K-Stability and Kähler-Einstein Metrics
We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc.
Saved in:
Published in | Communications on pure and applied mathematics Vol. 68; no. 7; pp. 1085 - 1156 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Blackwell Publishing Ltd
01.07.2015
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | We prove that if a Fano manifold M is K-stable, then it admits a Kahler-Einstein metric. It affirms a longstanding conjecture for Fano manifolds. We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc. We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley Periodicals, Inc. |
Author | Tian, Gang |
Author_xml | – sequence: 1 givenname: Gang surname: Tian fullname: Tian, Gang email: gtian@math.pku.edu.cn, tian@princeton.edu organization: Beijing University, 100871, 79 Jingchunyuan, Beijing, China |
BookMark | eNp9kMtOAjEUhhuDiYAufAMSN7oo9DrtLAlBMCBq8JK4aToznVgcZ6AtUd7HN_HFHEVdmOjq5CTf95-TvwUaZVUaAA4x6mKESC9d6i7BXMgd0MQoFhBRTBqgiRBGkEYM7YGW94t6xUzSJjiewHnQiS1s2HR0mXUmb68PhXFwaEsfjC075yY4m_p9sJvrwpuDr9kGN6fD68EYTi9GZ4P-FKZMYAmJMDrFVBvBmCYZIianORE6i6TmJudU1r8Znunc8DwxksmIx5gmVGcsEbGkbXC0zV26arU2PqhFtXZlfVLhSEaMSUmimjrZUqmrvHcmV0tnn7TbKIzURxGqLkJ9FlGzvV9saoMOtiqD07b4z3i2hdn8Ha0Gl_1vA24NW5f28mNo96giQQVXd7OR4rf3s6tZPFdj-g4JaH8n |
CODEN | CPMAMV |
CitedBy_id | crossref_primary_10_1112_plms_12052 crossref_primary_10_1007_s12220_017_9850_z crossref_primary_10_1007_s00209_023_03209_6 crossref_primary_10_1016_j_aim_2020_107250 crossref_primary_10_1007_s12220_023_01253_6 crossref_primary_10_1215_00127094_2022_0026 crossref_primary_10_5802_aif_3395 crossref_primary_10_1515_ans_2023_0113 crossref_primary_10_1112_plms_pdw037 crossref_primary_10_1007_s42543_018_0001_7 crossref_primary_10_1515_acv_2019_0056 crossref_primary_10_1016_j_jfa_2016_08_005 crossref_primary_10_1016_j_aim_2020_107413 crossref_primary_10_5802_aif_3435 crossref_primary_10_1002_cpa_22206 crossref_primary_10_1142_S0129167X20500123 crossref_primary_10_2140_apde_2019_12_2067 crossref_primary_10_1142_S0129167X17500446 crossref_primary_10_1016_j_matpur_2025_103691 crossref_primary_10_1002_cpa_22053 crossref_primary_10_1090_jag_799 crossref_primary_10_1215_00127094_2020_0010 crossref_primary_10_1002_mana_201500232 crossref_primary_10_2748_tmj_1546570823 crossref_primary_10_1017_S0013091517000335 crossref_primary_10_1112_jlms_12961 crossref_primary_10_1515_crelle_2016_0033 crossref_primary_10_1007_s00209_022_03192_4 crossref_primary_10_1215_00127094_2021_0007 crossref_primary_10_1090_jams_873 crossref_primary_10_1007_s12220_019_00312_1 crossref_primary_10_1007_s42543_024_00093_9 crossref_primary_10_1093_imrn_rnab226 crossref_primary_10_1017_fmp_2022_11 crossref_primary_10_1007_s00209_024_03610_9 crossref_primary_10_1016_j_aim_2022_108857 crossref_primary_10_1093_imrn_rny094 crossref_primary_10_2140_gt_2022_26_899 crossref_primary_10_1090_proc_15474 crossref_primary_10_1007_s00526_016_1050_3 crossref_primary_10_1090_proc_15473 crossref_primary_10_1515_crelle_2022_0002 crossref_primary_10_1007_s00208_018_1701_0 crossref_primary_10_1215_00127094_2020_0085 crossref_primary_10_1112_plms_12615 crossref_primary_10_5802_aif_3393 crossref_primary_10_1007_s00222_021_01075_9 crossref_primary_10_1007_s11425_021_1928_1 crossref_primary_10_2140_pjm_2016_284_455 crossref_primary_10_1215_00127094_2017_0026 crossref_primary_10_1007_s00208_018_1702_z crossref_primary_10_1016_j_aim_2019_106841 crossref_primary_10_1090_tran_8821 crossref_primary_10_1007_s00208_015_1303_z crossref_primary_10_1007_s00526_018_1318_x crossref_primary_10_1007_s00229_021_01338_y crossref_primary_10_2140_gt_2024_28_539 crossref_primary_10_5802_aif_3252 crossref_primary_10_1016_j_aim_2018_10_038 crossref_primary_10_1090_proc_17080 crossref_primary_10_1016_j_aim_2024_109537 crossref_primary_10_1515_crelle_2022_0095 crossref_primary_10_1007_s40306_020_00388_w crossref_primary_10_1002_cpa_21612 crossref_primary_10_1007_s10455_018_9624_2 crossref_primary_10_1016_j_jfa_2018_04_009 crossref_primary_10_1093_imrn_rnw171 crossref_primary_10_1007_s00209_015_1518_4 crossref_primary_10_1007_s10455_023_09915_y crossref_primary_10_1112_jlms_12700 crossref_primary_10_1093_imrn_rnac190 crossref_primary_10_1515_crelle_2024_0101 crossref_primary_10_3390_math9010102 crossref_primary_10_1007_s00526_019_1551_y crossref_primary_10_1017_S1474748024000598 crossref_primary_10_4213_tmf10554 crossref_primary_10_3934_mine_2023028 crossref_primary_10_1007_s40879_019_00357_0 crossref_primary_10_1016_j_aim_2020_107062 crossref_primary_10_1007_s12220_020_00355_9 crossref_primary_10_1307_mmj_1599789615 crossref_primary_10_1142_S0129167X22500707 crossref_primary_10_1007_s12220_017_9819_y crossref_primary_10_1142_S0129167X22500835 crossref_primary_10_1142_S0129167X22500951 crossref_primary_10_1215_00127094_2018_0069 crossref_primary_10_1007_s00029_019_0473_z crossref_primary_10_1142_S0129167X2450023X crossref_primary_10_5802_aif_3637 crossref_primary_10_1007_s00039_017_0394_y crossref_primary_10_1090_jams_964 crossref_primary_10_1007_s00208_017_1602_7 crossref_primary_10_1007_s11425_019_1656_2 crossref_primary_10_1016_j_aim_2024_109514 crossref_primary_10_4007_annals_2014_180_1_4 crossref_primary_10_1016_j_aim_2021_107975 crossref_primary_10_1090_suga_493 crossref_primary_10_1007_s00208_018_1753_1 crossref_primary_10_1016_j_aim_2021_107619 crossref_primary_10_1112_blms_12581 crossref_primary_10_1515_coma_2024_0004 crossref_primary_10_1093_imrn_rnv229 crossref_primary_10_1007_s12220_020_00399_x crossref_primary_10_2969_jmsj_84408440 crossref_primary_10_1093_imrn_rnab301 crossref_primary_10_1007_s12220_017_9942_9 crossref_primary_10_1134_S0040577924010112 crossref_primary_10_1017_nmj_2016_16 crossref_primary_10_1515_ans_2022_0032 crossref_primary_10_1016_j_bulsci_2023_103232 crossref_primary_10_1007_s00222_020_00999_y crossref_primary_10_4007_annals_2016_183_1_3 crossref_primary_10_1017_fms_2023_87 crossref_primary_10_1007_s10455_022_09834_4 crossref_primary_10_1007_s11511_016_0137_1 crossref_primary_10_1002_cpa_21936 crossref_primary_10_1016_j_aim_2020_107271 crossref_primary_10_1007_s42543_021_00039_5 crossref_primary_10_1016_j_aim_2016_12_002 crossref_primary_10_1016_j_aim_2017_10_035 crossref_primary_10_1017_S1474748017000111 crossref_primary_10_1007_s00208_018_1752_2 crossref_primary_10_5802_aif_3580 crossref_primary_10_1007_s12220_024_01869_2 crossref_primary_10_1080_03605302_2020_1857403 crossref_primary_10_1007_s12215_016_0282_6 crossref_primary_10_5802_afst_1710 crossref_primary_10_1007_s00526_024_02844_z crossref_primary_10_1215_00127094_2019_0006 crossref_primary_10_2969_jmsj_83558355 crossref_primary_10_1007_s00209_017_1886_z crossref_primary_10_1007_s00526_019_1510_7 crossref_primary_10_1017_nmj_2020_28 crossref_primary_10_1515_crelle_2016_0055 crossref_primary_10_1016_j_difgeo_2017_10_001 crossref_primary_10_1007_s00526_018_1308_z crossref_primary_10_1007_s00526_021_02103_5 crossref_primary_10_5802_crmath_612 crossref_primary_10_1093_imrn_rnab046 crossref_primary_10_1142_S0129167X22500070 crossref_primary_10_1142_S1793525321500473 crossref_primary_10_1515_crelle_2020_0043 crossref_primary_10_1112_S0010437X1500768X crossref_primary_10_1515_crelle_2018_0007 crossref_primary_10_1016_j_jfa_2018_01_007 crossref_primary_10_1142_S0219498824500932 crossref_primary_10_1016_j_matpur_2020_12_002 crossref_primary_10_1007_s00208_020_02099_x crossref_primary_10_1090_jag_783 crossref_primary_10_1007_s12220_021_00650_z crossref_primary_10_1007_s12220_017_9971_4 crossref_primary_10_1112_jlms_12911 crossref_primary_10_1007_s00222_020_00987_2 crossref_primary_10_1017_S0013091516000432 crossref_primary_10_1093_imrn_rnx298 crossref_primary_10_1215_00127094_3714864 crossref_primary_10_1112_blms_12892 crossref_primary_10_1112_blms_13222 crossref_primary_10_1142_S0129167X20500779 crossref_primary_10_1016_j_aim_2015_11_036 crossref_primary_10_1007_s00209_015_1491_y crossref_primary_10_2140_apde_2024_17_757 crossref_primary_10_2140_pjm_2023_324_295 crossref_primary_10_1007_s00209_021_02935_z crossref_primary_10_2140_pjm_2019_302_659 |
Cites_doi | 10.1016/j.aim.2013.08.024 10.2307/2118589 10.1007/s40304-013-0011-9 10.1090/S0894-0347-2014-00800-6 10.4007/annals.2012.175.1.7 10.1007/s00220-014-2123-9 10.1007/PL00012649 10.1016/0022-1236(84)90093-4 10.1007/978-3-0348-0257-4_5 10.1016/0022-1236(81)90050-1 10.1007/978-3-642-28821-0_4 10.1007/BF01231335 10.1142/S0219199714500205 10.24033/asens.1390 10.4310/SDG.2012.v17.n1.a5 10.4310/jdg/1214459974 10.24033/asens.1392 10.4310/jdg/1090950195 10.1007/s000390050094 10.1007/s11511-014-0116-3 10.2307/1990928 10.2307/2951841 10.1016/S0001-8708(03)00081-1 10.2307/1990939 10.1007/BFb0074091 10.4007/annals.2014.180.1.4 10.1007/s002220050176 10.1007/978-3-0348-8389-4 10.1007/s000390300001 10.1093/imrn/rns279 10.1090/S0894-0347-2014-00801-8 10.1007/BF01231499 10.4007/annals.2012.176.2.10 10.1007/BF01388438 10.1090/S0894-0347-2014-00799-2 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Jul 2015 |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Jul 2015 |
DBID | BSCLL AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21578 |
DatabaseName | Istex CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1156 |
ExternalDocumentID | 3707607971 10_1002_cpa_21578 CPA21578 ark_67375_WNG_5VZNQN9S_H |
Genre | article Feature |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AETEA AFWVQ AGHNM AGQPQ ALVPJ AAYXX ADXHL AEYWJ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c4718-27eac13ae744a2d02ef3f27ad68a5ef538578e5dafe5fbe84865913b3ad4b7983 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:08:39 EDT 2025 Tue Jul 01 02:50:30 EDT 2025 Thu Apr 24 22:57:43 EDT 2025 Mon Apr 07 06:04:03 EDT 2025 Wed Oct 30 09:55:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4718-27eac13ae744a2d02ef3f27ad68a5ef538578e5dafe5fbe84865913b3ad4b7983 |
Notes | ark:/67375/WNG-5VZNQN9S-H ArticleID:CPA21578 istex:56E57061997861A3694883E0DB48718B46AC9AB3 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1686448826 |
PQPubID | 48818 |
PageCount | 72 |
ParticipantIDs | proquest_journals_1686448826 crossref_primary_10_1002_cpa_21578 crossref_citationtrail_10_1002_cpa_21578 wiley_primary_10_1002_cpa_21578_CPA21578 istex_primary_ark_67375_WNG_5VZNQN9S_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationTitleAlternate | Comm. Pure Appl. Math |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons, Limited |
References | Colding, T. H.; Naber, A. Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. (2) 176 (2012), no. 2, 1173-1229. Berman, R. J. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint, 2012. arXiv: 1205.6214 [math.DG] Li, C. Remarks on logarithmic K-stability. Commun. Contemp. Math. 17 (2015), no. 2, 1450020, 17 pp. Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), no. 1, 101-172. doi: 10.1007/BF01231499 Cheeger, J. Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13 (2003), no. 1, 20-72. doi: 10.1007/s000390300001 Cheeger, J.; Colding, T. H.; Tian, G. On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12 (2002), no. 5, 873-914. doi: 10.1007/PL00012649 Tian, G. Partial C0-estimates for Kähler-Einstein metrics. Comm. Math. Stat. 1 (2013), no. 2, 105-113. doi: 10.1007/s40304-013-0011-9 Ding, W. Y.; Tian, G. Kähler-Einstein metrics and the generalized Futaki invariants. Invent. Math. 110 (1992), no. 2, 315-335. doi: 10.1007/BF01231335 Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), no. 3, 428-517. doi: 10.1007/s000390050094 Donaldson, S. K. Scalar curvature and stability of toric varieties. J. Differential Geom. 62 (2002), no. 2, 289-349. Tian, G.; Wang, B. On the structure of almost Einstein manifolds. Preprint, 2012. arXiv: 1202.2912 [math.DG] Anderson, M. T. Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc. 2 (1989), no. 3, 455-490. doi: 10.2307/1990939 Berndtsson, B. Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem. Preprint, 2011. arXiv: 1103.0923 [math.DG] Li, P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 451-468. Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2012. arXiv: 1211.4669v1 [math.DG] Aubin, T. Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité. J. Funct. Anal. 57 (1984), no. 2, 143-153. doi:10.1016/0022-1236(84)90093-4 Donaldson, S. Stability, birational transformations and the Kähler-Einstein problem. Surveys in Differential Geometry, 17. International Press, Boston, 2012. doi: 10.4310/SDG.2012.v17.n1.a5 Cheeger, J.; Colding, T. H. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. (2) 144 (1996), no. 1, 189-237. doi: 10.2307/2118589 Paul, S. T. Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. (2) 175 (2012), no. 1, 255-296. doi: 10.4007/annals.2012.175.1.7 Rothaus, O. S. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42 (1981), no. 1, 110-120. doi: 10.1016/0022-1236(81)90050-1 Cheeger, J.; Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46 (1997), no. 3, 406-480. Donaldson, S.; Sun, S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213 (2014), no. 1, 63-106. doi: 10.1007/s11511-014-0116-3 Tian, G. Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130 (1997), no. 1, 1-37. doi: 10.1007/s002220050176 Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2013. arXiv: 1211.4669v2 [math.DG] Paul, S. T.; Tian, G. CM stability and the generalized Futaki invariant II. Astérisque 328 (2009), 339-354. Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof. J. Amer. Math. Soc. 28 (2015), no. 1, 235-278. doi: 10.1090/S0894-0347-2014-00801-8 (Preprint, arXiv: 1302.0282 [math.DG]) Colding, T. H. Ricci curvature and volume convergence. Ann. of Math. (2) 145 (1997), no. 3, 477-501. doi: 10.2307/2951841 Futaki, A. An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73 (1983), no. 3, 437-443. doi: 10.1007/BF01388438 Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics and stability. Int. Math. Res. Not. IMRN 2014, no. 8, 2119-2125. (Preprint, arXiv: 1210.7494) Berman, R. J. A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics. Adv. Math. 248 (2013), 1254-1297. doi: 10.1016/j.aim.2013.08.024 Paul, S. T. Geometric analysis of Chow Mumford stability. Adv. Math. 182 (2004), no. 2, 333-356. doi: 10.1016/S0001-8708(03)00081-1 Jeffres, T. D.; Mazzeo, R.; Rubinstein, Y. Kähler-Einstein metrics with edge singularities. Preprint, 2011. arXiv: 1105.5216 [math.DG] Li, C.; Xu, C. Special test configuration and K-stability of Fano varieties. Ann. of Math. (2) 180 (2014), no. 1, 197-232. doi: 10.4007/annals.2014.180.1.4 Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28 (2015), no. 1, 183-197. doi: 10.1090/S0894-0347-2014-00799-2 (Preprint, arXiv: 1211.4566 [math.DG]) Li, C.; Sun, S. Conical Kähler-Einstein metrics revisited. Comm. Math. Phys. 331 (2014), no. 3, 927-973. doi: 10.1007/s00220-014-2123-9 Berman, R.; Boucksom, S.; Essydieux, P.; Guedj, V.; Zeriahi, A. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. Preprint, 2011. arXiv: 1111.7158 [math.CV] Hajłasz, P.; Koskela, P. Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211-1215. Paul, S. T. Stable pairs and coercive estimates for the Mabuchi functional. Preprint, 2013. arXiv: 1308.4377 [math.AG] Croke, C. B. Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 419-435. Chen, X.; Donaldson, S.; Sun, S.Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π. J. Amer. Math. Soc. 28 (2015), no. 1, 199-234. doi: 10.1090/S0894-0347-2014-00800-6 (Preprint, arXiv: 1212.4714 [math.DG]) Paul, S. T. A numerical criterion for K-energy maps of algebraic manifolds. Preprint, 2012. arXiv: 1210.0924 [math.DG] Tian, G.; Yau, S.-T. Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579-609. doi: 10.2307/1990928 Perelman, G. The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv: 0211159 [math.DG] Tian, G. Stability of pairs. Preprint, 2013. arXiv: 1310.5544 [math.DG] Tian, G. Canonical metrics on Kähler manifolds. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000. 1989; 2 2015; 17 2013; 1 2012 2011 1997; 130 2013; 248 2002; 12 1997; 46 2004; 182 2003; 13 2009 1983; 73 1996; 144 1993 1992 2002 1990; 101 2014; 331 2014; 213 1981; 42 1999; 9 1999 1990; 3 2012; 175 2015; 28 2012; 176 2000 1992; 110 2002; 62 1991; I 1980; 13 1984; 57 1997; 145 2014; 180 2014 1995; 320 2013 2009; 328 Ding W. (e_1_2_1_20_1) 1992 Paul S. T. (e_1_2_1_40_1) 2009; 328 Tian G. (e_1_2_1_52_1) 2013 Perelman G. (e_1_2_1_41_1) 2002 e_1_2_1_24_1 e_1_2_1_22_1 Paul S. T. (e_1_2_1_38_1) 2012 e_1_2_1_28_1 e_1_2_1_26_1 e_1_2_1_47_1 Tian G. (e_1_2_1_50_1) 2013 Chen X. (e_1_2_1_13_1) 2014 Berman R. J. (e_1_2_1_4_1) 2012 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_12_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_14_1 e_1_2_1_37_1 Berman R. (e_1_2_1_6_1) 2011 e_1_2_1_18_1 Hajłasz P. (e_1_2_1_29_1) 1995; 320 Tian G. (e_1_2_1_45_1) 1991 Gromov M. (e_1_2_1_27_1) 1999 Siu Y.‐T. (e_1_2_1_43_1) 2009 Tian G. (e_1_2_1_53_1) 2012 Jeffres T. D. (e_1_2_1_30_1) 2011 e_1_2_1_42_1 Tian G. (e_1_2_1_49_1) 2012 e_1_2_1_23_1 e_1_2_1_46_1 Croke C. B. (e_1_2_1_19_1) 1980; 13 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_25_1 e_1_2_1_48_1 Berndtsson B. (e_1_2_1_7_1) 2011 Li P. (e_1_2_1_35_1) 1980; 13 Paul S. T. (e_1_2_1_39_1) 2013 e_1_2_1_55_1 e_1_2_1_5_1 e_1_2_1_3_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_17_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 |
References_xml | – reference: Li, P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 451-468. – reference: Paul, S. T. Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. (2) 175 (2012), no. 1, 255-296. doi: 10.4007/annals.2012.175.1.7 – reference: Tian, G.; Wang, B. On the structure of almost Einstein manifolds. Preprint, 2012. arXiv: 1202.2912 [math.DG] – reference: Berman, R.; Boucksom, S.; Essydieux, P.; Guedj, V.; Zeriahi, A. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. Preprint, 2011. arXiv: 1111.7158 [math.CV] – reference: Berndtsson, B. Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem. Preprint, 2011. arXiv: 1103.0923 [math.DG] – reference: Donaldson, S. Stability, birational transformations and the Kähler-Einstein problem. Surveys in Differential Geometry, 17. International Press, Boston, 2012. doi: 10.4310/SDG.2012.v17.n1.a5 – reference: Tian, G. Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130 (1997), no. 1, 1-37. doi: 10.1007/s002220050176 – reference: Perelman, G. The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv: 0211159 [math.DG] – reference: Li, C.; Xu, C. Special test configuration and K-stability of Fano varieties. Ann. of Math. (2) 180 (2014), no. 1, 197-232. doi: 10.4007/annals.2014.180.1.4 – reference: Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), no. 3, 428-517. doi: 10.1007/s000390050094 – reference: Cheeger, J.; Colding, T. H.; Tian, G. On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12 (2002), no. 5, 873-914. doi: 10.1007/PL00012649 – reference: Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), no. 1, 101-172. doi: 10.1007/BF01231499 – reference: Colding, T. H. Ricci curvature and volume convergence. Ann. of Math. (2) 145 (1997), no. 3, 477-501. doi: 10.2307/2951841 – reference: Cheeger, J. Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13 (2003), no. 1, 20-72. doi: 10.1007/s000390300001 – reference: Paul, S. T.; Tian, G. CM stability and the generalized Futaki invariant II. Astérisque 328 (2009), 339-354. – reference: Colding, T. H.; Naber, A. Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. (2) 176 (2012), no. 2, 1173-1229. – reference: Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof. J. Amer. Math. Soc. 28 (2015), no. 1, 235-278. doi: 10.1090/S0894-0347-2014-00801-8 (Preprint, arXiv: 1302.0282 [math.DG]) – reference: Li, C. Remarks on logarithmic K-stability. Commun. Contemp. Math. 17 (2015), no. 2, 1450020, 17 pp. – reference: Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics and stability. Int. Math. Res. Not. IMRN 2014, no. 8, 2119-2125. (Preprint, arXiv: 1210.7494) – reference: Berman, R. J. A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics. Adv. Math. 248 (2013), 1254-1297. doi: 10.1016/j.aim.2013.08.024 – reference: Chen, X.; Donaldson, S.; Sun, S. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28 (2015), no. 1, 183-197. doi: 10.1090/S0894-0347-2014-00799-2 (Preprint, arXiv: 1211.4566 [math.DG]) – reference: Donaldson, S.; Sun, S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213 (2014), no. 1, 63-106. doi: 10.1007/s11511-014-0116-3 – reference: Rothaus, O. S. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42 (1981), no. 1, 110-120. doi: 10.1016/0022-1236(81)90050-1 – reference: Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2013. arXiv: 1211.4669v2 [math.DG] – reference: Tian, G. Partial C0-estimates for Kähler-Einstein metrics. Comm. Math. Stat. 1 (2013), no. 2, 105-113. doi: 10.1007/s40304-013-0011-9 – reference: Anderson, M. T. Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc. 2 (1989), no. 3, 455-490. doi: 10.2307/1990939 – reference: Paul, S. T. Geometric analysis of Chow Mumford stability. Adv. Math. 182 (2004), no. 2, 333-356. doi: 10.1016/S0001-8708(03)00081-1 – reference: Jeffres, T. D.; Mazzeo, R.; Rubinstein, Y. Kähler-Einstein metrics with edge singularities. Preprint, 2011. arXiv: 1105.5216 [math.DG] – reference: Cheeger, J.; Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46 (1997), no. 3, 406-480. – reference: Hajłasz, P.; Koskela, P. Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211-1215. – reference: Aubin, T. Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité. J. Funct. Anal. 57 (1984), no. 2, 143-153. doi:10.1016/0022-1236(84)90093-4 – reference: Berman, R. J. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint, 2012. arXiv: 1205.6214 [math.DG] – reference: Ding, W. Y.; Tian, G. Kähler-Einstein metrics and the generalized Futaki invariants. Invent. Math. 110 (1992), no. 2, 315-335. doi: 10.1007/BF01231335 – reference: Li, C.; Sun, S. Conical Kähler-Einstein metrics revisited. Comm. Math. Phys. 331 (2014), no. 3, 927-973. doi: 10.1007/s00220-014-2123-9 – reference: Tian, G.; Yau, S.-T. Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579-609. doi: 10.2307/1990928 – reference: Cheeger, J.; Colding, T. H. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. (2) 144 (1996), no. 1, 189-237. doi: 10.2307/2118589 – reference: Croke, C. B. Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 419-435. – reference: Donaldson, S. K. Scalar curvature and stability of toric varieties. J. Differential Geom. 62 (2002), no. 2, 289-349. – reference: Chen, X.; Donaldson, S.; Sun, S.Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π. J. Amer. Math. Soc. 28 (2015), no. 1, 199-234. doi: 10.1090/S0894-0347-2014-00800-6 (Preprint, arXiv: 1212.4714 [math.DG]) – reference: Futaki, A. An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73 (1983), no. 3, 437-443. doi: 10.1007/BF01388438 – reference: Paul, S. T. A numerical criterion for K-energy maps of algebraic manifolds. Preprint, 2012. arXiv: 1210.0924 [math.DG] – reference: Tian, G. Stability of pairs. Preprint, 2013. arXiv: 1310.5544 [math.DG] – reference: Paul, S. T. Stable pairs and coercive estimates for the Mabuchi functional. Preprint, 2013. arXiv: 1308.4377 [math.AG] – reference: Tian, G. Canonical metrics on Kähler manifolds. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000. – reference: Tian, G. K-stability and Kähler-Einstein metrics. Preprint, 2012. arXiv: 1211.4669v1 [math.DG] – year: 2002 article-title: The entropy formula for the Ricci flow and its geometric applications publication-title: Preprint – volume: 180 start-page: 197 issue: 1 year: 2014 end-page: 232 article-title: Special test configuration and K‐stability of Fano varieties publication-title: Ann. of Math. (2) – year: 2012 article-title: K‐polystability of Q‐Fano varieties admitting Kähler‐Einstein metrics publication-title: Preprint – volume: 213 start-page: 63 issue: 1 year: 2014 end-page: 106 article-title: Gromov‐Hausdorff limits of Kähler manifolds and algebraic geometry publication-title: Acta Math. – volume: 17 start-page: 17 issue: 2 year: 2015 article-title: Remarks on logarithmic K‐stability publication-title: Commun. Contemp. Math. – volume: 1 start-page: 105 issue: 2 year: 2013 end-page: 113 article-title: Partial ‐estimates for Kähler‐Einstein metrics publication-title: Comm. Math. Stat. – volume: 144 start-page: 189 issue: 1 year: 1996 end-page: 237 article-title: Lower bounds on Ricci curvature and the almost rigidity of warped products publication-title: Ann. of Math. (2) – volume: 62 start-page: 289 issue: 2 year: 2002 end-page: 349 article-title: Scalar curvature and stability of toric varieties publication-title: J. Differential Geom. – volume: 145 start-page: 477 issue: 3 year: 1997 end-page: 501 article-title: Ricci curvature and volume convergence publication-title: Ann. of Math. (2) – volume: 248 start-page: 1254 year: 2013 end-page: 1297 article-title: A thermodynamical formalism for Monge‐Ampère equations, Moser‐Trudinger inequalities and Kähler‐Einstein metrics publication-title: Adv. Math. – year: 2011 article-title: Kähler‐Einstein metrics and the Kähler‐Ricci flow on log Fano varieties publication-title: Preprint – start-page: 119 year: 2012 end-page: 159 – year: 2011 article-title: Brunn‐Minkowski type inequality for Fano manifolds and the Bando‐Mabuchi uniqueness theorem publication-title: Preprint – start-page: 54 year: 1993 end-page: 88 – volume: 2 start-page: 455 issue: 3 year: 1989 end-page: 490 article-title: Ricci curvature bounds and Einstein metrics on compact manifolds publication-title: J. Amer. Math. Soc. – volume: 320 start-page: 1211 issue: 10 year: 1995 end-page: 1215 article-title: Sobolev meets Poincaré publication-title: C. R. Acad. Sci. Paris Sér. I Math. – volume: 130 start-page: 1 issue: 1 year: 1997 end-page: 37 article-title: Kähler‐Einstein metrics with positive scalar curvature publication-title: Invent. Math. – start-page: 57 year: 1992 end-page: 70 – volume: 331 start-page: 927 issue: 3 year: 2014 end-page: 973 article-title: Conical Kähler‐Einstein metrics revisited publication-title: Comm. Math. Phys. – volume: I start-page: 587 year: 1991 end-page: 598 – volume: 13 start-page: 451 issue: 4 year: 1980 end-page: 468 article-title: On the Sobolev constant and the p‐spectrum of a compact Riemannian manifold publication-title: Ann. Sci. École Norm. Sup. (4) – volume: 182 start-page: 333 issue: 2 year: 2004 end-page: 356 article-title: Geometric analysis of Chow Mumford stability publication-title: Adv. Math. – year: 2013 article-title: Stability of pairs publication-title: Preprint – volume: 176 start-page: 1173 issue: 2 year: 2012 end-page: 1229 article-title: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications publication-title: Ann. of Math. (2) – start-page: 49 year: 2012 end-page: 79 – year: 2012 article-title: A numerical criterion for K‐energy maps of algebraic manifolds publication-title: Preprint – volume: 328 start-page: 339 year: 2009 end-page: 354 article-title: CM stability and the generalized Futaki invariant II publication-title: Astérisque – volume: 101 start-page: 101 issue: 1 year: 1990 end-page: 172 article-title: On Calabi's conjecture for complex surfaces with positive first Chern class publication-title: Invent. Math. – year: 2012 article-title: K‐stability and Kähler‐Einstein metrics publication-title: Preprint – year: 2000 – volume: 9 start-page: 428 issue: 3 year: 1999 end-page: 517 article-title: Differentiability of Lipschitz functions on metric measure spaces publication-title: Geom. Funct. Anal. – year: 2013 article-title: K‐stability and Kähler‐Einstein metrics publication-title: Preprint – volume: 12 start-page: 873 issue: 5 year: 2002 end-page: 914 article-title: On the singularities of spaces with bounded Ricci curvature publication-title: Geom. Funct. Anal. – start-page: 2119 issue: 8 year: 2014 end-page: 2125 article-title: Kähler‐Einstein metrics and stability publication-title: Int. Math. Res. Not. IMRN – year: 2011 article-title: Kähler‐Einstein metrics with edge singularities publication-title: Preprint – start-page: 177 year: 2009 end-page: 219 – volume: 46 start-page: 406 issue: 3 year: 1997 end-page: 480 article-title: On the structure of spaces with Ricci curvature bounded below. I publication-title: J. Differential Geom. – volume: 57 start-page: 143 issue: 2 year: 1984 end-page: 153 article-title: Réduction du cas positif de l'équation de Monge‐Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité publication-title: J. Funct. Anal. – volume: 175 start-page: 255 issue: 1 year: 2012 end-page: 296 article-title: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics publication-title: Ann. of Math. (2) – year: 2012 – volume: 13 start-page: 419 issue: 4 year: 1980 end-page: 435 article-title: Some isoperimetric inequalities and eigenvalue estimates publication-title: Ann. Sci. École Norm. Sup. (4) – volume: 3 start-page: 579 issue: 3 year: 1990 end-page: 609 article-title: Complete Kähler manifolds with zero Ricci curvature. I publication-title: J. Amer. Math. Soc. – volume: 28 start-page: 235 issue: 1 year: 2015 end-page: 278 article-title: Kähler‐Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2 and completion of the main proof publication-title: J. Amer. Math. Soc. – year: 2013 article-title: Stable pairs and coercive estimates for the Mabuchi functional publication-title: Preprint – year: 2012 article-title: On the structure of almost Einstein manifolds publication-title: Preprint – volume: 28 start-page: 183 issue: 1 year: 2015 end-page: 197 article-title: Kähler‐Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities publication-title: J. Amer. Math. Soc. – volume: 13 start-page: 20 issue: 1 year: 2003 end-page: 72 article-title: Integral bounds on curvature elliptic estimates and rectifiability of singular sets publication-title: Geom. Funct. Anal. – volume: 110 start-page: 315 issue: 2 year: 1992 end-page: 335 article-title: Kähler‐Einstein metrics and the generalized Futaki invariants publication-title: Invent. Math. – volume: 73 start-page: 437 issue: 3 year: 1983 end-page: 443 article-title: An obstruction to the existence of Einstein Kähler metrics publication-title: Invent. Math. – volume: 28 start-page: 199 issue: 1 year: 2015 end-page: 234 article-title: Kähler‐Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2 publication-title: J. Amer. Math. Soc. – volume: 42 start-page: 110 issue: 1 year: 1981 end-page: 120 article-title: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators publication-title: J. Funct. Anal. – start-page: 152 year: 1999 – ident: e_1_2_1_5_1 doi: 10.1016/j.aim.2013.08.024 – ident: e_1_2_1_10_1 doi: 10.2307/2118589 – ident: e_1_2_1_51_1 doi: 10.1007/s40304-013-0011-9 – ident: e_1_2_1_15_1 doi: 10.1090/S0894-0347-2014-00800-6 – ident: e_1_2_1_37_1 doi: 10.4007/annals.2012.175.1.7 – year: 2012 ident: e_1_2_1_53_1 article-title: On the structure of almost Einstein manifolds publication-title: Preprint – ident: e_1_2_1_33_1 doi: 10.1007/s00220-014-2123-9 – ident: e_1_2_1_12_1 doi: 10.1007/PL00012649 – ident: e_1_2_1_3_1 doi: 10.1016/0022-1236(84)90093-4 – ident: e_1_2_1_48_1 doi: 10.1007/978-3-0348-0257-4_5 – ident: e_1_2_1_42_1 doi: 10.1016/0022-1236(81)90050-1 – year: 2012 ident: e_1_2_1_38_1 article-title: A numerical criterion for K‐energy maps of algebraic manifolds publication-title: Preprint – year: 2012 ident: e_1_2_1_4_1 article-title: K‐polystability of Q‐Fano varieties admitting Kähler‐Einstein metrics publication-title: Preprint – ident: e_1_2_1_23_1 doi: 10.1007/978-3-642-28821-0_4 – ident: e_1_2_1_21_1 doi: 10.1007/BF01231335 – year: 2011 ident: e_1_2_1_6_1 article-title: Kähler‐Einstein metrics and the Kähler‐Ricci flow on log Fano varieties publication-title: Preprint – ident: e_1_2_1_32_1 doi: 10.1142/S0219199714500205 – year: 2013 ident: e_1_2_1_50_1 article-title: K‐stability and Kähler‐Einstein metrics publication-title: Preprint – year: 2013 ident: e_1_2_1_39_1 article-title: Stable pairs and coercive estimates for the Mabuchi functional publication-title: Preprint – start-page: 152 volume-title: Progress in Mathematics year: 1999 ident: e_1_2_1_27_1 – year: 2002 ident: e_1_2_1_41_1 article-title: The entropy formula for the Ricci flow and its geometric applications publication-title: Preprint – volume: 13 start-page: 419 issue: 4 year: 1980 ident: e_1_2_1_19_1 article-title: Some isoperimetric inequalities and eigenvalue estimates publication-title: Ann. Sci. École Norm. Sup. (4) doi: 10.24033/asens.1390 – ident: e_1_2_1_24_1 doi: 10.4310/SDG.2012.v17.n1.a5 – ident: e_1_2_1_11_1 doi: 10.4310/jdg/1214459974 – volume: 13 start-page: 451 issue: 4 year: 1980 ident: e_1_2_1_35_1 article-title: On the Sobolev constant and the p‐spectrum of a compact Riemannian manifold publication-title: Ann. Sci. École Norm. Sup. (4) doi: 10.24033/asens.1392 – ident: e_1_2_1_22_1 doi: 10.4310/jdg/1090950195 – start-page: 57 volume-title: Nonlinear analysis and microlocal analysis: Proceedings of the International Conference at Nankai Institute of Mathematics year: 1992 ident: e_1_2_1_20_1 – volume: 328 start-page: 339 year: 2009 ident: e_1_2_1_40_1 article-title: CM stability and the generalized Futaki invariant II publication-title: Astérisque – ident: e_1_2_1_8_1 doi: 10.1007/s000390050094 – ident: e_1_2_1_25_1 doi: 10.1007/s11511-014-0116-3 – ident: e_1_2_1_54_1 doi: 10.2307/1990928 – ident: e_1_2_1_17_1 doi: 10.2307/2951841 – ident: e_1_2_1_36_1 doi: 10.1016/S0001-8708(03)00081-1 – ident: e_1_2_1_2_1 doi: 10.2307/1990939 – year: 2011 ident: e_1_2_1_30_1 article-title: Kähler‐Einstein metrics with edge singularities publication-title: Preprint – ident: e_1_2_1_28_1 doi: 10.1007/BFb0074091 – year: 2011 ident: e_1_2_1_7_1 article-title: Brunn‐Minkowski type inequality for Fano manifolds and the Bando‐Mabuchi uniqueness theorem publication-title: Preprint – ident: e_1_2_1_31_1 – volume: 320 start-page: 1211 issue: 10 year: 1995 ident: e_1_2_1_29_1 article-title: Sobolev meets Poincaré publication-title: C. R. Acad. Sci. Paris Sér. I Math. – ident: e_1_2_1_34_1 doi: 10.4007/annals.2014.180.1.4 – ident: e_1_2_1_46_1 doi: 10.1007/s002220050176 – ident: e_1_2_1_47_1 doi: 10.1007/978-3-0348-8389-4 – ident: e_1_2_1_9_1 doi: 10.1007/s000390300001 – start-page: 2119 issue: 8 year: 2014 ident: e_1_2_1_13_1 article-title: Kähler‐Einstein metrics and stability publication-title: Int. Math. Res. Not. IMRN doi: 10.1093/imrn/rns279 – start-page: 587 volume-title: Proceedings of the International Congress of Mathematicians year: 1991 ident: e_1_2_1_45_1 – ident: e_1_2_1_16_1 doi: 10.1090/S0894-0347-2014-00801-8 – year: 2012 ident: e_1_2_1_49_1 article-title: K‐stability and Kähler‐Einstein metrics publication-title: Preprint – ident: e_1_2_1_44_1 doi: 10.1007/BF01231499 – year: 2013 ident: e_1_2_1_52_1 article-title: Stability of pairs publication-title: Preprint – start-page: 177 volume-title: Current developments in mathematics year: 2009 ident: e_1_2_1_43_1 – ident: e_1_2_1_18_1 doi: 10.4007/annals.2012.176.2.10 – ident: e_1_2_1_26_1 doi: 10.1007/BF01388438 – ident: e_1_2_1_55_1 – ident: e_1_2_1_14_1 doi: 10.1090/S0894-0347-2014-00799-2 |
SSID | ssj0011483 |
Score | 2.5868518 |
Snippet | We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley... We prove that if a Fano manifold M is K‐stable, then it admits a Kähler‐Einstein metric. It affirms a longstanding conjecture for Fano manifolds. © 2015 Wiley... We prove that if a Fano manifold M is K-stable, then it admits a Kahler-Einstein metric. It affirms a longstanding conjecture for Fano manifolds. |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1085 |
SubjectTerms | Mathematics Matrix |
Title | K-Stability and Kähler-Einstein Metrics |
URI | https://api.istex.fr/ark:/67375/WNG-5VZNQN9S-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21578 https://www.proquest.com/docview/1686448826 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSsMwFA5Db_TCf3E6pYiIF3Zb06Y_eDXG5nBs-DcdIoSkSWBM6lg3UK98BB_CN_FNfBKTdK1OFMS7Uk5oek5yzpfk5DsA7DmhCKhHA5MJ5JoOs3zThxYzAyEEVedEItRsn2230XFOuqibA0fpXZiEHyLbcFMzQ_trNcEJjUufpKHhgBRlvPLURV-Vq6UA0XlGHaVgfnK6rPyM65RTVqEyLGUtp2LRrFLrwxTQ_ApXdbypL4LbtKdJmkm_OB7RYvj0jcTxn7-yBBYmONSoJANnGeR4tALmWxmJa7wKDpvvzy8SjOr02UeDRMxovr2qasnyfa0ncSXvRUZLleQK4zXQqdcuqw1zUlzBDFU8MqEnXa5lE-45DoGsDLmwBfQIc32CuJB-UPaHI0YER4Jy3_FdFFg2tQlzqBf49jqYie4jvgEMxAMJgjhkso0qXkJ9BD2LChn4uMVokAcHqZpxOGEeVwUw7nDCmQyxVADWCsiD3Ux0kNBt_CS0r22VSZBhX-WneQhft48xurppn7WDC9zIg0JqTDyZmjG2XF-tSeWySvZLW-X3L-HqaUU_bP5ddAvMSVCFkpTeApgZDcd8WwKXEd3RI_QDBNfpmw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSuQwFD6MzoV6sesvjjtqWUS8sOM0bdoUvBlEHXec4r-ysISkSUCUKs4Iulf7CPsQvolv4pOYpNP6g8Kyd6Wc0PSc5Jwvycl3AJaCVMU84rErFA7dQHjEJcgTbqyU4uacSKWW7TMJ28fBjzN8VoH14i5Mzg9RbriZmWH9tZngZkN67YU1NL1mDR2wIjIEVVPR2y6oDkryKAP08_Nl42nCoFnwCjXRWtn0TTSqGsXevYGarwGrjThbX-FX0dc80eSicdvnjfT3OxrH__2ZcfgygKJOKx87E1CR2SSMdUse194UrHae_vzVeNRm0N47LBNO5_HBFEzW7zfPNbSU55nTNVW50t40HG9tHm203UF9BTc1IclFkfa6ns9kFAQMiSaSylcoYiIkDEulXaHuj8SCKYkVlyQgIY49n_tMBDyKiT8Dw9lVJmfBwTLWOEgioduY-iWcYBR5XOnYJz3B4xqsFHqm6YB83NTAuKQ5bTKiWgHUKqAG30vR65xx4yOhZWusUoLdXJgUtQjT02Sb4pOfyX4SH9J2DeqFNelgdvaoFxKzLNUrK90va5bPv0Q39lr2Ye7fRRdhpH3U3aW7O0nnG4xqjIXzDN86DPdvbuW8xjF9vmCH6zOdHO22 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSuQwFD74A6IXrq4ujn9bZBEv7DhNkzbFK1FnR2ct_u7KIoSkSUCUOjgj6F75CD6Eb-Kb7JNskk67qyjI3pVyQk9Pcs750px-B-ALznQiYpH4UpPIxzKgPkWB9BOttbDnRDpzbJ9p1DrBu6fkdADWy39hCn6I6oOb9QwXr62Dd6Re-0samnV43eSrmA7CMI4a1C7prcOKO8ri_OJ42QaaCDdKWqEGWquGPktGw9aut8-Q5r941SWc5gc4K1Ut6kwu6jc9Uc9-vWBx_M93mYDxPhD1NoqVMwkDKv8IY3sVi2t3Clbbv-8fDBp19bN3Hs-l1356tO2Szf3tcwMs1Xnu7dmeXFl3Gk6a28ebLb_fXcHPbELyUWxibhByFWPMkWwgpUONYi4jyonSJhAafRSRXCuihaKYRiQJQhFyiUWc0PATDOVXuZoBj6jEoCCFpBlju5cISlAcCG0ynwqkSGqwUpqZZX3qcdsB45IVpMmIGQMwZ4AaLFWinYJv4zWhZTdXlQS_vrAFajFhP9KvjHz_mR6kyRFr1WC-nEzW980uCyJqN6VmX2X0crPy9pPY5v6Gu5h9v-hnGNnfarJvO2l7DkYNwCJFee88DPWub9SCATE9segW6x8CV-xu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K%E2%80%90Stability+and+K%C3%A4hler%E2%80%90Einstein+Metrics&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Tian%2C+Gang&rft.date=2015-07-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=68&rft.issue=7&rft.spage=1085&rft.epage=1156&rft_id=info:doi/10.1002%2Fcpa.21578&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |