Hepcidin Is Down-Regulated in Alcohol Loading

Background: It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism of hepatic iron uptake in ALD is still obscure. Recently, a novel iron‐regulatory hormone hepcidin was found...

Full description

Saved in:
Bibliographic Details
Published inAlcoholism, clinical and experimental research Vol. 31; no. s1; pp. S2 - S8
Main Authors Ohtake, Takaaki, Saito, Hiroyuki, Hosoki, Yayoi, Inoue, Mitsutaka, Miyoshi, Shigeki, Suzuki, Yasuaki, Fujimoto, Yoshinori, Kohgo, Yutaka
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.01.2007
Subjects
Online AccessGet full text
ISSN0145-6008
1530-0277
1530-0277
DOI10.1111/j.1530-0277.2006.00279.x

Cover

Loading…
Abstract Background: It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism of hepatic iron uptake in ALD is still obscure. Recently, a novel iron‐regulatory hormone hepcidin was found that suppresses the absorption of iron from the small intestine and the release of iron from macrophages. To elucidate the contribution of hepcidin toward the hepatic excess iron accumulation in ALD, we examined whether alcohol loading affects hepcidin expression both in ALD patients and in an ethanol‐fed mouse model. Methods: Serum prohepcidin concentration was quantified by enzyme‐linked immunosorbent assay. Hepatic hepcidin‐1 and hepcidin‐2 mRNA expressions in mouse liver were evaluated by quantitative real‐time reverse‐transcriptase polymerase chain reaction method. The protein expression of prohepcidin in mouse liver was examined immunohistochemically by rabbit antimouse prohepcidin antibody. Results: Serum prohepcidin concentration in ALD was significantly lower than that in healthy subjects (p<0.001). Especially, serum prohepcidin concentrations were decreased in the patients whose serum ferritin value was high. In the ethanol‐fed mouse model, hepatic hepcidin‐1 mRNA expression was significantly lower than that in control (p=0.04). Prohepcidin was expressed in the cytoplasm of hepatocytes of mice liver tissue sections, and its expression was decreased after ethanol loading. Conclusion: Alcohol loading down‐regulates hepatic hepcidin expression and leads to the increase of iron absorption from the intestine.
AbstractList It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism of hepatic iron uptake in ALD is still obscure. Recently, a novel iron-regulatory hormone hepcidin was found that suppresses the absorption of iron from the small intestine and the release of iron from macrophages. To elucidate the contribution of hepcidin toward the hepatic excess iron accumulation in ALD, we examined whether alcohol loading affects hepcidin expression both in ALD patients and in an ethanol-fed mouse model.BACKGROUNDIt is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism of hepatic iron uptake in ALD is still obscure. Recently, a novel iron-regulatory hormone hepcidin was found that suppresses the absorption of iron from the small intestine and the release of iron from macrophages. To elucidate the contribution of hepcidin toward the hepatic excess iron accumulation in ALD, we examined whether alcohol loading affects hepcidin expression both in ALD patients and in an ethanol-fed mouse model.Serum prohepcidin concentration was quantified by enzyme-linked immunosorbent assay. Hepatic hepcidin-1 and hepcidin-2 mRNA expressions in mouse liver were evaluated by quantitative real-time reverse-transcriptase polymerase chain reaction method. The protein expression of prohepcidin in mouse liver was examined immunohistochemically by rabbit antimouse prohepcidin antibody.METHODSSerum prohepcidin concentration was quantified by enzyme-linked immunosorbent assay. Hepatic hepcidin-1 and hepcidin-2 mRNA expressions in mouse liver were evaluated by quantitative real-time reverse-transcriptase polymerase chain reaction method. The protein expression of prohepcidin in mouse liver was examined immunohistochemically by rabbit antimouse prohepcidin antibody.Serum prohepcidin concentration in ALD was significantly lower than that in healthy subjects (p<0.001). Especially, serum prohepcidin concentrations were decreased in the patients whose serum ferritin value was high. In the ethanol-fed mouse model, hepatic hepcidin-1 mRNA expression was significantly lower than that in control (p=0.04). Prohepcidin was expressed in the cytoplasm of hepatocytes of mice liver tissue sections, and its expression was decreased after ethanol loading.RESULTSSerum prohepcidin concentration in ALD was significantly lower than that in healthy subjects (p<0.001). Especially, serum prohepcidin concentrations were decreased in the patients whose serum ferritin value was high. In the ethanol-fed mouse model, hepatic hepcidin-1 mRNA expression was significantly lower than that in control (p=0.04). Prohepcidin was expressed in the cytoplasm of hepatocytes of mice liver tissue sections, and its expression was decreased after ethanol loading.Alcohol loading down-regulates hepatic hepcidin expression and leads to the increase of iron absorption from the intestine.CONCLUSIONAlcohol loading down-regulates hepatic hepcidin expression and leads to the increase of iron absorption from the intestine.
Background: It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism of hepatic iron uptake in ALD is still obscure. Recently, a novel iron‐regulatory hormone hepcidin was found that suppresses the absorption of iron from the small intestine and the release of iron from macrophages. To elucidate the contribution of hepcidin toward the hepatic excess iron accumulation in ALD, we examined whether alcohol loading affects hepcidin expression both in ALD patients and in an ethanol‐fed mouse model. Methods: Serum prohepcidin concentration was quantified by enzyme‐linked immunosorbent assay. Hepatic hepcidin‐1 and hepcidin‐2 mRNA expressions in mouse liver were evaluated by quantitative real‐time reverse‐transcriptase polymerase chain reaction method. The protein expression of prohepcidin in mouse liver was examined immunohistochemically by rabbit antimouse prohepcidin antibody. Results: Serum prohepcidin concentration in ALD was significantly lower than that in healthy subjects (p<0.001). Especially, serum prohepcidin concentrations were decreased in the patients whose serum ferritin value was high. In the ethanol‐fed mouse model, hepatic hepcidin‐1 mRNA expression was significantly lower than that in control (p=0.04). Prohepcidin was expressed in the cytoplasm of hepatocytes of mice liver tissue sections, and its expression was decreased after ethanol loading. Conclusion: Alcohol loading down‐regulates hepatic hepcidin expression and leads to the increase of iron absorption from the intestine.
It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism of hepatic iron uptake in ALD is still obscure. Recently, a novel iron-regulatory hormone hepcidin was found that suppresses the absorption of iron from the small intestine and the release of iron from macrophages. To elucidate the contribution of hepcidin toward the hepatic excess iron accumulation in ALD, we examined whether alcohol loading affects hepcidin expression both in ALD patients and in an ethanol-fed mouse model. Serum prohepcidin concentration was quantified by enzyme-linked immunosorbent assay. Hepatic hepcidin-1 and hepcidin-2 mRNA expressions in mouse liver were evaluated by quantitative real-time reverse-transcriptase polymerase chain reaction method. The protein expression of prohepcidin in mouse liver was examined immunohistochemically by rabbit antimouse prohepcidin antibody. Serum prohepcidin concentration in ALD was significantly lower than that in healthy subjects (p<0.001). Especially, serum prohepcidin concentrations were decreased in the patients whose serum ferritin value was high. In the ethanol-fed mouse model, hepatic hepcidin-1 mRNA expression was significantly lower than that in control (p=0.04). Prohepcidin was expressed in the cytoplasm of hepatocytes of mice liver tissue sections, and its expression was decreased after ethanol loading. Alcohol loading down-regulates hepatic hepcidin expression and leads to the increase of iron absorption from the intestine.
Background: It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism of hepatic iron uptake in ALD is still obscure. Recently, a novel iron‐regulatory hormone hepcidin was found that suppresses the absorption of iron from the small intestine and the release of iron from macrophages. To elucidate the contribution of hepcidin toward the hepatic excess iron accumulation in ALD, we examined whether alcohol loading affects hepcidin expression both in ALD patients and in an ethanol‐fed mouse model. Methods: Serum prohepcidin concentration was quantified by enzyme‐linked immunosorbent assay. Hepatic hepcidin‐1 and hepcidin‐2 mRNA expressions in mouse liver were evaluated by quantitative real‐time reverse‐transcriptase polymerase chain reaction method. The protein expression of prohepcidin in mouse liver was examined immunohistochemically by rabbit antimouse prohepcidin antibody. Results: Serum prohepcidin concentration in ALD was significantly lower than that in healthy subjects ( p <0.001). Especially, serum prohepcidin concentrations were decreased in the patients whose serum ferritin value was high. In the ethanol‐fed mouse model, hepatic hepcidin‐1 mRNA expression was significantly lower than that in control ( p =0.04). Prohepcidin was expressed in the cytoplasm of hepatocytes of mice liver tissue sections, and its expression was decreased after ethanol loading. Conclusion: Alcohol loading down‐regulates hepatic hepcidin expression and leads to the increase of iron absorption from the intestine.
Author Ohtake, Takaaki
Saito, Hiroyuki
Kohgo, Yutaka
Fujimoto, Yoshinori
Inoue, Mitsutaka
Hosoki, Yayoi
Suzuki, Yasuaki
Miyoshi, Shigeki
Author_xml – sequence: 1
  givenname: Takaaki
  surname: Ohtake
  fullname: Ohtake, Takaaki
  organization: Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
– sequence: 2
  givenname: Hiroyuki
  surname: Saito
  fullname: Saito, Hiroyuki
  organization: Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
– sequence: 3
  givenname: Yayoi
  surname: Hosoki
  fullname: Hosoki, Yayoi
  organization: Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
– sequence: 4
  givenname: Mitsutaka
  surname: Inoue
  fullname: Inoue, Mitsutaka
  organization: Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
– sequence: 5
  givenname: Shigeki
  surname: Miyoshi
  fullname: Miyoshi, Shigeki
  organization: Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
– sequence: 6
  givenname: Yasuaki
  surname: Suzuki
  fullname: Suzuki, Yasuaki
  organization: Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
– sequence: 7
  givenname: Yoshinori
  surname: Fujimoto
  fullname: Fujimoto, Yoshinori
  organization: Department of Internal Medicine, Furano Hospital of Hokkaido Social Service Association, Furano 076-0024, Japan
– sequence: 8
  givenname: Yutaka
  surname: Kohgo
  fullname: Kohgo, Yutaka
  organization: Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17331161$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAQRS0Eghb4BZQVu4Rx7MTJAqSqlJeqghCP5ch1HHBJ4xKnov17XApdsAFvPPLccz1zu2S7trUmJKAQUX9OJhFNGIQQCxHFAGkEvsyjxRbpbBrbpAOUJ2EKkO2RrnMTAOBZmu6SPSoYozSlHRJe6ZkyhamDaxec2486vNcv80q2ugj8Y69S9tVWwdBKr3k5IDulrJw-_L73yePF4KF_FQ5vL6_7vWGouKB5KHLGISv8SDrRgnNOx4Wmca4BWJllMuY5L0Wap7GgivouTwqelDkbF-O8VIrtk-O176yx73PtWpwap3RVyVrbuUMBcRxDxr3w6Fs4H091gbPGTGWzxJ8FveBsLVCNda7RJSrTytbYum2kqZACrhLFCa6Cw1VwuEoUvxLFhTfIfhls_vgbPV2jH6bSy39z2OsP7n3l-XDNG9fqxYaXzRumgokEn0eXeHczgqe7iyGO2CdL1pk1
CitedBy_id crossref_primary_10_1177_0748233710387007
crossref_primary_10_1016_j_clnu_2018_05_008
crossref_primary_10_1016_j_fbio_2022_101794
crossref_primary_10_1080_13547500802033391
crossref_primary_10_1128_MCB_00723_12
crossref_primary_10_1111_j_1440_1746_2007_05290_x
crossref_primary_10_1182_blood_2010_01_261875
crossref_primary_10_1093_ajcn_nqab165
crossref_primary_10_1007_s00204_021_03166_1
crossref_primary_10_1016_j_bcmd_2016_06_008
crossref_primary_10_1155_2012_459278
crossref_primary_10_3389_fonc_2022_940552
crossref_primary_10_1007_s00432_009_0585_5
crossref_primary_10_3390_molecules26247437
crossref_primary_10_1111_acer_15520
crossref_primary_10_2174_1570163817666200121143959
crossref_primary_10_3389_fpsyt_2023_1230406
crossref_primary_10_1093_toxsci_kfs176
crossref_primary_10_1080_00365521_2024_2314707
crossref_primary_10_1016_j_ymgme_2019_01_004
crossref_primary_10_1155_2020_7373498
crossref_primary_10_1016_j_tox_2015_11_001
crossref_primary_10_1097_BS9_0000000000000099
crossref_primary_10_1111_j_1440_1746_2011_07014_x
crossref_primary_10_3748_wjg_v25_i5_521
crossref_primary_10_1016_j_revmed_2007_05_005
crossref_primary_10_1309_LMF28S2GIMXNWHMM
crossref_primary_10_3390_biom5020793
crossref_primary_10_1111_j_1872_034X_2008_00442_x
crossref_primary_10_2147_JHC_S450460
crossref_primary_10_1111_j_1530_0277_2011_01677_x
crossref_primary_10_1186_1472_6920_10_33
crossref_primary_10_3390_nu15194105
crossref_primary_10_3748_wjg_v20_i34_12161
crossref_primary_10_3748_wjg_v29_i4_616
crossref_primary_10_1016_j_ajpath_2021_04_005
crossref_primary_10_3748_wjg_15_1186
crossref_primary_10_1016_j_jhep_2019_05_003
crossref_primary_10_1016_j_metabol_2012_06_008
crossref_primary_10_3350_kjhep_2010_16_3_288
crossref_primary_10_1139_bcb_2017_0206
crossref_primary_10_1111_j_1530_0277_2008_00782_x
crossref_primary_10_1002_ajh_23110
crossref_primary_10_1097_MEG_0b013e328355cfd0
crossref_primary_10_3390_nu14010132
crossref_primary_10_1007_s00535_016_1237_6
crossref_primary_10_1093_jrr_rrv098
crossref_primary_10_3109_10408363_2010_550461
crossref_primary_10_1002_ajh_23714
crossref_primary_10_1093_alcalc_agt138
crossref_primary_10_4254_wjh_v2_i8_302
crossref_primary_10_1007_s12011_019_01887_0
crossref_primary_10_1371_journal_pmed_1004039
crossref_primary_10_1016_j_ymgme_2019_05_003
crossref_primary_10_3390_foods11131881
crossref_primary_10_1016_j_jnutbio_2014_02_009
crossref_primary_10_1053_j_gastro_2007_11_048
crossref_primary_10_1002_humu_22396
crossref_primary_10_1039_C4MT00225C
crossref_primary_10_1007_s11033_010_0180_5
crossref_primary_10_1007_s10238_009_0062_0
crossref_primary_10_1042_CS20230522
crossref_primary_10_1111_1440_1681_13445
crossref_primary_10_1111_acer_13754
crossref_primary_10_1007_s00109_022_02254_8
crossref_primary_10_1152_physrev_00008_2013
crossref_primary_10_1002_bdra_20729
crossref_primary_10_1159_000471838
crossref_primary_10_1111_j_1530_0277_2009_00969_x
crossref_primary_10_1152_ajpgi_90550_2008
crossref_primary_10_1016_j_clinre_2011_01_017
crossref_primary_10_1016_j_toxrep_2015_01_004
Cites_doi 10.1002/hep.20663
10.1074/jbc.M205305200
10.1016/j.jhep.2005.02.047
10.1046/j.1365-2141.2003.04516.x
10.1126/science.1104742
10.1172/JCI0215686
10.1182/blood-2002-10-3235
10.1038/ng1150
10.1182/blood-2003-07-2524
10.1074/jbc.M008923200
10.1111/acer.1998.22.s3_part1.145s
10.1016/S0140-6736(03)12602-5
10.1016/S0014-5793(00)01920-7
10.1515/CCLM.2004.069
10.1097/01.alc.0000189274.00479.62
10.1007/BF02255967
10.1182/blood-2003-03-0672
10.1073/pnas.151179498
10.1111/j.1530-0277.2002.tb02698.x
10.1172/JCI200420945
10.1074/jbc.M008922200
10.1111/j.1530-0277.2004.tb03225.x
10.1053/j.gastro.2004.11.057
10.1016/S0026-0495(03)00277-4
10.1073/pnas.0409808102
10.1002/hep.20620
10.1002/hep.1840220441
10.1182/blood-2004-04-1416
10.1182/blood-2004-08-3042
10.1172/JCI118077
10.1111/j.1530-0277.1996.tb01134.x
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1530-0277.2006.00279.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 1530-0277
EndPage S8
ExternalDocumentID 17331161
10_1111_j_1530_0277_2006_00279_x
ACER279
ark_67375_WNG_PJN0VPFL_N
Genre article
Journal Article
GroupedDBID ---
-ET
-~X
.3N
.55
.GA
.Y3
05W
08G
0R~
10A
1OB
1OC
23M
31~
33P
36B
3SF
4.4
4Q1
4Q2
4Q3
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBIZ
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFTRI
AFUWQ
AFZJQ
AHBTC
AHEFC
AHMBA
AHRYX
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AIZYK
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AWKKM
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DUUFO
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
KBYEO
KMI
L89
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NTWIH
O66
O9-
OAG
OAH
OIG
OL1
OMB
OPX
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
SV3
TEORI
TWZ
UAP
UB1
VH1
VVN
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XSW
XYM
YFH
ZFV
ZGI
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
BYPQX
AAYXX
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4719-793408d279e5e74441bde129e003f88a2494f7696271c141b45d45f93bdb9fcc3
IEDL.DBID DR2
ISSN 0145-6008
1530-0277
IngestDate Fri Jul 11 07:26:23 EDT 2025
Wed Feb 19 01:44:30 EST 2025
Thu Apr 24 22:52:58 EDT 2025
Tue Jul 01 04:01:31 EDT 2025
Wed Jan 22 16:17:38 EST 2025
Wed Oct 30 09:55:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue s1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4719-793408d279e5e74441bde129e003f88a2494f7696271c141b45d45f93bdb9fcc3
Notes istex:25A26C1E0598F5A982431628EDDA93C93DF5C49A
ArticleID:ACER279
ark:/67375/WNG-PJN0VPFL-N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17331161
PQID 70222084
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_70222084
pubmed_primary_17331161
crossref_citationtrail_10_1111_j_1530_0277_2006_00279_x
crossref_primary_10_1111_j_1530_0277_2006_00279_x
wiley_primary_10_1111_j_1530_0277_2006_00279_x_ACER279
istex_primary_ark_67375_WNG_PJN0VPFL_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-01
January 2007
2007-01-00
2007-Jan
20070101
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: England
PublicationTitle Alcoholism, clinical and experimental research
PublicationTitleAlternate Alcohol Clin Exp Res
PublicationYear 2007
Publisher Blackwell Publishing Inc
Publisher_xml – name: Blackwell Publishing Inc
References Kohgo Y, Ohtake T, Ikuta K, Suzuki Y, Hosoki Y, Saito H, Kato J (2005) Iron accumulation in alcoholic liver diseases. Alcohol Clin Exp Res 29:189S-193S.
Wallace DF, Summerville L, Lusby PE, Subramaniam VN (2005) Prohepcidin localises to the Golgi compartment and secretory pathway in hepatocytes. J Hepatol 43:720-728.
Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783-788.
Mazur A, Feillet-Coudray C, Romier B, Bayle D, Gueux E, Ruivard M, Coudray C, Rayssiguier Y (2003) Dietary iron regulates hepatic hepcidin 1 and 2 mRNAs in mice. Metabolism 52:1229-1231.
Duane P, Raja KB, Simpson RJ, Peters TJ (1992) Intestinal iron absorption in chronic alcoholics. Alcohol Alcohol 27:539-544.
Takada A, Takase S, Tsutsumi M (1993) Characteristic features of alcoholic liver disease in Japan: a review. Gastroenterol Jpn 28:137-148.
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004a) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090-2093.
Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806-7810.
Valerio LG Jr, Parks T, Petersen DR (1996) Alcohol mediates increases in hepatic and serum nonheme iron stores in a rat model for alcohol-induced liver injury. Alcohol Clin Exp Res 20:1352-1361.
Taes YE, Wuyts B, Boelaert JR, De Vriese AS, Delanghe JR (2004) Prohepcidin accumulates in renal insufficiency. Clin Chem Lab Med 42:387-389.
Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97-101.
Brissot P, Bourel M, Herry D, Verger JP, Messner M, Beaumont C, Regnouard F, Ferrand B, Simon M (1981) Assessment of liver iron content in 271 patients: a reevaluation of direct and indirect methods. Gastroenterology 80:557-565.
Montosi G, Corradini E, Garuti C, Barelli S, Recalcati S, Cairo G, Valli L, Pignatti E, Vecchi C, Ferrara F, Pietrangelo A (2005) Kupffer cells and macrophages are not required for hepatic hepcidin activation during iron overload. Hepatology 41:545-552.
Hunter HN, Fulton DB, Ganz T, Vogel HJ (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 277:37597-37603.
Dallalio G, Fleury T, Means RT (2003) Serum hepcidin in clinical specimens. Br J Haematol 122:996-1000.
French SW (2001) Intragastic ethanol infusion model for cellular and molecular studies of alcoholic liver disease. J Biomed Sci 8:20-27.
Kawabata H, Fleming RE, Gui D, Moon SY, Saitoh T, O'Kelly J, Umehara Y, Wano Y, Said JW, Koeffler HP (2005) Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood 105:376-381.
Tsukamoto H, Horne W, Kamimura S, Niemela O, Parkkila S, Yla-Herttuala S, Brittenham GM (1995) Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 96:620-630.
Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461-2463.
Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037-1044.
Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 98:8780-8785.
Pietrangelo A, Caleffi A, Henrion J, Ferrara F, Corradini E, Kulaksiz H, Stremmel W, Andreone P, Garuti C (2005) Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes. Gastroenterology 128:470-479.
Ohhira M, Ohtake T, Matsumoto A, Saito H, Ikuta K, Fujimoto Y, Ono M, Toyokuni S, Kohgo Y (1998) Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver diseases. Alcohol Clin Exp Res 22:145S-149S.
Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulze-Knoppe P, Adermann K (2000) LEAP-1, a novel highly disulfided-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147-150.
Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T (2004b) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271-1276.
Xiong S, She H, Sung CK, Tsukamoto H (2003) Iron-dependent activation of NF-kappaB in Kupffer cells: a priming mechanism for alcoholic liver disease. Alcohol 30:107-113.
Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811-7819.
Kamimura S, Tsukamoto H (1995) Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease. Hepatology 22:1304-1309.
Lou DQ, Nicolas G, Lesbordes JC, Viatte L, Grimber G, Szajnert MF, Kahn A, Vaulont S (2004) Functional differences between hepcidin 1 and 2 in transgenic mice. Blood 103:2816-2821.
Lou DQ, Lesbordes JC, Nicolas G, Viatte L, Bennoun M, Van Rooijen N, Kahn A, Renia L, Vaulont S (2005) Iron- and inflammation-induced hepcidin gene expression in mice is not mediated by Kupffer cells in vivo. Hepatology 41:1056-1064.
Kulaksiz H, Gehrke SG, Janetzko A, Rost D, Bruckner T, Kallinowski B, Stremmel W (2004) Pro-hepcidin: expression and cell specific localization in the liver and its regulation in hereditary haemochromatosis, chronic renal insufficiency, and renal anaemia. Gut 53:735-743.
Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803-1806.
Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669-673.
Suzuki M, Fujimoto Y, Suzuki Y, Hosoki Y, Saito H, Nakayama K, Ohtake T, Kohgo Y (2004) Induction of transferrin receptor by ethanol in rat primary hepatocyte culture. Alcohol Clin Exp Res 28:98S-105S.
Lee P, Peng H, Gelbart T, Wang L, Beutler E (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A 102:1906-1910.
Suzuki Y, Saito H, Suzuki M, Hosoki Y, Sakurai S, Fujimoto Y, Kohgo Y (2002) Up-regulation of transferrin receptor expression in hepatocytes by habitual alcohol drinking is implicated in hepatic iron overload in alcoholic liver disease. Alcohol Clin Exp Res 26:26S-31S.
1995; 96
2004; 42
2004; 103
1993; 28
2002; 110
2004; 28
2002; 277
2005; 41
2005; 43
2005; 29
2003; 52
2003; 30
1998; 22
2003; 34
2001; 276
2004; 53
2002; 26
1981; 80
2005; 102
2004a; 306
1995; 22
2005; 105
2001; 8
2005; 128
2000; 480
1992; 27
2003; 102
2003; 101
2003; 122
2004b; 113
1996; 20
2003; 361
2001; 98
e_1_2_5_27_1
Xiong S (e_1_2_5_37_1) 2003; 30
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
Brissot P (e_1_2_5_3_1) 1981; 80
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_32_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Takada A (e_1_2_5_33_1) 1993; 28
e_1_2_5_30_1
Kulaksiz H (e_1_2_5_13_1) 2004; 53
e_1_2_5_31_1
Duane P (e_1_2_5_5_1) 1992; 27
References_xml – reference: Kohgo Y, Ohtake T, Ikuta K, Suzuki Y, Hosoki Y, Saito H, Kato J (2005) Iron accumulation in alcoholic liver diseases. Alcohol Clin Exp Res 29:189S-193S.
– reference: Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803-1806.
– reference: Dallalio G, Fleury T, Means RT (2003) Serum hepcidin in clinical specimens. Br J Haematol 122:996-1000.
– reference: Valerio LG Jr, Parks T, Petersen DR (1996) Alcohol mediates increases in hepatic and serum nonheme iron stores in a rat model for alcohol-induced liver injury. Alcohol Clin Exp Res 20:1352-1361.
– reference: Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811-7819.
– reference: Brissot P, Bourel M, Herry D, Verger JP, Messner M, Beaumont C, Regnouard F, Ferrand B, Simon M (1981) Assessment of liver iron content in 271 patients: a reevaluation of direct and indirect methods. Gastroenterology 80:557-565.
– reference: Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806-7810.
– reference: Kawabata H, Fleming RE, Gui D, Moon SY, Saitoh T, O'Kelly J, Umehara Y, Wano Y, Said JW, Koeffler HP (2005) Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood 105:376-381.
– reference: Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669-673.
– reference: Taes YE, Wuyts B, Boelaert JR, De Vriese AS, Delanghe JR (2004) Prohepcidin accumulates in renal insufficiency. Clin Chem Lab Med 42:387-389.
– reference: Xiong S, She H, Sung CK, Tsukamoto H (2003) Iron-dependent activation of NF-kappaB in Kupffer cells: a priming mechanism for alcoholic liver disease. Alcohol 30:107-113.
– reference: Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97-101.
– reference: French SW (2001) Intragastic ethanol infusion model for cellular and molecular studies of alcoholic liver disease. J Biomed Sci 8:20-27.
– reference: Montosi G, Corradini E, Garuti C, Barelli S, Recalcati S, Cairo G, Valli L, Pignatti E, Vecchi C, Ferrara F, Pietrangelo A (2005) Kupffer cells and macrophages are not required for hepatic hepcidin activation during iron overload. Hepatology 41:545-552.
– reference: Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 98:8780-8785.
– reference: Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulze-Knoppe P, Adermann K (2000) LEAP-1, a novel highly disulfided-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147-150.
– reference: Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037-1044.
– reference: Hunter HN, Fulton DB, Ganz T, Vogel HJ (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 277:37597-37603.
– reference: Duane P, Raja KB, Simpson RJ, Peters TJ (1992) Intestinal iron absorption in chronic alcoholics. Alcohol Alcohol 27:539-544.
– reference: Lou DQ, Nicolas G, Lesbordes JC, Viatte L, Grimber G, Szajnert MF, Kahn A, Vaulont S (2004) Functional differences between hepcidin 1 and 2 in transgenic mice. Blood 103:2816-2821.
– reference: Takada A, Takase S, Tsutsumi M (1993) Characteristic features of alcoholic liver disease in Japan: a review. Gastroenterol Jpn 28:137-148.
– reference: Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783-788.
– reference: Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004a) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090-2093.
– reference: Ohhira M, Ohtake T, Matsumoto A, Saito H, Ikuta K, Fujimoto Y, Ono M, Toyokuni S, Kohgo Y (1998) Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver diseases. Alcohol Clin Exp Res 22:145S-149S.
– reference: Kamimura S, Tsukamoto H (1995) Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease. Hepatology 22:1304-1309.
– reference: Mazur A, Feillet-Coudray C, Romier B, Bayle D, Gueux E, Ruivard M, Coudray C, Rayssiguier Y (2003) Dietary iron regulates hepatic hepcidin 1 and 2 mRNAs in mice. Metabolism 52:1229-1231.
– reference: Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T (2004b) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271-1276.
– reference: Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461-2463.
– reference: Pietrangelo A, Caleffi A, Henrion J, Ferrara F, Corradini E, Kulaksiz H, Stremmel W, Andreone P, Garuti C (2005) Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes. Gastroenterology 128:470-479.
– reference: Lou DQ, Lesbordes JC, Nicolas G, Viatte L, Bennoun M, Van Rooijen N, Kahn A, Renia L, Vaulont S (2005) Iron- and inflammation-induced hepcidin gene expression in mice is not mediated by Kupffer cells in vivo. Hepatology 41:1056-1064.
– reference: Suzuki Y, Saito H, Suzuki M, Hosoki Y, Sakurai S, Fujimoto Y, Kohgo Y (2002) Up-regulation of transferrin receptor expression in hepatocytes by habitual alcohol drinking is implicated in hepatic iron overload in alcoholic liver disease. Alcohol Clin Exp Res 26:26S-31S.
– reference: Tsukamoto H, Horne W, Kamimura S, Niemela O, Parkkila S, Yla-Herttuala S, Brittenham GM (1995) Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 96:620-630.
– reference: Lee P, Peng H, Gelbart T, Wang L, Beutler E (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A 102:1906-1910.
– reference: Wallace DF, Summerville L, Lusby PE, Subramaniam VN (2005) Prohepcidin localises to the Golgi compartment and secretory pathway in hepatocytes. J Hepatol 43:720-728.
– reference: Kulaksiz H, Gehrke SG, Janetzko A, Rost D, Bruckner T, Kallinowski B, Stremmel W (2004) Pro-hepcidin: expression and cell specific localization in the liver and its regulation in hereditary haemochromatosis, chronic renal insufficiency, and renal anaemia. Gut 53:735-743.
– reference: Suzuki M, Fujimoto Y, Suzuki Y, Hosoki Y, Saito H, Nakayama K, Ohtake T, Kohgo Y (2004) Induction of transferrin receptor by ethanol in rat primary hepatocyte culture. Alcohol Clin Exp Res 28:98S-105S.
– volume: 98
  start-page: 8780
  year: 2001
  end-page: 8785
  article-title: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 28
  start-page: 137
  year: 1993
  end-page: 148
  article-title: Characteristic features of alcoholic liver disease in Japan
  publication-title: a review
– volume: 43
  start-page: 720
  year: 2005
  end-page: 728
  article-title: Prohepcidin localises to the Golgi compartment and secretory pathway in hepatocytes
  publication-title: J Hepatol
– volume: 22
  start-page: 1304
  year: 1995
  end-page: 1309
  article-title: Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease
  publication-title: Hepatology
– volume: 29
  start-page: 189S
  year: 2005
  end-page: 193S
  article-title: Iron accumulation in alcoholic liver diseases
  publication-title: Alcohol Clin Exp Res
– volume: 102
  start-page: 1906
  year: 2005
  end-page: 1910
  article-title: Regulation of hepcidin transcription by interleukin‐1 and interleukin‐6
  publication-title: Proc Natl Acad Sci U S A
– volume: 34
  start-page: 97
  year: 2003
  end-page: 101
  article-title: Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis
  publication-title: Nat Genet
– volume: 26
  start-page: 26S
  year: 2002
  end-page: 31S
  article-title: Up‐regulation of transferrin receptor expression in hepatocytes by habitual alcohol drinking is implicated in hepatic iron overload in alcoholic liver disease
  publication-title: Alcohol Clin Exp Res
– volume: 8
  start-page: 20
  year: 2001
  end-page: 27
  article-title: Intragastic ethanol infusion model for cellular and molecular studies of alcoholic liver disease
  publication-title: J Biomed Sci
– volume: 103
  start-page: 2816
  year: 2004
  end-page: 2821
  article-title: Functional differences between hepcidin 1 and 2 in transgenic mice
  publication-title: Blood
– volume: 96
  start-page: 620
  year: 1995
  end-page: 630
  article-title: Experimental liver cirrhosis induced by alcohol and iron
  publication-title: J Clin Invest
– volume: 52
  start-page: 1229
  year: 2003
  end-page: 1231
  article-title: Dietary iron regulates hepatic hepcidin 1 and 2 mRNAs in mice
  publication-title: Metabolism
– volume: 53
  start-page: 735
  year: 2004
  end-page: 743
  article-title: Pro‐hepcidin
  publication-title: expression and cell specific localization in the liver and its regulation in hereditary haemochromatosis, chronic renal insufficiency, and renal anaemia
– volume: 105
  start-page: 1803
  year: 2005
  end-page: 1806
  article-title: Hepcidin is decreased in TFR2 hemochromatosis
  publication-title: Blood
– volume: 20
  start-page: 1352
  year: 1996
  end-page: 1361
  article-title: Alcohol mediates increases in hepatic and serum nonheme iron stores in a rat model for alcohol‐induced liver injury
  publication-title: Alcohol Clin Exp Res
– volume: 102
  start-page: 783
  year: 2003
  end-page: 788
  article-title: Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation
  publication-title: Blood
– volume: 480
  start-page: 147
  year: 2000
  end-page: 150
  article-title: LEAP‐1, a novel highly disulfided‐bonded human peptide, exhibits antimicrobial activity
  publication-title: FEBS Lett
– volume: 27
  start-page: 539
  year: 1992
  end-page: 544
  article-title: Intestinal iron absorption in chronic alcoholics
  publication-title: Alcohol Alcohol
– volume: 110
  start-page: 1037
  year: 2002
  end-page: 1044
  article-title: The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation
  publication-title: J Clin Invest
– volume: 276
  start-page: 7806
  year: 2001
  end-page: 7810
  article-title: Hepcidin, a urinary antimicrobial peptide synthesized in the liver
  publication-title: J Biol Chem
– volume: 277
  start-page: 37597
  year: 2002
  end-page: 37603
  article-title: The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis
  publication-title: J Biol Chem
– volume: 105
  start-page: 376
  year: 2005
  end-page: 381
  article-title: Expression of hepcidin is down‐regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis
  publication-title: Blood
– volume: 42
  start-page: 387
  year: 2004
  end-page: 389
  article-title: Prohepcidin accumulates in renal insufficiency
  publication-title: Clin Chem Lab Med
– volume: 113
  start-page: 1271
  year: 2004b
  end-page: 1276
  article-title: IL‐6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin
  publication-title: J Clin Invest
– volume: 28
  start-page: 98S
  year: 2004
  end-page: 105S
  article-title: Induction of transferrin receptor by ethanol in rat primary hepatocyte culture
  publication-title: Alcohol Clin Exp Res
– volume: 80
  start-page: 557
  year: 1981
  end-page: 565
  article-title: Assessment of liver iron content in 271 patients
  publication-title: a reevaluation of direct and indirect methods
– volume: 122
  start-page: 996
  year: 2003
  end-page: 1000
  article-title: Serum hepcidin in clinical specimens
  publication-title: Br J Haematol
– volume: 101
  start-page: 2461
  year: 2003
  end-page: 2463
  article-title: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute‐phase protein
  publication-title: Blood
– volume: 41
  start-page: 545
  year: 2005
  end-page: 552
  article-title: Kupffer cells and macrophages are not required for hepatic hepcidin activation during iron overload
  publication-title: Hepatology
– volume: 128
  start-page: 470
  year: 2005
  end-page: 479
  article-title: Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes
  publication-title: Gastroenterology
– volume: 306
  start-page: 2090
  year: 2004a
  end-page: 2093
  article-title: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
  publication-title: Science
– volume: 22
  start-page: 145S
  year: 1998
  end-page: 149S
  article-title: Immunohistochemical detection of 4‐hydroxy‐2‐nonenal‐modified‐protein adducts in human alcoholic liver diseases
  publication-title: Alcohol Clin Exp Res
– volume: 30
  start-page: 107
  year: 2003
  end-page: 113
  article-title: Iron‐dependent activation of NF‐kappaB in Kupffer cells
  publication-title: a priming mechanism for alcoholic liver disease
– volume: 276
  start-page: 7811
  year: 2001
  end-page: 7819
  article-title: A new mouse liver‐specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload
  publication-title: J Biol Chem
– volume: 361
  start-page: 669
  year: 2003
  end-page: 673
  article-title: Disrupted hepcidin regulation in HFE‐associated haemochromatosis and the liver as a regulator of body iron homoeostasis
  publication-title: Lancet
– volume: 41
  start-page: 1056
  year: 2005
  end-page: 1064
  article-title: Iron‐ and inflammation‐induced hepcidin gene expression in mice is not mediated by Kupffer cells in vivo
  publication-title: Hepatology
– volume: 27
  start-page: 539
  year: 1992
  ident: e_1_2_5_5_1
  article-title: Intestinal iron absorption in chronic alcoholics
  publication-title: Alcohol Alcohol
– ident: e_1_2_5_15_1
  doi: 10.1002/hep.20663
– ident: e_1_2_5_8_1
  doi: 10.1074/jbc.M205305200
– ident: e_1_2_5_36_1
  doi: 10.1016/j.jhep.2005.02.047
– volume: 80
  start-page: 557
  year: 1981
  ident: e_1_2_5_3_1
  article-title: Assessment of liver iron content in 271 patients
  publication-title: a reevaluation of direct and indirect methods
– ident: e_1_2_5_4_1
  doi: 10.1046/j.1365-2141.2003.04516.x
– ident: e_1_2_5_21_1
  doi: 10.1126/science.1104742
– ident: e_1_2_5_24_1
  doi: 10.1172/JCI0215686
– ident: e_1_2_5_22_1
  doi: 10.1182/blood-2002-10-3235
– ident: e_1_2_5_25_1
  doi: 10.1038/ng1150
– ident: e_1_2_5_16_1
  doi: 10.1182/blood-2003-07-2524
– ident: e_1_2_5_29_1
  doi: 10.1074/jbc.M008923200
– ident: e_1_2_5_26_1
  doi: 10.1111/acer.1998.22.s3_part1.145s
– ident: e_1_2_5_2_1
  doi: 10.1016/S0140-6736(03)12602-5
– ident: e_1_2_5_12_1
  doi: 10.1016/S0014-5793(00)01920-7
– ident: e_1_2_5_32_1
  doi: 10.1515/CCLM.2004.069
– ident: e_1_2_5_11_1
  doi: 10.1097/01.alc.0000189274.00479.62
– ident: e_1_2_5_6_1
  doi: 10.1007/BF02255967
– ident: e_1_2_5_7_1
  doi: 10.1182/blood-2003-03-0672
– ident: e_1_2_5_23_1
  doi: 10.1073/pnas.151179498
– ident: e_1_2_5_31_1
  doi: 10.1111/j.1530-0277.2002.tb02698.x
– ident: e_1_2_5_19_1
  doi: 10.1172/JCI200420945
– ident: e_1_2_5_27_1
  doi: 10.1074/jbc.M008922200
– ident: e_1_2_5_30_1
  doi: 10.1111/j.1530-0277.2004.tb03225.x
– volume: 30
  start-page: 107
  year: 2003
  ident: e_1_2_5_37_1
  article-title: Iron‐dependent activation of NF‐kappaB in Kupffer cells
  publication-title: a priming mechanism for alcoholic liver disease
– ident: e_1_2_5_28_1
  doi: 10.1053/j.gastro.2004.11.057
– ident: e_1_2_5_17_1
  doi: 10.1016/S0026-0495(03)00277-4
– volume: 53
  start-page: 735
  year: 2004
  ident: e_1_2_5_13_1
  article-title: Pro‐hepcidin
  publication-title: expression and cell specific localization in the liver and its regulation in hereditary haemochromatosis, chronic renal insufficiency, and renal anaemia
– ident: e_1_2_5_14_1
  doi: 10.1073/pnas.0409808102
– ident: e_1_2_5_18_1
  doi: 10.1002/hep.20620
– ident: e_1_2_5_9_1
  doi: 10.1002/hep.1840220441
– ident: e_1_2_5_10_1
  doi: 10.1182/blood-2004-04-1416
– volume: 28
  start-page: 137
  year: 1993
  ident: e_1_2_5_33_1
  article-title: Characteristic features of alcoholic liver disease in Japan
  publication-title: a review
– ident: e_1_2_5_20_1
  doi: 10.1182/blood-2004-08-3042
– ident: e_1_2_5_34_1
  doi: 10.1172/JCI118077
– ident: e_1_2_5_35_1
  doi: 10.1111/j.1530-0277.1996.tb01134.x
SSID ssj0004866
Score 2.1634707
Snippet Background: It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver...
Background: It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver...
It is common for alcoholic patients to have excess iron accumulation in the liver, which may contribute to the development of alcoholic liver disease (ALD)....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S2
SubjectTerms Alcoholic Liver Disease
Animals
Antimicrobial Cationic Peptides - blood
Antimicrobial Cationic Peptides - genetics
Down-Regulation - genetics
Ethanol
Ferritins - blood
Hemosiderosis - blood
Hemosiderosis - genetics
Hemosiderosis - pathology
Hepcidin
Hepcidins
Humans
Intestinal Absorption - genetics
Iron
Iron - blood
Iron Overload - blood
Iron Overload - genetics
Iron Overload - pathology
Liver - metabolism
Liver Diseases, Alcoholic - blood
Liver Diseases, Alcoholic - genetics
Liver Diseases, Alcoholic - pathology
Macrophages - metabolism
Male
Mice
Mice, Inbred C57BL
Protein Precursors - genetics
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Title Hepcidin Is Down-Regulated in Alcohol Loading
URI https://api.istex.fr/ark:/67375/WNG-PJN0VPFL-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1530-0277.2006.00279.x
https://www.ncbi.nlm.nih.gov/pubmed/17331161
https://www.proquest.com/docview/70222084
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4heuFCH5TWlMceKm5O7WTt3T1GlDQgGqGI123lfRihoATlIaGe-hP6G_tLOuONA6k4IMTNsjX27s6M55ud2RmAr6gyBSGFmIqfoIOCPmvR5BJl2RU-LWVuSzqc_LOXd8_58VV2Nc9_orMwoT7EYsONNKP6X5OCF2ayrORZK6likHVMoSlUg_AkpW4RPuo_VJLiMoQtU57FaOPlclLPky9aslRvaNHvn4Khy6i2MkudtzCoJxSyUQaN2dQ07K__aj2-zozfwfocvbJ2ELf3sOKHH2A7HPFll_62LMae7bP6xmg82IBvXX9nb9BEsqMJ-45O_9_ff_r-mtqGecfwdjt06WUnoyqf_yOcdw7PDrrxvE1DbNGyqRg1nCfS4VB85gVHfGWcRxjhkf2llMh6xUuRU5ef1Kb4lGeOZ6VqGWdUaW1rE1aHo6H_DMwIJ0XLWeuF42mRqWaijFfWlLlVMjERiJol2s5rmFMrjVv9yJfBNdK0RtRhk3L2cGD6PoJ0QXkX6ng8g2a_4vqCoBgPKA9OZPqy90OfHveSi9POie5FsFeLhUbtpJBLMfSj2UQL8qcTySP4FKTl4ePULBPhdgR5xfNnj0q3Dw77eLX1UsIvsBY2qGkfaRtWp-OZ30FkNTW7lc78A6tqEBg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6h9gAXoDwNpd0D6s3BTtbe3WNUmqYltaqopb2tvA8jlCip0kSqOPET-I38Ema8cdqgHirEzbI19j5mPN_szs4H8BFNpiSkEFPxEwxQMGYt21yiLrvSp5XMbUWHk0-KvH_Ojy-zyyUdEJ2FCfUhVgtuZBn1_5oMnBak16086yT1JmSzqdAWqoWAcpMIvuv4anhbS4rLsHGZ8ixGLy_X03rufdOar9qkYb-5D4iu49raMfWewbjpUshHGbUWc9OyP_6q9vif-vwcni4BLOsGjduCR37yArbDKV924cdVOfNsjzU3prPRS_jU91f2O3pJdnTNPmPc__vnr6H_Rsxh3jG83Q1EvWwwrVP6X8F57-Bsvx8vmRpii85NxWjkPJEOm-IzLzhCLOM8IgmPGlBJibOveCVyIvpJbYpPeeZ4VqmOcUZV1nZew8ZkOvFvgRnhpOg4a71wPC0z1U6U8cqaKrdKJiYC0cyJtssy5sSmMdZ3whkcI01jRCSblLaHDdM3EaQryatQyuMBMnv1tK8EytmIUuFEpi-KQ316XCRfT3sDXUSw2-iFRgOlXZdy4qeLay0opE4kj-BNUJfbjxNfJiLuCPJ60h_cKt3dPxji1bt_FdyFx_2zk4EeHBVf3sOTsF5Ny0rbsDGfLfwHBFpzs1Mb0B_ETRQz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGFhh22fvhrVt1GHpzZieyJR2DplnaZUYQrGtvgq1HMaRIgjQBip32E_Yb90tGWnG6DD0Uw26GDdqSSJofRYoEeI8qUxJSiKn4CToo6LOWbS5Rlm3pUi9z4-lw8uciH5zyk_PsfJ3_RGdhQn2IzYYbaUb9vyYFn1u_reRZJ6ljkE1MoS1UC_HkLs8TSRLeG9-UkuIyxC1TnsVo5OV2Vs-tb9oyVbu06te34dBtWFvbpf4jmDQzCukok9ZqWbXM97-KPf6fKT-Gh2v4yrpB3p7APTd9CnvhjC87c5e-XDh2wJobs8XkGXwYuLn5hjaSHV-xHnr9v378HLsL6hvmLMPb3dCmlw1ndUL_czjtH305HMTrPg2xQdOmYlRxnkiLQ3GZExwBVmUd4giH_PdSIu8V9yKnNj-pSfEpzyzPvOpUtlLemM4L2JnOpu4VsEpYKTrWGCcsT8tMtRNVOWUqnxslkyoC0bBEm3URc-qlcan_cGZwjTStEbXYpKQ9HJi-jiDdUM5DIY870BzUXN8QlIsJJcKJTJ8VH_XopEi-jvpDXUSw34iFRvWkmEs5dbPVlRbkUCeSR_AySMvNx6lbJuLtCPKa53cele4eHo3x6vW_Eu7D_VGvr4fHxac38CBsVtOe0h7sLBcr9xZR1rJ6V6vPb3lzEus
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepcidin+Is+Down-Regulated+in+Alcohol+Loading&rft.jtitle=Alcoholism%2C+clinical+and+experimental+research&rft.au=Ohtake%2C+Takaaki&rft.au=Saito%2C+Hiroyuki&rft.au=Hosoki%2C+Yayoi&rft.au=Inoue%2C+Mitsutaka&rft.date=2007-01-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0145-6008&rft.eissn=1530-0277&rft.volume=31&rft.issue=s1&rft.spage=S2&rft.epage=S8&rft_id=info:doi/10.1111%2Fj.1530-0277.2006.00279.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_PJN0VPFL_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-6008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-6008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-6008&client=summon