Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions

The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 8; p. 3292
Main Authors Mao, Xinyi, Guo, Ruitang, Chen, Quhan, Zhu, Huiwen, Li, Hongzhe, Yan, Zijun, Guo, Zeyu, Wu, Tao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 07.04.2023
MDPI
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules28083292

Cover

Loading…
Abstract The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.
AbstractList The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.
The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.
The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C 3 N 4 ) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C 3 N 4 in the electrocatalytic reduction of CO 2 . This review focuses on the synthesis and functionalization of g-C 3 N 4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO 2 . The modification of g-C 3 N 4 -based catalysts for enhanced CO 2 reduction is critically reviewed. In addition, opportunities for future research on g-C 3 N 4 -based catalysts for electrocatalytic CO 2 reduction are discussed.
Author Mao, Xinyi
Li, Hongzhe
Yan, Zijun
Wu, Tao
Zhu, Huiwen
Chen, Quhan
Guo, Zeyu
Guo, Ruitang
AuthorAffiliation 3 Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
2 Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
4 Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
AuthorAffiliation_xml – name: 2 Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
– name: 4 Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
– name: 1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
– name: 3 Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
Author_xml – sequence: 1
  givenname: Xinyi
  surname: Mao
  fullname: Mao, Xinyi
– sequence: 2
  givenname: Ruitang
  surname: Guo
  fullname: Guo, Ruitang
– sequence: 3
  givenname: Quhan
  orcidid: 0000-0003-0895-9470
  surname: Chen
  fullname: Chen, Quhan
– sequence: 4
  givenname: Huiwen
  surname: Zhu
  fullname: Zhu, Huiwen
– sequence: 5
  givenname: Hongzhe
  surname: Li
  fullname: Li, Hongzhe
– sequence: 6
  givenname: Zijun
  surname: Yan
  fullname: Yan, Zijun
– sequence: 7
  givenname: Zeyu
  surname: Guo
  fullname: Guo, Zeyu
– sequence: 8
  givenname: Tao
  orcidid: 0000-0001-6469-9613
  surname: Wu
  fullname: Wu, Tao
BookMark eNp1UltrFDEUDlKx7eoP8C3giy-juc0k8yR1qLVQLCz6HDLJSZtldrImmUL_fbPdCrbiUw4n3yXnyzlFR3OcAaH3lHzivCeft3ECu0yQmSKKs569QidUMNJwIvqjv-pjdJrzhhBGBW3foGMuKSUt606QXoOFueAzd2dmCxmHGV8ks7sNJVg8mDTGGf8IJQUH-KvJ4PB5NS0pNoMpZrrPJWMfEx6uGV6DW2wJlbEG81jkt-i1N1OGd0_nCv36dv5z-N5cXV9cDmdXjRWSloZS77q2t5RZIoRhlrWi9rzk3ium2paPbARQvgMOvZLCOT4ar5ylnDlD-QpdHnRdNBu9S2Fr0r2OJujHRkw32qQ60gRaWsmk6KQ3RAnRSyVsS_jImSTOcEeq1peD1m4Zt-D2-SQzPRN9fjOHW30T7zQlVHSq7avCxyeFFH8vkIvehmxhmswMccm6_pfsGWdib_bhBXQTlzTXrPaomgmXdfoVkgeUTTHnBF7bUMw-4fqAMFVnvd8I_c9GVCZ9wfwzx_85D6d3vDY
CitedBy_id crossref_primary_10_1007_s11581_024_06032_z
crossref_primary_10_1016_j_ccr_2024_215831
crossref_primary_10_1016_j_diamond_2024_111940
crossref_primary_10_1039_D3RA06109D
crossref_primary_10_3390_catal14030175
crossref_primary_10_1016_j_efmat_2024_10_001
crossref_primary_10_1016_j_nxmate_2025_100550
crossref_primary_10_1007_s12598_024_03057_1
crossref_primary_10_1016_j_apcata_2023_119445
crossref_primary_10_1016_j_ica_2024_122395
crossref_primary_10_1016_j_cjsc_2024_100469
crossref_primary_10_1016_j_jiec_2024_12_026
crossref_primary_10_1021_acssuschemeng_4c05008
crossref_primary_10_1016_j_mcat_2025_114992
crossref_primary_10_1002_cey2_513
crossref_primary_10_1002_cphc_202400766
crossref_primary_10_1016_j_colsurfa_2024_135739
Cites_doi 10.1016/j.apcatb.2021.120052
10.1002/smll.202203589
10.1007/s11244-018-0965-7
10.1016/j.apsusc.2015.08.173
10.1073/pnas.2120088119
10.1016/j.matpr.2020.05.567
10.1021/acscatal.6b01534
10.1039/C4CS00236A
10.1016/j.materresbull.2021.111228
10.1021/acs.chemrev.7b00776
10.1002/cssc.201902483
10.1016/j.ces.2022.117757
10.1016/j.apsusc.2020.148120
10.1016/j.cej.2014.08.072
10.1016/j.matchemphys.2017.03.008
10.1039/D0NR00818D
10.1002/smll.202205388
10.1016/j.electacta.2021.138831
10.1021/acs.jpcc.8b09430
10.1039/C5NR02905H
10.1016/j.apcatb.2019.117789
10.1021/acsnano.7b01908
10.1039/C7DT04912A
10.1016/j.jcis.2021.11.052
10.1016/j.cej.2021.131402
10.1007/s12649-020-01283-z
10.3390/ijms232214381
10.1016/j.jece.2019.102984
10.1039/D1GC01303C
10.1016/j.apsusc.2020.147563
10.1016/j.jcis.2013.03.034
10.1039/D0CS00332H
10.1039/C5RA07284K
10.1002/chem.201601674
10.1038/s41929-018-0182-6
10.1002/adma.202008180
10.1002/cctc.201200229
10.1039/C5CS00767D
10.1002/smll.201804224
10.1021/jp300123z
10.1038/nmat2317
10.1039/C4NR05732E
10.1016/j.matt.2020.04.002
10.1038/s41570-018-0010-1
10.1016/j.scib.2018.07.005
10.1007/s40820-019-0293-x
10.1002/adfm.200700783
10.1021/acs.iecr.2c00152
10.1016/j.jcis.2019.12.091
10.1039/c2jm00097k
10.1021/acsanm.1c02896
10.1002/advs.201600189
10.1016/j.jiec.2022.08.015
10.1016/j.jcis.2021.10.136
10.1021/acs.chemrev.6b00075
10.3390/catal9010024
10.1002/ange.201905803
10.3390/nano9040568
10.1002/adma.201504766
10.1038/461472a
10.1016/j.apsusc.2021.149779
10.1002/jlac.18340100102
10.1016/j.chempr.2017.09.009
10.1016/j.chemosphere.2016.07.064
10.1007/s12274-021-3725-0
10.1002/adma.201803625
10.1007/s40820-022-00794-9
10.1016/j.jcis.2021.08.061
10.1039/c2cy20049j
10.1021/acscatal.7b01551
10.1021/acsami.8b12108
10.1016/j.apcatb.2013.09.039
10.1021/jacs.7b10817
10.1002/asia.201601178
10.1002/cssc.202002427
10.1039/C5CS00729A
10.1021/acsomega.1c07298
10.1016/j.apmate.2022.100055
10.1002/smll.201906880
10.1016/j.apcatb.2016.03.055
10.1039/b800274f
10.1016/j.rser.2021.111209
10.1016/j.nanoen.2020.104833
10.1002/cssc.201402118
10.1016/j.mtphys.2019.100176
10.1016/j.cattod.2020.12.008
10.1021/acs.inorgchem.1c02456
10.1016/j.scitotenv.2020.136633
10.1021/acsenergylett.8b01594
10.1002/smll.202007245
10.1007/s12274-017-1866-y
10.1016/j.electacta.2021.138766
10.1021/ja709992s
10.1002/anie.202101818
10.1016/j.colsurfa.2020.124835
10.1016/j.jallcom.2019.06.185
10.1021/ja809307s
10.1039/D0TA00556H
10.1039/c2ee21234j
10.1038/s41467-020-18143-y
10.1002/chem.202000708
10.1021/acs.jpclett.5b01559
10.1016/j.colsurfa.2021.126756
10.1016/S1872-2067(17)62839-0
10.1039/C8CS00479J
10.1007/s40843-020-1304-3
10.1002/anie.202109329
10.1016/j.apcatb.2019.118391
10.1021/acs.chemrev.8b00400
10.1016/j.ijhydene.2021.10.024
10.1039/C3CS60323G
10.1021/acscatal.0c00243
10.1002/adma.202000014
10.1021/acs.inorgchem.0c01977
10.1080/10643389.2020.1734433
10.1021/acscatal.8b03789
10.1016/j.jhazmat.2015.03.041
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules28083292
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_7c727467fa08449784c503b3270da3d0
PMC10146859
10_3390_molecules28083292
GrantInformation_xml – fundername: Zhejiang Provincial Department of Science and Technology
  grantid: 2020E10018
– fundername: Development and Reform Commission of Ningbo Municipality
  grantid: 2021C03162
– fundername: Ningbo Science and Technology Bureau
  grantid: 2022S122; 2022R015
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c471t-11fd659c12c044a2c25411ff73ff828553b2bee8f6e3e9874dd3baf8dc132da13
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:30:51 EDT 2025
Thu Aug 21 18:37:37 EDT 2025
Fri Jul 11 03:20:50 EDT 2025
Fri Jul 25 20:07:14 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 01:22:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-11fd659c12c044a2c25411ff73ff828553b2bee8f6e3e9874dd3baf8dc132da13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0895-9470
0000-0001-6469-9613
OpenAccessLink https://www.proquest.com/docview/2806593755?pq-origsite=%requestingapplication%
PMID 37110526
PQID 2806593755
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_7c727467fa08449784c503b3270da3d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10146859
proquest_miscellaneous_2807923240
proquest_journals_2806593755
crossref_citationtrail_10_3390_molecules28083292
crossref_primary_10_3390_molecules28083292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230407
PublicationDateYYYYMMDD 2023-04-07
PublicationDate_xml – month: 4
  year: 2023
  text: 20230407
  day: 7
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yang (ref_93) 2022; 606
Lu (ref_74) 2016; 22
Zhang (ref_76) 2018; 11
Ong (ref_42) 2020; 26
Li (ref_85) 2021; 556
Woyessa (ref_98) 2021; 291
ref_97
Chen (ref_45) 2014; 147
Wang (ref_86) 2021; 60
Tian (ref_18) 2014; 7
Tong (ref_24) 2015; 260
Wang (ref_116) 2018; 47
Ding (ref_103) 2020; 268
Jia (ref_39) 2016; 3
Dong (ref_60) 2013; 401
Shi (ref_105) 2015; 293
Zhao (ref_99) 2017; 8
Liu (ref_23) 2021; 51
Zhang (ref_63) 2012; 22
Zhang (ref_87) 2018; 8
Dong (ref_94) 2022; 119
Wang (ref_81) 2018; 2
ref_29
Wang (ref_106) 2016; 11
Mishra (ref_108) 2021; 35
Jin (ref_14) 2021; 60
Wang (ref_17) 2009; 8
Wu (ref_72) 2021; 624
Lu (ref_43) 2021; 23
Piao (ref_46) 2022; 14
Liu (ref_65) 2016; 45
Li (ref_6) 2019; 119
Tang (ref_22) 2020; 564
Zhang (ref_91) 2022; 7
Zhang (ref_37) 2016; 162
Ren (ref_30) 2018; 10
Cao (ref_113) 2019; 7
Liu (ref_110) 2018; 118
Hu (ref_114) 2019; 256
Guo (ref_36) 2019; 12
Mulik (ref_88) 2021; 370
Wang (ref_26) 2020; 16
Wang (ref_83) 2017; 38
Nazir (ref_92) 2020; 598
Wang (ref_77) 2009; 131
Praus (ref_71) 2017; 193
Patel (ref_84) 2018; 122
Holst (ref_104) 2008; 130
Kuhl (ref_54) 2012; 5
Shen (ref_117) 2022; 15
Yuan (ref_73) 2015; 7
ref_89
Hu (ref_95) 2022; 115
Vinu (ref_57) 2008; 18
Liu (ref_53) 2016; 7
Alothman (ref_32) 2020; 12
Jensen (ref_9) 2021; 147
Sun (ref_66) 2015; 44
Dong (ref_64) 2012; 2
Chen (ref_44) 2020; 73
Mulik (ref_90) 2021; 538
Liebig (ref_15) 1834; 10
Niu (ref_58) 2018; 3
Gu (ref_59) 2015; 5
Zhi (ref_35) 2019; 15
Feng (ref_38) 2020; 32
Hu (ref_118) 2022; 18
Sun (ref_79) 2017; 3
An (ref_111) 2012; 4
Rafrafi (ref_8) 2020; 12
Han (ref_25) 2021; 33
Wang (ref_62) 2020; 2
Chen (ref_109) 2022; 47
Kang (ref_7) 2021; 138
Teixeira (ref_16) 2018; 47
Kortlever (ref_5) 2015; 6
Qiao (ref_4) 2014; 43
Ghane (ref_27) 2020; 534
Wang (ref_75) 2018; 63
Handoko (ref_50) 2018; 1
Weng (ref_47) 2019; 131
Feng (ref_100) 2020; 11
Alfaro (ref_13) 2018; 9
Ye (ref_19) 2015; 358
Aggarwal (ref_21) 2021; 425
Wang (ref_11) 2020; 8
Pei (ref_107) 2017; 11
Li (ref_20) 2019; 802
Chen (ref_69) 2020; 12
Sharma (ref_3) 2020; 713
Shkrob (ref_56) 2012; 116
Jiao (ref_78) 2017; 139
ref_115
Lei (ref_52) 2022; 8
Li (ref_101) 2020; 59
Hussain (ref_102) 2022; 258
Li (ref_40) 2022; 609
Zhang (ref_68) 2021; 14
Le (ref_12) 2018; 61
Wang (ref_2) 2020; 63
Li (ref_31) 2021; 17
Wang (ref_33) 2018; 31
Zhu (ref_51) 2016; 28
Steffen (ref_1) 2009; 461
Ma (ref_80) 2020; 10
Hu (ref_41) 2022; 608
Ong (ref_49) 2016; 116
Zhao (ref_55) 2019; 11
Bhowmik (ref_112) 2021; 4
Sagara (ref_28) 2016; 192
Wang (ref_61) 2014; 7
Lu (ref_70) 2022; 61
Jiao (ref_10) 2020; 49
Zhang (ref_96) 2021; 390
Thomas (ref_67) 2008; 18
Zhang (ref_82) 2021; 60
Zhang (ref_48) 2021; 390
Xu (ref_34) 2016; 45
References_xml – volume: 291
  start-page: 120052
  year: 2021
  ident: ref_98
  article-title: Nanocomposite catalyst of graphitic carbon nitride and Cu/Fe mixed metal oxide for electrochemical CO2 reduction to CO
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120052
– volume: 18
  start-page: e2203589
  year: 2022
  ident: ref_118
  article-title: Recent Progress of Diatomic Catalysts: General Design Fundamentals and Diversified Catalytic Applications
  publication-title: Small
  doi: 10.1002/smll.202203589
– volume: 61
  start-page: 1537
  year: 2018
  ident: ref_12
  article-title: CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts
  publication-title: Top. Catal.
  doi: 10.1007/s11244-018-0965-7
– volume: 358
  start-page: 15
  year: 2015
  ident: ref_19
  article-title: A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.173
– volume: 119
  start-page: e2120088119
  year: 2022
  ident: ref_94
  article-title: Revealing synergetic structural activation of a CuAu surface during water–gas shift reaction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2120088119
– volume: 35
  start-page: 258
  year: 2021
  ident: ref_108
  article-title: Phosphorous, boron and sulfur doped g-C3N4 nanosheet: Synthesis, characterization, and comparative study towards photocatalytic hydrogen generation
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.05.567
– volume: 7
  start-page: 34
  year: 2016
  ident: ref_53
  article-title: Catalysis by Supported Single Metal Atoms
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01534
– volume: 44
  start-page: 623
  year: 2015
  ident: ref_66
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 138
  start-page: 111228
  year: 2021
  ident: ref_7
  article-title: Highly selective metal-organic framework-based electrocatalyst for the electrochemical reduction of CO2 to CO
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2021.111228
– volume: 118
  start-page: 4981
  year: 2018
  ident: ref_110
  article-title: Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00776
– volume: 12
  start-page: 5126
  year: 2019
  ident: ref_36
  article-title: Electrochemical CO(2) Reduction to C(1) Products on Single Nickel/Cobalt/Iron-Doped Graphitic Carbon Nitride: A DFT Study
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201902483
– volume: 258
  start-page: 117757
  year: 2022
  ident: ref_102
  article-title: Synthesis of Cu-g-C3N4/MoS2 composite as a catalyst for electrochemical CO2 reduction to alcohols
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117757
– volume: 538
  start-page: 148120
  year: 2021
  ident: ref_90
  article-title: Electrocatalytic and catalytic CO2 hydrogenation on ZnO/g-C3N4 hybrid nanoelectrodes
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148120
– volume: 260
  start-page: 117
  year: 2015
  ident: ref_24
  article-title: Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.08.072
– volume: 193
  start-page: 438
  year: 2017
  ident: ref_71
  article-title: Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.03.008
– volume: 12
  start-page: 8477
  year: 2020
  ident: ref_32
  article-title: Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co(3)O(4)-g-C(3)N(4) nanomaterials for the oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/D0NR00818D
– ident: ref_115
  doi: 10.1002/smll.202205388
– volume: 390
  start-page: 138831
  year: 2021
  ident: ref_48
  article-title: Ultra-stable oxygen species in Ag nanoparticles anchored on g-C3N4 for enhanced electrochemical reduction of CO2
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138831
– volume: 122
  start-page: 29307
  year: 2018
  ident: ref_84
  article-title: Theoretical approaches to describing the oxygen reduction reaction activity of single-atom catalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09430
– volume: 7
  start-page: 12343
  year: 2015
  ident: ref_73
  article-title: High-yield synthesis and optical properties of gC 3 N 4
  publication-title: Nanoscale
  doi: 10.1039/C5NR02905H
– volume: 256
  start-page: 117789
  year: 2019
  ident: ref_114
  article-title: Novel g-C3N4/BiOClxI1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117789
– volume: 11
  start-page: 6004
  year: 2017
  ident: ref_107
  article-title: Component Matters: Paving the Roadmap toward Enhanced Electrocatalytic Performance of Graphitic C3N4-Based Catalysts via Atomic Tuning
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01908
– volume: 47
  start-page: 4219
  year: 2018
  ident: ref_116
  article-title: A sulfur vacancy rich CdS based composite photocatalyst with g-C(3)N(4) as a matrix derived from a Cd-S cluster assembled supramolecular network for H(2) production and VOC removal
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04912A
– volume: 609
  start-page: 535
  year: 2022
  ident: ref_40
  article-title: A 3D C@TiO(2) multishell nanoframe for simultaneous photothermal catalytic hydrogen generation and organic pollutant degradation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.11.052
– volume: 425
  start-page: 131402
  year: 2021
  ident: ref_21
  article-title: Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131402
– volume: 12
  start-page: 5259
  year: 2020
  ident: ref_8
  article-title: Biological Methanation of H2 and CO2 with Mixed Cultures: Current Advances, Hurdles and Challenges
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-020-01283-z
– ident: ref_89
  doi: 10.3390/ijms232214381
– volume: 7
  start-page: 102984
  year: 2019
  ident: ref_113
  article-title: Constructing nitrogen vacancy introduced g-C3N4 pn homojunction for enhanced photocatalytic activity
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.102984
– volume: 23
  start-page: 5394
  year: 2021
  ident: ref_43
  article-title: Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: Strategy and mechanism
  publication-title: Green Chem.
  doi: 10.1039/D1GC01303C
– volume: 534
  start-page: 147563
  year: 2020
  ident: ref_27
  article-title: Combustion synthesis of g-C3N4/Fe2O3 nanocomposite for superior photoelectrochemical catalytic performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147563
– volume: 401
  start-page: 70
  year: 2013
  ident: ref_60
  article-title: Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.03.034
– volume: 49
  start-page: 6592
  year: 2020
  ident: ref_10
  article-title: Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00332H
– volume: 5
  start-page: 49317
  year: 2015
  ident: ref_59
  article-title: Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light
  publication-title: RSC Adv.
  doi: 10.1039/C5RA07284K
– volume: 22
  start-page: 11991
  year: 2016
  ident: ref_74
  article-title: Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst
  publication-title: Chemistry
  doi: 10.1002/chem.201601674
– volume: 1
  start-page: 922
  year: 2018
  ident: ref_50
  article-title: Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0182-6
– volume: 33
  start-page: e2008180
  year: 2021
  ident: ref_25
  article-title: Rational Design of High-Concentration Ti(3+) in Porous Carbon-Doped TiO(2) Nanosheets for Efficient Photocatalytic Ammonia Synthesis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008180
– volume: 4
  start-page: 1512
  year: 2012
  ident: ref_111
  article-title: Size and shape control of metal nanoparticles for reaction selectivity in catalysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200229
– volume: 45
  start-page: 2308
  year: 2016
  ident: ref_65
  article-title: Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo) catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00767D
– volume: 15
  start-page: e1804224
  year: 2019
  ident: ref_35
  article-title: Impact of Interfacial Electron Transfer on Electrochemical CO 2 Reduction on Graphitic Carbon Nitride/Doped Graphene
  publication-title: Small
  doi: 10.1002/smll.201804224
– volume: 116
  start-page: 9461
  year: 2012
  ident: ref_56
  article-title: Heteroatom-Transfer Coupled Photoreduction and Carbon Dioxide Fixation on Metal Oxides
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp300123z
– volume: 8
  start-page: 76
  year: 2009
  ident: ref_17
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 7
  start-page: 2471
  year: 2014
  ident: ref_61
  article-title: Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity
  publication-title: Nanoscale
  doi: 10.1039/C4NR05732E
– volume: 2
  start-page: 1377
  year: 2020
  ident: ref_62
  article-title: Porous two-dimensional materials for photocatalytic and electrocatalytic applications
  publication-title: Matter
  doi: 10.1016/j.matt.2020.04.002
– volume: 2
  start-page: 65
  year: 2018
  ident: ref_81
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 63
  start-page: 1246
  year: 2018
  ident: ref_75
  article-title: Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.07.005
– volume: 11
  start-page: 62
  year: 2019
  ident: ref_55
  article-title: Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0293-x
– volume: 18
  start-page: 816
  year: 2008
  ident: ref_57
  article-title: Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700783
– volume: 61
  start-page: 10400
  year: 2022
  ident: ref_70
  article-title: Efficient Electrochemical Reduction of CO2 to CO by Ag-Decorated B-Doped g-C3N4, A Combined Theoretical and Experimental Study
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c00152
– volume: 564
  start-page: 406
  year: 2020
  ident: ref_22
  article-title: Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.091
– volume: 22
  start-page: 8083
  year: 2012
  ident: ref_63
  article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm00097k
– volume: 4
  start-page: 12845
  year: 2021
  ident: ref_112
  article-title: Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO2
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c02896
– volume: 3
  start-page: 1600189
  year: 2016
  ident: ref_39
  article-title: Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO(2) over Nanostructured Pd@Nb(2)O(5)
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600189
– volume: 115
  start-page: 329
  year: 2022
  ident: ref_95
  article-title: Synergistic effect of Cu and Ru decoration on g-C3N4 for electrocatalytic CO2 reduction
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2022.08.015
– volume: 608
  start-page: 2058
  year: 2022
  ident: ref_41
  article-title: Significantly enhanced photothermal catalytic hydrogen evolution over Cu(2)O-rGO/TiO(2) composite with full spectrum solar light
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.136
– volume: 116
  start-page: 7159
  year: 2016
  ident: ref_49
  article-title: Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume: 9
  start-page: 24
  year: 2018
  ident: ref_13
  article-title: High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects
  publication-title: Catalysts
  doi: 10.3390/catal9010024
– volume: 131
  start-page: 13865
  year: 2019
  ident: ref_47
  article-title: A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201905803
– ident: ref_29
  doi: 10.3390/nano9040568
– volume: 28
  start-page: 3423
  year: 2016
  ident: ref_51
  article-title: Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504766
– volume: 8
  start-page: 139663
  year: 2022
  ident: ref_52
  article-title: Recent advances on electrocatalytic CO2 reduction to resources: Target products, reaction pathways and typical catalysts
  publication-title: Chem. Eng. J.
– volume: 461
  start-page: 472
  year: 2009
  ident: ref_1
  article-title: A safe operating space for humanity
  publication-title: Nature
  doi: 10.1038/461472a
– volume: 556
  start-page: 149779
  year: 2021
  ident: ref_85
  article-title: Designing efficient single-atomic catalysts for bifunctional oxygen electrocatalysis via a general two-step strategy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149779
– volume: 10
  start-page: 1
  year: 1834
  ident: ref_15
  article-title: About Some Nitrogen Compounds. 1834
  publication-title: Ann. Pharm.
  doi: 10.1002/jlac.18340100102
– volume: 3
  start-page: 560
  year: 2017
  ident: ref_79
  article-title: Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.009
– volume: 162
  start-page: 55
  year: 2016
  ident: ref_37
  article-title: Synergistic photoelectrochemical reduction of Cr (VI) and oxidation of organic pollutants by g-C3N4/TiO2-NTs electrodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.07.064
– volume: 15
  start-page: 2773
  year: 2022
  ident: ref_117
  article-title: Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3725-0
– volume: 31
  start-page: e1803625
  year: 2018
  ident: ref_33
  article-title: Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803625
– volume: 14
  start-page: 55
  year: 2022
  ident: ref_46
  article-title: Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00794-9
– volume: 606
  start-page: 793
  year: 2022
  ident: ref_93
  article-title: Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.061
– volume: 2
  start-page: 1332
  year: 2012
  ident: ref_64
  article-title: Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c2cy20049j
– volume: 8
  start-page: 188
  year: 2017
  ident: ref_99
  article-title: Enhanced Activity for CO2 Electroreduction on a Highly Active and Stable Ternary Au-CDots-C3N4 Electrocatalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01551
– volume: 10
  start-page: 33276
  year: 2018
  ident: ref_30
  article-title: Well-Defined Mo(2)C Nanoparticles Embedded in Porous N-Doped Carbon Matrix for Highly Efficient Electrocatalytic Hydrogen Evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12108
– volume: 147
  start-page: 554
  year: 2014
  ident: ref_45
  article-title: Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@ mpg-C3N4
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.09.039
– volume: 139
  start-page: 18093
  year: 2017
  ident: ref_78
  article-title: Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO(2) Reduction to Hydrocarbon/Alcohol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10817
– volume: 11
  start-page: 3305
  year: 2016
  ident: ref_106
  article-title: Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201601178
– volume: 14
  start-page: 929
  year: 2021
  ident: ref_68
  article-title: Unveiling the Synergistic Effect between Graphitic Carbon Nitride and Cu(2) O toward CO(2) Electroreduction to C(2) H(4)
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002427
– volume: 45
  start-page: 3039
  year: 2016
  ident: ref_34
  article-title: Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00729A
– volume: 7
  start-page: 11158
  year: 2022
  ident: ref_91
  article-title: Facile Synthesis of Fe@C Loaded on g-C(3)N(4) for CO(2) Electrochemical Reduction to CO with Low Overpotential
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c07298
– ident: ref_97
  doi: 10.1016/j.apmate.2022.100055
– volume: 16
  start-page: e1906880
  year: 2020
  ident: ref_26
  article-title: Formation of B—N—C Coordination to Stabilize the Exposed Active Nitrogen Atoms in g-C(3) N(4) for Dramatically Enhanced Photocatalytic Ammonia Synthesis Performance
  publication-title: Small
  doi: 10.1002/smll.201906880
– volume: 192
  start-page: 193
  year: 2016
  ident: ref_28
  article-title: Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.03.055
– volume: 18
  start-page: 4893
  year: 2008
  ident: ref_67
  article-title: Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts
  publication-title: J. Mater. Chem.
  doi: 10.1039/b800274f
– volume: 147
  start-page: 111209
  year: 2021
  ident: ref_9
  article-title: H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111209
– volume: 73
  start-page: 104833
  year: 2020
  ident: ref_44
  article-title: Tuning local carbon active sites saturability of graphitic carbon nitride to boost CO2 electroreduction towards CH4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104833
– volume: 7
  start-page: 2125
  year: 2014
  ident: ref_18
  article-title: Ultrathin graphitic C3 N4 nanosheets/graphene composites: Efficient organic electrocatalyst for oxygen evolution reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402118
– volume: 12
  start-page: 100176
  year: 2020
  ident: ref_69
  article-title: Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100176
– volume: 370
  start-page: 104
  year: 2021
  ident: ref_88
  article-title: Highly efficient manganese oxide decorated graphitic carbon nitrite electrocatalyst for reduction of CO2 to formate
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.12.008
– volume: 60
  start-page: 15782
  year: 2021
  ident: ref_82
  article-title: Molecular Self-Assembly of Oxygen Deep-Doped Ultrathin C3N4 with a Built-In Electric Field for Efficient Photocatalytic H2 Evolution
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c02456
– volume: 713
  start-page: 136633
  year: 2020
  ident: ref_3
  article-title: Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.136633
– volume: 3
  start-page: 2796
  year: 2018
  ident: ref_58
  article-title: Graphitic carbon nitride for electrochemical energy conversion and storage
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01594
– volume: 17
  start-page: e2007245
  year: 2021
  ident: ref_31
  article-title: Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions
  publication-title: Small
  doi: 10.1002/smll.202007245
– volume: 11
  start-page: 2450
  year: 2018
  ident: ref_76
  article-title: Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1866-y
– volume: 390
  start-page: 138766
  year: 2021
  ident: ref_96
  article-title: Dual 2D CuSe/g-C3N4 heterostructure for boosting electrocatalytic reduction of CO2
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138766
– volume: 130
  start-page: 7373
  year: 2008
  ident: ref_104
  article-title: From triazines to heptazines: Deciphering the local structure of amorphous nitrogen-rich carbon nitride materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja709992s
– volume: 60
  start-page: 20627
  year: 2021
  ident: ref_14
  article-title: Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101818
– volume: 598
  start-page: 124835
  year: 2020
  ident: ref_92
  article-title: Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2020.124835
– volume: 802
  start-page: 196
  year: 2019
  ident: ref_20
  article-title: Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.06.185
– volume: 131
  start-page: 1680
  year: 2009
  ident: ref_77
  article-title: Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809307s
– volume: 8
  start-page: 6957
  year: 2020
  ident: ref_11
  article-title: Covalent organic frameworks: Emerging high-performance platforms for efficient photocatalytic applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00556H
– volume: 5
  start-page: 7050
  year: 2012
  ident: ref_54
  article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21234j
– volume: 11
  start-page: 4341
  year: 2020
  ident: ref_100
  article-title: A Mn-N(3) single-atom catalyst embedded in graphitic carbon nitride for efficient CO(2) electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18143-y
– volume: 26
  start-page: 9710
  year: 2020
  ident: ref_42
  article-title: Rational Design of Carbon-Based 2D Nanostructures for Enhanced Photocatalytic CO(2) Reduction: A Dimensionality Perspective
  publication-title: Chemistry
  doi: 10.1002/chem.202000708
– volume: 6
  start-page: 4073
  year: 2015
  ident: ref_5
  article-title: Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01559
– volume: 624
  start-page: 126756
  year: 2021
  ident: ref_72
  article-title: Preparation of g-C3N4/TiO2 by template method and its photocatalytic performance
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2021.126756
– volume: 38
  start-page: 1443
  year: 2017
  ident: ref_83
  article-title: Two-dimensional materials confining single atoms for catalysis
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62839-0
– volume: 47
  start-page: 7783
  year: 2018
  ident: ref_16
  article-title: Carbon nitrides and metal nanoparticles: From controlled synthesis to design principles for improved photocatalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00479J
– volume: 63
  start-page: 1113
  year: 2020
  ident: ref_2
  article-title: Reticular chemistry in electrochemical carbon dioxide reduction
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1304-3
– volume: 60
  start-page: 25241
  year: 2021
  ident: ref_86
  article-title: Atomically Dispersed s-Block Magnesium Sites for Electroreduction of CO(2) to CO
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202109329
– volume: 268
  start-page: 118391
  year: 2020
  ident: ref_103
  article-title: Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118391
– volume: 119
  start-page: 3962
  year: 2019
  ident: ref_6
  article-title: Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00400
– volume: 47
  start-page: 250
  year: 2022
  ident: ref_109
  article-title: Construction of Ag decorated P-doped g-C3N4 nanosheets Schottky junction via silver mirror reaction for enhanced photocatalytic activities
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.10.024
– volume: 43
  start-page: 631
  year: 2014
  ident: ref_4
  article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60323G
– volume: 10
  start-page: 4534
  year: 2020
  ident: ref_80
  article-title: Covalent triazine framework confined copper catalysts for selective electrochemical CO2 reduction: Operando diagnosis of active sites
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00243
– volume: 32
  start-page: e2000014
  year: 2020
  ident: ref_38
  article-title: Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO 2 Photocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000014
– volume: 59
  start-page: 14184
  year: 2020
  ident: ref_101
  article-title: Highly Selective and Active Electrochemical Reduction of CO(2) to CO on a Polymeric Co(II) Phthalocyanine@Graphitic Carbon Nitride Nanosheet-Carbon Nanotube Composite
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c01977
– volume: 51
  start-page: 751
  year: 2021
  ident: ref_23
  article-title: Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1734433
– volume: 8
  start-page: 11035
  year: 2018
  ident: ref_87
  article-title: Tuning Metal Catalyst with Metal–C3N4 Interaction for Efficient CO2 Electroreduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03789
– volume: 293
  start-page: 87
  year: 2015
  ident: ref_105
  article-title: Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.03.041
SSID ssj0021415
Score 2.4680357
SecondaryResourceType review_article
Snippet The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions....
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3292
SubjectTerms Carbon dioxide
Carbon monoxide
Catalysis
Climate change
CO2 reduction
Electrocatalysis
Electrodes
Electrolytes
graphitic phase carbon nitride (g-C3N4)
Hydrogen
Morphology
Nitrogen
novel catalyst carrier
Photocatalysis
Pore size
Review
single atom catalyst
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE-uLCJ6EYps0TfeoxQeCCqLgreQxwQXtyrZ78N87abqLRdCLt5IHpDMTZqYz_T5CToBxk4JjsVZ4yTPtklgJrmJIWW6YZMA77M67-_zmObt9ES_fqL58T1iABw6CO5MGPSzeZqeSIvN0aJkRCdecycQqbrtsHX3ePJnqU60U_VKoYXJM6s_eA9UsNKzAkION2MALdWD9gwhz2B_5zeFcrZO1PlKk5-GEG2QJ6k2yUs4J2rZIhSEfbqXnoYzf0HFNrz3-tG9oo6Wa6klN78ftdGyBXqC3svQykN7Epf9o89m0DcWYlZYPjD56CFevJHwK_zo02-T56vKpvIl7voTYoItp4zR1NhcjkzKTZJliBpM_HHOSO-eB6gTXTAMULgcOo0Jm1nKtXGENpqRWpXyHLNeTGnYJ5ZmWicPkxqEoOeRaAhfo7ZxRYHKlI5LM5VeZHkzcc1q8VZhUeJFXP0QekdPFlo-ApPHb4guvlMVCD4LdDaBpVL1pVH-ZRkQO5iqt-pvZVKGSzKUQETleTKPmfKFE1TCZdWs8rCIGOxEpBqYwONBwph6_dujcnvw4L8Ro7z9eYZ-sen77rlVIHpDldjqDQ4yCWn3UGfwX5l8HOA
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions
URI https://www.proquest.com/docview/2806593755
https://www.proquest.com/docview/2807923240
https://pubmed.ncbi.nlm.nih.gov/PMC10146859
https://doaj.org/article/7c727467fa08449784c503b3270da3d0
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0fdAX8ROj9VjBJyE02U2yuSfphbsWwVOKhXsL-6kHNamX9MH_3plN7moQ-hJCdvPBzO7OzM7k9wP44LgwqfM81goneaZ9EqtcqNilvDBccicCdueXdXFxlX3e5Jtxw60byyr3a2JYqG1raI_8dMgACpnnn25-x8QaRdnVkULjIRwTdBmVdMnNXcCVonUaMpkCQ_vTXwPhrOvwWTiQ53xiiwJk_8TPnFZJ_mN2Vk_hyegvsrNBwc_ggWuew6NqT9P2Amp0_PBWdjYk8zu2bdg5oVBTWRur1E63DVtv-93WOrZAm2XZcqC-iSvauvnT9R1Dz5VVXzm7JCBXUhWeDX88dC_harX8Xl3EI2tCbNDQ9HGaeouSMik3SZYpbjAExGteCu8Jri4XmmvnSl844ealzKwVWvnSGgxMrUrFKzhq2sa9BiYyLROPIY5HUQpXaOlEjjbPG-VMoXQEyV5-tRkhxYnZ4rrG0IJEXv8n8gg-Hm65GfA07uu8IKUcOhIUdrjQ7n7U48yqpUEXDJd7r5IyI768zOSJ0ILLxCphkwhO9iqtx_nZ1XejKYL3h2bUHKVLVOPa29CHwBXR5YmgnAyFyQdNW5rtz4DRTRTIRZnP39z_9rfwmPjrQymQPIGjfnfr3qGX0-tZGMp4LFfnMzheLNffLmdhx-AvKNIDpg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXqrxESgEjwQUpamLntYcKtaHbLW0XCbVSb8FPWAmSskmF-qf4jczksRAh9dZbFNtJNJ7xzMTj7wN4Y7nQoXXcVxKNPFIu8GUspG9Dnmiecita7M6zeTK7iD5expdr8Hs4C0NllcOa2C7UptL0j3y32wEUaRy_v_rpE2sU7a4OFBqdWpzYm1-YstV7xx9wft9yPj08z2d-zyrga1yIGz8MncEn6ZDrIIok15gi4T2XCucIzi0WiitrM5dYYTEjj4wRSrrMaEzcjAwFPvce3I-EmJBFZdOjVYIXojfsdk6xMdj90RHc2hq_HQ1nwke-r6UIGMW146rMf9zcdAs2-_iU7XcK9RDWbPkINvKBFu4xFBho4lC23xUP1GxRsiNCvaYyOpbLpapKNl80y4Wx7AB9pGGHHdWOn9Ovopu6qRlGyiz_xNlnAo4l1cCr7oRF_QQu7kSeT2G9rEr7DJiIVBo4TKkcilLYRKVWxOhjnZZWJ1J5EAzyK3QPYU5MGt8LTGVI5MV_Ivfg3WrIVYffcVvnA5qUVUeC3m5vVMuvRW_JRaox5EP34mSQRcTPF-k4EErwNDBSmMCDnWFKi349qIu_2uvB61Uzzhxtz8jSVtdtHwJzxBDLg2ykCqMPGreUi28tJjhRLidZPNm-_e2vYGN2fnZanB7PT57DA44RW1uGlO7AerO8ti8wwmrUy1atGXy5azv6AyyTPZE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxFMEChgJLkjROnYSZw8ItWmXlsKCEJX2lvoJK7VJ2aRC_Wv8OsZ5bImQeustSuw8xjOemXj8fQCvLeM6so6FSqKRx8rRUCZchjZiqWaCWd5id36ep_tH8cdFstiAP8NeGF9WOcyJ7URtKu3_kU-6FUAukmTi-rKIr7uz92e_Qs8g5VdaBzqNTkUO7cVvTN_qdwe7ONZvGJvtfc_3w55hINQ4KTdhFDmDd9UR0zSOJdOYLuE5J7hzHtot4YopazOXWm4xO4-N4Uq6zGhM4oyMON73BtwUPIm8jYnFZbIXoWfsVlE5n9LJaUd2a2v8DjSiKRv5wZYuYBTjjis0_3F5s3twt49VyXanXPdhw5YP4HY-UMQ9hAKDTuxKtrtCgposS_LBI2D7kjqSy5WqSjJfNqulsWQH_aUhex3tTpj730YXdVMTjJpJ_oWRbx5E1qsJHnW7LepHcHQt8nwMm2VV2idAeKwEdZheORQlt6kSlifob52WVqdSBUAH-RW6hzP3rBonBaY1XuTFfyIP4O26y1mH5XFV4x0_KOuGHoa7PVGtfhS9VRdCY_iHrsZJmsWeqy_WCeWKM0GN5IYGsDUMadHPDXVxqckBvFpfxpHzSzWytNV528YDO2K4FUA2UoXRC42vlMufLT64p19Os2T69Oqnv4RbaEHFp4P54TO4wzB4ayuSxBZsNqtz-xyDrUa9aLWawPF1m9FffoNBvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Graphitic+Carbon+Nitride+Based+Electro-Catalysts+for+CO2+Reduction+Reactions&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Mao%2C+Xinyi&rft.au=Guo%2C+Ruitang&rft.au=Chen%2C+Quhan&rft.au=Zhu%2C+Huiwen&rft.date=2023-04-07&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=8&rft.spage=3292&rft_id=info:doi/10.3390%2Fmolecules28083292&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28083292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon