Higher infectivity of the SARS‐CoV‐2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data

The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new va...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 236; no. 10; pp. 7045 - 7057
Main Authors Khan, Abbas, Zia, Tauqir, Suleman, Muhammad, Khan, Taimoor, Ali, Syed Shujait, Abbasi, Aamir Ali, Mohammad, Anwar, Wei, Dong‐Qing
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor‐binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS‐CoV‐2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y), and hypothetical (N501Y‐E484K) variants alter the binding affinity, create new inter‐protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants. This study precisely explored the mechanism of the interaction of the spike RBD with the host ACE2 and revealed the differences in the binding of the reference and new variants. The systematic investigation revealed that the South African and Brazilian variants are more lethal than the others due to inter‐protein contacts specifically the electrostatic while the N501Y is comparable with the wild type. We hypothesized that the residue at 501Y is continuously subjected to positive selection pressure. We further demonstrated the dynamic behavior is also changed with the protein evolution. Conclusively, this study provides strong basis for structure and rationale‐based drug designing against the new variant by exploring the noticeable differences.
AbstractList The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor‐binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS‐CoV‐2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y), and hypothetical (N501Y‐E484K) variants alter the binding affinity, create new inter‐protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.
The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor‐binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS‐CoV‐2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y), and hypothetical (N501Y‐E484K) variants alter the binding affinity, create new inter‐protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants. This study precisely explored the mechanism of the interaction of the spike RBD with the host ACE2 and revealed the differences in the binding of the reference and new variants. The systematic investigation revealed that the South African and Brazilian variants are more lethal than the others due to inter‐protein contacts specifically the electrostatic while the N501Y is comparable with the wild type. We hypothesized that the residue at 501Y is continuously subjected to positive selection pressure. We further demonstrated the dynamic behavior is also changed with the protein evolution. Conclusively, this study provides strong basis for structure and rationale‐based drug designing against the new variant by exploring the noticeable differences.
The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor-binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS-CoV-2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y), and hypothetical (N501Y-E484K) variants alter the binding affinity, create new inter-protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor-binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS-CoV-2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y), and hypothetical (N501Y-E484K) variants alter the binding affinity, create new inter-protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.
Author Khan, Abbas
Suleman, Muhammad
Abbasi, Aamir Ali
Mohammad, Anwar
Khan, Taimoor
Zia, Tauqir
Ali, Syed Shujait
Wei, Dong‐Qing
AuthorAffiliation 3 Center for Biotechnology and Microbiology University of Swat Swat Khyber‐Pakhtunkhwa Pakistan
2 Department of Microbiology Quaid‐i‐Azam University Islamabad Pakistan
4 National Center for Bioinformatics Quaid‐i‐Azam University Islamabad Pakistan
7 Peng Cheng Laboratory Vanke Cloud City Phase I Building 8, Xili Street, Nashan District Guangdong Shenzhen P.R. China
5 Department of Biochemistry and Molecular Biology Dasman Diabetes Institute Kuwait
1 Department of Bioinformatics and Biological Statistics Shanghai Jiao Tong University Shanghai P.R. China
6 State Key Laboratory of Microbial Metabolism, Shanghai‐Islamabad‐Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P.R. China
AuthorAffiliation_xml – name: 3 Center for Biotechnology and Microbiology University of Swat Swat Khyber‐Pakhtunkhwa Pakistan
– name: 2 Department of Microbiology Quaid‐i‐Azam University Islamabad Pakistan
– name: 4 National Center for Bioinformatics Quaid‐i‐Azam University Islamabad Pakistan
– name: 7 Peng Cheng Laboratory Vanke Cloud City Phase I Building 8, Xili Street, Nashan District Guangdong Shenzhen P.R. China
– name: 5 Department of Biochemistry and Molecular Biology Dasman Diabetes Institute Kuwait
– name: 6 State Key Laboratory of Microbial Metabolism, Shanghai‐Islamabad‐Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P.R. China
– name: 1 Department of Bioinformatics and Biological Statistics Shanghai Jiao Tong University Shanghai P.R. China
Author_xml – sequence: 1
  givenname: Abbas
  surname: Khan
  fullname: Khan, Abbas
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Tauqir
  surname: Zia
  fullname: Zia, Tauqir
  organization: Quaid‐i‐Azam University
– sequence: 3
  givenname: Muhammad
  surname: Suleman
  fullname: Suleman, Muhammad
  organization: University of Swat
– sequence: 4
  givenname: Taimoor
  surname: Khan
  fullname: Khan, Taimoor
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Syed Shujait
  surname: Ali
  fullname: Ali, Syed Shujait
  organization: University of Swat
– sequence: 6
  givenname: Aamir Ali
  surname: Abbasi
  fullname: Abbasi, Aamir Ali
  organization: Quaid‐i‐Azam University
– sequence: 7
  givenname: Anwar
  surname: Mohammad
  fullname: Mohammad, Anwar
  organization: Dasman Diabetes Institute
– sequence: 8
  givenname: Dong‐Qing
  orcidid: 0000-0003-4200-7502
  surname: Wei
  fullname: Wei, Dong‐Qing
  email: dqwei@sjtu.edu.cn
  organization: Peng Cheng Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33755190$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFuEzEQhi3UiqaFAy-ALHEBqWnstb2b5YAURYVCq4JoQeJkeb2zjaNdO9jeRLlx58Iz9klwSIqggot9mO__5x_NHKI96ywg9ISSE0pINprrxQkjLC8eoAElZTHkucj20CDV6LAUnB6gwxDmhJCyZOwhOmCsEIKWZIC-n5mbGXhsbAM6mqWJa-waHGeAryYfr26__Zi6z-nNsIUVXipvlI0Bm4BVCE4bFaHGKxNn-JzT4nJ0fYxP-ZifH2Nla3wpCP2Cuz5uRC_xxKY-ITWMuPGuwyH6XsfeqxbXKqpHaL9RbYDHu_8IfXp9ej09G168f_N2OrkYal7QNFwJrKFUA6trVrC8pqD4OON501QCKpWXVUYVCKZBEMJ5BU2ZF9UYSkXyoqHsCL3a-i76qoNag40pglx40ym_lk4Z-XfFmpm8cUs5zgQlBU8Gz3cG3n3tIUTZmaChbZUF1weZCcIZp2O-6fXsHjp3vbdpvETlnGeUcZaop38m-h3lbk8JGG0B7V0IHhqpTVTRuE1A00pK5OYSZLoE-esSkuLFPcWd6b_YnfvKtLD-PyjfTT9sFT8B20_C7g
CitedBy_id crossref_primary_10_3389_fphar_2025_1459581
crossref_primary_10_1016_j_jmb_2022_167622
crossref_primary_10_1016_j_jmb_2024_168716
crossref_primary_10_1016_j_jtbi_2022_111105
crossref_primary_10_3389_fimmu_2024_1407149
crossref_primary_10_1186_s13065_024_01347_4
crossref_primary_10_1080_07391102_2022_2103587
crossref_primary_10_1002_cbic_202100393
crossref_primary_10_1007_s12257_021_0327_3
crossref_primary_10_1155_2023_5279979
crossref_primary_10_14336_AD_2021_1210
crossref_primary_10_3390_v15040856
crossref_primary_10_3390_v14061332
crossref_primary_10_1002_hsr2_1373
crossref_primary_10_1016_j_csbj_2022_08_015
crossref_primary_10_1002_jmv_28060
crossref_primary_10_1016_j_intimp_2021_108424
crossref_primary_10_1126_scitranslmed_add5960
crossref_primary_10_1007_s10989_024_10610_0
crossref_primary_10_1155_2022_8551576
crossref_primary_10_1099_acmi_0_000573_v4
crossref_primary_10_3389_fimmu_2022_836232
crossref_primary_10_1016_j_biopha_2022_112802
crossref_primary_10_3390_microorganisms11122938
crossref_primary_10_1038_s41467_023_37468_y
crossref_primary_10_1093_ve_veab104
crossref_primary_10_3390_vaccines9080914
crossref_primary_10_3390_biology11050797
crossref_primary_10_3349_ymj_2021_62_11_961
crossref_primary_10_1007_s10989_021_10339_0
crossref_primary_10_1016_j_jbc_2021_101371
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_1136_bmjmed_2021_000040
crossref_primary_10_3389_fcimb_2022_902914
crossref_primary_10_1128_mBio_02687_21
crossref_primary_10_1016_j_jiph_2024_05_005
crossref_primary_10_3389_fpubh_2023_1189969
crossref_primary_10_1016_j_virol_2023_109850
crossref_primary_10_1080_07391102_2022_2108901
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_1016_j_jcv_2021_104996
crossref_primary_10_3390_molecules26185724
crossref_primary_10_1155_2021_1828792
crossref_primary_10_2174_1566524021666211013121831
crossref_primary_10_1007_s11033_022_08193_4
crossref_primary_10_1186_s43162_022_00121_z
crossref_primary_10_1002_jmv_28406
crossref_primary_10_1002_rmv_2270
crossref_primary_10_3390_jpm12060995
crossref_primary_10_1016_j_compbiomed_2021_104563
crossref_primary_10_1007_s12539_021_00447_2
crossref_primary_10_3389_fphar_2021_717757
crossref_primary_10_1016_j_cellin_2022_100029
crossref_primary_10_1038_s41467_021_27325_1
crossref_primary_10_1021_acs_jpclett_4c03028
crossref_primary_10_1080_07391102_2023_2291159
crossref_primary_10_3389_fmolb_2021_633365
crossref_primary_10_1080_07391102_2022_2123399
crossref_primary_10_1016_j_compbiomed_2021_104936
crossref_primary_10_4014_jmb_2308_08020
crossref_primary_10_3390_vaccines9080818
crossref_primary_10_1002_jmv_28542
crossref_primary_10_3390_ijms24065944
crossref_primary_10_1016_j_biopha_2022_113889
crossref_primary_10_1128_mbio_03227_21
crossref_primary_10_3390_v15020522
crossref_primary_10_3390_microorganisms10020280
crossref_primary_10_1016_j_jmb_2023_168187
crossref_primary_10_3389_fimmu_2022_863831
crossref_primary_10_1007_s11033_024_10048_z
crossref_primary_10_1080_08830185_2022_2079642
crossref_primary_10_3390_vaccines11091472
crossref_primary_10_1021_acschembio_1c00691
crossref_primary_10_1016_j_jim_2022_113244
crossref_primary_10_1002_jmv_27467
crossref_primary_10_3389_froh_2022_1001790
crossref_primary_10_1016_j_molstruc_2022_133032
crossref_primary_10_1021_acs_jpclett_3c00582
crossref_primary_10_1016_j_virusres_2023_199202
crossref_primary_10_1021_acs_jpclett_3c03296
crossref_primary_10_1016_j_jconrel_2023_11_004
crossref_primary_10_1016_j_jmoldx_2022_01_004
crossref_primary_10_1007_s11030_022_10499_1
crossref_primary_10_1016_j_banm_2021_11_002
crossref_primary_10_3389_fcell_2022_940863
crossref_primary_10_1039_D2CP04349A
crossref_primary_10_1111_cbdd_14107
crossref_primary_10_1155_2023_5560605
crossref_primary_10_1016_j_micpath_2022_105828
crossref_primary_10_1093_database_baab063
crossref_primary_10_1002_jmv_27476
crossref_primary_10_1177_11769343231182258
crossref_primary_10_1016_j_ejcb_2022_151275
crossref_primary_10_1021_acs_jpclett_1c01548
crossref_primary_10_15212_ZOONOSES_2021_0024
crossref_primary_10_1007_s11030_022_10438_0
crossref_primary_10_1142_S2737416522500338
crossref_primary_10_3389_fmolb_2021_692835
crossref_primary_10_1021_acs_jcim_1c01306
crossref_primary_10_1016_j_compbiomed_2021_104929
crossref_primary_10_1002_bab_2548
crossref_primary_10_1128_mbio_02030_21
crossref_primary_10_1186_s12985_021_01624_x
crossref_primary_10_1021_acs_jpcb_3c01467
crossref_primary_10_1002_jmv_28207
crossref_primary_10_1016_j_ygeno_2021_10_015
crossref_primary_10_3389_fchem_2023_1346796
crossref_primary_10_3389_fmolb_2023_1153046
crossref_primary_10_1016_j_biopha_2021_112176
crossref_primary_10_3390_v15122394
crossref_primary_10_1016_j_intimp_2022_109325
crossref_primary_10_1007_s12033_024_01277_5
crossref_primary_10_1016_j_bj_2023_100650
crossref_primary_10_1021_acs_chemrev_1c00965
crossref_primary_10_37394_23208_2022_19_4
crossref_primary_10_1111_1348_0421_12945
crossref_primary_10_3390_zoonoticdis2030014
crossref_primary_10_1038_s41598_025_89548_2
crossref_primary_10_3390_vaccines9111210
crossref_primary_10_1080_07391102_2023_2167114
crossref_primary_10_1016_j_cell_2021_08_017
crossref_primary_10_1186_s13065_024_01185_4
crossref_primary_10_30699_ijmm_17_2_194
crossref_primary_10_1016_j_molbiopara_2024_111655
crossref_primary_10_1016_j_virol_2022_05_003
crossref_primary_10_3390_molecules27217317
crossref_primary_10_1016_j_compbiomed_2023_106599
crossref_primary_10_1002_mco2_95
crossref_primary_10_1039_D2SC06665C
crossref_primary_10_3389_fcimb_2021_720357
crossref_primary_10_1016_j_phrs_2021_105982
crossref_primary_10_2217_fvl_2023_0146
crossref_primary_10_3390_v14010027
crossref_primary_10_1016_j_nmni_2021_100929
crossref_primary_10_3390_bioengineering10060652
crossref_primary_10_1039_D1RA04694B
crossref_primary_10_1038_s41467_022_35641_3
crossref_primary_10_1016_j_compbiomed_2022_105537
crossref_primary_10_3389_fmicb_2021_703145
crossref_primary_10_3389_fphar_2023_1202128
crossref_primary_10_1039_D3RA00198A
crossref_primary_10_1080_07391102_2022_2046641
crossref_primary_10_35848_1882_0786_ac4300
crossref_primary_10_1038_s41598_024_61387_7
crossref_primary_10_3390_ijms26031367
crossref_primary_10_3389_fmed_2022_1008600
crossref_primary_10_1016_S2213_8587_21_00244_8
crossref_primary_10_1016_j_bbamcr_2024_119828
crossref_primary_10_1016_j_meegid_2022_105282
crossref_primary_10_1016_j_micpath_2022_105592
crossref_primary_10_1002_prot_26759
crossref_primary_10_1007_s00018_021_04008_0
crossref_primary_10_3390_biomedicines9070710
crossref_primary_10_3390_biomedicines10020441
crossref_primary_10_3390_biology10121310
crossref_primary_10_7759_cureus_60015
crossref_primary_10_1016_j_isci_2022_103939
crossref_primary_10_1021_acsomega_2c04456
crossref_primary_10_22209_IC_v62s2a02
crossref_primary_10_1111_jcmm_18452
crossref_primary_10_3389_fmolb_2022_846996
crossref_primary_10_3390_biology10090880
crossref_primary_10_1016_j_compbiomed_2021_104714
crossref_primary_10_3390_ijms24087641
crossref_primary_10_1002_jmv_28366
crossref_primary_10_1371_journal_pbio_3001284
crossref_primary_10_3390_vaccines10030483
crossref_primary_10_1080_07391102_2023_2208203
crossref_primary_10_1007_s11030_022_10392_x
crossref_primary_10_1038_s41598_021_97267_7
crossref_primary_10_1093_ve_veae006
crossref_primary_10_3389_fmicb_2021_757783
crossref_primary_10_3390_molecules27010260
crossref_primary_10_1016_j_arabjc_2022_103916
crossref_primary_10_1016_j_ijbiomac_2023_124154
crossref_primary_10_1080_07391102_2022_2032354
crossref_primary_10_1111_1462_2920_15687
crossref_primary_10_1186_s12985_024_02365_3
crossref_primary_10_1186_s12929_022_00852_9
crossref_primary_10_1016_j_compbiomed_2022_105439
crossref_primary_10_1016_S1473_3099_21_00262_0
crossref_primary_10_1038_s41598_022_23482_5
crossref_primary_10_1080_21645515_2022_2068883
crossref_primary_10_7498_aps_72_20222441
crossref_primary_10_1021_acs_jcim_1c00241
crossref_primary_10_3389_fmed_2022_995960
crossref_primary_10_3390_biom14121521
crossref_primary_10_3389_fimmu_2023_1266776
crossref_primary_10_3389_fmicb_2021_789062
crossref_primary_10_3390_ijerph19010112
crossref_primary_10_1016_j_compbiomed_2022_105903
crossref_primary_10_1002_eji_202250332
crossref_primary_10_3390_v14061139
crossref_primary_10_7554_eLife_92063
crossref_primary_10_3389_fphar_2023_1328308
crossref_primary_10_1128_Spectrum_01267_21
crossref_primary_10_1080_07391102_2022_2158944
crossref_primary_10_1016_j_compbiomed_2022_105468
crossref_primary_10_1073_pnas_2111400119
crossref_primary_10_1371_journal_pone_0285742
crossref_primary_10_1016_j_virusres_2021_198522
crossref_primary_10_1111_jam_15774
crossref_primary_10_1016_j_drup_2023_101008
crossref_primary_10_1016_j_gene_2021_146113
crossref_primary_10_1172_jci_insight_154882
crossref_primary_10_3389_fmed_2021_836826
crossref_primary_10_34133_2022_9781758
crossref_primary_10_3389_fcimb_2024_1427312
crossref_primary_10_3390_biology11020258
crossref_primary_10_1007_s00011_022_01555_5
crossref_primary_10_3390_ijms24032517
crossref_primary_10_1080_07391102_2023_2222827
crossref_primary_10_3390_vaccines10060919
crossref_primary_10_1021_jacs_1c04933
crossref_primary_10_1155_2022_7336309
crossref_primary_10_3390_ijerph19031615
crossref_primary_10_1016_j_ijbiomac_2022_01_059
crossref_primary_10_1021_acsmeasuresciau_3c00005
crossref_primary_10_1016_j_compbiomed_2021_104420
crossref_primary_10_1016_j_compbiomed_2022_105574
crossref_primary_10_1016_j_onehlt_2021_100352
crossref_primary_10_1021_acs_jpcb_3c04366
crossref_primary_10_3390_v16060900
crossref_primary_10_1002_jmv_27062
crossref_primary_10_3390_microorganisms11010030
crossref_primary_10_7554_eLife_92063_3
crossref_primary_10_3390_microorganisms9112331
crossref_primary_10_3390_ijerph192012997
crossref_primary_10_3390_vaccines10071101
crossref_primary_10_1039_D2RA00277A
crossref_primary_10_1097_CM9_0000000000002158
crossref_primary_10_1016_j_virusres_2022_198908
crossref_primary_10_2174_1386207325666220607145225
crossref_primary_10_3389_fcimb_2023_1283328
crossref_primary_10_3390_life12020194
crossref_primary_10_3390_v14010001
crossref_primary_10_1080_07391102_2021_1982775
crossref_primary_10_1016_j_compbiomed_2021_105163
crossref_primary_10_1016_j_virusres_2025_199530
crossref_primary_10_1080_07391102_2023_2220053
crossref_primary_10_1021_acs_jpcb_2c04225
crossref_primary_10_1002_med_21941
crossref_primary_10_3390_ijerph192013054
crossref_primary_10_1016_j_ygeno_2022_110270
crossref_primary_10_1002_ptr_7580
crossref_primary_10_1016_j_diagmicrobio_2021_115632
crossref_primary_10_21101_cejph_a7230
crossref_primary_10_1016_j_jinf_2021_12_022
crossref_primary_10_3389_fimmu_2021_701501
crossref_primary_10_1038_s41586_022_04479_6
crossref_primary_10_3390_covid1010023
crossref_primary_10_1021_acs_jcim_2c00397
crossref_primary_10_1016_j_virusres_2024_199365
crossref_primary_10_1016_j_compbiomed_2021_105170
Cites_doi 10.1016/S0140-6736(20)30183-5
10.1016/j.jaut.2020.102433
10.1126/science.1116480
10.1016/j.str.2005.01.006
10.1093/cid/ciab014
10.1016/j.cell.2020.03.045
10.1080/22221751.2020.1729069
10.1021/ct400341p
10.1089/adt.2011.0406
10.1016/S0959-440X(02)00285-3
10.3389/fmolb.2019.00159
10.1002/jcc.540090611
10.1038/s41598-019-49481-7
10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
10.1038/s41586-020-2180-5
10.2471/BLT.20.253591
10.1038/s41598-019-55207-6
10.1063/1.1808117
10.1016/j.molcel.2020.04.022
10.1016/S0022-2836(03)00239-0
10.1016/S1473-3099(20)30293-0
10.1021/ja026939x
10.1021/ct400314y
10.1002/jmv.25689
10.1016/j.csbj.2020.08.006
10.1002/wics.117
10.1126/science.abb2762
10.1146/annurev-virology-110615-042301
10.1002/wcms.1121
10.1093/bioinformatics/btw514
10.1016/0042-6822(90)90257-R
10.1371/journal.pone.0196484
10.1093/database/bar009
10.1038/s41598-020-59686-w
10.1364/AO.47.003275
10.1021/ci100275a
10.1101/2020.01.24.919183
10.1101/2020.02.19.956581
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/jcp.30367
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
DocumentTitleAlternate KHAN et al
EISSN 1097-4652
EndPage 7057
ExternalDocumentID PMC8251074
33755190
10_1002_jcp_30367
JCP30367
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Brazil
South Africa
United Kingdom
United Kingdom--UK
GeographicLocations_xml – name: South Africa
– name: United Kingdom
– name: Brazil
– name: United Kingdom--UK
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 2016YFA0501703
– fundername: National Natural Science Foundation of China
  grantid: 2016YFA0501703
– fundername: ;
  grantid: 2016YFA0501703
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4717-49e3f11ce3dd3736d1ea48246ffb5eba69b21ae53ce50044bef967b8e9a067f13
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Thu Aug 21 18:00:44 EDT 2025
Fri Jul 11 15:23:17 EDT 2025
Sat Jul 26 00:49:35 EDT 2025
Mon Jul 21 06:03:14 EDT 2025
Tue Jul 01 03:23:44 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Wed Jan 22 16:27:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords MD simulation
new variants
SARS-CoV-2
protein-protein docking
KD (dissociation constant)
Language English
License 2021 Wiley Periodicals LLC.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4717-49e3f11ce3dd3736d1ea48246ffb5eba69b21ae53ce50044bef967b8e9a067f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4200-7502
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8251074
PMID 33755190
PQID 2564421343
PQPubID 1006363
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251074
proquest_miscellaneous_2504341841
proquest_journals_2564421343
pubmed_primary_33755190
crossref_citationtrail_10_1002_jcp_30367
crossref_primary_10_1002_jcp_30367
wiley_primary_10_1002_jcp_30367_JCP30367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2021; 9
2004; 121
2019; 9
2021; 26
2013; 3
2020d; 18
2020; 581
2011
2010; 39
2002; 12
2016; 32
2020; 78
2020; 367
2020; 10
2020; 98
2021; 72
2001; 22
2012; 10
2020; 109
2014; 87
2013; 9
2020b; 6
2011; 2011
2003; 327
2016; 3
1988; 9
2020
2020; 395
2011; 51
2020; 9
2020c
2008; 47
2020a
2020b; 92
2005; 309
2015
2003; 125
2010; 2
1990; 176
2005; 13
2018; 13
Landry J. P. (e_1_2_6_25_1) 2011
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Leung K. (e_1_2_6_27_1) 2021; 26
e_1_2_6_19_1
Davies N. G. (e_1_2_6_5_1) 2020
Fehr A. R. (e_1_2_6_7_1) 2015
Khan A. (e_1_2_6_17_1) 2020
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
Kirby T. (e_1_2_6_20_1) 2021; 9
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
Hussain I. (e_1_2_6_13_1) 2020
e_1_2_6_21_1
e_1_2_6_41_1
e_1_2_6_40_1
Khan A. (e_1_2_6_14_1) 2020
e_1_2_6_9_1
e_1_2_6_8_1
Ray S. (e_1_2_6_33_1) 2014; 87
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Rose P. W. (e_1_2_6_35_1) 2010; 39
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 12
  article-title: Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance
  publication-title: Scientific Reports
– volume: 9
  start-page: 650
  issue: 6
  year: 1988
  end-page: 661
  article-title: A stable, rapidly converging conjugate gradient method for energy minimization
  publication-title: Journal of Computational Chemistry
– volume: 367
  start-page: 1444
  issue: 6485
  year: 2020
  end-page: 1448
  article-title: Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2
  publication-title: Science
– volume: 26
  issue: 1
  year: 2021
  article-title: Early transmissibility assessment of the N501Y mutant strains of SARS‐CoV‐2 in the United Kingdom
  publication-title: October to November 2020. Eurosurveillance
– volume: 51
  start-page: 69
  issue: 1
  year: 2011
  end-page: 82
  article-title: Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations
  publication-title: Journal of Chemical Information and Modeling
– volume: 121
  start-page: 10096
  issue: 20
  year: 2004
  end-page: 10103
  article-title: A modified TIP3P water potential for simulation with Ewald summation. The
  publication-title: Journal of Chemical Physics
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  end-page: 506
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: The lancet
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Dynamics of the ACE2–SARS‐CoV‐2/SARS‐CoV spike protein interface reveal unique mechanisms
  publication-title: Scientific Reports
– volume: 18
  start-page: 2174
  year: 2020d
  end-page: 2184
  article-title: Structural Insights into the mechanism of RNA recognition by the N‐terminal RNA‐binding domain of the SARS‐CoV‐2 nucleocapsid phosphoprotein
  publication-title: Computational and Structural Biotechnology Journal
– volume: 6
  start-page: 159
  year: 2020b
  article-title: Dynamics insights into the gain of flexibility by Helix‐12 in ESR1 as a mechanism of resistance to drugs in breast cancer cell lines
  publication-title: Frontiers in Molecular Biosciences
– volume: 92
  start-page: 441
  issue: 4
  year: 2020b
  end-page: 447
  article-title: Updated understanding of the outbreak of 2019 novel coronavirus (2019‐nCoV) in Wuhan, China
  publication-title: Journal of Medical Virology
– volume: 9
  start-page: 3878
  issue: 9
  year: 2013
  end-page: 3888
  article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
  publication-title: Journal of Chemical Theory and Computation
– volume: 2
  start-page: 719
  issue: 6
  year: 2010
  end-page: 722
  article-title: Steepest descent
  publication-title: Wiley Interdisciplinary Reviews: Computational Statistics
– start-page: 1
  year: 2020
  end-page: 11
  article-title: Evolutionary and structural analysis of SARS‐CoV‐2 specific evasion of host immunity
  publication-title: Genes & Immunity
– volume: 98
  start-page: 495
  issue: 7
  year: 2020
  end-page: 504
  article-title: Variant analysis of SARS‐CoV‐2 genomes
  publication-title: Bulletin of the World Health Organization
– volume: 9
  start-page: 3084
  issue: 7
  year: 2013
  end-page: 3095
  article-title: PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data
  publication-title: Journal of Chemical Theory and Computation
– year: 2020
  article-title: Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein
– volume: 78
  start-page: 779
  year: 2020
  end-page: 784
  article-title: A multibasic cleavage site in the spike protein of SARS‐CoV‐2 is essential for infection of human lung cells
  publication-title: Molecular Cell
– volume: 125
  start-page: 1731
  issue: 7
  year: 2003
  end-page: 1737
  article-title: HADDOCK: A protein−protein docking approach based on biochemical or biophysical information
  publication-title: Journal of the American Chemical Society
– year: 2020a
  article-title: Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2
– volume: 13
  start-page: 473
  issue: 3
  year: 2005
  end-page: 482
  article-title: Software extensions to UCSF chimera for interactive visualization of large molecular assemblies
  publication-title: Structure
– year: 2020
  article-title: Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan
– start-page: 1
  year: 2015
  end-page: 23
  article-title: Coronaviruses: An overview of their replication and pathogenesis
  publication-title: Coronaviruses: Springer
– volume: 3
  start-page: 198
  issue: 2
  year: 2013
  end-page: 210
  article-title: An overview of the Amber biomolecular simulation package
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
– volume: 3
  start-page: 237
  year: 2016
  end-page: 261
  article-title: Structure, function, and evolution of coronavirus spike proteins
  publication-title: Annual Review of Virology
– start-page: 1
  year: 2020a
  end-page: 12
  article-title: Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS‐CoV‐2 main protease (3CLpro)
  publication-title: Journal of Biomolecular Structure and Dynamics
– volume: 9
  start-page: 382
  issue: 1
  year: 2020
  end-page: 385
  article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus‐specific human monoclonal antibody
  publication-title: Emerging Microbes & Infections
– volume: 10
  start-page: 250
  issue: 3
  year: 2012
  end-page: 259
  article-title: Simultaneous measurement of 10,000 protein‐ligand affinity constants using microarray‐based kinetic constant assays
  publication-title: ASSAY and Drug Development Technologies
– volume: 22
  start-page: 501
  issue: 5
  year: 2001
  end-page: 508
  article-title: A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations
  publication-title: Journal of Computational Chemistry
– volume: 47
  start-page: 3275
  issue: 18
  year: 2008
  end-page: 3288
  article-title: Protein reactions with surface‐bound molecular targets detected by oblique‐incidence reflectivity difference microscopes
  publication-title: Applied Optics
– volume: 32
  start-page: 3676
  issue: 23
  year: 2016
  end-page: 3678
  article-title: PRODIGY: A web server for predicting the binding affinity of protein–protein complexes
  publication-title: Bioinformatics
– volume: 12
  start-page: 28
  issue: 1
  year: 2002
  end-page: 35
  article-title: Prediction of protein–protein interactions by docking methods
  publication-title: Current Opinion in Structural Biology
– volume: 72
  year: 2021
  article-title: Confirmed Reinfection with SARS‐CoV‐2 Variant VOC‐202012/01
  publication-title: Clinical Infectious Diseases
– start-page: 1
  year: 2020c
  end-page: 14
  article-title: Phylogenetic analysis and structural perspectives of RNA‐dependent RNA‐polymerase inhibition from SARs‐CoV‐2 with natural products. Interdisciplinary Sciences: Computational
  publication-title: Life Sciences
– volume: 581
  start-page: 215
  issue: 7807
  year: 2020
  end-page: 220
  article-title: Structure of the SARS‐CoV‐2 spike receptor‐binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 109
  year: 2020
  article-title: The epidemiology and pathogenesis of coronavirus disease (COVID‐19) outbreak
  publication-title: Journal of Autoimmunity
– volume: 176
  start-page: 296
  issue: 1
  year: 1990
  end-page: 301
  article-title: Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site
  publication-title: Virology
– start-page: 8
  year: 2011
  article-title: High throughput, label‐free screening small molecule compound libraries for protein‐ligands using combination of small molecule microarrays and a special ellipsometry‐based optical scanner
  publication-title: International Drug Discovery
– volume: 309
  start-page: 1864
  issue: 5742
  year: 2005
  end-page: 1868
  article-title: Structure of SARS coronavirus spike receptor‐binding domain complexed with receptor
  publication-title: Science
– volume: 2011
  start-page: 2011
  year: 2011
  end-page: bar009
  article-title: UniProt Knowledgebase: A hub of integrated protein data
  publication-title: Database
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 12
  article-title: Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein–Barr virus (EBV)
  publication-title: Scientific Reports
– volume: 13
  issue: 5
  year: 2018
  article-title: Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches
  publication-title: PLoS One
– volume: 87
  start-page: 603
  issue: 4
  year: 2014
  article-title: The Cell: A molecular approach
  publication-title: The Yale Journal of Biology and Medicine
– volume: 327
  start-page: 919
  issue: 5
  year: 2003
  end-page: 923
  article-title: How reliable are experimental protein–protein interaction data?
  publication-title: Journal of Molecular Biology
– year: 2020
  article-title: Estimated transmissibility and severity of novel SARS‐CoV‐2 Variant of Concern 202012/01 in England
  publication-title: medRxiv
– volume: 9
  start-page: e20
  issue: 2
  year: 2021
  end-page: e21
  article-title: New variant of SARS‐CoV‐2 in UK causes surge of COVID‐19. The Lancet
  publication-title: Respiratory Medicine
– year: 2020
  article-title: Smell and taste dysfunction in patients with COVID‐19
– volume: 39
  start-page: D392
  issue: suppl_1
  year: 2010
  end-page: D401
  article-title: The RCSB protein data bank: Redesigned website and web services
  publication-title: Nucleic Acids Research
– ident: e_1_2_6_12_1
  doi: 10.1016/S0140-6736(20)30183-5
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jaut.2020.102433
– ident: e_1_2_6_29_1
  doi: 10.1126/science.1116480
– ident: e_1_2_6_8_1
  doi: 10.1016/j.str.2005.01.006
– ident: e_1_2_6_9_1
  doi: 10.1093/cid/ciab014
– ident: e_1_2_6_43_1
  doi: 10.1016/j.cell.2020.03.045
– year: 2020
  ident: e_1_2_6_5_1
  article-title: Estimated transmissibility and severity of novel SARS‐CoV‐2 Variant of Concern 202012/01 in England
  publication-title: medRxiv
– ident: e_1_2_6_41_1
  doi: 10.1080/22221751.2020.1729069
– ident: e_1_2_6_34_1
  doi: 10.1021/ct400341p
– start-page: 8
  year: 2011
  ident: e_1_2_6_25_1
  article-title: High throughput, label‐free screening small molecule compound libraries for protein‐ligands using combination of small molecule microarrays and a special ellipsometry‐based optical scanner
  publication-title: International Drug Discovery
– ident: e_1_2_6_26_1
  doi: 10.1089/adt.2011.0406
– ident: e_1_2_6_39_1
  doi: 10.1016/S0959-440X(02)00285-3
– ident: e_1_2_6_16_1
  doi: 10.3389/fmolb.2019.00159
– ident: e_1_2_6_45_1
  doi: 10.1002/jcc.540090611
– ident: e_1_2_6_3_1
  doi: 10.1038/s41598-019-49481-7
– start-page: 1
  year: 2020
  ident: e_1_2_6_17_1
  article-title: Phylogenetic analysis and structural perspectives of RNA‐dependent RNA‐polymerase inhibition from SARs‐CoV‐2 with natural products. Interdisciplinary Sciences: Computational
  publication-title: Life Sciences
– volume: 39
  start-page: D392
  issue: 1
  year: 2010
  ident: e_1_2_6_35_1
  article-title: The RCSB protein data bank: Redesigned website and web services
  publication-title: Nucleic Acids Research
– start-page: 1
  year: 2020
  ident: e_1_2_6_14_1
  article-title: Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS‐CoV‐2 main protease (3CLpro)
  publication-title: Journal of Biomolecular Structure and Dynamics
– volume: 9
  start-page: e20
  issue: 2
  year: 2021
  ident: e_1_2_6_20_1
  article-title: New variant of SARS‐CoV‐2 in UK causes surge of COVID‐19. The Lancet
  publication-title: Respiratory Medicine
– ident: e_1_2_6_22_1
  doi: 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
– ident: e_1_2_6_23_1
  doi: 10.1038/s41586-020-2180-5
– ident: e_1_2_6_21_1
  doi: 10.2471/BLT.20.253591
– ident: e_1_2_6_19_1
  doi: 10.1038/s41598-019-55207-6
– ident: e_1_2_6_32_1
  doi: 10.1063/1.1808117
– ident: e_1_2_6_10_1
  doi: 10.1016/j.molcel.2020.04.022
– ident: e_1_2_6_40_1
  doi: 10.1016/S0022-2836(03)00239-0
– ident: e_1_2_6_48_1
  doi: 10.1016/S1473-3099(20)30293-0
– ident: e_1_2_6_6_1
  doi: 10.1021/ja026939x
– ident: e_1_2_6_38_1
  doi: 10.1021/ct400314y
– ident: e_1_2_6_44_1
  doi: 10.1002/jmv.25689
– start-page: 1
  year: 2015
  ident: e_1_2_6_7_1
  article-title: Coronaviruses: An overview of their replication and pathogenesis
  publication-title: Coronaviruses: Springer
– ident: e_1_2_6_18_1
  doi: 10.1016/j.csbj.2020.08.006
– ident: e_1_2_6_31_1
  doi: 10.1002/wics.117
– ident: e_1_2_6_49_1
  doi: 10.1126/science.abb2762
– ident: e_1_2_6_28_1
  doi: 10.1146/annurev-virology-110615-042301
– volume: 87
  start-page: 603
  issue: 4
  year: 2014
  ident: e_1_2_6_33_1
  article-title: The Cell: A molecular approach
  publication-title: The Yale Journal of Biology and Medicine
– volume: 26
  start-page: 2002106
  issue: 1
  year: 2021
  ident: e_1_2_6_27_1
  article-title: Early transmissibility assessment of the N501Y mutant strains of SARS‐CoV‐2 in the United Kingdom
  publication-title: October to November 2020. Eurosurveillance
– ident: e_1_2_6_37_1
  doi: 10.1002/wcms.1121
– ident: e_1_2_6_47_1
  doi: 10.1093/bioinformatics/btw514
– ident: e_1_2_6_2_1
  doi: 10.1016/0042-6822(90)90257-R
– ident: e_1_2_6_15_1
  doi: 10.1371/journal.pone.0196484
– ident: e_1_2_6_30_1
  doi: 10.1093/database/bar009
– ident: e_1_2_6_4_1
  doi: 10.1038/s41598-020-59686-w
– ident: e_1_2_6_24_1
  doi: 10.1364/AO.47.003275
– ident: e_1_2_6_11_1
  doi: 10.1021/ci100275a
– start-page: 1
  year: 2020
  ident: e_1_2_6_13_1
  article-title: Evolutionary and structural analysis of SARS‐CoV‐2 specific evasion of host immunity
  publication-title: Genes & Immunity
– ident: e_1_2_6_46_1
  doi: 10.1101/2020.01.24.919183
– ident: e_1_2_6_42_1
  doi: 10.1101/2020.02.19.956581
SSID ssj0009933
Score 2.696355
Snippet The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need...
The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7045
SubjectTerms ACE2
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - metabolism
Binding
Brazil
COVID-19
COVID-19 - metabolism
Dynamic structural analysis
Epistasis
Evolution
Free energy
Glycoproteins
Humans
In vivo methods and tests
Infectivity
KD (dissociation constant)
MD simulation
Mutants
Mutation
Mutation - genetics
new variants
Pathogenicity
Pathogens
Protein Binding - genetics
Proteins
protein–protein docking
Receptors
SARS-CoV-2 - genetics
SARS‐CoV‐2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
South Africa
Spike glycoprotein
Spike protein
United Kingdom
Virulence
Virulence - genetics
Title Higher infectivity of the SARS‐CoV‐2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30367
https://www.ncbi.nlm.nih.gov/pubmed/33755190
https://www.proquest.com/docview/2564421343
https://www.proquest.com/docview/2504341841
https://pubmed.ncbi.nlm.nih.gov/PMC8251074
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5KQfDFS-sltsooIj40Pdlkk83q0-HQUlo4SC9SQQi7yYZW2xwhPUJ98t0Xf6O_xJndJPVYBfElBDIhye7M7jebb79h7HmWqVhqE4WpVGkodKzDvNQaI77GBERwSp2JbTHNdo7E7nF6vMRe93thvD7EsOBGkeHGawpwbdrRlWjohxITdhx_aSc5cbUIEO1fSUeproy8oyCkgveqQlE8Gu5cnIuuAczrPMlf8aubgLZvs_f9q3veycfN-YXZLL_8pur4n992h93qgCmMvSfdZUu2WWGr4waT8vNLeAGOKurW4FfYDV_B8nKVffM8Eeg4XVSIAmY1IKqEg_H-wY-v3yezt3iMAeE7fMbEnHg3cNqC7vzCVkBrwbAnuJyODjdgS-RibwN0U8E0jfg7OJ9TpeP2FYwbfE5LqwlAu2LAa9-SbggQ0fUeO9reOpzshF19h7DEKVGGQtmk5ry0SVUlMskqbrXIY5HVtUmt0ZkyMdc2TUqb0o9nY2uVSZNbpXGOrXlyny03s8Y-ZIADk80tjkYaM1aDkM9IVSqTaWlTjRlpwF72PV2Unfg51eA4K7xsc1xgkxeuyQP2bDD95BU__mS03rtL0QV9WyB6FIIU8pKAPR0uY7jSPxjd2NmcbCKBwCEXPGAPvHcNT0kSifhVRQGTC343GJAU-OKV5vTESYLTBmQEg_iZzq3-_uLF7uSNO3n076Zr7GZMYeQojOtsGTvXPkYodmGeuJj7CY0rL2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgQXHi0PQ4EBIcShbvxYe23EJQqtQlMi1KaoHJC1a69FgTpIaZDKiTsXfiO_hJn1o4SChLhYljyWXzO734y__QbgURyngVTacyOZRq5QgXKTXCmK-JISEOFz6sxsi3E83BfbB9HBEjxr18LU-hBdwY0jw47XHOBckO6dqoa-zyljpwFYnoPz3NGblfOf756KR6VNI3lLQoiE3-oKeUGvO3VxNjoDMc8yJX9FsHYK2roCb9ubr5knHzbmx3oj__KbruP_Pt1VuNxgU-zXznQNlky1Aqv9ivLyoxN8jJYtasvwK3ChbmJ5sgrfaqoINrQu7kWB0xIJWOJef3fvx9fvg-lr2gZICB4_U27O1Bs8nKFqXMMUyOVgHAlfjnuTddwUiRito6oKHEee_waP5tzsePYU-xVdZ8YFBeSFMVjL37J0CDLX9Trsb21OBkO3afHg5jQrSlekJix9PzdhUYQyjAvfKJEEIi5LHRmt4lQHvjJRmJuI_z1rU6ax1IlJFU2zpR_egOVqWplbgDQ2mcTQgKQoadWE-rRM81THSppIUVLqwJP2U2d5o3_ObTg-ZrVyc5DRK8_sK3fgYWf6qRb9-JPRWusvWRP3s4wApBAskhc68KA7TBHLv2FUZaZztvEEYYdE-A7crN2ru0oYSoKwqeeAXHC8zoDVwBePVIfvrCo4r0EmPEiPaf3q7zeebQ9e2Z3b_256Hy4OJy93sp0X49EduBRwTFlG4xos04c2dwmZHet7NgB_AmIaM3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXHi2PhQIDQohD083DiWM4rbZdlS5aVX2pSEiRnTiiQLOVtotUTty58Bv5Jcw42ZSlICEuUaRMlMSesb9xPn8D8CxJVCi18b1YqtgTOtRemmtNEV9SAiICTp2ZbTFKNvfF1mF8uACvZnthan2IdsGNI8ON1xzgJ0XZPRcN_ZBTwk7jr7wEl0XiK67bsL5zrh2lmjryjoMQi2AmK-SH3fbW-cnoAsK8SJT8FcC6GWhwA97N3r0mnnxcm56atfzLb7KO__lxN-F6g0yxV7vSLViw1RIs9yrKyo_P8Dk6rqhbhF-CK3UJy7Nl-FYTRbAhdXElChyXSLASd3s7uz--fu-PD-gYIuF3_EyZORNv8GiCunEMWyAvBuNQBHLU3VvFDZGK4SrqqsBR7Adv8XjKpY4nL7FX0XMmvJyAvC0Ga_FbFg5BZrrehv3Bxl5_02sKPHg5zYnSE8pGZRDkNiqKSEZJEVgt0lAkZWlia3SiTBhoG0e5jfnPs7GlSqRJrdI0yZZBdAcWq3Fl7wHSyGRTS8ORppTVEOYzUuXKJFraWFNK2oEXs57O8kb9nItwfMpq3eYwoybPXJN34GlrelJLfvzJaGXmLlkT9ZOM4KMQLJEXdeBJe5nilX_C6MqOp2zjC0IOqQg6cLf2rvYpUSQJwCq_A3LO71oD1gKfv1IdvXea4LwDmdAgfaZzq7-_eLbV33Yn9__d9DFc3V4fZG9ej4YP4FrIEeXojCuwSP1sHxIsOzWPXPj9BKTvMis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+infectivity+of+the+SARS%E2%80%90CoV%E2%80%902+new+variants+is+associated+with+K417N%2FT%2C+E484K%2C+and+N501Y+mutants%3A+An+insight+from+structural+data&rft.jtitle=Journal+of+cellular+physiology&rft.au=Khan%2C+Abbas&rft.au=Zia%2C+Tauqir&rft.au=Suleman%2C+Muhammad&rft.au=Khan%2C+Taimoor&rft.date=2021-10-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=236&rft.issue=10&rft.spage=7045&rft.epage=7057&rft_id=info:doi/10.1002%2Fjcp.30367&rft_id=info%3Apmid%2F33755190&rft.externalDocID=PMC8251074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon