K-Stability and Kähler-Einstein Metrics

We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc.

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 68; no. 7; pp. 1085 - 1156
Main Author Tian, Gang
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.07.2015
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc.
AbstractList We prove that if a Fano manifold M is K-stable, then it admits a Kahler-Einstein metric. It affirms a longstanding conjecture for Fano manifolds.
We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc.
We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc.
Author Tian, Gang
Author_xml – sequence: 1
  givenname: Gang
  surname: Tian
  fullname: Tian, Gang
  email: gtian@math.pku.edu.cn, tian@princeton.edu
  organization: Beijing University, 100871, 79 Jingchunyuan, Beijing, China
BookMark eNp9kMtOAjEUhhuDiYAufAMSN7oo9DrtLAlBMCBq8JK4aToznVgcZ6AtUd7HN_HFHEVdmOjq5CTf95-TvwUaZVUaAA4x6mKESC9d6i7BXMgd0MQoFhBRTBqgiRBGkEYM7YGW94t6xUzSJjiewHnQiS1s2HR0mXUmb68PhXFwaEsfjC075yY4m_p9sJvrwpuDr9kGN6fD68EYTi9GZ4P-FKZMYAmJMDrFVBvBmCYZIianORE6i6TmJudU1r8Znunc8DwxksmIx5gmVGcsEbGkbXC0zV26arU2PqhFtXZlfVLhSEaMSUmimjrZUqmrvHcmV0tnn7TbKIzURxGqLkJ9FlGzvV9saoMOtiqD07b4z3i2hdn8Ha0Gl_1vA24NW5f28mNo96giQQVXd7OR4rf3s6tZPFdj-g4JaH8n
CODEN CPMAMV
CitedBy_id crossref_primary_10_1112_plms_12052
crossref_primary_10_1007_s12220_017_9850_z
crossref_primary_10_1007_s00209_023_03209_6
crossref_primary_10_1016_j_aim_2020_107250
crossref_primary_10_1007_s12220_023_01253_6
crossref_primary_10_1215_00127094_2022_0026
crossref_primary_10_5802_aif_3395
crossref_primary_10_1515_ans_2023_0113
crossref_primary_10_1112_plms_pdw037
crossref_primary_10_1007_s42543_018_0001_7
crossref_primary_10_1515_acv_2019_0056
crossref_primary_10_1016_j_jfa_2016_08_005
crossref_primary_10_1016_j_aim_2020_107413
crossref_primary_10_5802_aif_3435
crossref_primary_10_1002_cpa_22206
crossref_primary_10_1142_S0129167X20500123
crossref_primary_10_2140_apde_2019_12_2067
crossref_primary_10_1142_S0129167X17500446
crossref_primary_10_1016_j_matpur_2025_103691
crossref_primary_10_1002_cpa_22053
crossref_primary_10_1090_jag_799
crossref_primary_10_1215_00127094_2020_0010
crossref_primary_10_1002_mana_201500232
crossref_primary_10_2748_tmj_1546570823
crossref_primary_10_1017_S0013091517000335
crossref_primary_10_1112_jlms_12961
crossref_primary_10_1515_crelle_2016_0033
crossref_primary_10_1007_s00209_022_03192_4
crossref_primary_10_1215_00127094_2021_0007
crossref_primary_10_1090_jams_873
crossref_primary_10_1007_s12220_019_00312_1
crossref_primary_10_1007_s42543_024_00093_9
crossref_primary_10_1093_imrn_rnab226
crossref_primary_10_1017_fmp_2022_11
crossref_primary_10_1007_s00209_024_03610_9
crossref_primary_10_1016_j_aim_2022_108857
crossref_primary_10_1093_imrn_rny094
crossref_primary_10_2140_gt_2022_26_899
crossref_primary_10_1090_proc_15474
crossref_primary_10_1007_s00526_016_1050_3
crossref_primary_10_1090_proc_15473
crossref_primary_10_1515_crelle_2022_0002
crossref_primary_10_1007_s00208_018_1701_0
crossref_primary_10_1215_00127094_2020_0085
crossref_primary_10_1112_plms_12615
crossref_primary_10_5802_aif_3393
crossref_primary_10_1007_s00222_021_01075_9
crossref_primary_10_1007_s11425_021_1928_1
crossref_primary_10_2140_pjm_2016_284_455
crossref_primary_10_1215_00127094_2017_0026
crossref_primary_10_1007_s00208_018_1702_z
crossref_primary_10_1016_j_aim_2019_106841
crossref_primary_10_1090_tran_8821
crossref_primary_10_1007_s00208_015_1303_z
crossref_primary_10_1007_s00526_018_1318_x
crossref_primary_10_1007_s00229_021_01338_y
crossref_primary_10_2140_gt_2024_28_539
crossref_primary_10_5802_aif_3252
crossref_primary_10_1016_j_aim_2018_10_038
crossref_primary_10_1090_proc_17080
crossref_primary_10_1016_j_aim_2024_109537
crossref_primary_10_1515_crelle_2022_0095
crossref_primary_10_1007_s40306_020_00388_w
crossref_primary_10_1002_cpa_21612
crossref_primary_10_1007_s10455_018_9624_2
crossref_primary_10_1016_j_jfa_2018_04_009
crossref_primary_10_1093_imrn_rnw171
crossref_primary_10_1007_s00209_015_1518_4
crossref_primary_10_1007_s10455_023_09915_y
crossref_primary_10_1112_jlms_12700
crossref_primary_10_1093_imrn_rnac190
crossref_primary_10_1515_crelle_2024_0101
crossref_primary_10_3390_math9010102
crossref_primary_10_1007_s00526_019_1551_y
crossref_primary_10_1017_S1474748024000598
crossref_primary_10_4213_tmf10554
crossref_primary_10_3934_mine_2023028
crossref_primary_10_1007_s40879_019_00357_0
crossref_primary_10_1016_j_aim_2020_107062
crossref_primary_10_1007_s12220_020_00355_9
crossref_primary_10_1307_mmj_1599789615
crossref_primary_10_1142_S0129167X22500707
crossref_primary_10_1007_s12220_017_9819_y
crossref_primary_10_1142_S0129167X22500835
crossref_primary_10_1142_S0129167X22500951
crossref_primary_10_1215_00127094_2018_0069
crossref_primary_10_1007_s00029_019_0473_z
crossref_primary_10_1142_S0129167X2450023X
crossref_primary_10_5802_aif_3637
crossref_primary_10_1007_s00039_017_0394_y
crossref_primary_10_1090_jams_964
crossref_primary_10_1007_s00208_017_1602_7
crossref_primary_10_1007_s11425_019_1656_2
crossref_primary_10_1016_j_aim_2024_109514
crossref_primary_10_4007_annals_2014_180_1_4
crossref_primary_10_1016_j_aim_2021_107975
crossref_primary_10_1090_suga_493
crossref_primary_10_1007_s00208_018_1753_1
crossref_primary_10_1016_j_aim_2021_107619
crossref_primary_10_1112_blms_12581
crossref_primary_10_1515_coma_2024_0004
crossref_primary_10_1093_imrn_rnv229
crossref_primary_10_1007_s12220_020_00399_x
crossref_primary_10_2969_jmsj_84408440
crossref_primary_10_1093_imrn_rnab301
crossref_primary_10_1007_s12220_017_9942_9
crossref_primary_10_1134_S0040577924010112
crossref_primary_10_1017_nmj_2016_16
crossref_primary_10_1515_ans_2022_0032
crossref_primary_10_1016_j_bulsci_2023_103232
crossref_primary_10_1007_s00222_020_00999_y
crossref_primary_10_4007_annals_2016_183_1_3
crossref_primary_10_1017_fms_2023_87
crossref_primary_10_1007_s10455_022_09834_4
crossref_primary_10_1007_s11511_016_0137_1
crossref_primary_10_1002_cpa_21936
crossref_primary_10_1016_j_aim_2020_107271
crossref_primary_10_1007_s42543_021_00039_5
crossref_primary_10_1016_j_aim_2016_12_002
crossref_primary_10_1016_j_aim_2017_10_035
crossref_primary_10_1017_S1474748017000111
crossref_primary_10_1007_s00208_018_1752_2
crossref_primary_10_5802_aif_3580
crossref_primary_10_1007_s12220_024_01869_2
crossref_primary_10_1080_03605302_2020_1857403
crossref_primary_10_1007_s12215_016_0282_6
crossref_primary_10_5802_afst_1710
crossref_primary_10_1007_s00526_024_02844_z
crossref_primary_10_1215_00127094_2019_0006
crossref_primary_10_2969_jmsj_83558355
crossref_primary_10_1007_s00209_017_1886_z
crossref_primary_10_1007_s00526_019_1510_7
crossref_primary_10_1017_nmj_2020_28
crossref_primary_10_1515_crelle_2016_0055
crossref_primary_10_1016_j_difgeo_2017_10_001
crossref_primary_10_1007_s00526_018_1308_z
crossref_primary_10_1007_s00526_021_02103_5
crossref_primary_10_5802_crmath_612
crossref_primary_10_1093_imrn_rnab046
crossref_primary_10_1142_S0129167X22500070
crossref_primary_10_1142_S1793525321500473
crossref_primary_10_1515_crelle_2020_0043
crossref_primary_10_1112_S0010437X1500768X
crossref_primary_10_1515_crelle_2018_0007
crossref_primary_10_1016_j_jfa_2018_01_007
crossref_primary_10_1142_S0219498824500932
crossref_primary_10_1016_j_matpur_2020_12_002
crossref_primary_10_1007_s00208_020_02099_x
crossref_primary_10_1090_jag_783
crossref_primary_10_1007_s12220_021_00650_z
crossref_primary_10_1007_s12220_017_9971_4
crossref_primary_10_1112_jlms_12911
crossref_primary_10_1007_s00222_020_00987_2
crossref_primary_10_1017_S0013091516000432
crossref_primary_10_1093_imrn_rnx298
crossref_primary_10_1215_00127094_3714864
crossref_primary_10_1112_blms_12892
crossref_primary_10_1112_blms_13222
crossref_primary_10_1142_S0129167X20500779
crossref_primary_10_1016_j_aim_2015_11_036
crossref_primary_10_1007_s00209_015_1491_y
crossref_primary_10_2140_apde_2024_17_757
crossref_primary_10_2140_pjm_2023_324_295
crossref_primary_10_1007_s00209_021_02935_z
crossref_primary_10_2140_pjm_2019_302_659
Cites_doi 10.1016/j.aim.2013.08.024
10.2307/2118589
10.1007/s40304-013-0011-9
10.1090/S0894-0347-2014-00800-6
10.4007/annals.2012.175.1.7
10.1007/s00220-014-2123-9
10.1007/PL00012649
10.1016/0022-1236(84)90093-4
10.1007/978-3-0348-0257-4_5
10.1016/0022-1236(81)90050-1
10.1007/978-3-642-28821-0_4
10.1007/BF01231335
10.1142/S0219199714500205
10.24033/asens.1390
10.4310/SDG.2012.v17.n1.a5
10.4310/jdg/1214459974
10.24033/asens.1392
10.4310/jdg/1090950195
10.1007/s000390050094
10.1007/s11511-014-0116-3
10.2307/1990928
10.2307/2951841
10.1016/S0001-8708(03)00081-1
10.2307/1990939
10.1007/BFb0074091
10.4007/annals.2014.180.1.4
10.1007/s002220050176
10.1007/978-3-0348-8389-4
10.1007/s000390300001
10.1093/imrn/rns279
10.1090/S0894-0347-2014-00801-8
10.1007/BF01231499
10.4007/annals.2012.176.2.10
10.1007/BF01388438
10.1090/S0894-0347-2014-00799-2
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Jul 2015
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Jul 2015
DBID BSCLL
AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21578
DatabaseName Istex
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1156
ExternalDocumentID 3707607971
10_1002_cpa_21578
CPA21578
ark_67375_WNG_5VZNQN9S_H
Genre article
Feature
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AETEA
AFWVQ
AGHNM
AGQPQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c4718-27eac13ae744a2d02ef3f27ad68a5ef538578e5dafe5fbe84865913b3ad4b7983
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 19:08:39 EDT 2025
Tue Jul 01 02:50:30 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
Mon Apr 07 06:04:03 EDT 2025
Wed Oct 30 09:55:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4718-27eac13ae744a2d02ef3f27ad68a5ef538578e5dafe5fbe84865913b3ad4b7983
Notes ark:/67375/WNG-5VZNQN9S-H
ArticleID:CPA21578
istex:56E57061997861A3694883E0DB48718B46AC9AB3
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1686448826
PQPubID 48818
PageCount 72
ParticipantIDs proquest_journals_1686448826
crossref_primary_10_1002_cpa_21578
crossref_citationtrail_10_1002_cpa_21578
wiley_primary_10_1002_cpa_21578_CPA21578
istex_primary_ark_67375_WNG_5VZNQN9S_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationTitleAlternate Comm. Pure Appl. Math
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley and Sons, Limited
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons, Limited
References Colding, T. H.; Naber, A. Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. (2) 176 (2012), no. 2, 1173-1229.
Berman, R. J. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint, 2012. arXiv: 1205.6214 [math.DG]
Li, C. Remarks on logarithmic K-stability. Commun. Contemp. Math. 17 (2015), no. 2, 1450020, 17 pp.
Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), no. 1, 101-172. doi: 10.1007/BF01231499
Cheeger, J. Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13 (2003), no. 1, 20-72. doi: 10.1007/s000390300001
Cheeger, J.; Colding, T. H.; Tian, G. On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12 (2002), no. 5, 873-914. doi: 10.1007/PL00012649
Tian, G. Partial C0-estimates for Kähler-Einstein metrics. Comm. Math. Stat. 1 (2013), no. 2, 105-113. doi: 10.1007/s40304-013-0011-9
Ding, W. Y.; Tian, G. Kähler-Einstein metrics and the generalized Futaki invariants. Invent. Math. 110 (1992), no. 2, 315-335. doi: 10.1007/BF01231335
Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), no. 3, 428-517. doi: 10.1007/s000390050094
Donaldson, S. K. Scalar curvature and stability of toric varieties. J. Differential Geom. 62 (2002), no. 2, 289-349.
Tian, G.; Wang, B. On the structure of almost Einstein manifolds. Preprint, 2012. arXiv: 1202.2912 [math.DG]
Anderson, M. T. Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc. 2 (1989), no. 3, 455-490. doi: 10.2307/1990939
Berndtsson, B. Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem. Preprint, 2011. arXiv: 1103.0923 [math.DG]
Li, P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 451-468.
Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2012. arXiv: 1211.4669v1 [math.DG]
Aubin, T. Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité. J. Funct. Anal. 57 (1984), no. 2, 143-153. doi:10.1016/0022-1236(84)90093-4
Donaldson, S. Stability, birational transformations and the Kähler-Einstein problem. Surveys in Differential Geometry, 17. International Press, Boston, 2012. doi: 10.4310/SDG.2012.v17.n1.a5
Cheeger, J.; Colding, T. H. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. (2) 144 (1996), no. 1, 189-237. doi: 10.2307/2118589
Paul, S. T. Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. (2) 175 (2012), no. 1, 255-296. doi: 10.4007/annals.2012.175.1.7
Rothaus, O. S. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42 (1981), no. 1, 110-120. doi: 10.1016/0022-1236(81)90050-1
Cheeger, J.; Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46 (1997), no. 3, 406-480.
Donaldson, S.; Sun, S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213 (2014), no. 1, 63-106. doi: 10.1007/s11511-014-0116-3
Tian, G. Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130 (1997), no. 1, 1-37. doi: 10.1007/s002220050176
Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2013. arXiv: 1211.4669v2 [math.DG]
Paul, S. T.; Tian, G. CM stability and the generalized Futaki invariant II. Astérisque 328 (2009), 339-354.
Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof. J. Amer. Math. Soc. 28 (2015), no. 1, 235-278. doi: 10.1090/S0894-0347-2014-00801-8 (Preprint, arXiv: 1302.0282 [math.DG])
Colding, T. H. Ricci curvature and volume convergence. Ann. of Math. (2) 145 (1997), no. 3, 477-501. doi: 10.2307/2951841
Futaki, A. An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73 (1983), no. 3, 437-443. doi: 10.1007/BF01388438
Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics and stability. Int. Math. Res. Not. IMRN 2014, no. 8, 2119-2125. (Preprint, arXiv: 1210.7494)
Berman, R. J. A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics. Adv. Math. 248 (2013), 1254-1297. doi: 10.1016/j.aim.2013.08.024
Paul, S. T. Geometric analysis of Chow Mumford stability. Adv. Math. 182 (2004), no. 2, 333-356. doi: 10.1016/S0001-8708(03)00081-1
Jeffres, T. D.; Mazzeo, R.; Rubinstein, Y. Kähler-Einstein metrics with edge singularities. Preprint, 2011. arXiv: 1105.5216 [math.DG]
Li, C.; Xu, C. Special test configuration and K-stability of Fano varieties. Ann. of Math. (2) 180 (2014), no. 1, 197-232. doi: 10.4007/annals.2014.180.1.4
Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28 (2015), no. 1, 183-197. doi: 10.1090/S0894-0347-2014-00799-2 (Preprint, arXiv: 1211.4566 [math.DG])
Li, C.; Sun, S. Conical Kähler-Einstein metrics revisited. Comm. Math. Phys. 331 (2014), no. 3, 927-973. doi: 10.1007/s00220-014-2123-9
Berman, R.; Boucksom, S.; Essydieux, P.; Guedj, V.; Zeriahi, A. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. Preprint, 2011. arXiv: 1111.7158 [math.CV]
Hajłasz, P.; Koskela, P. Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211-1215.
