward Enhanced Electrocatalytic Performance of Graphitic C3N4-Based Catalysts via Atomic Tuning publication-title: ACS Nano doi: 10.1021/acsnano.7b01908 – volume: 47 start-page: 4219 year: 2018 ident: ref_116 article-title: A sulfur vacancy rich CdS based composite photocatalyst with g-C(3)N(4) as a matrix derived from a Cd-S cluster assembled supramolecular network for H(2) production and VOC removal publication-title: Dalton Trans. doi: 10.1039/C7DT04912A – volume: 609 start-page: 535 year: 2022 ident: ref_40 article-title: A 3D C@TiO(2) multishell nanoframe for simultaneous photothermal catalytic hydrogen generation and organic pollutant degradation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.11.052 – volume: 425 start-page: 131402 year: 2021 ident: ref_21 article-title: Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131402 – volume: 12 start-page: 5259 year: 2020 ident: ref_8 article-title: Biological Methanation of H2 and CO2 with Mixed Cultures: Current Advances, Hurdles and Challenges publication-title: Waste Biomass Valorization doi: 10.1007/s12649-020-01283-z – ident: ref_89 doi: 10.3390/ijms232214381 – volume: 7 start-page: 102984 year: 2019 ident: ref_113 article-title: Constructing nitrogen vacancy introduced g-C3N4 pn homojunction for enhanced photocatalytic activity publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.102984 – volume: 23 start-page: 5394 year: 2021 ident: ref_43 article-title: Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: Strategy and mechanism publication-title: Green Chem. doi: 10.1039/D1GC01303C – volume: 534 start-page: 147563 year: 2020 ident: ref_27 article-title: Combustion synthesis of g-C3N4/Fe2O3 nanocomposite for superior photoelectrochemical catalytic performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147563 – volume: 401 start-page: 70 year: 2013 ident: ref_60 article-title: Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.03.034 – volume: 49 start-page: 6592 year: 2020 ident: ref_10 article-title: Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00332H – volume: 5 start-page: 49317 year: 2015 ident: ref_59 article-title: Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light publication-title: RSC Adv. doi: 10.1039/C5RA07284K – volume: 22 start-page: 11991 year: 2016 ident: ref_74 article-title: Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst publication-title: Chemistry doi: 10.1002/chem.201601674 – volume: 1 start-page: 922 year: 2018 ident: ref_50 article-title: Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques publication-title: Nat. Catal. doi: 10.1038/s41929-018-0182-6 – volume: 33 start-page: e2008180 year: 2021 ident: ref_25 article-title: Rational Design of High-Concentration Ti(3+) in Porous Carbon-Doped TiO(2) Nanosheets for Efficient Photocatalytic Ammonia Synthesis publication-title: Adv. Mater. doi: 10.1002/adma.202008180 – volume: 4 start-page: 1512 year: 2012 ident: ref_111 article-title: Size and shape control of metal nanoparticles for reaction selectivity in catalysis publication-title: ChemCatChem doi: 10.1002/cctc.201200229 – volume: 45 start-page: 2308 year: 2016 ident: ref_65 article-title: Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo) catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00767D – volume: 15 start-page: e1804224 year: 2019 ident: ref_35 article-title: Impact of Interfacial Electron Transfer on Electrochemical CO 2 Reduction on Graphitic Carbon Nitride/Doped Graphene publication-title: Small doi: 10.1002/smll.201804224 – volume: 116 start-page: 9461 year: 2012 ident: ref_56 article-title: Heteroatom-Transfer Coupled Photoreduction and Carbon Dioxide Fixation on Metal Oxides publication-title: J. Phys. Chem. C doi: 10.1021/jp300123z – volume: 8 start-page: 76 year: 2009 ident: ref_17 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 7 start-page: 2471 year: 2014 ident: ref_61 article-title: Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity publication-title: Nanoscale doi: 10.1039/C4NR05732E – volume: 2 start-page: 1377 year: 2020 ident: ref_62 article-title: Porous two-dimensional materials for photocatalytic and electrocatalytic applications publication-title: Matter doi: 10.1016/j.matt.2020.04.002 – volume: 2 start-page: 65 year: 2018 ident: ref_81 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 63 start-page: 1246 year: 2018 ident: ref_75 article-title: Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.07.005 – volume: 11 start-page: 62 year: 2019 ident: ref_55 article-title: Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0293-x – volume: 18 start-page: 816 year: 2008 ident: ref_57 article-title: Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700783 – volume: 61 start-page: 10400 year: 2022 ident: ref_70 article-title: Efficient Electrochemical Reduction of CO2 to CO by Ag-Decorated B-Doped g-C3N4, A Combined Theoretical and Experimental Study publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c00152 – volume: 564 start-page: 406 year: 2020 ident: ref_22 article-title: Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.091 – volume: 22 start-page: 8083 year: 2012 ident: ref_63 article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts publication-title: J. Mater. Chem. doi: 10.1039/c2jm00097k – volume: 4 start-page: 12845 year: 2021 ident: ref_112 article-title: Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO2 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c02896 – volume: 3 start-page: 1600189 year: 2016 ident: ref_39 article-title: Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO(2) over Nanostructured Pd@Nb(2)O(5) publication-title: Adv. Sci. doi: 10.1002/advs.201600189 – volume: 115 start-page: 329 year: 2022 ident: ref_95 article-title: Synergistic effect of Cu and Ru decoration on g-C3N4 for electrocatalytic CO2 reduction publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2022.08.015 – volume: 608 start-page: 2058 year: 2022 ident: ref_41 article-title: Significantly enhanced photothermal catalytic hydrogen evolution over Cu(2)O-rGO/TiO(2) composite with full spectrum solar light publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.136 – volume: 116 start-page: 7159 year: 2016 ident: ref_49 article-title: Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 9 start-page: 24 year: 2018 ident: ref_13 article-title: High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects publication-title: Catalysts doi: 10.3390/catal9010024 – volume: 131 start-page: 13865 year: 2019 ident: ref_47 article-title: A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery publication-title: Angew. Chem. doi: 10.1002/ange.201905803 – ident: ref_29 doi: 10.3390/nano9040568 – volume: 28 start-page: 3423 year: 2016 ident: ref_51 article-title: Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide publication-title: Adv. Mater. doi: 10.1002/adma.201504766 – volume: 8 start-page: 139663 year: 2022 ident: ref_52 article-title: Recent advances on electrocatalytic CO2 reduction to resources: Target products, reaction pathways and typical catalysts publication-title: Chem. Eng. J. – volume: 461 start-page: 472 year: 2009 ident: ref_1 article-title: A safe operating space for humanity publication-title: Nature doi: 10.1038/461472a – volume: 556 start-page: 149779 year: 2021 ident: ref_85 article-title: Designing efficient single-atomic catalysts for bifunctional oxygen electrocatalysis via a general two-step strategy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149779 – volume: 10 start-page: 1 year: 1834 ident: ref_15 article-title: About Some Nitrogen Compounds. 1834 publication-title: Ann. Pharm. doi: 10.1002/jlac.18340100102 – volume: 3 start-page: 560 year: 2017 ident: ref_79 article-title: Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials publication-title: Chem doi: 10.1016/j.chempr.2017.09.009 – volume: 162 start-page: 55 year: 2016 ident: ref_37 article-title: Synergistic photoelectrochemical reduction of Cr (VI) and oxidation of organic pollutants by g-C3N4/TiO2-NTs electrodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.07.064 – volume: 15 start-page: 2773 year: 2022 ident: ref_117 article-title: Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts publication-title: Nano Res. doi: 10.1007/s12274-021-3725-0 – volume: 31 start-page: e1803625 year: 2018 ident: ref_33 article-title: Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting publication-title: Adv. Mater. doi: 10.1002/adma.201803625 – volume: 14 start-page: 55 year: 2022 ident: ref_46 article-title: Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00794-9 – volume: 606 start-page: 793 year: 2022 ident: ref_93 article-title: Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.061 – volume: 2 start-page: 1332 year: 2012 ident: ref_64 article-title: Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance publication-title: Catal. Sci. Technol. doi: 10.1039/c2cy20049j – volume: 8 start-page: 188 year: 2017 ident: ref_99 article-title: Enhanced Activity for CO2 Electroreduction on a Highly Active and Stable Ternary Au-CDots-C3N4 Electrocatalyst publication-title: ACS Catal. doi: 10.1021/acscatal.7b01551 – volume: 10 start-page: 33276 year: 2018 ident: ref_30 article-title: Well-Defined Mo(2)C Nanoparticles Embedded in Porous N-Doped Carbon Matrix for Highly Efficient Electrocatalytic Hydrogen Evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12108 – volume: 147 start-page: 554 year: 2014 ident: ref_45 article-title: Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@ mpg-C3N4 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.09.039 – volume: 139 start-page: 18093 year: 2017 ident: ref_78 article-title: Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO(2) Reduction to Hydrocarbon/Alcohol publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10817 – volume: 11 start-page: 3305 year: 2016 ident: ref_106 article-title: Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications publication-title: Chem. Asian J. doi: 10.1002/asia.201601178 – volume: 14 start-page: 929 year: 2021 ident: ref_68 article-title: Unveiling the Synergistic Effect between Graphitic Carbon Nitride and Cu(2) O toward CO(2) Electroreduction to C(2) H(4) publication-title: ChemSusChem doi: 10.1002/cssc.202002427 – volume: 45 start-page: 3039 year: 2016 ident: ref_34 article-title: Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00729A – volume: 7 start-page: 11158 year: 2022 ident: ref_91 article-title: Facile Synthesis of Fe@C Loaded on g-C(3)N(4) for CO(2) Electrochemical Reduction to CO with Low Overpotential publication-title: ACS Omega doi: 10.1021/acsomega.1c07298 – ident: ref_97 doi: 10.1016/j.apmate.2022.100055 – volume: 16 start-page: e1906880 year: 2020 ident: ref_26 article-title: Formation of B—N—C Coordination to Stabilize the Exposed Active Nitrogen Atoms in g-C(3) N(4) for Dramatically Enhanced Photocatalytic Ammonia Synthesis Performance publication-title: Small doi: 10.1002/smll.201906880 – volume: 192 start-page: 193 year: 2016 ident: ref_28 article-title: Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.055 – volume: 18 start-page: 4893 year: 2008 ident: ref_67 article-title: Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts publication-title: J. Mater. Chem. doi: 10.1039/b800274f – volume: 147 start-page: 111209 year: 2021 ident: ref_9 article-title: H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111209 – volume: 73 start-page: 104833 year: 2020 ident: ref_44 article-title: Tuning local carbon active sites saturability of graphitic carbon nitride to boost CO2 electroreduction towards CH4 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104833 – volume: 7 start-page: 2125 year: 2014 ident: ref_18 article-title: Ultrathin graphitic C3 N4 nanosheets/graphene composites: Efficient organic electrocatalyst for oxygen evolution reaction publication-title: ChemSusChem doi: 10.1002/cssc.201402118 – volume: 12 start-page: 100176 year: 2020 ident: ref_69 article-title: Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100176 – volume: 370 start-page: 104 year: 2021 ident: ref_88 article-title: Highly efficient manganese oxide decorated graphitic carbon nitrite electrocatalyst for reduction of CO2 to formate publication-title: Catal. Today doi: 10.1016/j.cattod.2020.12.008 – volume: 60 start-page: 15782 year: 2021 ident: ref_82 article-title: Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c02456 – volume: 713 start-page: 136633 year: 2020 ident: ref_3 article-title: Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.136633 – volume: 3 start-page: 2796 year: 2018 ident: ref_58 article-title: Graphitic carbon nitride for electrochemical energy conversion and storage publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01594 – volume: 17 start-page: e2007245 year: 2021 ident: ref_31 article-title: Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions publication-title: Small doi: 10.1002/smll.202007245 – volume: 11 start-page: 2450 year: 2018 ident: ref_76 article-title: Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2 publication-title: Nano Res. doi: 10.1007/s12274-017-1866-y – volume: 390 start-page: 138766 year: 2021 ident: ref_96 article-title: Dual 2D CuSe/g-C3N4 heterostructure for boosting electrocatalytic reduction of CO2 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138766 – volume: 130 start-page: 7373 year: 2008 ident: ref_104 article-title: From triazines to heptazines: Deciphering the local structure of amorphous nitrogen-rich carbon nitride materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja709992s – volume: 60 start-page: 20627 year: 2021 ident: ref_14 article-title: Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101818 – volume: 598 start-page: 124835 year: 2020 ident: ref_92 article-title: Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.124835 – volume: 802 start-page: 196 year: 2019 ident: ref_20 article-title: Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.06.185 – volume: 131 start-page: 1680 year: 2009 ident: ref_77 article-title: Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 8 start-page: 6957 year: 2020 ident: ref_11 article-title: Covalent organic frameworks: Emerging high-performance platforms for efficient photocatalytic applications publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00556H – volume: 5 start-page: 7050 year: 2012 ident: ref_54 article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21234j – volume: 11 start-page: 4341 year: 2020 ident: ref_100 article-title: A Mn-N(3) single-atom catalyst embedded in graphitic carbon nitride for efficient CO(2) electroreduction publication-title: Nat. Commun. doi: 10.1038/s41467-020-18143-y – volume: 26 start-page: 9710 year: 2020 ident: ref_42 article-title: Rational Design of Carbon-Based 2D Nanostructures for Enhanced Photocatalytic CO(2) Reduction: A Dimensionality Perspective publication-title: Chemistry doi: 10.1002/chem.202000708 – volume: 6 start-page: 4073 year: 2015 ident: ref_5 article-title: Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01559 – volume: 624 start-page: 126756 year: 2021 ident: ref_72 article-title: Preparation of g-C3N4/TiO2 by template method and its photocatalytic performance publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.126756 – volume: 38 start-page: 1443 year: 2017 ident: ref_83 article-title: Two-dimensional materials confining single atoms for catalysis publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62839-0 – volume: 47 start-page: 7783 year: 2018 ident: ref_16 article-title: Carbon nitrides and metal nanoparticles: From controlled synthesis to design principles for improved photocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00479J – volume: 63 start-page: 1113 year: 2020 ident: ref_2 article-title: Reticular chemistry in electrochemical carbon dioxide reduction publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1304-3 – volume: 60 start-page: 25241 year: 2021 ident: ref_86 article-title: Atomically Dispersed s-Block Magnesium Sites for Electroreduction of CO(2) to CO publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202109329 – volume: 268 start-page: 118391 year: 2020 ident: ref_103 article-title: Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118391 – volume: 119 start-page: 3962 year: 2019 ident: ref_6 article-title: Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00400 – volume: 47 start-page: 250 year: 2022 ident: ref_109 article-title: Construction of Ag decorated P-doped g-C3N4 nanosheets Schottky junction via silver mirror reaction for enhanced photocatalytic activities publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.10.024 – volume: 43 start-page: 631 year: 2014 ident: ref_4 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60323G – volume: 10 start-page: 4534 year: 2020 ident: ref_80 article-title: Covalent triazine framework confined copper catalysts for selective electrochemical CO2 reduction: Operando diagnosis of active sites publication-title: ACS Catal. doi: 10.1021/acscatal.0c00243 – volume: 32 start-page: e2000014 year: 2020 ident: ref_38 article-title: Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO 2 Photocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.202000014 – volume: 59 start-page: 14184 year: 2020 ident: ref_101 article-title: Highly Selective and Active Electrochemical Reduction of CO(2) to CO on a Polymeric Co(II) Phthalocyanine@Graphitic Carbon Nitride Nanosheet-Carbon Nanotube Composite publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01977 – volume: 51 start-page: 751 year: 2021 ident: ref_23 article-title: Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1734433 – volume: 8 start-page: 11035 year: 2018 ident: ref_87 article-title: Tuning Metal Catalyst with Metal–C3N4 Interaction for Efficient CO2 Electroreduction publication-title: ACS Catal. doi: 10.1021/acscatal.8b03789 – volume: 293 start-page: 87 year: 2015 ident: ref_105 article-title: Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.03.041 |
SSID | ssj0021415 |
Score | 2.4680357 |
SecondaryResourceType | review_article |
Snippet | The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions.... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3292 |
SubjectTerms | Carbon dioxide Carbon monoxide Catalysis Climate change CO2 reduction Electrocatalysis Electrodes Electrolytes graphitic phase carbon nitride (g-C3N4) Hydrogen Morphology Nitrogen novel catalyst carrier Photocatalysis Pore size Review single atom catalyst |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE-uLCJ6EYps0TfeoxQeCCqLgreQxwQXtyrZ78N87abqLRdCLt5IHpDMTZqYz_T5CToBxk4JjsVZ4yTPtklgJrmJIWW6YZMA77M67-_zmObt9ES_fqL58T1iABw6CO5MGPSzeZqeSIvN0aJkRCdecycQqbrtsHX3ePJnqU60U_VKoYXJM6s_eA9UsNKzAkION2MALdWD9gwhz2B_5zeFcrZO1PlKk5-GEG2QJ6k2yUs4J2rZIhSEfbqXnoYzf0HFNrz3-tG9oo6Wa6klN78ftdGyBXqC3svQykN7Epf9o89m0DcWYlZYPjD56CFevJHwK_zo02-T56vKpvIl7voTYoItp4zR1NhcjkzKTZJliBpM_HHOSO-eB6gTXTAMULgcOo0Jm1nKtXGENpqRWpXyHLNeTGnYJ5ZmWicPkxqEoOeRaAhfo7ZxRYHKlI5LM5VeZHkzcc1q8VZhUeJFXP0QekdPFlo-ApPHb4guvlMVCD4LdDaBpVL1pVH-ZRkQO5iqt-pvZVKGSzKUQETleTKPmfKFE1TCZdWs8rCIGOxEpBqYwONBwph6_dujcnvw4L8Ro7z9eYZ-sen77rlVIHpDldjqDQ4yCWn3UGfwX5l8HOA priority: 102 providerName: Directory of Open Access Journals |
Title | Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions |
URI | https://www.proquest.com/docview/2806593755 https://www.proquest.com/docview/2807923240 https://pubmed.ncbi.nlm.nih.gov/PMC10146859 https://doaj.org/article/7c727467fa08449784c503b3270da3d0 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0fdAX8ROj9VjBJyE02U2yuSfphbsWwVOKhXsL-6kHNamX9MH_3plN7moQ-hJCdvPBzO7OzM7k9wP44LgwqfM81goneaZ9EqtcqNilvDBccicCdueXdXFxlX3e5Jtxw60byyr3a2JYqG1raI_8dMgACpnnn25-x8QaRdnVkULjIRwTdBmVdMnNXcCVonUaMpkCQ_vTXwPhrOvwWTiQ53xiiwJk_8TPnFZJ_mN2Vk_hyegvsrNBwc_ggWuew6NqT9P2Amp0_PBWdjYk8zu2bdg5oVBTWRur1E63DVtv-93WOrZAm2XZcqC-iSvauvnT9R1Dz5VVXzm7JCBXUhWeDX88dC_harX8Xl3EI2tCbNDQ9HGaeouSMik3SZYpbjAExGteCu8Jri4XmmvnSl844ealzKwVWvnSGgxMrUrFKzhq2sa9BiYyLROPIY5HUQpXaOlEjjbPG-VMoXQEyV5-tRkhxYnZ4rrG0IJEXv8n8gg-Hm65GfA07uu8IKUcOhIUdrjQ7n7U48yqpUEXDJd7r5IyI768zOSJ0ILLxCphkwhO9iqtx_nZ1XejKYL3h2bUHKVLVOPa29CHwBXR5YmgnAyFyQdNW5rtz4DRTRTIRZnP39z_9rfwmPjrQymQPIGjfnfr3qGX0-tZGMp4LFfnMzheLNffLmdhx-AvKNIDpg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXqrxESgEjwQUpamLntYcKtaHbLW0XCbVSb8FPWAmSskmF-qf4jczksRAh9dZbFNtJNJ7xzMTj7wN4Y7nQoXXcVxKNPFIu8GUspG9Dnmiecita7M6zeTK7iD5expdr8Hs4C0NllcOa2C7UptL0j3y32wEUaRy_v_rpE2sU7a4OFBqdWpzYm1-YstV7xx9wft9yPj08z2d-zyrga1yIGz8MncEn6ZDrIIok15gi4T2XCucIzi0WiitrM5dYYTEjj4wRSrrMaEzcjAwFPvce3I-EmJBFZdOjVYIXojfsdk6xMdj90RHc2hq_HQ1nwke-r6UIGMW146rMf9zcdAs2-_iU7XcK9RDWbPkINvKBFu4xFBho4lC23xUP1GxRsiNCvaYyOpbLpapKNl80y4Wx7AB9pGGHHdWOn9Ovopu6qRlGyiz_xNlnAo4l1cCr7oRF_QQu7kSeT2G9rEr7DJiIVBo4TKkcilLYRKVWxOhjnZZWJ1J5EAzyK3QPYU5MGt8LTGVI5MV_Ivfg3WrIVYffcVvnA5qUVUeC3m5vVMuvRW_JRaox5EP34mSQRcTPF-k4EErwNDBSmMCDnWFKi349qIu_2uvB61Uzzhxtz8jSVtdtHwJzxBDLg2ykCqMPGreUi28tJjhRLidZPNm-_e2vYGN2fnZanB7PT57DA44RW1uGlO7AerO8ti8wwmrUy1atGXy5azv6AyyTPZE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxFMEChgJLkjROnYSZw8ItWmXlsKCEJX2lvoJK7VJ2aRC_Wv8OsZ5bImQeustSuw8xjOemXj8fQCvLeM6so6FSqKRx8rRUCZchjZiqWaCWd5id36ep_tH8cdFstiAP8NeGF9WOcyJ7URtKu3_kU-6FUAukmTi-rKIr7uz92e_Qs8g5VdaBzqNTkUO7cVvTN_qdwe7ONZvGJvtfc_3w55hINQ4KTdhFDmDd9UR0zSOJdOYLuE5J7hzHtot4YopazOXWm4xO4-N4Uq6zGhM4oyMON73BtwUPIm8jYnFZbIXoWfsVlE5n9LJaUd2a2v8DjSiKRv5wZYuYBTjjis0_3F5s3twt49VyXanXPdhw5YP4HY-UMQ9hAKDTuxKtrtCgposS_LBI2D7kjqSy5WqSjJfNqulsWQH_aUhex3tTpj730YXdVMTjJpJ_oWRbx5E1qsJHnW7LepHcHQt8nwMm2VV2idAeKwEdZheORQlt6kSlifob52WVqdSBUAH-RW6hzP3rBonBaY1XuTFfyIP4O26y1mH5XFV4x0_KOuGHoa7PVGtfhS9VRdCY_iHrsZJmsWeqy_WCeWKM0GN5IYGsDUMadHPDXVxqckBvFpfxpHzSzWytNV528YDO2K4FUA2UoXRC42vlMufLT64p19Os2T69Oqnv4RbaEHFp4P54TO4wzB4ayuSxBZsNqtz-xyDrUa9aLWawPF1m9FffoNBvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Graphitic+Carbon+Nitride+Based+Electro-Catalysts+for+CO2+Reduction+Reactions&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Mao%2C+Xinyi&rft.au=Guo%2C+Ruitang&rft.au=Chen%2C+Quhan&rft.au=Zhu%2C+Huiwen&rft.date=2023-04-07&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=8&rft.spage=3292&rft_id=info:doi/10.3390%2Fmolecules28083292&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28083292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |