Higher infectivity of the SARS‐CoV‐2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data
The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new va...
Saved in:
Published in | Journal of cellular physiology Vol. 236; no. 10; pp. 7045 - 7057 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor‐binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS‐CoV‐2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y), and hypothetical (N501Y‐E484K) variants alter the binding affinity, create new inter‐protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.
This study precisely explored the mechanism of the interaction of the spike RBD with the host ACE2 and revealed the differences in the binding of the reference and new variants. The systematic investigation revealed that the South African and Brazilian variants are more lethal than the others due to inter‐protein contacts specifically the electrostatic while the N501Y is comparable with the wild type. We hypothesized that the residue at 501Y is continuously subjected to positive selection pressure. We further demonstrated the dynamic behavior is also changed with the protein evolution. Conclusively, this study provides strong basis for structure and rationale‐based drug designing against the new variant by exploring the noticeable differences. |
---|---|
AbstractList | The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor‐binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS‐CoV‐2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y), and hypothetical (N501Y‐E484K) variants alter the binding affinity, create new inter‐protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants. The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor‐binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS‐CoV‐2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y), and hypothetical (N501Y‐E484K) variants alter the binding affinity, create new inter‐protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N‐E484K‐N501Y), Brazilian (K417T‐E484K‐N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants. This study precisely explored the mechanism of the interaction of the spike RBD with the host ACE2 and revealed the differences in the binding of the reference and new variants. The systematic investigation revealed that the South African and Brazilian variants are more lethal than the others due to inter‐protein contacts specifically the electrostatic while the N501Y is comparable with the wild type. We hypothesized that the residue at 501Y is continuously subjected to positive selection pressure. We further demonstrated the dynamic behavior is also changed with the protein evolution. Conclusively, this study provides strong basis for structure and rationale‐based drug designing against the new variant by exploring the noticeable differences. The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor-binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS-CoV-2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y), and hypothetical (N501Y-E484K) variants alter the binding affinity, create new inter-protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor-binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS-CoV-2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y), and hypothetical (N501Y-E484K) variants alter the binding affinity, create new inter-protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants. |
Author | Khan, Abbas Suleman, Muhammad Abbasi, Aamir Ali Mohammad, Anwar Khan, Taimoor Zia, Tauqir Ali, Syed Shujait Wei, Dong‐Qing |
AuthorAffiliation | 3 Center for Biotechnology and Microbiology University of Swat Swat Khyber‐Pakhtunkhwa Pakistan 2 Department of Microbiology Quaid‐i‐Azam University Islamabad Pakistan 4 National Center for Bioinformatics Quaid‐i‐Azam University Islamabad Pakistan 7 Peng Cheng Laboratory Vanke Cloud City Phase I Building 8, Xili Street, Nashan District Guangdong Shenzhen P.R. China 5 Department of Biochemistry and Molecular Biology Dasman Diabetes Institute Kuwait 1 Department of Bioinformatics and Biological Statistics Shanghai Jiao Tong University Shanghai P.R. China 6 State Key Laboratory of Microbial Metabolism, Shanghai‐Islamabad‐Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P.R. China |
AuthorAffiliation_xml | – name: 3 Center for Biotechnology and Microbiology University of Swat Swat Khyber‐Pakhtunkhwa Pakistan – name: 2 Department of Microbiology Quaid‐i‐Azam University Islamabad Pakistan – name: 4 National Center for Bioinformatics Quaid‐i‐Azam University Islamabad Pakistan – name: 7 Peng Cheng Laboratory Vanke Cloud City Phase I Building 8, Xili Street, Nashan District Guangdong Shenzhen P.R. China – name: 5 Department of Biochemistry and Molecular Biology Dasman Diabetes Institute Kuwait – name: 6 State Key Laboratory of Microbial Metabolism, Shanghai‐Islamabad‐Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P.R. China – name: 1 Department of Bioinformatics and Biological Statistics Shanghai Jiao Tong University Shanghai P.R. China |
Author_xml | – sequence: 1 givenname: Abbas surname: Khan fullname: Khan, Abbas organization: Shanghai Jiao Tong University – sequence: 2 givenname: Tauqir surname: Zia fullname: Zia, Tauqir organization: Quaid‐i‐Azam University – sequence: 3 givenname: Muhammad surname: Suleman fullname: Suleman, Muhammad organization: University of Swat – sequence: 4 givenname: Taimoor surname: Khan fullname: Khan, Taimoor organization: Shanghai Jiao Tong University – sequence: 5 givenname: Syed Shujait surname: Ali fullname: Ali, Syed Shujait organization: University of Swat – sequence: 6 givenname: Aamir Ali surname: Abbasi fullname: Abbasi, Aamir Ali organization: Quaid‐i‐Azam University – sequence: 7 givenname: Anwar surname: Mohammad fullname: Mohammad, Anwar organization: Dasman Diabetes Institute – sequence: 8 givenname: Dong‐Qing orcidid: 0000-0003-4200-7502 surname: Wei fullname: Wei, Dong‐Qing email: dqwei@sjtu.edu.cn organization: Peng Cheng Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33755190$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksFuEzEQhi3UiqaFAy-ALHEBqWnstb2b5YAURYVCq4JoQeJkeb2zjaNdO9jeRLlx58Iz9klwSIqggot9mO__5x_NHKI96ywg9ISSE0pINprrxQkjLC8eoAElZTHkucj20CDV6LAUnB6gwxDmhJCyZOwhOmCsEIKWZIC-n5mbGXhsbAM6mqWJa-waHGeAryYfr26__Zi6z-nNsIUVXipvlI0Bm4BVCE4bFaHGKxNn-JzT4nJ0fYxP-ZifH2Nla3wpCP2Cuz5uRC_xxKY-ITWMuPGuwyH6XsfeqxbXKqpHaL9RbYDHu_8IfXp9ej09G168f_N2OrkYal7QNFwJrKFUA6trVrC8pqD4OON501QCKpWXVUYVCKZBEMJ5BU2ZF9UYSkXyoqHsCL3a-i76qoNag40pglx40ym_lk4Z-XfFmpm8cUs5zgQlBU8Gz3cG3n3tIUTZmaChbZUF1weZCcIZp2O-6fXsHjp3vbdpvETlnGeUcZaop38m-h3lbk8JGG0B7V0IHhqpTVTRuE1A00pK5OYSZLoE-esSkuLFPcWd6b_YnfvKtLD-PyjfTT9sFT8B20_C7g |
CitedBy_id | crossref_primary_10_3389_fphar_2025_1459581 crossref_primary_10_1016_j_jmb_2022_167622 crossref_primary_10_1016_j_jmb_2024_168716 crossref_primary_10_1016_j_jtbi_2022_111105 crossref_primary_10_3389_fimmu_2024_1407149 crossref_primary_10_1186_s13065_024_01347_4 crossref_primary_10_1080_07391102_2022_2103587 crossref_primary_10_1002_cbic_202100393 crossref_primary_10_1007_s12257_021_0327_3 crossref_primary_10_1155_2023_5279979 crossref_primary_10_14336_AD_2021_1210 crossref_primary_10_3390_v15040856 crossref_primary_10_3390_v14061332 crossref_primary_10_1002_hsr2_1373 crossref_primary_10_1016_j_csbj_2022_08_015 crossref_primary_10_1002_jmv_28060 crossref_primary_10_1016_j_intimp_2021_108424 crossref_primary_10_1126_scitranslmed_add5960 crossref_primary_10_1007_s10989_024_10610_0 crossref_primary_10_1155_2022_8551576 crossref_primary_10_1099_acmi_0_000573_v4 crossref_primary_10_3389_fimmu_2022_836232 crossref_primary_10_1016_j_biopha_2022_112802 crossref_primary_10_3390_microorganisms11122938 crossref_primary_10_1038_s41467_023_37468_y crossref_primary_10_1093_ve_veab104 crossref_primary_10_3390_vaccines9080914 crossref_primary_10_3390_biology11050797 crossref_primary_10_3349_ymj_2021_62_11_961 crossref_primary_10_1007_s10989_021_10339_0 crossref_primary_10_1016_j_jbc_2021_101371 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1136_bmjmed_2021_000040 crossref_primary_10_3389_fcimb_2022_902914 crossref_primary_10_1128_mBio_02687_21 crossref_primary_10_1016_j_jiph_2024_05_005 crossref_primary_10_3389_fpubh_2023_1189969 crossref_primary_10_1016_j_virol_2023_109850 crossref_primary_10_1080_07391102_2022_2108901 crossref_primary_10_1080_07391102_2022_2095305 crossref_primary_10_1016_j_jcv_2021_104996 crossref_primary_10_3390_molecules26185724 crossref_primary_10_1155_2021_1828792 crossref_primary_10_2174_1566524021666211013121831 crossref_primary_10_1007_s11033_022_08193_4 crossref_primary_10_1186_s43162_022_00121_z crossref_primary_10_1002_jmv_28406 crossref_primary_10_1002_rmv_2270 crossref_primary_10_3390_jpm12060995 crossref_primary_10_1016_j_compbiomed_2021_104563 crossref_primary_10_1007_s12539_021_00447_2 crossref_primary_10_3389_fphar_2021_717757 crossref_primary_10_1016_j_cellin_2022_100029 crossref_primary_10_1038_s41467_021_27325_1 crossref_primary_10_1021_acs_jpclett_4c03028 crossref_primary_10_1080_07391102_2023_2291159 crossref_primary_10_3389_fmolb_2021_633365 crossref_primary_10_1080_07391102_2022_2123399 crossref_primary_10_1016_j_compbiomed_2021_104936 crossref_primary_10_4014_jmb_2308_08020 crossref_primary_10_3390_vaccines9080818 crossref_primary_10_1002_jmv_28542 crossref_primary_10_3390_ijms24065944 crossref_primary_10_1016_j_biopha_2022_113889 crossref_primary_10_1128_mbio_03227_21 crossref_primary_10_3390_v15020522 crossref_primary_10_3390_microorganisms10020280 crossref_primary_10_1016_j_jmb_2023_168187 crossref_primary_10_3389_fimmu_2022_863831 crossref_primary_10_1007_s11033_024_10048_z crossref_primary_10_1080_08830185_2022_2079642 crossref_primary_10_3390_vaccines11091472 crossref_primary_10_1021_acschembio_1c00691 crossref_primary_10_1016_j_jim_2022_113244 crossref_primary_10_1002_jmv_27467 crossref_primary_10_3389_froh_2022_1001790 crossref_primary_10_1016_j_molstruc_2022_133032 crossref_primary_10_1021_acs_jpclett_3c00582 crossref_primary_10_1016_j_virusres_2023_199202 crossref_primary_10_1021_acs_jpclett_3c03296 crossref_primary_10_1016_j_jconrel_2023_11_004 crossref_primary_10_1016_j_jmoldx_2022_01_004 crossref_primary_10_1007_s11030_022_10499_1 crossref_primary_10_1016_j_banm_2021_11_002 crossref_primary_10_3389_fcell_2022_940863 crossref_primary_10_1039_D2CP04349A crossref_primary_10_1111_cbdd_14107 crossref_primary_10_1155_2023_5560605 crossref_primary_10_1016_j_micpath_2022_105828 crossref_primary_10_1093_database_baab063 crossref_primary_10_1002_jmv_27476 crossref_primary_10_1177_11769343231182258 crossref_primary_10_1016_j_ejcb_2022_151275 crossref_primary_10_1021_acs_jpclett_1c01548 crossref_primary_10_15212_ZOONOSES_2021_0024 crossref_primary_10_1007_s11030_022_10438_0 crossref_primary_10_1142_S2737416522500338 crossref_primary_10_3389_fmolb_2021_692835 crossref_primary_10_1021_acs_jcim_1c01306 crossref_primary_10_1016_j_compbiomed_2021_104929 crossref_primary_10_1002_bab_2548 crossref_primary_10_1128_mbio_02030_21 crossref_primary_10_1186_s12985_021_01624_x crossref_primary_10_1021_acs_jpcb_3c01467 crossref_primary_10_1002_jmv_28207 crossref_primary_10_1016_j_ygeno_2021_10_015 crossref_primary_10_3389_fchem_2023_1346796 crossref_primary_10_3389_fmolb_2023_1153046 crossref_primary_10_1016_j_biopha_2021_112176 crossref_primary_10_3390_v15122394 crossref_primary_10_1016_j_intimp_2022_109325 crossref_primary_10_1007_s12033_024_01277_5 crossref_primary_10_1016_j_bj_2023_100650 crossref_primary_10_1021_acs_chemrev_1c00965 crossref_primary_10_37394_23208_2022_19_4 crossref_primary_10_1111_1348_0421_12945 crossref_primary_10_3390_zoonoticdis2030014 crossref_primary_10_1038_s41598_025_89548_2 crossref_primary_10_3390_vaccines9111210 crossref_primary_10_1080_07391102_2023_2167114 crossref_primary_10_1016_j_cell_2021_08_017 crossref_primary_10_1186_s13065_024_01185_4 crossref_primary_10_30699_ijmm_17_2_194 crossref_primary_10_1016_j_molbiopara_2024_111655 crossref_primary_10_1016_j_virol_2022_05_003 crossref_primary_10_3390_molecules27217317 crossref_primary_10_1016_j_compbiomed_2023_106599 crossref_primary_10_1002_mco2_95 crossref_primary_10_1039_D2SC06665C crossref_primary_10_3389_fcimb_2021_720357 crossref_primary_10_1016_j_phrs_2021_105982 crossref_primary_10_2217_fvl_2023_0146 crossref_primary_10_3390_v14010027 crossref_primary_10_1016_j_nmni_2021_100929 crossref_primary_10_3390_bioengineering10060652 crossref_primary_10_1039_D1RA04694B crossref_primary_10_1038_s41467_022_35641_3 crossref_primary_10_1016_j_compbiomed_2022_105537 crossref_primary_10_3389_fmicb_2021_703145 crossref_primary_10_3389_fphar_2023_1202128 crossref_primary_10_1039_D3RA00198A crossref_primary_10_1080_07391102_2022_2046641 crossref_primary_10_35848_1882_0786_ac4300 crossref_primary_10_1038_s41598_024_61387_7 crossref_primary_10_3390_ijms26031367 crossref_primary_10_3389_fmed_2022_1008600 crossref_primary_10_1016_S2213_8587_21_00244_8 crossref_primary_10_1016_j_bbamcr_2024_119828 crossref_primary_10_1016_j_meegid_2022_105282 crossref_primary_10_1016_j_micpath_2022_105592 crossref_primary_10_1002_prot_26759 crossref_primary_10_1007_s00018_021_04008_0 crossref_primary_10_3390_biomedicines9070710 crossref_primary_10_3390_biomedicines10020441 crossref_primary_10_3390_biology10121310 crossref_primary_10_7759_cureus_60015 crossref_primary_10_1016_j_isci_2022_103939 crossref_primary_10_1021_acsomega_2c04456 crossref_primary_10_22209_IC_v62s2a02 crossref_primary_10_1111_jcmm_18452 crossref_primary_10_3389_fmolb_2022_846996 crossref_primary_10_3390_biology10090880 crossref_primary_10_1016_j_compbiomed_2021_104714 crossref_primary_10_3390_ijms24087641 crossref_primary_10_1002_jmv_28366 crossref_primary_10_1371_journal_pbio_3001284 crossref_primary_10_3390_vaccines10030483 crossref_primary_10_1080_07391102_2023_2208203 crossref_primary_10_1007_s11030_022_10392_x crossref_primary_10_1038_s41598_021_97267_7 crossref_primary_10_1093_ve_veae006 crossref_primary_10_3389_fmicb_2021_757783 crossref_primary_10_3390_molecules27010260 crossref_primary_10_1016_j_arabjc_2022_103916 crossref_primary_10_1016_j_ijbiomac_2023_124154 crossref_primary_10_1080_07391102_2022_2032354 crossref_primary_10_1111_1462_2920_15687 crossref_primary_10_1186_s12985_024_02365_3 crossref_primary_10_1186_s12929_022_00852_9 crossref_primary_10_1016_j_compbiomed_2022_105439 crossref_primary_10_1016_S1473_3099_21_00262_0 crossref_primary_10_1038_s41598_022_23482_5 crossref_primary_10_1080_21645515_2022_2068883 crossref_primary_10_7498_aps_72_20222441 crossref_primary_10_1021_acs_jcim_1c00241 crossref_primary_10_3389_fmed_2022_995960 crossref_primary_10_3390_biom14121521 crossref_primary_10_3389_fimmu_2023_1266776 crossref_primary_10_3389_fmicb_2021_789062 crossref_primary_10_3390_ijerph19010112 crossref_primary_10_1016_j_compbiomed_2022_105903 crossref_primary_10_1002_eji_202250332 crossref_primary_10_3390_v14061139 crossref_primary_10_7554_eLife_92063 crossref_primary_10_3389_fphar_2023_1328308 crossref_primary_10_1128_Spectrum_01267_21 crossref_primary_10_1080_07391102_2022_2158944 crossref_primary_10_1016_j_compbiomed_2022_105468 crossref_primary_10_1073_pnas_2111400119 crossref_primary_10_1371_journal_pone_0285742 crossref_primary_10_1016_j_virusres_2021_198522 crossref_primary_10_1111_jam_15774 crossref_primary_10_1016_j_drup_2023_101008 crossref_primary_10_1016_j_gene_2021_146113 crossref_primary_10_1172_jci_insight_154882 crossref_primary_10_3389_fmed_2021_836826 crossref_primary_10_34133_2022_9781758 crossref_primary_10_3389_fcimb_2024_1427312 crossref_primary_10_3390_biology11020258 crossref_primary_10_1007_s00011_022_01555_5 crossref_primary_10_3390_ijms24032517 crossref_primary_10_1080_07391102_2023_2222827 crossref_primary_10_3390_vaccines10060919 crossref_primary_10_1021_jacs_1c04933 crossref_primary_10_1155_2022_7336309 crossref_primary_10_3390_ijerph19031615 crossref_primary_10_1016_j_ijbiomac_2022_01_059 crossref_primary_10_1021_acsmeasuresciau_3c00005 crossref_primary_10_1016_j_compbiomed_2021_104420 crossref_primary_10_1016_j_compbiomed_2022_105574 crossref_primary_10_1016_j_onehlt_2021_100352 crossref_primary_10_1021_acs_jpcb_3c04366 crossref_primary_10_3390_v16060900 crossref_primary_10_1002_jmv_27062 crossref_primary_10_3390_microorganisms11010030 crossref_primary_10_7554_eLife_92063_3 crossref_primary_10_3390_microorganisms9112331 crossref_primary_10_3390_ijerph192012997 crossref_primary_10_3390_vaccines10071101 crossref_primary_10_1039_D2RA00277A crossref_primary_10_1097_CM9_0000000000002158 crossref_primary_10_1016_j_virusres_2022_198908 crossref_primary_10_2174_1386207325666220607145225 crossref_primary_10_3389_fcimb_2023_1283328 crossref_primary_10_3390_life12020194 crossref_primary_10_3390_v14010001 crossref_primary_10_1080_07391102_2021_1982775 crossref_primary_10_1016_j_compbiomed_2021_105163 crossref_primary_10_1016_j_virusres_2025_199530 crossref_primary_10_1080_07391102_2023_2220053 crossref_primary_10_1021_acs_jpcb_2c04225 crossref_primary_10_1002_med_21941 crossref_primary_10_3390_ijerph192013054 crossref_primary_10_1016_j_ygeno_2022_110270 crossref_primary_10_1002_ptr_7580 crossref_primary_10_1016_j_diagmicrobio_2021_115632 crossref_primary_10_21101_cejph_a7230 crossref_primary_10_1016_j_jinf_2021_12_022 crossref_primary_10_3389_fimmu_2021_701501 crossref_primary_10_1038_s41586_022_04479_6 crossref_primary_10_3390_covid1010023 crossref_primary_10_1021_acs_jcim_2c00397 crossref_primary_10_1016_j_virusres_2024_199365 crossref_primary_10_1016_j_compbiomed_2021_105170 |
Cites_doi | 10.1016/S0140-6736(20)30183-5 10.1016/j.jaut.2020.102433 10.1126/science.1116480 10.1016/j.str.2005.01.006 10.1093/cid/ciab014 10.1016/j.cell.2020.03.045 10.1080/22221751.2020.1729069 10.1021/ct400341p 10.1089/adt.2011.0406 10.1016/S0959-440X(02)00285-3 10.3389/fmolb.2019.00159 10.1002/jcc.540090611 10.1038/s41598-019-49481-7 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V 10.1038/s41586-020-2180-5 10.2471/BLT.20.253591 10.1038/s41598-019-55207-6 10.1063/1.1808117 10.1016/j.molcel.2020.04.022 10.1016/S0022-2836(03)00239-0 10.1016/S1473-3099(20)30293-0 10.1021/ja026939x 10.1021/ct400314y 10.1002/jmv.25689 10.1016/j.csbj.2020.08.006 10.1002/wics.117 10.1126/science.abb2762 10.1146/annurev-virology-110615-042301 10.1002/wcms.1121 10.1093/bioinformatics/btw514 10.1016/0042-6822(90)90257-R 10.1371/journal.pone.0196484 10.1093/database/bar009 10.1038/s41598-020-59686-w 10.1364/AO.47.003275 10.1021/ci100275a 10.1101/2020.01.24.919183 10.1101/2020.02.19.956581 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/jcp.30367 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
DocumentTitleAlternate | KHAN et al |
EISSN | 1097-4652 |
EndPage | 7057 |
ExternalDocumentID | PMC8251074 33755190 10_1002_jcp_30367 JCP30367 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Brazil South Africa United Kingdom United Kingdom--UK |
GeographicLocations_xml | – name: South Africa – name: United Kingdom – name: Brazil – name: United Kingdom--UK |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 2016YFA0501703 – fundername: National Natural Science Foundation of China grantid: 2016YFA0501703 – fundername: ; grantid: 2016YFA0501703 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4717-49e3f11ce3dd3736d1ea48246ffb5eba69b21ae53ce50044bef967b8e9a067f13 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Thu Aug 21 18:00:44 EDT 2025 Fri Jul 11 15:23:17 EDT 2025 Sat Jul 26 00:49:35 EDT 2025 Mon Jul 21 06:03:14 EDT 2025 Tue Jul 01 03:23:44 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Wed Jan 22 16:27:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | MD simulation new variants SARS-CoV-2 protein-protein docking KD (dissociation constant) |
Language | English |
License | 2021 Wiley Periodicals LLC. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4717-49e3f11ce3dd3736d1ea48246ffb5eba69b21ae53ce50044bef967b8e9a067f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4200-7502 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8251074 |
PMID | 33755190 |
PQID | 2564421343 |
PQPubID | 1006363 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251074 proquest_miscellaneous_2504341841 proquest_journals_2564421343 pubmed_primary_33755190 crossref_citationtrail_10_1002_jcp_30367 crossref_primary_10_1002_jcp_30367 wiley_primary_10_1002_jcp_30367_JCP30367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2021; 9 2004; 121 2019; 9 2021; 26 2013; 3 2020d; 18 2020; 581 2011 2010; 39 2002; 12 2016; 32 2020; 78 2020; 367 2020; 10 2020; 98 2021; 72 2001; 22 2012; 10 2020; 109 2014; 87 2013; 9 2020b; 6 2011; 2011 2003; 327 2016; 3 1988; 9 2020 2020; 395 2011; 51 2020; 9 2020c 2008; 47 2020a 2020b; 92 2005; 309 2015 2003; 125 2010; 2 1990; 176 2005; 13 2018; 13 Landry J. P. (e_1_2_6_25_1) 2011 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Leung K. (e_1_2_6_27_1) 2021; 26 e_1_2_6_19_1 Davies N. G. (e_1_2_6_5_1) 2020 Fehr A. R. (e_1_2_6_7_1) 2015 Khan A. (e_1_2_6_17_1) 2020 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 Kirby T. (e_1_2_6_20_1) 2021; 9 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 Hussain I. (e_1_2_6_13_1) 2020 e_1_2_6_21_1 e_1_2_6_41_1 e_1_2_6_40_1 Khan A. (e_1_2_6_14_1) 2020 e_1_2_6_9_1 e_1_2_6_8_1 Ray S. (e_1_2_6_33_1) 2014; 87 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Rose P. W. (e_1_2_6_35_1) 2010; 39 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 12 article-title: Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance publication-title: Scientific Reports – volume: 9 start-page: 650 issue: 6 year: 1988 end-page: 661 article-title: A stable, rapidly converging conjugate gradient method for energy minimization publication-title: Journal of Computational Chemistry – volume: 367 start-page: 1444 issue: 6485 year: 2020 end-page: 1448 article-title: Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2 publication-title: Science – volume: 26 issue: 1 year: 2021 article-title: Early transmissibility assessment of the N501Y mutant strains of SARS‐CoV‐2 in the United Kingdom publication-title: October to November 2020. Eurosurveillance – volume: 51 start-page: 69 issue: 1 year: 2011 end-page: 82 article-title: Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations publication-title: Journal of Chemical Information and Modeling – volume: 121 start-page: 10096 issue: 20 year: 2004 end-page: 10103 article-title: A modified TIP3P water potential for simulation with Ewald summation. The publication-title: Journal of Chemical Physics – volume: 395 start-page: 497 issue: 10223 year: 2020 end-page: 506 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: The lancet – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Dynamics of the ACE2–SARS‐CoV‐2/SARS‐CoV spike protein interface reveal unique mechanisms publication-title: Scientific Reports – volume: 18 start-page: 2174 year: 2020d end-page: 2184 article-title: Structural Insights into the mechanism of RNA recognition by the N‐terminal RNA‐binding domain of the SARS‐CoV‐2 nucleocapsid phosphoprotein publication-title: Computational and Structural Biotechnology Journal – volume: 6 start-page: 159 year: 2020b article-title: Dynamics insights into the gain of flexibility by Helix‐12 in ESR1 as a mechanism of resistance to drugs in breast cancer cell lines publication-title: Frontiers in Molecular Biosciences – volume: 92 start-page: 441 issue: 4 year: 2020b end-page: 447 article-title: Updated understanding of the outbreak of 2019 novel coronavirus (2019‐nCoV) in Wuhan, China publication-title: Journal of Medical Virology – volume: 9 start-page: 3878 issue: 9 year: 2013 end-page: 3888 article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald publication-title: Journal of Chemical Theory and Computation – volume: 2 start-page: 719 issue: 6 year: 2010 end-page: 722 article-title: Steepest descent publication-title: Wiley Interdisciplinary Reviews: Computational Statistics – start-page: 1 year: 2020 end-page: 11 article-title: Evolutionary and structural analysis of SARS‐CoV‐2 specific evasion of host immunity publication-title: Genes & Immunity – volume: 98 start-page: 495 issue: 7 year: 2020 end-page: 504 article-title: Variant analysis of SARS‐CoV‐2 genomes publication-title: Bulletin of the World Health Organization – volume: 9 start-page: 3084 issue: 7 year: 2013 end-page: 3095 article-title: PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data publication-title: Journal of Chemical Theory and Computation – year: 2020 article-title: Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein – volume: 78 start-page: 779 year: 2020 end-page: 784 article-title: A multibasic cleavage site in the spike protein of SARS‐CoV‐2 is essential for infection of human lung cells publication-title: Molecular Cell – volume: 125 start-page: 1731 issue: 7 year: 2003 end-page: 1737 article-title: HADDOCK: A protein−protein docking approach based on biochemical or biophysical information publication-title: Journal of the American Chemical Society – year: 2020a article-title: Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2 – volume: 13 start-page: 473 issue: 3 year: 2005 end-page: 482 article-title: Software extensions to UCSF chimera for interactive visualization of large molecular assemblies publication-title: Structure – year: 2020 article-title: Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan – start-page: 1 year: 2015 end-page: 23 article-title: Coronaviruses: An overview of their replication and pathogenesis publication-title: Coronaviruses: Springer – volume: 3 start-page: 198 issue: 2 year: 2013 end-page: 210 article-title: An overview of the Amber biomolecular simulation package publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science – volume: 3 start-page: 237 year: 2016 end-page: 261 article-title: Structure, function, and evolution of coronavirus spike proteins publication-title: Annual Review of Virology – start-page: 1 year: 2020a end-page: 12 article-title: Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS‐CoV‐2 main protease (3CLpro) publication-title: Journal of Biomolecular Structure and Dynamics – volume: 9 start-page: 382 issue: 1 year: 2020 end-page: 385 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus‐specific human monoclonal antibody publication-title: Emerging Microbes & Infections – volume: 10 start-page: 250 issue: 3 year: 2012 end-page: 259 article-title: Simultaneous measurement of 10,000 protein‐ligand affinity constants using microarray‐based kinetic constant assays publication-title: ASSAY and Drug Development Technologies – volume: 22 start-page: 501 issue: 5 year: 2001 end-page: 508 article-title: A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations publication-title: Journal of Computational Chemistry – volume: 47 start-page: 3275 issue: 18 year: 2008 end-page: 3288 article-title: Protein reactions with surface‐bound molecular targets detected by oblique‐incidence reflectivity difference microscopes publication-title: Applied Optics – volume: 32 start-page: 3676 issue: 23 year: 2016 end-page: 3678 article-title: PRODIGY: A web server for predicting the binding affinity of protein–protein complexes publication-title: Bioinformatics – volume: 12 start-page: 28 issue: 1 year: 2002 end-page: 35 article-title: Prediction of protein–protein interactions by docking methods publication-title: Current Opinion in Structural Biology – volume: 72 year: 2021 article-title: Confirmed Reinfection with SARS‐CoV‐2 Variant VOC‐202012/01 publication-title: Clinical Infectious Diseases – start-page: 1 year: 2020c end-page: 14 article-title: Phylogenetic analysis and structural perspectives of RNA‐dependent RNA‐polymerase inhibition from SARs‐CoV‐2 with natural products. Interdisciplinary Sciences: Computational publication-title: Life Sciences – volume: 581 start-page: 215 issue: 7807 year: 2020 end-page: 220 article-title: Structure of the SARS‐CoV‐2 spike receptor‐binding domain bound to the ACE2 receptor publication-title: Nature – volume: 109 year: 2020 article-title: The epidemiology and pathogenesis of coronavirus disease (COVID‐19) outbreak publication-title: Journal of Autoimmunity – volume: 176 start-page: 296 issue: 1 year: 1990 end-page: 301 article-title: Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site publication-title: Virology – start-page: 8 year: 2011 article-title: High throughput, label‐free screening small molecule compound libraries for protein‐ligands using combination of small molecule microarrays and a special ellipsometry‐based optical scanner publication-title: International Drug Discovery – volume: 309 start-page: 1864 issue: 5742 year: 2005 end-page: 1868 article-title: Structure of SARS coronavirus spike receptor‐binding domain complexed with receptor publication-title: Science – volume: 2011 start-page: 2011 year: 2011 end-page: bar009 article-title: UniProt Knowledgebase: A hub of integrated protein data publication-title: Database – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 12 article-title: Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein–Barr virus (EBV) publication-title: Scientific Reports – volume: 13 issue: 5 year: 2018 article-title: Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches publication-title: PLoS One – volume: 87 start-page: 603 issue: 4 year: 2014 article-title: The Cell: A molecular approach publication-title: The Yale Journal of Biology and Medicine – volume: 327 start-page: 919 issue: 5 year: 2003 end-page: 923 article-title: How reliable are experimental protein–protein interaction data? publication-title: Journal of Molecular Biology – year: 2020 article-title: Estimated transmissibility and severity of novel SARS‐CoV‐2 Variant of Concern 202012/01 in England publication-title: medRxiv – volume: 9 start-page: e20 issue: 2 year: 2021 end-page: e21 article-title: New variant of SARS‐CoV‐2 in UK causes surge of COVID‐19. The Lancet publication-title: Respiratory Medicine – year: 2020 article-title: Smell and taste dysfunction in patients with COVID‐19 – volume: 39 start-page: D392 issue: suppl_1 year: 2010 end-page: D401 article-title: The RCSB protein data bank: Redesigned website and web services publication-title: Nucleic Acids Research – ident: e_1_2_6_12_1 doi: 10.1016/S0140-6736(20)30183-5 – ident: e_1_2_6_36_1 doi: 10.1016/j.jaut.2020.102433 – ident: e_1_2_6_29_1 doi: 10.1126/science.1116480 – ident: e_1_2_6_8_1 doi: 10.1016/j.str.2005.01.006 – ident: e_1_2_6_9_1 doi: 10.1093/cid/ciab014 – ident: e_1_2_6_43_1 doi: 10.1016/j.cell.2020.03.045 – year: 2020 ident: e_1_2_6_5_1 article-title: Estimated transmissibility and severity of novel SARS‐CoV‐2 Variant of Concern 202012/01 in England publication-title: medRxiv – ident: e_1_2_6_41_1 doi: 10.1080/22221751.2020.1729069 – ident: e_1_2_6_34_1 doi: 10.1021/ct400341p – start-page: 8 year: 2011 ident: e_1_2_6_25_1 article-title: High throughput, label‐free screening small molecule compound libraries for protein‐ligands using combination of small molecule microarrays and a special ellipsometry‐based optical scanner publication-title: International Drug Discovery – ident: e_1_2_6_26_1 doi: 10.1089/adt.2011.0406 – ident: e_1_2_6_39_1 doi: 10.1016/S0959-440X(02)00285-3 – ident: e_1_2_6_16_1 doi: 10.3389/fmolb.2019.00159 – ident: e_1_2_6_45_1 doi: 10.1002/jcc.540090611 – ident: e_1_2_6_3_1 doi: 10.1038/s41598-019-49481-7 – start-page: 1 year: 2020 ident: e_1_2_6_17_1 article-title: Phylogenetic analysis and structural perspectives of RNA‐dependent RNA‐polymerase inhibition from SARs‐CoV‐2 with natural products. Interdisciplinary Sciences: Computational publication-title: Life Sciences – volume: 39 start-page: D392 issue: 1 year: 2010 ident: e_1_2_6_35_1 article-title: The RCSB protein data bank: Redesigned website and web services publication-title: Nucleic Acids Research – start-page: 1 year: 2020 ident: e_1_2_6_14_1 article-title: Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS‐CoV‐2 main protease (3CLpro) publication-title: Journal of Biomolecular Structure and Dynamics – volume: 9 start-page: e20 issue: 2 year: 2021 ident: e_1_2_6_20_1 article-title: New variant of SARS‐CoV‐2 in UK causes surge of COVID‐19. The Lancet publication-title: Respiratory Medicine – ident: e_1_2_6_22_1 doi: 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V – ident: e_1_2_6_23_1 doi: 10.1038/s41586-020-2180-5 – ident: e_1_2_6_21_1 doi: 10.2471/BLT.20.253591 – ident: e_1_2_6_19_1 doi: 10.1038/s41598-019-55207-6 – ident: e_1_2_6_32_1 doi: 10.1063/1.1808117 – ident: e_1_2_6_10_1 doi: 10.1016/j.molcel.2020.04.022 – ident: e_1_2_6_40_1 doi: 10.1016/S0022-2836(03)00239-0 – ident: e_1_2_6_48_1 doi: 10.1016/S1473-3099(20)30293-0 – ident: e_1_2_6_6_1 doi: 10.1021/ja026939x – ident: e_1_2_6_38_1 doi: 10.1021/ct400314y – ident: e_1_2_6_44_1 doi: 10.1002/jmv.25689 – start-page: 1 year: 2015 ident: e_1_2_6_7_1 article-title: Coronaviruses: An overview of their replication and pathogenesis publication-title: Coronaviruses: Springer – ident: e_1_2_6_18_1 doi: 10.1016/j.csbj.2020.08.006 – ident: e_1_2_6_31_1 doi: 10.1002/wics.117 – ident: e_1_2_6_49_1 doi: 10.1126/science.abb2762 – ident: e_1_2_6_28_1 doi: 10.1146/annurev-virology-110615-042301 – volume: 87 start-page: 603 issue: 4 year: 2014 ident: e_1_2_6_33_1 article-title: The Cell: A molecular approach publication-title: The Yale Journal of Biology and Medicine – volume: 26 start-page: 2002106 issue: 1 year: 2021 ident: e_1_2_6_27_1 article-title: Early transmissibility assessment of the N501Y mutant strains of SARS‐CoV‐2 in the United Kingdom publication-title: October to November 2020. Eurosurveillance – ident: e_1_2_6_37_1 doi: 10.1002/wcms.1121 – ident: e_1_2_6_47_1 doi: 10.1093/bioinformatics/btw514 – ident: e_1_2_6_2_1 doi: 10.1016/0042-6822(90)90257-R – ident: e_1_2_6_15_1 doi: 10.1371/journal.pone.0196484 – ident: e_1_2_6_30_1 doi: 10.1093/database/bar009 – ident: e_1_2_6_4_1 doi: 10.1038/s41598-020-59686-w – ident: e_1_2_6_24_1 doi: 10.1364/AO.47.003275 – ident: e_1_2_6_11_1 doi: 10.1021/ci100275a – start-page: 1 year: 2020 ident: e_1_2_6_13_1 article-title: Evolutionary and structural analysis of SARS‐CoV‐2 specific evasion of host immunity publication-title: Genes & Immunity – ident: e_1_2_6_46_1 doi: 10.1101/2020.01.24.919183 – ident: e_1_2_6_42_1 doi: 10.1101/2020.02.19.956581 |
SSID | ssj0009933 |
Score | 2.696355 |
Snippet | The evolution of the SARS‐CoV‐2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need... The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7045 |
SubjectTerms | ACE2 Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - metabolism Binding Brazil COVID-19 COVID-19 - metabolism Dynamic structural analysis Epistasis Evolution Free energy Glycoproteins Humans In vivo methods and tests Infectivity KD (dissociation constant) MD simulation Mutants Mutation Mutation - genetics new variants Pathogenicity Pathogens Protein Binding - genetics Proteins protein–protein docking Receptors SARS-CoV-2 - genetics SARS‐CoV‐2 Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 South Africa Spike glycoprotein Spike protein United Kingdom Virulence Virulence - genetics |
Title | Higher infectivity of the SARS‐CoV‐2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30367 https://www.ncbi.nlm.nih.gov/pubmed/33755190 https://www.proquest.com/docview/2564421343 https://www.proquest.com/docview/2504341841 https://pubmed.ncbi.nlm.nih.gov/PMC8251074 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5KQfDFS-sltsooIj40Pdlkk83q0-HQUlo4SC9SQQi7yYZW2xwhPUJ98t0Xf6O_xJndJPVYBfElBDIhye7M7jebb79h7HmWqVhqE4WpVGkodKzDvNQaI77GBERwSp2JbTHNdo7E7nF6vMRe93thvD7EsOBGkeHGawpwbdrRlWjohxITdhx_aSc5cbUIEO1fSUeproy8oyCkgveqQlE8Gu5cnIuuAczrPMlf8aubgLZvs_f9q3veycfN-YXZLL_8pur4n992h93qgCmMvSfdZUu2WWGr4waT8vNLeAGOKurW4FfYDV_B8nKVffM8Eeg4XVSIAmY1IKqEg_H-wY-v3yezt3iMAeE7fMbEnHg3cNqC7vzCVkBrwbAnuJyODjdgS-RibwN0U8E0jfg7OJ9TpeP2FYwbfE5LqwlAu2LAa9-SbggQ0fUeO9reOpzshF19h7DEKVGGQtmk5ry0SVUlMskqbrXIY5HVtUmt0ZkyMdc2TUqb0o9nY2uVSZNbpXGOrXlyny03s8Y-ZIADk80tjkYaM1aDkM9IVSqTaWlTjRlpwF72PV2Unfg51eA4K7xsc1xgkxeuyQP2bDD95BU__mS03rtL0QV9WyB6FIIU8pKAPR0uY7jSPxjd2NmcbCKBwCEXPGAPvHcNT0kSifhVRQGTC343GJAU-OKV5vTESYLTBmQEg_iZzq3-_uLF7uSNO3n076Zr7GZMYeQojOtsGTvXPkYodmGeuJj7CY0rL2A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgQXHi0PQ4EBIcShbvxYe23EJQqtQlMi1KaoHJC1a69FgTpIaZDKiTsXfiO_hJn1o4SChLhYljyWXzO734y__QbgURyngVTacyOZRq5QgXKTXCmK-JISEOFz6sxsi3E83BfbB9HBEjxr18LU-hBdwY0jw47XHOBckO6dqoa-zyljpwFYnoPz3NGblfOf756KR6VNI3lLQoiE3-oKeUGvO3VxNjoDMc8yJX9FsHYK2roCb9ubr5knHzbmx3oj__KbruP_Pt1VuNxgU-zXznQNlky1Aqv9ivLyoxN8jJYtasvwK3ChbmJ5sgrfaqoINrQu7kWB0xIJWOJef3fvx9fvg-lr2gZICB4_U27O1Bs8nKFqXMMUyOVgHAlfjnuTddwUiRito6oKHEee_waP5tzsePYU-xVdZ8YFBeSFMVjL37J0CDLX9Trsb21OBkO3afHg5jQrSlekJix9PzdhUYQyjAvfKJEEIi5LHRmt4lQHvjJRmJuI_z1rU6ax1IlJFU2zpR_egOVqWplbgDQ2mcTQgKQoadWE-rRM81THSppIUVLqwJP2U2d5o3_ObTg-ZrVyc5DRK8_sK3fgYWf6qRb9-JPRWusvWRP3s4wApBAskhc68KA7TBHLv2FUZaZztvEEYYdE-A7crN2ru0oYSoKwqeeAXHC8zoDVwBePVIfvrCo4r0EmPEiPaf3q7zeebQ9e2Z3b_256Hy4OJy93sp0X49EduBRwTFlG4xos04c2dwmZHet7NgB_AmIaM3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXHi2PhQIDQohD083DiWM4rbZdlS5aVX2pSEiRnTiiQLOVtotUTty58Bv5Jcw42ZSlICEuUaRMlMSesb9xPn8D8CxJVCi18b1YqtgTOtRemmtNEV9SAiICTp2ZbTFKNvfF1mF8uACvZnthan2IdsGNI8ON1xzgJ0XZPRcN_ZBTwk7jr7wEl0XiK67bsL5zrh2lmjryjoMQi2AmK-SH3fbW-cnoAsK8SJT8FcC6GWhwA97N3r0mnnxcm56atfzLb7KO__lxN-F6g0yxV7vSLViw1RIs9yrKyo_P8Dk6rqhbhF-CK3UJy7Nl-FYTRbAhdXElChyXSLASd3s7uz--fu-PD-gYIuF3_EyZORNv8GiCunEMWyAvBuNQBHLU3VvFDZGK4SrqqsBR7Adv8XjKpY4nL7FX0XMmvJyAvC0Ga_FbFg5BZrrehv3Bxl5_02sKPHg5zYnSE8pGZRDkNiqKSEZJEVgt0lAkZWlia3SiTBhoG0e5jfnPs7GlSqRJrdI0yZZBdAcWq3Fl7wHSyGRTS8ORppTVEOYzUuXKJFraWFNK2oEXs57O8kb9nItwfMpq3eYwoybPXJN34GlrelJLfvzJaGXmLlkT9ZOM4KMQLJEXdeBJe5nilX_C6MqOp2zjC0IOqQg6cLf2rvYpUSQJwCq_A3LO71oD1gKfv1IdvXea4LwDmdAgfaZzq7-_eLbV33Yn9__d9DFc3V4fZG9ej4YP4FrIEeXojCuwSP1sHxIsOzWPXPj9BKTvMis |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+infectivity+of+the+SARS%E2%80%90CoV%E2%80%902+new+variants+is+associated+with+K417N%2FT%2C+E484K%2C+and+N501Y+mutants%3A+An+insight+from+structural+data&rft.jtitle=Journal+of+cellular+physiology&rft.au=Khan%2C+Abbas&rft.au=Zia%2C+Tauqir&rft.au=Suleman%2C+Muhammad&rft.au=Khan%2C+Taimoor&rft.date=2021-10-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=236&rft.issue=10&rft.spage=7045&rft.epage=7057&rft_id=info:doi/10.1002%2Fjcp.30367&rft_id=info%3Apmid%2F33755190&rft.externalDocID=PMC8251074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |