P-Wave Duration in Lead aVR and the Risk of Atrial Fibrillation in Hypertension
Background Hypertension entails atrial remodeling that affect P‐wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force) are associated with a higher risk for atrial fibrillation (AF), but their calculation requires multiple measurements of PW durati...
Saved in:
Published in | Annals of noninvasive electrocardiology Vol. 20; no. 2; pp. 167 - 174 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.03.2015
John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Hypertension entails atrial remodeling that affect P‐wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force) are associated with a higher risk for atrial fibrillation (AF), but their calculation requires multiple measurements of PW duration, limiting their use in clinical practice. We evaluated whether PW duration in specific ECG leads may identify patients with increased susceptibility to AF in a population of hypertensive patients.
Methods
In a case–control study, AF and control subjects were matched for age, sex, and left atrial (LA) dimensions. PW duration was measured from digitally stored ECGs. Logistic regression was used to assess the association of PW duration and indices with AF.
Results
We enrolled 44 hypertensive AF patients (16 paroxysmal and 28 persistent) and 44 hypertensive controls. AF and control subjects were matched for sex (males, n = 27), age (67 ± 8 years), LA diameter (40 ± 5 mm), and were comparable for left ventricular mass (45 ± 11 g/m2.7 vs 48 ± 12 g/m2.7, P = 0.19), ejection fraction (58 ± 7% in both groups), and prevalence of mild valvular heart disease (7% vs 5%; P = 0.64). PW duration in lead aVR was significantly higher in AF patients as compared with controls (115 ± 18 ms vs 101 ± 14 ms; P < 0.0001) and was the best independent predictor of AF in multivariable logistic regression (PW ≥ 100 ms: RR = 3.7; 95% CI: 1.3–10.3; P = 0.02).
Conclusions
Simple measurement of PW duration in lead aVR allows effective identification of AF patients in a population of hypertensives. Confirmation of this finding in a larger population would provide a simple and effective risk marker of AF in hypertensive patients. |
---|---|
AbstractList | Hypertension entails atrial remodeling that affect P-wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force) are associated with a higher risk for atrial fibrillation (AF), but their calculation requires multiple measurements of PW duration, limiting their use in clinical practice. We evaluated whether PW duration in specific ECG leads may identify patients with increased susceptibility to AF in a population of hypertensive patients.BACKGROUNDHypertension entails atrial remodeling that affect P-wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force) are associated with a higher risk for atrial fibrillation (AF), but their calculation requires multiple measurements of PW duration, limiting their use in clinical practice. We evaluated whether PW duration in specific ECG leads may identify patients with increased susceptibility to AF in a population of hypertensive patients.In a case-control study, AF and control subjects were matched for age, sex, and left atrial (LA) dimensions. PW duration was measured from digitally stored ECGs. Logistic regression was used to assess the association of PW duration and indices with AF.METHODSIn a case-control study, AF and control subjects were matched for age, sex, and left atrial (LA) dimensions. PW duration was measured from digitally stored ECGs. Logistic regression was used to assess the association of PW duration and indices with AF.We enrolled 44 hypertensive AF patients (16 paroxysmal and 28 persistent) and 44 hypertensive controls. AF and control subjects were matched for sex (males, n = 27), age (67 ± 8 years), LA diameter (40 ± 5 mm), and were comparable for left ventricular mass (45 ± 11 g/m(2.7) vs 48 ± 12 g/m(2.7) , P = 0.19), ejection fraction (58 ± 7% in both groups), and prevalence of mild valvular heart disease (7% vs 5%; P = 0.64). PW duration in lead aVR was significantly higher in AF patients as compared with controls (115 ± 18 ms vs 101 ± 14 ms; P < 0.0001) and was the best independent predictor of AF in multivariable logistic regression (PW ≥ 100 ms: RR = 3.7; 95% CI: 1.3-10.3; P = 0.02).RESULTSWe enrolled 44 hypertensive AF patients (16 paroxysmal and 28 persistent) and 44 hypertensive controls. AF and control subjects were matched for sex (males, n = 27), age (67 ± 8 years), LA diameter (40 ± 5 mm), and were comparable for left ventricular mass (45 ± 11 g/m(2.7) vs 48 ± 12 g/m(2.7) , P = 0.19), ejection fraction (58 ± 7% in both groups), and prevalence of mild valvular heart disease (7% vs 5%; P = 0.64). PW duration in lead aVR was significantly higher in AF patients as compared with controls (115 ± 18 ms vs 101 ± 14 ms; P < 0.0001) and was the best independent predictor of AF in multivariable logistic regression (PW ≥ 100 ms: RR = 3.7; 95% CI: 1.3-10.3; P = 0.02).Simple measurement of PW duration in lead aVR allows effective identification of AF patients in a population of hypertensives. Confirmation of this finding in a larger population would provide a simple and effective risk marker of AF in hypertensive patients.CONCLUSIONSSimple measurement of PW duration in lead aVR allows effective identification of AF patients in a population of hypertensives. Confirmation of this finding in a larger population would provide a simple and effective risk marker of AF in hypertensive patients. Hypertension entails atrial remodeling that affect P-wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force) are associated with a higher risk for atrial fibrillation (AF), but their calculation requires multiple measurements of PW duration, limiting their use in clinical practice. We evaluated whether PW duration in specific ECG leads may identify patients with increased susceptibility to AF in a population of hypertensive patients. In a case-control study, AF and control subjects were matched for age, sex, and left atrial (LA) dimensions. PW duration was measured from digitally stored ECGs. Logistic regression was used to assess the association of PW duration and indices with AF. We enrolled 44 hypertensive AF patients (16 paroxysmal and 28 persistent) and 44 hypertensive controls. AF and control subjects were matched for sex (males, n = 27), age (67 ± 8 years), LA diameter (40 ± 5 mm), and were comparable for left ventricular mass (45 ± 11 g/m(2.7) vs 48 ± 12 g/m(2.7) , P = 0.19), ejection fraction (58 ± 7% in both groups), and prevalence of mild valvular heart disease (7% vs 5%; P = 0.64). PW duration in lead aVR was significantly higher in AF patients as compared with controls (115 ± 18 ms vs 101 ± 14 ms; P < 0.0001) and was the best independent predictor of AF in multivariable logistic regression (PW ≥ 100 ms: RR = 3.7; 95% CI: 1.3-10.3; P = 0.02). Simple measurement of PW duration in lead aVR allows effective identification of AF patients in a population of hypertensives. Confirmation of this finding in a larger population would provide a simple and effective risk marker of AF in hypertensive patients. Background Hypertension entails atrial remodeling that affect P-wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force) are associated with a higher risk for atrial fibrillation (AF), but their calculation requires multiple measurements of PW duration, limiting their use in clinical practice. We evaluated whether PW duration in specific ECG leads may identify patients with increased susceptibility to AF in a population of hypertensive patients. Methods In a case-control study, AF and control subjects were matched for age, sex, and left atrial (LA) dimensions. PW duration was measured from digitally stored ECGs. Logistic regression was used to assess the association of PW duration and indices with AF. Results We enrolled 44 hypertensive AF patients (16 paroxysmal and 28 persistent) and 44 hypertensive controls. AF and control subjects were matched for sex (males, n = 27), age (67 ± 8 years), LA diameter (40 ± 5 mm), and were comparable for left ventricular mass (45 ± 11 g/m2.7 vs 48 ± 12 g/m2.7, P = 0.19), ejection fraction (58 ± 7% in both groups), and prevalence of mild valvular heart disease (7% vs 5%; P = 0.64). PW duration in lead aVR was significantly higher in AF patients as compared with controls (115 ± 18 ms vs 101 ± 14 ms; P < 0.0001) and was the best independent predictor of AF in multivariable logistic regression (PW ≥ 100 ms: RR = 3.7; 95% CI: 1.3-10.3; P = 0.02). Conclusions Simple measurement of PW duration in lead aVR allows effective identification of AF patients in a population of hypertensives. Confirmation of this finding in a larger population would provide a simple and effective risk marker of AF in hypertensive patients. Background Hypertension entails atrial remodeling that affect P‐wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force) are associated with a higher risk for atrial fibrillation (AF), but their calculation requires multiple measurements of PW duration, limiting their use in clinical practice. We evaluated whether PW duration in specific ECG leads may identify patients with increased susceptibility to AF in a population of hypertensive patients. Methods In a case–control study, AF and control subjects were matched for age, sex, and left atrial (LA) dimensions. PW duration was measured from digitally stored ECGs. Logistic regression was used to assess the association of PW duration and indices with AF. Results We enrolled 44 hypertensive AF patients (16 paroxysmal and 28 persistent) and 44 hypertensive controls. AF and control subjects were matched for sex (males, n = 27), age (67 ± 8 years), LA diameter (40 ± 5 mm), and were comparable for left ventricular mass (45 ± 11 g/m2.7 vs 48 ± 12 g/m2.7, P = 0.19), ejection fraction (58 ± 7% in both groups), and prevalence of mild valvular heart disease (7% vs 5%; P = 0.64). PW duration in lead aVR was significantly higher in AF patients as compared with controls (115 ± 18 ms vs 101 ± 14 ms; P < 0.0001) and was the best independent predictor of AF in multivariable logistic regression (PW ≥ 100 ms: RR = 3.7; 95% CI: 1.3–10.3; P = 0.02). Conclusions Simple measurement of PW duration in lead aVR allows effective identification of AF patients in a population of hypertensives. Confirmation of this finding in a larger population would provide a simple and effective risk marker of AF in hypertensive patients. |
Author | Balla, Cristina Semprini, Lorenzo Modestino, Anna Mercanti, Federico Frattari, Alessandra Francia, Pietro Caprinozzi, Massimo Tocci, Giuliano Sensini, Isabella Ricotta, Agnese Adduci, Carmen Volpe, Massimo |
AuthorAffiliation | 2 I.R.C.C.S. Neuromed Pozzilli (IS) Italy 1 Division of Cardiology Department of Clinical and Molecular Medicine St. Andrea Hospital Sapienza University Rome Italy |
AuthorAffiliation_xml | – name: 2 I.R.C.C.S. Neuromed Pozzilli (IS) Italy – name: 1 Division of Cardiology Department of Clinical and Molecular Medicine St. Andrea Hospital Sapienza University Rome Italy |
Author_xml | – sequence: 1 givenname: Pietro surname: Francia fullname: Francia, Pietro email: pietro.francia@uniroma1.it organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 2 givenname: Agnese surname: Ricotta fullname: Ricotta, Agnese organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 3 givenname: Cristina surname: Balla fullname: Balla, Cristina organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 4 givenname: Carmen surname: Adduci fullname: Adduci, Carmen organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 5 givenname: Lorenzo surname: Semprini fullname: Semprini, Lorenzo organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 6 givenname: Alessandra surname: Frattari fullname: Frattari, Alessandra organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 7 givenname: Anna surname: Modestino fullname: Modestino, Anna organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 8 givenname: Federico surname: Mercanti fullname: Mercanti, Federico organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 9 givenname: Isabella surname: Sensini fullname: Sensini, Isabella organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 10 givenname: Massimo surname: Caprinozzi fullname: Caprinozzi, Massimo organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 11 givenname: Giuliano surname: Tocci fullname: Tocci, Giuliano organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy – sequence: 12 givenname: Massimo surname: Volpe fullname: Volpe, Massimo organization: Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25200638$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtv1DAQhS1URC_wwg9AlnipkFJ8ie3NC9IqvUpLW1ZA-2Y5zoS6zTqLnRT239fb7a6gQvjFHvk7RzNndtGW7zwg9JaSA5rOR-PBHlBGC_UC7VCRsyxX-fVWepMRyxQj19toN8ZbQhjLmXqFtplghEg-2kEXl9mVuQd8OATTu85j5_EETI3N9yk2vsb9DeCpi3e4a_C4D860-NhVwbXthj9dzCH04GOqX6OXjWkjvHm699C346Ov5Wk2uTg5K8eTzOaKqoxaI4vaCCqMFFyAZLlqqGKcNxVIMLJihuZKgqwKMSqIzXPBpbK2bkaGCMb30KeV73yoZlBb8H0wrZ4HNzNhoTvj9N8_3t3oH929lgWniqtksP9kELqfA8Rez1y0kMby0A1RUylHjKfweELfP0NvuyH4NN6SUpyooqCJevdnR5tW1lkngKwAG7oYAzTauv4xxNSgazUlerlOvVynflxnknx4Jlm7_hOmK_iXa2HxH1KPz4_KtSZbaVzs4fdGY8KdToMpoa_OT3T5RX0uLqelPuQP0Fi9ig |
CitedBy_id | crossref_primary_10_1111_anec_12739 crossref_primary_10_1016_j_jelectrocard_2018_12_008 crossref_primary_10_1007_s40292_020_00390_1 crossref_primary_10_3389_fmed_2020_583331 crossref_primary_10_1080_14779072_2018_1533814 crossref_primary_10_1080_08037051_2019_1673149 crossref_primary_10_3390_ijms21030891 crossref_primary_10_1111_psyp_14480 crossref_primary_10_1016_j_jjcc_2015_04_002 crossref_primary_10_1111_anec_12285 crossref_primary_10_1080_14779072_2019_1581064 crossref_primary_10_1002_oby_21678 crossref_primary_10_1007_s40292_020_00393_y crossref_primary_10_1111_anec_12403 crossref_primary_10_3390_medsci11020030 |
Cites_doi | 10.1016/j.amjcard.2008.04.065 10.1161/01.CIR.88.6.2618 10.1161/CIRCRESAHA.114.303211 10.1016/j.amjcard.2010.10.075 10.1016/j.jelectrocard.2013.09.038 10.1016/S0735-1097(02)02373-2 10.1016/j.hrthm.2007.12.017 10.1016/j.hrthm.2014.03.053 10.1111/anec.12131 10.1016/0735-1097(92)90385-Z 10.1016/j.jelectrocard.2012.06.029 10.1001/jama.285.18.2370 10.1097/00004872-199917100-00015 10.1186/1532-429X-10-7 10.1152/physrev.00031.2009 10.1161/CIRCEP.108.806828 10.1111/j.1542-474X.2012.00534.x 10.1161/01.HYP.0000257123.95372.ab 10.1001/jama.1994.03510350050036 10.1016/j.ijcard.2004.03.039 10.1016/S0735-1097(01)01663-1 10.1161/CIRCRESAHA.114.302226 10.1161/01.CIR.96.8.2612 10.1016/S0002-9149(77)80209-9 10.1111/anec.12087 10.1038/jhh.2011.105 10.1093/europace/eun369 10.1111/j.1542-474X.2008.00255.x 10.1016/j.jelectrocard.2004.01.003 10.1016/j.hrthm.2004.09.009 10.1161/CIRCEP.107.754564 10.1111/j.1540-8159.2008.00990.x 10.1111/j.1540-8159.2000.tb00913.x 10.1046/j.1540-8167.2004.04078.x 10.1097/HJH.0b013e328364ca4c |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 European Society of Cardiology and Wiley Periodicals, Inc |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 European Society of Cardiology and Wiley Periodicals, Inc |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1111/anec.12197 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Francia et al |
EISSN | 1542-474X |
EndPage | 174 |
ExternalDocumentID | PMC6931737 3639010591 25200638 10_1111_anec_12197 ANEC12197 ark_67375_WNG_CQ7M9PRC_D |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23M 24P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAHHS AAONW AAWTL AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACMXC ACPOU ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFKRA AFPKN AFPWT AFZJQ AHEFC AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMXJE BPMNR BROTX BRXPI BSCLL BY8 C45 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA GROUPED_DOAJ H.X HCIFZ HF~ HMCUK HVGLF HZI HZ~ IAO IHE IHR INH J0M K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PIMPY Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPM RX1 SAMSI SUPJJ SV3 TEORI UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 ZZTAW ~IA ~WT AANHP ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4717-1ca69da515a6535e6247f17233fbe6ea6b2a1476e6b95890c445367ccdf8a0523 |
IEDL.DBID | DR2 |
ISSN | 1082-720X 1542-474X |
IngestDate | Thu Aug 21 18:29:04 EDT 2025 Sun Aug 24 03:53:09 EDT 2025 Wed Aug 13 11:03:25 EDT 2025 Wed Feb 19 02:30:40 EST 2025 Thu Apr 24 23:04:53 EDT 2025 Tue Jul 01 01:26:18 EDT 2025 Wed Jan 22 16:29:16 EST 2025 Wed Oct 30 09:52:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | atrial fibrillation aVR lead hypertension P wave |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4717-1ca69da515a6535e6247f17233fbe6ea6b2a1476e6b95890c445367ccdf8a0523 |
Notes | ArticleID:ANEC12197 istex:EF1FCE624BF3B379546E05BC93FB5ED4AC2A6386 ark:/67375/WNG-CQ7M9PRC-D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/anec.12197?download=true |
PMID | 25200638 |
PQID | 1667307991 |
PQPubID | 2029167 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6931737 proquest_miscellaneous_1668237203 proquest_journals_1667307991 pubmed_primary_25200638 crossref_citationtrail_10_1111_anec_12197 crossref_primary_10_1111_anec_12197 wiley_primary_10_1111_anec_12197_ANEC12197 istex_primary_ark_67375_WNG_CQ7M9PRC_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2015 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: March 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Malden – name: Hoboken |
PublicationTitle | Annals of noninvasive electrocardiology |
PublicationTitleAlternate | Ann Noninvasive Electrocardiol |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Josephson ME, Kastor JA, Morganroth J. Electrocardiographic left atrial enlargement. Electrophysiologic, echocardiographic and hemodynamic correlates. Am J Cardiol 1977;39:967-971. Nemirovsky D, Hutter R, Gomes JA. The electrical substrate of vagal atrial fibrillation as assessed by the signal-averaged electrocardiogram of the P wave. Pacing Clin Electrophysiol 2008;31:308-313. Boriani G, Diemberger I, Biffi M, et al. P wave dispersion and short-term vs. late atrial fibrillation recurrences after cardioversion. Int J Cardiol 2005;101:355-361. Magnani JW, Johnson VM, Sullivan LM, et al. P wave duration and risk of longitudinal atrial fibrillation in persons >/ = 60 years old (from the Framingham Heart Study). Am J Cardiol 2011;107:917-921. Schotten U, Verheule S, Kirchhof P, et al. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol Rev 2011;91:265-325. Andrade J, Khairy P, Dobrev D, et al. The clinical profile and pathophysiology of atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms. Circ Res 2014;114:1453-1468. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. J Am Med Assoc 2001;285:2370-2375. Abe Y, Fukunami M, Yamada T, et al. Prediction of transition to chronic atrial fibrillation in patients with paroxysmal atrial fibrillation by signal-averaged electrocardiography: A prospective study. Circulation 1997;96:2612-2616. Verdecchia P, Carini G, Circo A, et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: The MAVI study. J Am Coll Cardiol 2001;38:1829-1835. Steinberg JS, Zelenkofske S, Wong SC, et al. Value of the P-wave signal-averaged ECG for predicting atrial fibrillation after cardiac surgery. Circulation 1993;88:2618-2622. Tsang TS, Gersh BJ, Appleton CP, et al. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol 2002;40:1636-1644. Gonna H, Gallagher MM, Guo XH, et al. P-wave abnormality predicts recurrence of atrial fibrillation after electrical cardioversion: A prospective study. Ann Noninvasive Electrocardiol 2014;19:57-62. Kalus JS, Kluger J, Caron MF, et al. An evaluation of postoperative P-wave variables after cardiothoracic surgery. J Electrocardiol 2004;37:127-132. Jurkko R, Vaananen H, Mantynen V, et al. High-resolution signal-averaged analysis of atrial electromagnetic characteristics in patients with paroxysmal lone atrial fibrillation. Ann Noninvasive Electrocardiol 2008;13:378-385. George A, Arumugham PS, Figueredo VM. aVR-The forgotten lead. Exp Clin Cardiol 2010;15:e36-e44. Holmqvist F, Husser D, Tapanainen JM, et al. Interatrial conduction can be accurately determined using standard 12-lead electrocardiography: Validation of P-wave morphology using electroanatomic mapping in man. Heart Rhythm 2008;5:413-418. Choisy SC, Arberry LA, Hancox JC, et al. Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts. Hypertension 2007;49:498-505. Deftereos S, Kossyvakis C, Efremidis M, et al. Interatrial conduction time and incident atrial fibrillation: A prospective cohort study. Heart Rhythm 2014;11(7):1095-1101. Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. J Am Med Assoc 1994;271:840-844. Lau YF, Yiu KH, Siu CW, et al. Hypertension and atrial fibrillation: Epidemiology, pathophysiology and therapeutic implications. J Hum Hypertens 2012;26:563-569. Magnani JW, Williamson MA, Ellinor PT, et al. P wave indices: Current status and future directions in epidemiology, clinical, and research applications. Circ Arrhythm Electrophysiol 2009;2:72-79. Nabauer M, Gerth A, Limbourg T, et al. The Registry of the German Competence Network on Atrial Fibrillation: Patient characteristics and initial management. Europace 2009;11:423-434. Heijman J, Voigt N, Nattel S, et al. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 2014;114:1483-1499. Chang IC, Austin E, Krishnan B, et al. Shorter minimum P-wave duration is associated with paroxysmal lone atrial fibrillation. J Electrocardiol 2014;47:106-112. Platonov PG. Atrial conduction and atrial fibrillation: What can we learn from surface ECG? Cardiol J 2008;15:402-407. Koide Y, Yotsukura M, Ando H, et al. Usefulness of P-wave dispersion in standard twelve-lead electrocardiography to predict transition from paroxysmal to persistent atrial fibrillation. Am J Cardiol 2008;102:573-577. de Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: Assessment of allometric relations and impact of overweight. J Am Coll Cardiol 1992;20:1251-1260. Blanche C, Tran N, Carballo D, et al. Usefulness of P-wave signal averaging to predict atrial fibrillation recurrences after electrical cardioversion. Ann Noninvase Electrocardiol 2014;19:266-272. Platonov PG. P-wave morphology: Underlying mechanisms and clinical implications. Ann Noninvasive Electrocardiol 2012;17:161-169. Betts TR, Roberts PR, et al. High-density mapping of left atrial endocardial activation during sinus rhythm and coronary sinus pacing in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 2004;15:1111-1117. Mancia G, Fagard R, Narkiewicz K, et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 2013;31:1925-1938. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circ Arrhythm Electrophysiol 2008;1:62-73. Tsao CW, Josephson ME, Hauser TH, et al. Accuracy of electrocardiographic criteria for atrial enlargement: Validation with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008;10:7-13. Andrikopoulos GK, Dilaveris PE, Richter DJ, et al. Increased variance of P wave duration on the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 2000;23:1127-1132. Bayes de Luna A, Platonov P, Cosio FG, et al. Interatrial blocks. A separate entity from left atrial enlargement: A consensus report. J Electrocardiol 2012;45:445-451. Becker AE. How structurally normal are human atria in patients with atrial fibrillation? Heart Rhythm 2004;1:627-631. Dilaveris PE, Gialafos EJ, Chrissos D, et al. Detection of hypertensive patients at risk for paroxysmal atrial fibrillation during sinus rhythm by computer-assisted P wave analysis. J Hypertens 1999;17:1463-1470. 2010; 15 2001; 285 2000; 23 1993; 88 1994; 271 2008; 15 2014; 47 2008; 13 2008; 10 2008; 5 2012; 17 2008; 102 2008; 31 2004; 1 2008; 1 2014; 114 2009; 11 2011; 107 2011; 91 1977; 39 2005; 101 1997; 96 2002; 40 1999; 17 2004; 15 2004; 37 2013; 31 2001; 38 2014; 19 2012; 26 1992; 20 2009; 2 2012; 45 2014; 11 2007; 49 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Platonov PG (e_1_2_6_20_1) 2008; 15 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 George A (e_1_2_6_36_1) 2010; 15 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Schotten U, Verheule S, Kirchhof P, et al. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol Rev 2011;91:265-325. – reference: Steinberg JS, Zelenkofske S, Wong SC, et al. Value of the P-wave signal-averaged ECG for predicting atrial fibrillation after cardiac surgery. Circulation 1993;88:2618-2622. – reference: Becker AE. How structurally normal are human atria in patients with atrial fibrillation? Heart Rhythm 2004;1:627-631. – reference: Kalus JS, Kluger J, Caron MF, et al. An evaluation of postoperative P-wave variables after cardiothoracic surgery. J Electrocardiol 2004;37:127-132. – reference: de Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: Assessment of allometric relations and impact of overweight. J Am Coll Cardiol 1992;20:1251-1260. – reference: Koide Y, Yotsukura M, Ando H, et al. Usefulness of P-wave dispersion in standard twelve-lead electrocardiography to predict transition from paroxysmal to persistent atrial fibrillation. Am J Cardiol 2008;102:573-577. – reference: Bayes de Luna A, Platonov P, Cosio FG, et al. Interatrial blocks. A separate entity from left atrial enlargement: A consensus report. J Electrocardiol 2012;45:445-451. – reference: Deftereos S, Kossyvakis C, Efremidis M, et al. Interatrial conduction time and incident atrial fibrillation: A prospective cohort study. Heart Rhythm 2014;11(7):1095-1101. – reference: Lau YF, Yiu KH, Siu CW, et al. Hypertension and atrial fibrillation: Epidemiology, pathophysiology and therapeutic implications. J Hum Hypertens 2012;26:563-569. – reference: Andrikopoulos GK, Dilaveris PE, Richter DJ, et al. Increased variance of P wave duration on the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 2000;23:1127-1132. – reference: Tsang TS, Gersh BJ, Appleton CP, et al. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol 2002;40:1636-1644. – reference: Boriani G, Diemberger I, Biffi M, et al. P wave dispersion and short-term vs. late atrial fibrillation recurrences after cardioversion. Int J Cardiol 2005;101:355-361. – reference: Platonov PG. Atrial conduction and atrial fibrillation: What can we learn from surface ECG? Cardiol J 2008;15:402-407. – reference: Nemirovsky D, Hutter R, Gomes JA. The electrical substrate of vagal atrial fibrillation as assessed by the signal-averaged electrocardiogram of the P wave. Pacing Clin Electrophysiol 2008;31:308-313. – reference: George A, Arumugham PS, Figueredo VM. aVR-The forgotten lead. Exp Clin Cardiol 2010;15:e36-e44. – reference: Choisy SC, Arberry LA, Hancox JC, et al. Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts. Hypertension 2007;49:498-505. – reference: Platonov PG. P-wave morphology: Underlying mechanisms and clinical implications. Ann Noninvasive Electrocardiol 2012;17:161-169. – reference: Abe Y, Fukunami M, Yamada T, et al. Prediction of transition to chronic atrial fibrillation in patients with paroxysmal atrial fibrillation by signal-averaged electrocardiography: A prospective study. Circulation 1997;96:2612-2616. – reference: Mancia G, Fagard R, Narkiewicz K, et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 2013;31:1925-1938. – reference: Tsao CW, Josephson ME, Hauser TH, et al. Accuracy of electrocardiographic criteria for atrial enlargement: Validation with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008;10:7-13. – reference: Heijman J, Voigt N, Nattel S, et al. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 2014;114:1483-1499. – reference: Blanche C, Tran N, Carballo D, et al. Usefulness of P-wave signal averaging to predict atrial fibrillation recurrences after electrical cardioversion. Ann Noninvase Electrocardiol 2014;19:266-272. – reference: Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. J Am Med Assoc 2001;285:2370-2375. – reference: Magnani JW, Williamson MA, Ellinor PT, et al. P wave indices: Current status and future directions in epidemiology, clinical, and research applications. Circ Arrhythm Electrophysiol 2009;2:72-79. – reference: Gonna H, Gallagher MM, Guo XH, et al. P-wave abnormality predicts recurrence of atrial fibrillation after electrical cardioversion: A prospective study. Ann Noninvasive Electrocardiol 2014;19:57-62. – reference: Betts TR, Roberts PR, et al. High-density mapping of left atrial endocardial activation during sinus rhythm and coronary sinus pacing in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 2004;15:1111-1117. – reference: Nabauer M, Gerth A, Limbourg T, et al. The Registry of the German Competence Network on Atrial Fibrillation: Patient characteristics and initial management. Europace 2009;11:423-434. – reference: Andrade J, Khairy P, Dobrev D, et al. The clinical profile and pathophysiology of atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms. Circ Res 2014;114:1453-1468. – reference: Holmqvist F, Husser D, Tapanainen JM, et al. Interatrial conduction can be accurately determined using standard 12-lead electrocardiography: Validation of P-wave morphology using electroanatomic mapping in man. Heart Rhythm 2008;5:413-418. – reference: Verdecchia P, Carini G, Circo A, et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: The MAVI study. J Am Coll Cardiol 2001;38:1829-1835. – reference: Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. J Am Med Assoc 1994;271:840-844. – reference: Dilaveris PE, Gialafos EJ, Chrissos D, et al. Detection of hypertensive patients at risk for paroxysmal atrial fibrillation during sinus rhythm by computer-assisted P wave analysis. J Hypertens 1999;17:1463-1470. – reference: Chang IC, Austin E, Krishnan B, et al. Shorter minimum P-wave duration is associated with paroxysmal lone atrial fibrillation. J Electrocardiol 2014;47:106-112. – reference: Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circ Arrhythm Electrophysiol 2008;1:62-73. – reference: Josephson ME, Kastor JA, Morganroth J. Electrocardiographic left atrial enlargement. Electrophysiologic, echocardiographic and hemodynamic correlates. Am J Cardiol 1977;39:967-971. – reference: Magnani JW, Johnson VM, Sullivan LM, et al. P wave duration and risk of longitudinal atrial fibrillation in persons >/ = 60 years old (from the Framingham Heart Study). Am J Cardiol 2011;107:917-921. – reference: Jurkko R, Vaananen H, Mantynen V, et al. High-resolution signal-averaged analysis of atrial electromagnetic characteristics in patients with paroxysmal lone atrial fibrillation. Ann Noninvasive Electrocardiol 2008;13:378-385. – volume: 101 start-page: 355 year: 2005 end-page: 361 article-title: P wave dispersion and short‐term vs. late atrial fibrillation recurrences after cardioversion publication-title: Int J Cardiol – volume: 26 start-page: 563 year: 2012 end-page: 569 article-title: Hypertension and atrial fibrillation: Epidemiology, pathophysiology and therapeutic implications publication-title: J Hum Hypertens – volume: 39 start-page: 967 year: 1977 end-page: 971 article-title: Electrocardiographic left atrial enlargement. Electrophysiologic, echocardiographic and hemodynamic correlates publication-title: Am J Cardiol – volume: 11 start-page: 1095 issue: 7 year: 2014 end-page: 1101 article-title: Interatrial conduction time and incident atrial fibrillation: A prospective cohort study publication-title: Heart Rhythm – volume: 20 start-page: 1251 year: 1992 end-page: 1260 article-title: Left ventricular mass and body size in normotensive children and adults: Assessment of allometric relations and impact of overweight publication-title: J Am Coll Cardiol – volume: 45 start-page: 445 year: 2012 end-page: 451 article-title: Interatrial blocks. A separate entity from left atrial enlargement: A consensus report publication-title: J Electrocardiol – volume: 1 start-page: 62 year: 2008 end-page: 73 article-title: Atrial remodeling and atrial fibrillation: Mechanisms and implications publication-title: Circ Arrhythm Electrophysiol – volume: 23 start-page: 1127 year: 2000 end-page: 1132 article-title: Increased variance of P wave duration on the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibrillation publication-title: Pacing Clin Electrophysiol – volume: 31 start-page: 308 year: 2008 end-page: 313 article-title: The electrical substrate of vagal atrial fibrillation as assessed by the signal‐averaged electrocardiogram of the P wave publication-title: Pacing Clin Electrophysiol – volume: 2 start-page: 72 year: 2009 end-page: 79 article-title: P wave indices: Current status and future directions in epidemiology, clinical, and research applications publication-title: Circ Arrhythm Electrophysiol – volume: 1 start-page: 627 year: 2004 end-page: 631 article-title: How structurally normal are human atria in patients with atrial fibrillation? publication-title: Heart Rhythm – volume: 114 start-page: 1453 year: 2014 end-page: 1468 article-title: The clinical profile and pathophysiology of atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms publication-title: Circ Res – volume: 31 start-page: 1925 year: 2013 end-page: 1938 article-title: 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension publication-title: J Hypertens – volume: 17 start-page: 1463 year: 1999 end-page: 1470 article-title: Detection of hypertensive patients at risk for paroxysmal atrial fibrillation during sinus rhythm by computer‐assisted P wave analysis publication-title: J Hypertens – volume: 11 start-page: 423 year: 2009 end-page: 434 article-title: The Registry of the German Competence Network on Atrial Fibrillation: Patient characteristics and initial management publication-title: Europace – volume: 37 start-page: 127 year: 2004 end-page: 132 article-title: An evaluation of postoperative P‐wave variables after cardiothoracic surgery publication-title: J Electrocardiol – volume: 88 start-page: 2618 year: 1993 end-page: 2622 article-title: Value of the P‐wave signal‐averaged ECG for predicting atrial fibrillation after cardiac surgery publication-title: Circulation – volume: 19 start-page: 266 year: 2014 end-page: 272 article-title: Usefulness of P‐wave signal averaging to predict atrial fibrillation recurrences after electrical cardioversion publication-title: Ann Noninvase Electrocardiol – volume: 10 start-page: 7 year: 2008 end-page: 13 article-title: Accuracy of electrocardiographic criteria for atrial enlargement: Validation with cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson – volume: 15 start-page: e36 year: 2010 end-page: e44 article-title: Figueredo VM. aVR—The forgotten lead publication-title: Exp Clin Cardiol – volume: 114 start-page: 1483 year: 2014 end-page: 1499 article-title: Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression publication-title: Circ Res – volume: 40 start-page: 1636 year: 2002 end-page: 1644 article-title: Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women publication-title: J Am Coll Cardiol – volume: 91 start-page: 265 year: 2011 end-page: 325 article-title: Pathophysiological mechanisms of atrial fibrillation: A translational appraisal publication-title: Physiol Rev – volume: 13 start-page: 378 year: 2008 end-page: 385 article-title: High‐resolution signal‐averaged analysis of atrial electromagnetic characteristics in patients with paroxysmal lone atrial fibrillation publication-title: Ann Noninvasive Electrocardiol – volume: 102 start-page: 573 year: 2008 end-page: 577 article-title: Usefulness of P‐wave dispersion in standard twelve‐lead electrocardiography to predict transition from paroxysmal to persistent atrial fibrillation publication-title: Am J Cardiol – volume: 107 start-page: 917 year: 2011 end-page: 921 article-title: P wave duration and risk of longitudinal atrial fibrillation in persons >/ = 60 years old (from the Framingham Heart Study) publication-title: Am J Cardiol – volume: 38 start-page: 1829 year: 2001 end-page: 1835 article-title: Left ventricular mass and cardiovascular morbidity in essential hypertension: The MAVI study publication-title: J Am Coll Cardiol – volume: 47 start-page: 106 year: 2014 end-page: 112 article-title: Shorter minimum P‐wave duration is associated with paroxysmal lone atrial fibrillation publication-title: J Electrocardiol – volume: 19 start-page: 57 year: 2014 end-page: 62 article-title: P‐wave abnormality predicts recurrence of atrial fibrillation after electrical cardioversion: A prospective study publication-title: Ann Noninvasive Electrocardiol – volume: 96 start-page: 2612 year: 1997 end-page: 2616 article-title: Prediction of transition to chronic atrial fibrillation in patients with paroxysmal atrial fibrillation by signal‐averaged electrocardiography: A prospective study publication-title: Circulation – volume: 15 start-page: 402 year: 2008 end-page: 407 article-title: Atrial conduction and atrial fibrillation: What can we learn from surface ECG? publication-title: Cardiol J – volume: 17 start-page: 161 year: 2012 end-page: 169 article-title: P‐wave morphology: Underlying mechanisms and clinical implications publication-title: Ann Noninvasive Electrocardiol – volume: 5 start-page: 413 year: 2008 end-page: 418 article-title: Interatrial conduction can be accurately determined using standard 12‐lead electrocardiography: Validation of P‐wave morphology using electroanatomic mapping in man publication-title: Heart Rhythm – volume: 15 start-page: 1111 year: 2004 end-page: 1117 article-title: High‐density mapping of left atrial endocardial activation during sinus rhythm and coronary sinus pacing in patients with paroxysmal atrial fibrillation publication-title: J Cardiovasc Electrophysiol – volume: 49 start-page: 498 year: 2007 end-page: 505 article-title: Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts publication-title: Hypertension – volume: 271 start-page: 840 year: 1994 end-page: 844 article-title: Independent risk factors for atrial fibrillation in a population‐based cohort. The Framingham Heart Study publication-title: J Am Med Assoc – volume: 285 start-page: 2370 year: 2001 end-page: 2375 article-title: Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study publication-title: J Am Med Assoc – ident: e_1_2_6_10_1 doi: 10.1016/j.amjcard.2008.04.065 – ident: e_1_2_6_8_1 doi: 10.1161/01.CIR.88.6.2618 – ident: e_1_2_6_3_1 doi: 10.1161/CIRCRESAHA.114.303211 – ident: e_1_2_6_22_1 doi: 10.1016/j.amjcard.2010.10.075 – ident: e_1_2_6_29_1 doi: 10.1016/j.jelectrocard.2013.09.038 – ident: e_1_2_6_16_1 doi: 10.1016/S0735-1097(02)02373-2 – ident: e_1_2_6_33_1 doi: 10.1016/j.hrthm.2007.12.017 – ident: e_1_2_6_31_1 doi: 10.1016/j.hrthm.2014.03.053 – ident: e_1_2_6_25_1 doi: 10.1111/anec.12131 – volume: 15 start-page: e36 year: 2010 ident: e_1_2_6_36_1 article-title: Figueredo VM. aVR—The forgotten lead publication-title: Exp Clin Cardiol – ident: e_1_2_6_13_1 doi: 10.1016/0735-1097(92)90385-Z – ident: e_1_2_6_21_1 doi: 10.1016/j.jelectrocard.2012.06.029 – ident: e_1_2_6_2_1 doi: 10.1001/jama.285.18.2370 – ident: e_1_2_6_23_1 doi: 10.1097/00004872-199917100-00015 – ident: e_1_2_6_24_1 doi: 10.1186/1532-429X-10-7 – ident: e_1_2_6_17_1 doi: 10.1152/physrev.00031.2009 – ident: e_1_2_6_7_1 doi: 10.1161/CIRCEP.108.806828 – ident: e_1_2_6_32_1 doi: 10.1111/j.1542-474X.2012.00534.x – ident: e_1_2_6_4_1 doi: 10.1161/01.HYP.0000257123.95372.ab – ident: e_1_2_6_18_1 doi: 10.1001/jama.1994.03510350050036 – ident: e_1_2_6_37_1 doi: 10.1016/j.ijcard.2004.03.039 – ident: e_1_2_6_14_1 doi: 10.1016/S0735-1097(01)01663-1 – ident: e_1_2_6_19_1 doi: 10.1161/CIRCRESAHA.114.302226 – ident: e_1_2_6_9_1 doi: 10.1161/01.CIR.96.8.2612 – ident: e_1_2_6_30_1 doi: 10.1016/S0002-9149(77)80209-9 – ident: e_1_2_6_26_1 doi: 10.1111/anec.12087 – ident: e_1_2_6_6_1 doi: 10.1038/jhh.2011.105 – ident: e_1_2_6_15_1 doi: 10.1093/europace/eun369 – ident: e_1_2_6_28_1 doi: 10.1111/j.1542-474X.2008.00255.x – volume: 15 start-page: 402 year: 2008 ident: e_1_2_6_20_1 article-title: Atrial conduction and atrial fibrillation: What can we learn from surface ECG? publication-title: Cardiol J – ident: e_1_2_6_38_1 doi: 10.1016/j.jelectrocard.2004.01.003 – ident: e_1_2_6_35_1 doi: 10.1016/j.hrthm.2004.09.009 – ident: e_1_2_6_5_1 doi: 10.1161/CIRCEP.107.754564 – ident: e_1_2_6_27_1 doi: 10.1111/j.1540-8159.2008.00990.x – ident: e_1_2_6_11_1 doi: 10.1111/j.1540-8159.2000.tb00913.x – ident: e_1_2_6_34_1 doi: 10.1046/j.1540-8167.2004.04078.x – ident: e_1_2_6_12_1 doi: 10.1097/HJH.0b013e328364ca4c |
SSID | ssj0022427 |
Score | 2.1053045 |
Snippet | Background
Hypertension entails atrial remodeling that affect P‐wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and... Hypertension entails atrial remodeling that affect P-wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and terminal force)... Background Hypertension entails atrial remodeling that affect P-wave (PW) duration on electrocardiogram (ECG). PW indices (e.g., variance, dispersion, and... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Aged atrial fibrillation Atrial Fibrillation - complications Atrial Fibrillation - physiopathology aVR lead Cardiac arrhythmia Case-Control Studies Electrocardiography - methods Electrocardiography - statistics & numerical data Female Humans Hypertension Hypertension - complications Hypertension - physiopathology Male Medical research Older people Original P wave Risk |
Title | P-Wave Duration in Lead aVR and the Risk of Atrial Fibrillation in Hypertension |
URI | https://api.istex.fr/ark:/67375/WNG-CQ7M9PRC-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fanec.12197 https://www.ncbi.nlm.nih.gov/pubmed/25200638 https://www.proquest.com/docview/1667307991 https://www.proquest.com/docview/1668237203 https://pubmed.ncbi.nlm.nih.gov/PMC6931737 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD4sK4gv3i_VVSKKoNClTZukBV-G2R0HYYbdwXXnRUqSJjjM0JG5iPjkT_A3-kvMSS_u6CLoWyGntEnOyfmSnPMdgOcsk0rQTIa2jKXboAgTZrlNQ6qjOFOS2iTCfOfRmA_P0rdTNt2D120uTM0P0R24oWX49RoNXKr1BSOXldHIjZBjKjkGayEimnTcUc41-XqtcYQQkkbThpsUw3h-vbrjja7gwH65DGr-GTF5Ecl6VzS4AR_aTtQRKPPD7UYd6q-_8Tv-by9vwvUGo5JerVS3YM9Ut-HqqLmFvwOnJz--fT-Xnw052tYKRGYVwWKdRL6fEFmVxMFKMpmt52RpSc9XBiEDTC5YLDr5odsBr3z8_LK6C2eD43f9YdiUZgi182YijLXkeSkdGJKcJcxwmgrrsFCSWGW4kVxRGaeCG65yluWRTlOWcKF1aTOJJ9H3YL9aVuYBEKXiWLtWZh3UMLx0q16pM0tl5uEYDeBlO0WFbnjLsXzGomj3LzhGhR-jAJ51sp9qto5LpV74me5E5GqO8W2CFefjN0X_VIzyk0m_OArgoFWFojHtdRFjodRIOFwdwNOu2Rkl3rS4jyy3XgZJgGiUBHC_1pzuYxSJrtyqF4DY0alOAAm_d1uq2UdP_M1zh_YS9_-vvMr8pYtFb3zc908P_0X4EVxzgJDVMXYHsL9Zbc1jB7o26ok3rp8FDycE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED_BJsFe-M8WNsAIhARSpsRJ7OSx6lYKrNVWbaxvlu04WtUqRf2DEE_7CHxGPgk-Jw0rTEjwFskXObHvfL-zz78DeJWkUnGaSr_IQ2kDFG78NCtin-ogTJWkRRTgfeden3XP4g_DZFjn5uBdmIofotlwQ8tw6zUaOG5IX7FyWRqN5AgZvwmbWNLbRVSDhj3KOidXsTUMEETSYFizk2Iiz6931_zRJg7t1-vA5p85k1exrHNGnbtVxdW54zDEHJTx_nKh9vW33xge__s_78GdGqaSVqVX9-GGKR_ArV59EP8QTo5_XH4_l18MOVhWOkRGJcF6nUR-GhBZ5sQiSzIYzcdkWpCWKw5COni_YDJp5Ls2CJ65FPpp-QjOOoen7a5fV2fwtXVo3A-1ZFkuLR6SLIkSw2jMCwuHoqhQhhnJFJVhzJlhKkvSLNBxnESMa50XqcTN6MewUU5LswNEqTDUtjUpLNowLLcLX67TgsrUITLqwZvVHAldU5djBY2JWIUwOEbCjZEHLxvZzxVhx7VSr91UNyJyNsYUN56I8_470T7hvex40BYHHuytdEHU1j0XIdZKDbiF1h68aJqtXeJhi-1kunQyyANEg8iD7Up1ms4ocl3Zhc8DvqZUjQByfq-3lKMLx_3NMgv4Ivv9b53O_OUXRat_2HZPT_5F-Dnc7p72jsTR-_7HXdiy-DCpUu72YGMxW5qnFoMt1DNnaT8BWOErHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzTxwv0SGGAEQgIpU-IkdiLtpWpXyqVVVzHWF2Q5ji2qVunUtQjxxE_gN-6X4OOkYYUJCd4i-ViO7XN8PtvH3wF4nqQy5zSVvilCaTcoXPtpZmKfqiBMc0lNFOB75_6A9Y7jt-NkvAUH67cwFT9Ec-CGluHWazTw08JcMHJZaoXcCBm_AjsxC1LU6c6oIY-yvsklbA0DxJA0GNfkpBjH86vuhjvawZH9ehnW_DNk8iKUdb6oex0-rXtRhaBM91fLfF99-43g8X-7eQOu1SCVtCqtuglburwFu_36Gv42HA3Pv_84kV806awqDSKTkmC2TiI_jogsC2JxJRlNzqZkbkjLpQYhXXxdMJs18j27BV64APp5eQeOu4cf2j2_zs3gK-vOuB8qybJCWjQkWRIlmtGYGwuGosjkmmnJcirDmDPN8ixJs0DFcRIxrlRhUolH0Xdhu5yX-j6QPA9DZUsTY7GGZoVd9gqVGipTh8eoBy_XUyRUTVyO-TNmYr2BwTESbow8eNbInlZ0HZdKvXAz3YjIxRQD3HgiTgavRfuI97PhqC06HuytVUHUtn0mQsyUGnALrD142hRbq8SrFtvIfOVkkAWIBpEH9yrNaRqjyHRllz0P-IZONQLI-L1ZUk4-O-Zvllm4F9n_f-VU5i9dFK3BYdt9PfgX4SewO-x0xfs3g3cP4aoFh0kVb7cH28vFSj-yAGyZP3Z29hPXyinX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P%E2%80%90Wave+Duration+in+Lead+aVR+and+the+Risk+of+Atrial+Fibrillation+in+Hypertension&rft.jtitle=Annals+of+noninvasive+electrocardiology&rft.au=Francia%2C+Pietro&rft.au=Ricotta%2C+Agnese&rft.au=Balla%2C+Cristina&rft.au=Adduci%2C+Carmen&rft.date=2015-03-01&rft.issn=1082-720X&rft.eissn=1542-474X&rft.volume=20&rft.issue=2&rft.spage=167&rft.epage=174&rft_id=info:doi/10.1111%2Fanec.12197&rft.externalDBID=10.1111%252Fanec.12197&rft.externalDocID=ANEC12197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-720X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-720X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-720X&client=summon |