Paul, S. T. Stable pairs and coercive estimates for the Mabuchi functional. Preprint, 2013. arXiv: 1308.4377 [math.AG]
Croke, C. B. Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 419-435.
Chen, X.; Donaldson, S.; Sun, S.Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π. J. Amer. Math. Soc. 28 (2015), no. 1, 199-234. doi: 10.1090/S0894-0347-2014-00800-6 (Preprint, arXiv: 1212.4714 [math.DG])
Paul, S. T. A numerical criterion for K-energy maps of algebraic manifolds. Preprint, 2012. arXiv: 1210.0924 [math.DG]
Tian, G.; Yau, S.-T. Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579-609. doi: 10.2307/1990928
Perelman, G. The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv: 0211159 [math.DG]
Tian, G. Stability of pairs. Preprint, 2013. arXiv: 1310.5544 [math.DG]
Tian, G. Canonical metrics on Kähler manifolds. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000.
1989; 2
2015; 17
2013; 1
2012
2011
1997; 130
2013; 248
2002; 12
1997; 46
2004; 182
2003; 13
2009
1983; 73
1996; 144
1993
1992
2002
1990; 101
2014; 331
2014; 213
1981; 42
1999; 9
1999
1990; 3
2012; 175
2015; 28
2012; 176
2000
1992; 110
2002; 62
1991; I
1980; 13
1984; 57
1997; 145
2014; 180
2014
1995; 320
2013
2009; 328
Ding W. (e_1_2_1_20_1) 1992
Paul S. T. (e_1_2_1_40_1) 2009; 328
Tian G. (e_1_2_1_52_1) 2013
Perelman G. (e_1_2_1_41_1) 2002
e_1_2_1_24_1
e_1_2_1_22_1
Paul S. T. (e_1_2_1_38_1) 2012
e_1_2_1_28_1
e_1_2_1_26_1
e_1_2_1_47_1
Tian G. (e_1_2_1_50_1) 2013
Chen X. (e_1_2_1_13_1) 2014
Berman R. J. (e_1_2_1_4_1) 2012
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_12_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_37_1
Berman R. (e_1_2_1_6_1) 2011
e_1_2_1_18_1
Hajłasz P. (e_1_2_1_29_1) 1995; 320
Tian G. (e_1_2_1_45_1) 1991
Gromov M. (e_1_2_1_27_1) 1999
Siu Y.‐T. (e_1_2_1_43_1) 2009
Tian G. (e_1_2_1_53_1) 2012
Jeffres T. D. (e_1_2_1_30_1) 2011
e_1_2_1_42_1
Tian G. (e_1_2_1_49_1) 2012
e_1_2_1_23_1
e_1_2_1_46_1
Croke C. B. (e_1_2_1_19_1) 1980; 13
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_25_1
e_1_2_1_48_1
Berndtsson B. (e_1_2_1_7_1) 2011
Li P. (e_1_2_1_35_1) 1980; 13
Paul S. T. (e_1_2_1_39_1) 2013
e_1_2_1_55_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
References_xml – reference: Li, P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 451-468.
– reference: Paul, S. T. Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. (2) 175 (2012), no. 1, 255-296. doi: 10.4007/annals.2012.175.1.7
– reference: Tian, G.; Wang, B. On the structure of almost Einstein manifolds. Preprint, 2012. arXiv: 1202.2912 [math.DG]
– reference: Berman, R.; Boucksom, S.; Essydieux, P.; Guedj, V.; Zeriahi, A. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. Preprint, 2011. arXiv: 1111.7158 [math.CV]
– reference: Berndtsson, B. Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem. Preprint, 2011. arXiv: 1103.0923 [math.DG]
– reference: Donaldson, S. Stability, birational transformations and the Kähler-Einstein problem. Surveys in Differential Geometry, 17. International Press, Boston, 2012. doi: 10.4310/SDG.2012.v17.n1.a5
– reference: Tian, G. Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130 (1997), no. 1, 1-37. doi: 10.1007/s002220050176
– reference: Perelman, G. The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv: 0211159 [math.DG]
– reference: Li, C.; Xu, C. Special test configuration and K-stability of Fano varieties. Ann. of Math. (2) 180 (2014), no. 1, 197-232. doi: 10.4007/annals.2014.180.1.4
– reference: Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), no. 3, 428-517. doi: 10.1007/s000390050094
– reference: Cheeger, J.; Colding, T. H.; Tian, G. On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12 (2002), no. 5, 873-914. doi: 10.1007/PL00012649
– reference: Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), no. 1, 101-172. doi: 10.1007/BF01231499
– reference: Colding, T. H. Ricci curvature and volume convergence. Ann. of Math. (2) 145 (1997), no. 3, 477-501. doi: 10.2307/2951841
– reference: Cheeger, J. Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13 (2003), no. 1, 20-72. doi: 10.1007/s000390300001
– reference: Paul, S. T.; Tian, G. CM stability and the generalized Futaki invariant II. Astérisque 328 (2009), 339-354.
– reference: Colding, T. H.; Naber, A. Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. (2) 176 (2012), no. 2, 1173-1229.
– reference: Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof. J. Amer. Math. Soc. 28 (2015), no. 1, 235-278. doi: 10.1090/S0894-0347-2014-00801-8 (Preprint, arXiv: 1302.0282 [math.DG])
– reference: Li, C. Remarks on logarithmic K-stability. Commun. Contemp. Math. 17 (2015), no. 2, 1450020, 17 pp.
– reference: Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics and stability. Int. Math. Res. Not. IMRN 2014, no. 8, 2119-2125. (Preprint, arXiv: 1210.7494)
– reference: Berman, R. J. A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics. Adv. Math. 248 (2013), 1254-1297. doi: 10.1016/j.aim.2013.08.024
– reference: Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28 (2015), no. 1, 183-197. doi: 10.1090/S0894-0347-2014-00799-2 (Preprint, arXiv: 1211.4566 [math.DG])
– reference: Donaldson, S.; Sun, S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213 (2014), no. 1, 63-106. doi: 10.1007/s11511-014-0116-3
– reference: Rothaus, O. S. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42 (1981), no. 1, 110-120. doi: 10.1016/0022-1236(81)90050-1
– reference: Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2013. arXiv: 1211.4669v2 [math.DG]
– reference: Tian, G. Partial C0-estimates for Kähler-Einstein metrics. Comm. Math. Stat. 1 (2013), no. 2, 105-113. doi: 10.1007/s40304-013-0011-9
– reference: Anderson, M. T. Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc. 2 (1989), no. 3, 455-490. doi: 10.2307/1990939
– reference: Paul, S. T. Geometric analysis of Chow Mumford stability. Adv. Math. 182 (2004), no. 2, 333-356. doi: 10.1016/S0001-8708(03)00081-1
– reference: Jeffres, T. D.; Mazzeo, R.; Rubinstein, Y. Kähler-Einstein metrics with edge singularities. Preprint, 2011. arXiv: 1105.5216 [math.DG]
– reference: Cheeger, J.; Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46 (1997), no. 3, 406-480.
– reference: Hajłasz, P.; Koskela, P. Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211-1215.
– reference: Aubin, T. Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité. J. Funct. Anal. 57 (1984), no. 2, 143-153. doi:10.1016/0022-1236(84)90093-4
– reference: Berman, R. J. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint, 2012. arXiv: 1205.6214 [math.DG]
– reference: Ding, W. Y.; Tian, G. Kähler-Einstein metrics and the generalized Futaki invariants. Invent. Math. 110 (1992), no. 2, 315-335. doi: 10.1007/BF01231335
– reference: Li, C.; Sun, S. Conical Kähler-Einstein metrics revisited. Comm. Math. Phys. 331 (2014), no. 3, 927-973. doi: 10.1007/s00220-014-2123-9
– reference: Tian, G.; Yau, S.-T. Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579-609. doi: 10.2307/1990928
– reference: Cheeger, J.; Colding, T. H. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. (2) 144 (1996), no. 1, 189-237. doi: 10.2307/2118589
– reference: Croke, C. B. Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 419-435.
– reference: Donaldson, S. K. Scalar curvature and stability of toric varieties. J. Differential Geom. 62 (2002), no. 2, 289-349.
– reference: Chen, X.; Donaldson, S.; Sun, S.Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π. J. Amer. Math. Soc. 28 (2015), no. 1, 199-234. doi: 10.1090/S0894-0347-2014-00800-6 (Preprint, arXiv: 1212.4714 [math.DG])
– reference: Futaki, A. An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73 (1983), no. 3, 437-443. doi: 10.1007/BF01388438
– reference: Paul, S. T. A numerical criterion for K-energy maps of algebraic manifolds. Preprint, 2012. arXiv: 1210.0924 [math.DG]
– reference: Tian, G. Stability of pairs. Preprint, 2013. arXiv: 1310.5544 [math.DG]
– reference: Paul, S. T. Stable pairs and coercive estimates for the Mabuchi functional. Preprint, 2013. arXiv: 1308.4377 [math.AG]
– reference: Tian, G. Canonical metrics on Kähler manifolds. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000.
– reference: Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2012. arXiv: 1211.4669v1 [math.DG]
– year: 2002
  article-title: The entropy formula for the Ricci flow and its geometric applications
  publication-title: Preprint
– volume: 180
  start-page: 197
  issue: 1
  year: 2014
  end-page: 232
  article-title: Special test configuration and K‐stability of Fano varieties
  publication-title: Ann. of Math. (2)
– year: 2012
  article-title: K‐polystability of Q‐Fano varieties admitting Kähler‐Einstein metrics
  publication-title: Preprint
– volume: 213
  start-page: 63
  issue: 1
  year: 2014
  end-page: 106
  article-title: Gromov‐Hausdorff limits of Kähler manifolds and algebraic geometry
  publication-title: Acta Math.
– volume: 17
  start-page: 17
  issue: 2
  year: 2015
  article-title: Remarks on logarithmic K‐stability
  publication-title: Commun. Contemp. Math.
– volume: 1
  start-page: 105
  issue: 2
  year: 2013
  end-page: 113
  article-title: Partial ‐estimates for Kähler‐Einstein metrics
  publication-title: Comm. Math. Stat.
– volume: 144
  start-page: 189
  issue: 1
  year: 1996
  end-page: 237
  article-title: Lower bounds on Ricci curvature and the almost rigidity of warped products
  publication-title: Ann. of Math. (2)
– volume: 62
  start-page: 289
  issue: 2
  year: 2002
  end-page: 349
  article-title: Scalar curvature and stability of toric varieties
  publication-title: J. Differential Geom.
– volume: 145
  start-page: 477
  issue: 3
  year: 1997
  end-page: 501
  article-title: Ricci curvature and volume convergence
  publication-title: Ann. of Math. (2)
– volume: 248
  start-page: 1254
  year: 2013
  end-page: 1297
  article-title: A thermodynamical formalism for Monge‐Ampère equations, Moser‐Trudinger inequalities and Kähler‐Einstein metrics
  publication-title: Adv. Math.
– year: 2011
  article-title: Kähler‐Einstein metrics and the Kähler‐Ricci flow on log Fano varieties
  publication-title: Preprint
– start-page: 119
  year: 2012
  end-page: 159
– year: 2011
  article-title: Brunn‐Minkowski type inequality for Fano manifolds and the Bando‐Mabuchi uniqueness theorem
  publication-title: Preprint
– start-page: 54
  year: 1993
  end-page: 88
– volume: 2
  start-page: 455
  issue: 3
  year: 1989
  end-page: 490
  article-title: Ricci curvature bounds and Einstein metrics on compact manifolds
  publication-title: J. Amer. Math. Soc.
– volume: 320
  start-page: 1211
  issue: 10
  year: 1995
  end-page: 1215
  article-title: Sobolev meets Poincaré
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– volume: 130
  start-page: 1
  issue: 1
  year: 1997
  end-page: 37
  article-title: Kähler‐Einstein metrics with positive scalar curvature
  publication-title: Invent. Math.
– start-page: 57
  year: 1992
  end-page: 70
– volume: 331
  start-page: 927
  issue: 3
  year: 2014
  end-page: 973
  article-title: Conical Kähler‐Einstein metrics revisited
  publication-title: Comm. Math. Phys.
– volume: I
  start-page: 587
  year: 1991
  end-page: 598
– volume: 13
  start-page: 451
  issue: 4
  year: 1980
  end-page: 468
  article-title: On the Sobolev constant and the p‐spectrum of a compact Riemannian manifold
  publication-title: Ann. Sci. École Norm. Sup. (4)
– volume: 182
  start-page: 333
  issue: 2
  year: 2004
  end-page: 356
  article-title: Geometric analysis of Chow Mumford stability
  publication-title: Adv. Math.
– year: 2013
  article-title: Stability of pairs
  publication-title: Preprint
– volume: 176
  start-page: 1173
  issue: 2
  year: 2012
  end-page: 1229
  article-title: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications
  publication-title: Ann. of Math. (2)
– start-page: 49
  year: 2012
  end-page: 79
– year: 2012
  article-title: A numerical criterion for K‐energy maps of algebraic manifolds
  publication-title: Preprint
– volume: 328
  start-page: 339
  year: 2009
  end-page: 354
  article-title: CM stability and the generalized Futaki invariant II
  publication-title: Astérisque
– volume: 101
  start-page: 101
  issue: 1
  year: 1990
  end-page: 172
  article-title: On Calabi's conjecture for complex surfaces with positive first Chern class
  publication-title: Invent. Math.
– year: 2012
  article-title: K‐stability and Kähler‐Einstein metrics
  publication-title: Preprint
– year: 2000
– volume: 9
  start-page: 428
  issue: 3
  year: 1999
  end-page: 517
  article-title: Differentiability of Lipschitz functions on metric measure spaces
  publication-title: Geom. Funct. Anal.
– year: 2013
  article-title: K‐stability and Kähler‐Einstein metrics
  publication-title: Preprint
– volume: 12
  start-page: 873
  issue: 5
  year: 2002
  end-page: 914
  article-title: On the singularities of spaces with bounded Ricci curvature
  publication-title: Geom. Funct. Anal.
– start-page: 2119
  issue: 8
  year: 2014
  end-page: 2125
  article-title: Kähler‐Einstein metrics and stability
  publication-title: Int. Math. Res. Not. IMRN
– year: 2011
  article-title: Kähler‐Einstein metrics with edge singularities
  publication-title: Preprint
– start-page: 177
  year: 2009
  end-page: 219
– volume: 46
  start-page: 406
  issue: 3
  year: 1997
  end-page: 480
  article-title: On the structure of spaces with Ricci curvature bounded below. I
  publication-title: J. Differential Geom.
– volume: 57
  start-page: 143
  issue: 2
  year: 1984
  end-page: 153
  article-title: Réduction du cas positif de l'équation de Monge‐Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité
  publication-title: J. Funct. Anal.
– volume: 175
  start-page: 255
  issue: 1
  year: 2012
  end-page: 296
  article-title: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics
  publication-title: Ann. of Math. (2)
– year: 2012
– volume: 13
  start-page: 419
  issue: 4
  year: 1980
  end-page: 435
  article-title: Some isoperimetric inequalities and eigenvalue estimates
  publication-title: Ann. Sci. École Norm. Sup. (4)
– volume: 3
  start-page: 579
  issue: 3
  year: 1990
  end-page: 609
  article-title: Complete Kähler manifolds with zero Ricci curvature. I
  publication-title: J. Amer. Math. Soc.
– volume: 28
  start-page: 235
  issue: 1
  year: 2015
  end-page: 278
  article-title: Kähler‐Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2 and completion of the main proof
  publication-title: J. Amer. Math. Soc.
– year: 2013
  article-title: Stable pairs and coercive estimates for the Mabuchi functional
  publication-title: Preprint
– year: 2012
  article-title: On the structure of almost Einstein manifolds
  publication-title: Preprint
– volume: 28
  start-page: 183
  issue: 1
  year: 2015
  end-page: 197
  article-title: Kähler‐Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities
  publication-title: J. Amer. Math. Soc.
– volume: 13
  start-page: 20
  issue: 1
  year: 2003
  end-page: 72
  article-title: Integral bounds on curvature elliptic estimates and rectifiability of singular sets
  publication-title: Geom. Funct. Anal.
– volume: 110
  start-page: 315
  issue: 2
  year: 1992
  end-page: 335
  article-title: Kähler‐Einstein metrics and the generalized Futaki invariants
  publication-title: Invent. Math.
– volume: 73
  start-page: 437
  issue: 3
  year: 1983
  end-page: 443
  article-title: An obstruction to the existence of Einstein Kähler metrics
  publication-title: Invent. Math.
– volume: 28
  start-page: 199
  issue: 1
  year: 2015
  end-page: 234
  article-title: Kähler‐Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2
  publication-title: J. Amer. Math. Soc.
– volume: 42
  start-page: 110
  issue: 1
  year: 1981
  end-page: 120
  article-title: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators
  publication-title: J. Funct. Anal.
– start-page: 152
  year: 1999
– ident: e_1_2_1_5_1
  doi: 10.1016/j.aim.2013.08.024
– ident: e_1_2_1_10_1
  doi: 10.2307/2118589
– ident: e_1_2_1_51_1
  doi: 10.1007/s40304-013-0011-9
– ident: e_1_2_1_15_1
  doi: 10.1090/S0894-0347-2014-00800-6
– ident: e_1_2_1_37_1
  doi: 10.4007/annals.2012.175.1.7
– year: 2012
  ident: e_1_2_1_53_1
  article-title: On the structure of almost Einstein manifolds
  publication-title: Preprint
– ident: e_1_2_1_33_1
  doi: 10.1007/s00220-014-2123-9
– ident: e_1_2_1_12_1
  doi: 10.1007/PL00012649
– ident: e_1_2_1_3_1
  doi: 10.1016/0022-1236(84)90093-4
– ident: e_1_2_1_48_1
  doi: 10.1007/978-3-0348-0257-4_5
– ident: e_1_2_1_42_1
  doi: 10.1016/0022-1236(81)90050-1
– year: 2012
  ident: e_1_2_1_38_1
  article-title: A numerical criterion for K‐energy maps of algebraic manifolds
  publication-title: Preprint
– year: 2012
  ident: e_1_2_1_4_1
  article-title: K‐polystability of Q‐Fano varieties admitting Kähler‐Einstein metrics
  publication-title: Preprint
– ident: e_1_2_1_23_1
  doi: 10.1007/978-3-642-28821-0_4
– ident: e_1_2_1_21_1
  doi: 10.1007/BF01231335
– year: 2011
  ident: e_1_2_1_6_1
  article-title: Kähler‐Einstein metrics and the Kähler‐Ricci flow on log Fano varieties
  publication-title: Preprint
– ident: e_1_2_1_32_1
  doi: 10.1142/S0219199714500205
– year: 2013
  ident: e_1_2_1_50_1
  article-title: K‐stability and Kähler‐Einstein metrics
  publication-title: Preprint
– year: 2013
  ident: e_1_2_1_39_1
  article-title: Stable pairs and coercive estimates for the Mabuchi functional
  publication-title: Preprint
– start-page: 152
  volume-title: Progress in Mathematics
  year: 1999
  ident: e_1_2_1_27_1
– year: 2002
  ident: e_1_2_1_41_1
  article-title: The entropy formula for the Ricci flow and its geometric applications
  publication-title: Preprint
– volume: 13
  start-page: 419
  issue: 4
  year: 1980
  ident: e_1_2_1_19_1
  article-title: Some isoperimetric inequalities and eigenvalue estimates
  publication-title: Ann. Sci. École Norm. Sup. (4)
  doi: 10.24033/asens.1390
– ident: e_1_2_1_24_1
  doi: 10.4310/SDG.2012.v17.n1.a5
– ident: e_1_2_1_11_1
  doi: 10.4310/jdg/1214459974
– volume: 13
  start-page: 451
  issue: 4
  year: 1980
  ident: e_1_2_1_35_1
  article-title: On the Sobolev constant and the p‐spectrum of a compact Riemannian manifold
  publication-title: Ann. Sci. École Norm. Sup. (4)
  doi: 10.24033/asens.1392
– ident: e_1_2_1_22_1
  doi: 10.4310/jdg/1090950195
– start-page: 57
  volume-title: Nonlinear analysis and microlocal analysis: Proceedings of the International Conference at Nankai Institute of Mathematics
  year: 1992
  ident: e_1_2_1_20_1
– volume: 328
  start-page: 339
  year: 2009
  ident: e_1_2_1_40_1
  article-title: CM stability and the generalized Futaki invariant II
  publication-title: Astérisque
– ident: e_1_2_1_8_1
  doi: 10.1007/s000390050094
– ident: e_1_2_1_25_1
  doi: 10.1007/s11511-014-0116-3
– ident: e_1_2_1_54_1
  doi: 10.2307/1990928
– ident: e_1_2_1_17_1
  doi: 10.2307/2951841
– ident: e_1_2_1_36_1
  doi: 10.1016/S0001-8708(03)00081-1
– ident: e_1_2_1_2_1
  doi: 10.2307/1990939
– year: 2011
  ident: e_1_2_1_30_1
  article-title: Kähler‐Einstein metrics with edge singularities
  publication-title: Preprint
– ident: e_1_2_1_28_1
  doi: 10.1007/BFb0074091
– year: 2011
  ident: e_1_2_1_7_1
  article-title: Brunn‐Minkowski type inequality for Fano manifolds and the Bando‐Mabuchi uniqueness theorem
  publication-title: Preprint
– ident: e_1_2_1_31_1
– volume: 320
  start-page: 1211
  issue: 10
  year: 1995
  ident: e_1_2_1_29_1
  article-title: Sobolev meets Poincaré
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– ident: e_1_2_1_34_1
  doi: 10.4007/annals.2014.180.1.4
– ident: e_1_2_1_46_1
  doi: 10.1007/s002220050176
– ident: e_1_2_1_47_1
  doi: 10.1007/978-3-0348-8389-4
– ident: e_1_2_1_9_1
  doi: 10.1007/s000390300001
– start-page: 2119
  issue: 8
  year: 2014
  ident: e_1_2_1_13_1
  article-title: Kähler‐Einstein metrics and stability
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1093/imrn/rns279
– start-page: 587
  volume-title: Proceedings of the International Congress of Mathematicians
  year: 1991
  ident: e_1_2_1_45_1
– ident: e_1_2_1_16_1
  doi: 10.1090/S0894-0347-2014-00801-8
– year: 2012
  ident: e_1_2_1_49_1
  article-title: K‐stability and Kähler‐Einstein metrics
  publication-title: Preprint
– ident: e_1_2_1_44_1
  doi: 10.1007/BF01231499
– year: 2013
  ident: e_1_2_1_52_1
  article-title: Stability of pairs
  publication-title: Preprint
– start-page: 177
  volume-title: Current developments in mathematics
  year: 2009
  ident: e_1_2_1_43_1
– ident: e_1_2_1_18_1
  doi: 10.4007/annals.2012.176.2.10
– ident: e_1_2_1_26_1
  doi: 10.1007/BF01388438
– ident: e_1_2_1_55_1
– ident: e_1_2_1_14_1
  doi: 10.1090/S0894-0347-2014-00799-2
SSID ssj0011483
Score 2.5868518
Snippet We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley...
We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley...
We prove that if a Fano manifold M is K-stable, then it admits a Kahler-Einstein metric. It affirms a longstanding conjecture for Fano manifolds.
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1085
SubjectTerms Mathematics
Matrix
Title K-Stability and Kähler-Einstein Metrics
URI https://api.istex.fr/ark:/67375/WNG-5VZNQN9S-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21578
https://www.proquest.com/docview/1686448826
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSsMwFA5Db_TCf3E6pYiIF3Zb06Y_eDXG5nBs-DcdIoSkSWBM6lg3UK98BB_CN_FNfBKTdK1OFMS7Uk5oek5yzpfk5DsA7DmhCKhHA5MJ5JoOs3zThxYzAyEEVedEItRsn2230XFOuqibA0fpXZiEHyLbcFMzQ_trNcEJjUufpKHhgBRlvPLURV-Vq6UA0XlGHaVgfnK6rPyM65RTVqEyLGUtp2LRrFLrwxTQ_ApXdbypL4LbtKdJmkm_OB7RYvj0jcTxn7-yBBYmONSoJANnGeR4tALmWxmJa7wKDpvvzy8SjOr02UeDRMxovr2qasnyfa0ncSXvRUZLleQK4zXQqdcuqw1zUlzBDFU8MqEnXa5lE-45DoGsDLmwBfQIc32CuJB-UPaHI0YER4Jy3_FdFFg2tQlzqBf49jqYie4jvgEMxAMJgjhkso0qXkJ9BD2LChn4uMVokAcHqZpxOGEeVwUw7nDCmQyxVADWCsiD3Ux0kNBt_CS0r22VSZBhX-WneQhft48xurppn7WDC9zIg0JqTDyZmjG2XF-tSeWySvZLW-X3L-HqaUU_bP5ddAvMSVCFkpTeApgZDcd8WwKXEd3RI_QDBNfpmw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSuQwFD6MzoV6sesvjjtqWUS8sOM0bdoUvBlEHXec4r-ysISkSUCUKs4Iulf7CPsQvolv4pOYpNP6g8Kyd6Wc0PSc5Jwvycl3AJaCVMU84rErFA7dQHjEJcgTbqyU4uacSKWW7TMJ28fBjzN8VoH14i5Mzg9RbriZmWH9tZngZkN67YU1NL1mDR2wIjIEVVPR2y6oDkryKAP08_Nl42nCoFnwCjXRWtn0TTSqGsXevYGarwGrjThbX-FX0dc80eSicdvnjfT3OxrH__2ZcfgygKJOKx87E1CR2SSMdUse194UrHae_vzVeNRm0N47LBNO5_HBFEzW7zfPNbSU55nTNVW50t40HG9tHm203UF9BTc1IclFkfa6ns9kFAQMiSaSylcoYiIkDEulXaHuj8SCKYkVlyQgIY49n_tMBDyKiT8Dw9lVJmfBwTLWOEgioduY-iWcYBR5XOnYJz3B4xqsFHqm6YB83NTAuKQ5bTKiWgHUKqAG30vR65xx4yOhZWusUoLdXJgUtQjT02Sb4pOfyX4SH9J2DeqFNelgdvaoFxKzLNUrK90va5bPv0Q39lr2Ye7fRRdhpH3U3aW7O0nnG4xqjIXzDN86DPdvbuW8xjF9vmCH6zOdHO22
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSuQwFD74A6IXrq4ujn9bZBEv7DhNkzbFK1FnR2ct_u7KIoSkSUCUOjgj6F75CD6Eb-Kb7JNskk67qyjI3pVyQk9Pcs750px-B-ALznQiYpH4UpPIxzKgPkWB9BOttbDnRDpzbJ9p1DrBu6fkdADWy39hCn6I6oOb9QwXr62Dd6Re-0samnV43eSrmA7CMI4a1C7prcOKO8ri_OJ42QaaCDdKWqEGWquGPktGw9aut8-Q5r941SWc5gc4K1Ut6kwu6jc9Uc9-vWBx_M93mYDxPhD1NoqVMwkDKv8IY3sVi2t3Clbbv-8fDBp19bN3Hs-l1356tO2Szf3tcwMs1Xnu7dmeXFl3Gk6a28ebLb_fXcHPbELyUWxibhByFWPMkWwgpUONYi4jyonSJhAafRSRXCuihaKYRiQJQhFyiUWc0PATDOVXuZoBj6jEoCCFpBlju5cISlAcCG0ynwqkSGqwUpqZZX3qcdsB45IVpMmIGQMwZ4AaLFWinYJv4zWhZTdXlQS_vrAFajFhP9KvjHz_mR6kyRFr1WC-nEzW980uCyJqN6VmX2X0crPy9pPY5v6Gu5h9v-hnGNnfarJvO2l7DkYNwCJFee88DPWub9SCATE9segW6x8CV-xu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K%E2%80%90Stability+and+K%C3%A4hler%E2%80%90Einstein+Metrics&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Tian%2C+Gang&rft.date=2015-07-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=68&rft.issue=7&rft.spage=1085&rft.epage=1156&rft_id=info:doi/10.1002%2Fcpa.21578&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon