GRETNA: a graph theoretical network analysis toolbox for imaging connectomics

Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network con...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 9; p. 386
Main Authors Wang, Jinhui, Wang, Xindi, Xia, Mingrui, Liao, Xuhong, Evans, Alan, He, Yong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 30.06.2015
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website.
AbstractList Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface; (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website (http://www.nitrc.org/projects/gretna/).
Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website.Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website.
Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website. 1
Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website.
Author Evans, Alan
Xia, Mingrui
He, Yong
Liao, Xuhong
Wang, Jinhui
Wang, Xindi
AuthorAffiliation 4 McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University Montreal, QC, Canada
3 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou, China
1 State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
2 Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
– name: 2 Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
– name: 3 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou, China
– name: 4 McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University Montreal, QC, Canada
Author_xml – sequence: 1
  givenname: Jinhui
  surname: Wang
  fullname: Wang, Jinhui
– sequence: 2
  givenname: Xindi
  surname: Wang
  fullname: Wang, Xindi
– sequence: 3
  givenname: Mingrui
  surname: Xia
  fullname: Xia, Mingrui
– sequence: 4
  givenname: Xuhong
  surname: Liao
  fullname: Liao, Xuhong
– sequence: 5
  givenname: Alan
  surname: Evans
  fullname: Evans, Alan
– sequence: 6
  givenname: Yong
  surname: He
  fullname: He, Yong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26175682$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhS1URB-wZ4UiselmBtuJXyyQqqqUSgUkVNaW49xkPDj2YCdA_z2emVK1lfDG1vW5n861zzE6CDEAQq8JXta1VO_6sJrHJcWELTGuJX-GjgjndMEIJwcPzofoOOc1xpxyRl6gQ8qJYFzSI_T58tvFzZez95WphmQ2q2paQUwwOWt8FWD6HdOPygTjb7PL1RSjb-Ofqo-pcqMZXBgqG0MAO8XR2fwSPe-Nz_Dqbj9B3z9e3Jx_Wlx_vbw6P7te2EYQvrB13YnWmJYownorreUCjAXSMYqVZdRCS1mHKeO9qm2DywLZqU7VNVCO6xN0ted20az1JhUv6VZH4_SuENOgTSozeNCqKWzJTS8EayxIxcBI1gkjWEtxSwvrw561mdsROgthSsY_gj6-CW6lh_hLN41kWJACOL0DpPhzhjzp0WUL3psAcc6acCUokQqrIn37RLqOcyqvmzWlijRCKL4Fvnno6N7Kv18rArwX2BRzTtDfSwjW22DoXTD0Nhh6F4zSwp-0WDeZycXtTM7_v_Ev1XW9-w
CitedBy_id crossref_primary_10_1007_s11682_023_00848_5
crossref_primary_10_3389_fncom_2022_885126
crossref_primary_10_3389_fneur_2022_763305
crossref_primary_10_3389_fpsyt_2017_00246
crossref_primary_10_2147_JPR_S406374
crossref_primary_10_3389_fnbeh_2017_00174
crossref_primary_10_3389_fneur_2022_834277
crossref_primary_10_1007_s00234_021_02770_3
crossref_primary_10_3389_fnhum_2021_634113
crossref_primary_10_3389_fnhum_2022_972538
crossref_primary_10_3389_fnagi_2022_754600
crossref_primary_10_3389_fnbeh_2020_563152
crossref_primary_10_3389_fneur_2022_982520
crossref_primary_10_3389_fnagi_2019_00237
crossref_primary_10_3389_fneur_2017_00179
crossref_primary_10_1111_ejn_16615
crossref_primary_10_3389_fneur_2022_850642
crossref_primary_10_1186_s12883_021_02525_w
crossref_primary_10_3389_fnagi_2020_00028
crossref_primary_10_3389_fneur_2020_556569
crossref_primary_10_3389_fnagi_2019_00113
crossref_primary_10_1007_s10548_024_01092_w
crossref_primary_10_1038_s42003_022_04148_4
crossref_primary_10_3389_fnins_2020_577887
crossref_primary_10_3389_fnagi_2023_1039496
crossref_primary_10_3389_fneur_2021_602716
crossref_primary_10_3389_fpsyg_2023_1264221
crossref_primary_10_1007_s10548_023_00962_z
crossref_primary_10_2147_DMSO_S400197
crossref_primary_10_3389_fnins_2021_620750
crossref_primary_10_3389_fnins_2022_885425
crossref_primary_10_1002_hbm_26194
crossref_primary_10_1136_bmjopen_2018_028188
crossref_primary_10_1111_cns_14414
crossref_primary_10_3389_fnhum_2017_00473
crossref_primary_10_3389_fnhum_2022_985986
crossref_primary_10_1111_ejn_16176
crossref_primary_10_3389_fnagi_2023_1117973
crossref_primary_10_3389_fnins_2023_1191859
crossref_primary_10_1007_s11265_020_01583_6
crossref_primary_10_3389_fnins_2021_726350
crossref_primary_10_3389_fnagi_2022_944925
crossref_primary_10_1088_1741_2552_ac5bf6
crossref_primary_10_3389_fnagi_2022_974114
crossref_primary_10_1038_s41598_020_79845_3
crossref_primary_10_1186_s12967_023_04164_w
crossref_primary_10_3390_e22090939
crossref_primary_10_3389_fnins_2022_829755
crossref_primary_10_3389_fneur_2021_710078
crossref_primary_10_3389_fnins_2022_864040
crossref_primary_10_1002_aur_2936
crossref_primary_10_1007_s11356_020_10728_w
crossref_primary_10_3389_fneur_2018_00608
crossref_primary_10_3389_fnins_2024_1508077
crossref_primary_10_1007_s00429_022_02488_9
crossref_primary_10_3389_fnins_2024_1417986
crossref_primary_10_3389_fnhum_2016_00114
crossref_primary_10_1080_0954898X_2023_2215860
crossref_primary_10_3389_fnins_2023_1140801
crossref_primary_10_3389_fnagi_2017_00279
crossref_primary_10_3389_fnins_2018_00235
crossref_primary_10_3389_fnins_2023_1203104
crossref_primary_10_1007_s12553_024_00823_0
crossref_primary_10_31083_j_jin2305102
crossref_primary_10_3389_fnins_2021_666651
crossref_primary_10_1007_s11682_021_00478_9
crossref_primary_10_3389_fnagi_2020_00246
crossref_primary_10_3389_fnagi_2018_00289
crossref_primary_10_1093_scan_nsab080
crossref_primary_10_3389_fnhum_2021_748919
crossref_primary_10_1007_s00429_021_02249_0
crossref_primary_10_31083_j_jin_2020_01_1188
crossref_primary_10_3389_fphys_2018_00067
crossref_primary_10_1002_aur_2827
crossref_primary_10_3390_s25051356
crossref_primary_10_1155_2020_8838498
crossref_primary_10_3389_fpsyt_2022_959696
crossref_primary_10_3389_fpsyg_2019_02945
crossref_primary_10_3389_fnhum_2021_667619
crossref_primary_10_1007_s11682_024_00915_5
crossref_primary_10_3389_fnhum_2018_00204
crossref_primary_10_1109_TCDS_2021_3101643
crossref_primary_10_3389_fpsyt_2023_1232015
crossref_primary_10_1038_s41598_025_86553_3
crossref_primary_10_1007_s11682_017_9713_z
crossref_primary_10_3389_fninf_2022_1032636
crossref_primary_10_3389_fonc_2022_840871
crossref_primary_10_3389_fpsyt_2019_00300
crossref_primary_10_3389_fnins_2022_987248
crossref_primary_10_3389_fnagi_2024_1459652
crossref_primary_10_1155_2018_8420658
crossref_primary_10_3389_fpsyt_2024_1516846
crossref_primary_10_3389_fneur_2022_790607
crossref_primary_10_1002_brb3_70102
crossref_primary_10_1162_netn_a_00409
crossref_primary_10_3389_fnagi_2022_905487
crossref_primary_10_1007_s11682_021_00554_0
crossref_primary_10_3389_fnins_2021_785595
crossref_primary_10_3389_fnins_2022_830808
crossref_primary_10_3389_fnins_2023_1131862
crossref_primary_10_1002_mp_17568
crossref_primary_10_1364_BOE_542078
crossref_primary_10_1002_alz_13068
crossref_primary_10_1111_ejn_16531
crossref_primary_10_3389_fnins_2017_00561
crossref_primary_10_3389_fnins_2021_782995
crossref_primary_10_3389_fnins_2019_00614
crossref_primary_10_3389_fnins_2022_1031163
crossref_primary_10_1007_s11357_025_01515_x
crossref_primary_10_1080_17470919_2023_2218619
crossref_primary_10_3389_fnagi_2022_884741
crossref_primary_10_1007_s00429_020_02200_9
crossref_primary_10_3389_fneur_2021_687959
crossref_primary_10_3389_fnins_2023_1084270
crossref_primary_10_1007_s11357_024_01366_y
crossref_primary_10_1111_jnp_12303
crossref_primary_10_1007_s11682_020_00390_8
crossref_primary_10_3389_fpsyg_2022_1002548
crossref_primary_10_1007_s00406_024_01847_3
crossref_primary_10_3389_fnagi_2024_1467054
crossref_primary_10_3389_fnins_2023_1011283
crossref_primary_10_1002_hbm_26038
crossref_primary_10_3389_fnins_2016_00235
crossref_primary_10_1186_s12885_019_5576_6
crossref_primary_10_1523_JNEUROSCI_1946_16_2016
crossref_primary_10_3389_fnagi_2021_630677
crossref_primary_10_18632_aging_102986
crossref_primary_10_3389_fneur_2022_1029669
crossref_primary_10_1002_ima_22844
crossref_primary_10_1007_s10902_023_00674_y
crossref_primary_10_3389_fnmol_2022_1001557
crossref_primary_10_3389_fnins_2022_952940
crossref_primary_10_3389_fnins_2021_722231
crossref_primary_10_3389_fpsyt_2023_1084443
crossref_primary_10_3389_fnins_2017_00214
crossref_primary_10_1007_s00330_023_10550_1
crossref_primary_10_3389_fneur_2024_1487985
crossref_primary_10_1007_s11682_021_00593_7
crossref_primary_10_3389_fnhum_2021_729677
crossref_primary_10_1002_hbm_26621
crossref_primary_10_3389_fnins_2022_913377
crossref_primary_10_1007_s11682_021_00571_z
crossref_primary_10_1002_jnr_25047
crossref_primary_10_3389_fnana_2017_00034
crossref_primary_10_1038_s41598_020_73679_9
crossref_primary_10_3389_fnins_2023_1117340
crossref_primary_10_1080_17470919_2020_1714718
crossref_primary_10_3389_fnhum_2022_907332
crossref_primary_10_5498_wjp_v12_i8_1016
crossref_primary_10_3389_fpsyt_2019_00691
crossref_primary_10_1155_2022_2731007
crossref_primary_10_3389_fnhum_2018_00138
crossref_primary_10_3389_fnagi_2020_00203
crossref_primary_10_3389_fneur_2018_01178
crossref_primary_10_2147_IJGM_S444384
crossref_primary_10_3389_fneur_2020_00684
crossref_primary_10_1002_alz_14130
crossref_primary_10_1541_ieejeiss_143_430
crossref_primary_10_3389_fneur_2020_00561
crossref_primary_10_1007_s11682_019_00220_6
crossref_primary_10_3389_fnhum_2020_00172
crossref_primary_10_2463_mrms_mp_2020_0081
crossref_primary_10_1631_jzus_B2300880
crossref_primary_10_1002_hbm_25883
crossref_primary_10_1002_jnr_25178
crossref_primary_10_3389_fnins_2022_852822
crossref_primary_10_2147_IJGM_S342673
crossref_primary_10_1541_ieejeiss_141_1059
crossref_primary_10_3389_fnhum_2021_654750
crossref_primary_10_1007_s11571_024_10091_3
crossref_primary_10_3389_fnins_2020_00344
crossref_primary_10_3389_fpsyg_2022_1051256
crossref_primary_10_1002_ejp_4702
crossref_primary_10_1007_s00406_020_01111_4
crossref_primary_10_1007_s11682_018_9843_y
crossref_primary_10_21769_BioProtoc_4221
crossref_primary_10_1007_s11682_020_00293_8
crossref_primary_10_3389_fnins_2022_814477
crossref_primary_10_1007_s00234_023_03209_7
crossref_primary_10_1007_s12035_017_0519_1
crossref_primary_10_1038_s41598_017_17069_8
crossref_primary_10_1186_s12993_025_00272_3
crossref_primary_10_1162_netn_a_00291
crossref_primary_10_1007_s11682_022_00658_1
crossref_primary_10_1007_s11682_020_00278_7
crossref_primary_10_3389_fimmu_2024_1345843
crossref_primary_10_1089_neu_2023_0183
crossref_primary_10_3389_fonc_2022_882313
crossref_primary_10_1007_s10548_024_01060_4
crossref_primary_10_1117_1_NPh_12_1_015011
crossref_primary_10_1007_s00429_020_02064_z
crossref_primary_10_1111_cns_14805
crossref_primary_10_1007_s11357_024_01393_9
crossref_primary_10_1007_s11571_022_09838_7
crossref_primary_10_3389_fnins_2022_833837
crossref_primary_10_1111_psyp_14209
crossref_primary_10_3389_fpsyg_2024_1464273
crossref_primary_10_14336_AD_2019_0929
crossref_primary_10_3389_fnins_2021_737993
crossref_primary_10_3389_fneur_2022_789655
crossref_primary_10_3389_fneur_2021_743135
crossref_primary_10_3389_fnagi_2021_755931
crossref_primary_10_1007_s11682_024_00922_6
crossref_primary_10_1007_s12671_024_02480_w
crossref_primary_10_3389_fnins_2022_898902
crossref_primary_10_1109_TCBB_2022_3222592
crossref_primary_10_1002_hbm_70198
crossref_primary_10_3389_fneur_2022_821470
crossref_primary_10_3389_fnhum_2022_948706
crossref_primary_10_3934_mbe_2022416
crossref_primary_10_1038_s42003_022_03190_6
crossref_primary_10_1155_2018_4325096
crossref_primary_10_1002_ird3_110
crossref_primary_10_1007_s00429_022_02517_7
crossref_primary_10_1186_s13098_024_01484_9
crossref_primary_10_3389_fnagi_2015_00169
crossref_primary_10_1111_psyp_14458
crossref_primary_10_1088_1741_2552_ac20e7
crossref_primary_10_3934_mbe_2024171
crossref_primary_10_1007_s11682_021_00521_9
crossref_primary_10_3389_fninf_2019_00010
crossref_primary_10_3389_fnins_2019_01249
crossref_primary_10_3389_fnins_2024_1458897
crossref_primary_10_3389_fnagi_2022_970159
crossref_primary_10_3389_fncom_2024_1387004
crossref_primary_10_3389_fnins_2022_1029388
crossref_primary_10_1007_s00234_022_03061_1
crossref_primary_10_3389_fnins_2021_630278
crossref_primary_10_1155_2022_8034757
crossref_primary_10_3389_fnins_2022_1087176
crossref_primary_10_3389_fnhum_2017_00636
crossref_primary_10_18632_oncotarget_22358
crossref_primary_10_3389_fnagi_2024_1426754
crossref_primary_10_1088_1741_2552_ac9ede
crossref_primary_10_3389_fninf_2018_00052
crossref_primary_10_1093_scan_nsae077
crossref_primary_10_3389_fnagi_2020_599112
crossref_primary_10_1007_s00429_024_02864_7
crossref_primary_10_3389_fneur_2022_880902
crossref_primary_10_3389_fnins_2019_01377
crossref_primary_10_3389_fnins_2022_952067
crossref_primary_10_3389_fnhum_2021_716719
crossref_primary_10_1038_s41598_024_58682_8
crossref_primary_10_3389_fnins_2018_00875
crossref_primary_10_1007_s11571_023_09939_x
crossref_primary_10_1212_WNL_0000000000207484
crossref_primary_10_1007_s00415_019_09645_x
crossref_primary_10_3389_fneur_2022_825177
crossref_primary_10_1007_s11682_020_00287_6
crossref_primary_10_1002_aur_3183
crossref_primary_10_1155_2021_2727596
crossref_primary_10_1038_s41598_020_76495_3
crossref_primary_10_3389_fnins_2021_693623
crossref_primary_10_52586_5041
crossref_primary_10_1002_hbm_25606
crossref_primary_10_3389_fneur_2021_668856
crossref_primary_10_3389_fneur_2022_869871
crossref_primary_10_3934_mbe_2021303
crossref_primary_10_1007_s10278_024_01230_7
crossref_primary_10_1038_s41598_017_00678_8
crossref_primary_10_3389_fnins_2023_1282232
crossref_primary_10_3389_fonc_2022_927771
crossref_primary_10_1007_s11682_021_00560_2
crossref_primary_10_1155_2020_4838291
crossref_primary_10_1002_hbm_25962
crossref_primary_10_1007_s11682_023_00839_6
crossref_primary_10_3389_fneur_2021_627130
crossref_primary_10_3389_fnins_2022_1035153
crossref_primary_10_1007_s00429_020_02119_1
crossref_primary_10_1007_s10548_023_00966_9
crossref_primary_10_1007_s00415_024_12545_4
crossref_primary_10_3389_fnagi_2018_00316
crossref_primary_10_1007_s11682_022_00671_4
crossref_primary_10_12677_CSA_2022_129224
crossref_primary_10_1186_s12967_024_05580_2
crossref_primary_10_3389_fnins_2018_00860
crossref_primary_10_62762_TIS_2024_680959
crossref_primary_10_1007_s10862_024_10178_5
crossref_primary_10_1007_s11682_021_00462_3
crossref_primary_10_1007_s00406_022_01505_6
crossref_primary_10_1007_s41105_021_00362_5
crossref_primary_10_1002_hbm_25836
crossref_primary_10_1038_s41598_021_82241_0
crossref_primary_10_3389_fnins_2024_1363255
crossref_primary_10_1007_s12194_022_00670_6
crossref_primary_10_3389_fnagi_2022_893297
crossref_primary_10_3389_fpsyt_2017_00205
crossref_primary_10_7554_eLife_58301
crossref_primary_10_3389_fnins_2021_757838
crossref_primary_10_3174_ajnr_A5527
crossref_primary_10_3389_fpsyg_2019_02235
crossref_primary_10_3389_fnagi_2021_728622
crossref_primary_10_3390_brainsci14090945
crossref_primary_10_1007_s11682_024_00865_y
crossref_primary_10_1117_1_NPh_6_2_025005
crossref_primary_10_31083_j_jin2201024
crossref_primary_10_1007_s11682_023_00809_y
crossref_primary_10_3389_fpsyt_2018_00090
crossref_primary_10_1007_s11682_020_00306_6
crossref_primary_10_3389_fnhum_2018_00513
crossref_primary_10_3389_fnagi_2020_00061
crossref_primary_10_3389_fnhum_2018_00514
crossref_primary_10_1007_s00415_021_10817_x
crossref_primary_10_1007_s11682_019_00241_1
crossref_primary_10_1155_2022_7495371
crossref_primary_10_3389_fneur_2020_01032
crossref_primary_10_1155_2020_8884318
crossref_primary_10_1155_2021_2804533
crossref_primary_10_1002_brb3_3241
crossref_primary_10_1161_HYPERTENSIONAHA_120_15296
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_3389_fnagi_2021_639529
crossref_primary_10_1007_s12035_023_03597_0
crossref_primary_10_1155_2023_5522658
crossref_primary_10_1162_netn_a_00356
crossref_primary_10_1002_brb3_3488
crossref_primary_10_2147_JPR_S470194
crossref_primary_10_3389_fnins_2022_903703
crossref_primary_10_3389_fnagi_2022_1041744
crossref_primary_10_1021_acschemneuro_1c00256
crossref_primary_10_3389_fnins_2021_746264
crossref_primary_10_5057_ijae_IJAE_D_20_00026
crossref_primary_10_1186_s10194_024_01899_9
crossref_primary_10_3389_fpsyt_2023_1152332
crossref_primary_10_3389_fonc_2023_1098748
crossref_primary_10_3389_fpsyg_2023_1181989
crossref_primary_10_3389_fnagi_2025_1498666
crossref_primary_10_1002_hbm_26345
crossref_primary_10_3389_fnins_2023_1158928
crossref_primary_10_3389_fnhum_2016_00552
crossref_primary_10_1007_s11682_024_00888_5
crossref_primary_10_1007_s40846_021_00676_2
crossref_primary_10_7759_cureus_70133
crossref_primary_10_1007_s11682_022_00702_0
crossref_primary_10_18632_aging_102939
crossref_primary_10_3389_fnins_2022_814745
crossref_primary_10_3390_anesthres1030018
crossref_primary_10_3389_fninf_2020_00039
crossref_primary_10_3389_fpsyt_2022_973921
crossref_primary_10_31083_j_jin2306117
crossref_primary_10_3389_fneur_2018_00363
crossref_primary_10_3389_fnagi_2022_1002642
crossref_primary_10_1002_hbm_26450
crossref_primary_10_1089_brain_2022_0020
crossref_primary_10_1002_hbm_26577
crossref_primary_10_1002_eat_23939
crossref_primary_10_1007_s11682_022_00704_y
crossref_primary_10_3389_fnins_2025_1519939
crossref_primary_10_1089_neu_2022_0257
crossref_primary_10_3389_fpsyt_2021_771147
crossref_primary_10_1007_s11682_021_00563_z
crossref_primary_10_3174_ajnr_A8115
crossref_primary_10_3389_fnins_2021_642390
crossref_primary_10_3390_brainsci14111122
crossref_primary_10_1002_brb3_2969
crossref_primary_10_3389_fnins_2023_1272514
crossref_primary_10_3389_fneur_2022_913241
crossref_primary_10_1007_s00429_016_1243_8
crossref_primary_10_1038_srep46522
ContentType Journal Article
Copyright 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2015 Wang, Wang, Xia, Liao, Evans and He. 2015 Wang, Wang, Xia, Liao, Evans and He
Copyright_xml – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2015 Wang, Wang, Xia, Liao, Evans and He. 2015 Wang, Wang, Xia, Liao, Evans and He
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2015.00386
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_9467e86af7754ce895ea85d7a75b20b2
PMC4485071
26175682
10_3389_fnhum_2015_00386
Genre Journal Article
GeographicLocations Beijing China
Montreal Quebec Canada
China
GeographicLocations_xml – name: China
– name: Beijing China
– name: Montreal Quebec Canada
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  grantid: 81225012
– fundername: Beijing Natural Science Foundation
  grantid: Z111107067311036; 7102090
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ13C090001
– fundername: Natural Science Foundation
  grantid: 81030028; 31221003; 30870667; 81401479
– fundername: Beijing Funding for Training Talents
  grantid: 2012D009012000003
– fundername: National Key Basic Research Program of China
  grantid: 2014CB846102
– fundername: Open Research Fund of Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments
  grantid: PD11001005002013
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IHW
IPNFZ
IPY
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4716-c33d7baab1915fc8cc67eace1d5209c52ceb25d0256f93c40000e8d9d933e2603
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:29:35 EDT 2025
Thu Aug 21 17:41:58 EDT 2025
Fri Jul 11 13:04:23 EDT 2025
Fri Jul 25 11:59:15 EDT 2025
Thu Jan 02 22:40:54 EST 2025
Tue Jul 01 03:44:11 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords connectome
hub
resting fMRI
graph theory
small-world
network
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4716-c33d7baab1915fc8cc67eace1d5209c52ceb25d0256f93c40000e8d9d933e2603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors have contributed equally to this work.
Edited by: Wei Gao, University of North Carolina at Chapel Hill, USA
Reviewed by: Qingbao Yu, The Mind Research Network, USA; Fumihiko Taya, National University of Singapore, Singapore
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2015.00386
PMID 26175682
PQID 2291477961
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_9467e86af7754ce895ea85d7a75b20b2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4485071
proquest_miscellaneous_1697218909
proquest_journals_2291477961
pubmed_primary_26175682
crossref_primary_10_3389_fnhum_2015_00386
crossref_citationtrail_10_3389_fnhum_2015_00386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-30
PublicationDateYYYYMMDD 2015-06-30
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-30
  day: 30
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2015
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48
16089800 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):065103
24179229 - Science. 2013 Nov 1;342(6158):1238411
20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43
10975887 - Magn Reson Med. 2000 Sep;44(3):373-8
23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34
25514514 - Neuroimage. 2015 Feb 15;107:345-55
10329292 - Neuroimage. 1999 May;9(5):526-33
21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48
25083734 - Brain Connect. 2014 Dec;4(10):780-90
20493761 - Trends Cogn Sci. 2010 Jun;14(6):277-90
15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42
24238779 - Trends Cogn Sci. 2013 Dec;17(12):641-7
19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
23899725 - Neuroimage. 2013 Dec;83:969-82
22432450 - Brain Connect. 2011;1(5):349-65
18567609 - Cereb Cortex. 2009 Mar;19(3):524-36
20600983 - Neuroimage. 2010 Dec;53(4):1197-207
24982140 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6
21878484 - Cereb Cortex. 2012 Jul;22(7):1530-41
22808240 - PLoS One. 2012;7(7):e40709
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
10659085 - Memory. 1999 Sep-Nov;7(5-6):523-48
16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42
23898179 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13642-7
21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
10348457 - J Comput Assist Tomogr. 1999 May-Jun;23(3):463-73
19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73
16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
9651132 - Cereb Cortex. 1998 Jun;8(4):372-84
20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9
21194570 - Neuroimage. 2011 Apr 1;55(3):1132-46
22412922 - PLoS One. 2012;7(3):e32766
21757015 - Neuroimage. 2011 Sep 15;58(2):588-94
19819337 - Neuroimage. 2010 Sep;52(3):1059-69
21130115 - J Neurosci Methods. 2011 Feb 15;195(2):261-9
20035887 - Neuroimage. 2010 Apr 15;50(3):970-83
9558644 - Neuroimage. 1998 Feb;7(2):119-32
21791259 - Biol Psychiatry. 2011 Aug 15;70(4):334-42
12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81
25186238 - Nat Rev Neurosci. 2014 Oct;15(10):683-95
20829489 - Science. 2010 Sep 10;329(5997):1358-61
21980454 - PLoS One. 2011;6(9):e25423
17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
23804091 - J Neurosci. 2013 Jun 26;33(26):10676-87
12636753 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112
17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17
21151783 - Front Neurosci. 2010 Dec 08;4:200
23439846 - Front Hum Neurosci. 2013 Feb 21;7:42
16452642 - Cereb Cortex. 2007 Jan;17(1):92-9
25619771 - Hum Brain Mapp. 2015 May;36(5):1828-46
11771995 - Neuroimage. 2002 Jan;15(1):273-89
22919427 - Comput Math Methods Med. 2012;2012:130985
18597554 - PLoS Biol. 2008 Jul 1;6(7):e159
16731517 - Neuron. 2006 Jun 1;50(5):799-812
18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66
20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50
26347640 - Front Hum Neurosci. 2015;9:458
9918726 - Neuroimage. 1999 Jan;9(1):18-45
20589099 - Front Syst Neurosci. 2010 Jun 07;4:16
23861951 - PLoS One. 2013 Jul 04;8(7):e68910
23840672 - PLoS One. 2013 Jun 28;8(6):e67354
21888983 - Neuroimage. 2012 Jan 16;59(2):1404-12
19439423 - Brain. 2009 Dec;132(Pt 12):3366-79
2260847 - Ann Neurol. 1990 Nov;28(5):597-613
19889849 - J Neurophysiol. 2010 Jan;103(1):297-321
23641208 - Front Hum Neurosci. 2013 May 01;7:168
11988575 - Science. 2002 May 3;296(5569):910-3
14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8
21118724 - Neuroimage. 2011 Mar 1;55(1):287-95
12144443 - Phys Rev Lett. 2002 Jul 29;89(5):054101
19909818 - Neuroimage. 2010 Feb 15;49(4):3132-48
12443515 - Phys Rev Lett. 2002 Nov 11;89(20):208701
24657780 - Neuroimage. 2014 Aug 1;96:22-35
21060892 - PLoS One. 2010 Oct 28;5(10):e13701
17611629 - PLoS One. 2007 Jul 04;2(7):e597
21858129 - PLoS One. 2011;6(8):e23460
22343126 - Neuroimage. 2012 May 1;60(4):2096-106
21949842 - PLoS One. 2011;6(9):e25031
15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
24120645 - Lancet Neurol. 2013 Dec;12(12):1189-99
12399590 - Science. 2002 Oct 25;298(5594):824-7
24657353 - Neuroimage. 2014 Jul 15;95:287-304
10408769 - Hum Brain Mapp. 1999;7(4):254-66
23182443 - Schizophr Res. 2013 Jan;143(1):165-71
17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104
24246488 - Neuroimage. 2014 Feb 15;87:265-75
17919927 - Neuroimage. 2008 Jan 1;39(1):279-89
15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
17240167 - Neuroimage. 2007 Mar;35(1):83-8
9623998 - Nature. 1998 Jun 4;393(6684):440-2
15319512 - Neuroinformatics. 2004;2(2):145-62
22493575 - Front Neuroinform. 2012 Apr 03;6:7
25725332 - J Neurosci Methods. 2015 Apr 30;245:107-15
18649353 - Hum Brain Mapp. 2009 May;30(5):1511-23
11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701
22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86
22642651 - Brain Connect. 2012;2(3):125-41
25331602 - Cereb Cortex. 2015 Oct;25(10):3723-42
18976716 - Neuroimage. 2009 Feb 1;44(3):893-905
19782143 - Neuroimage. 2010 Jan 15;49(2):1432-45
24055506 - Neuroimage. 2014 Jan 1;84:888-900
20457896 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9885-90
25641208 - Hum Brain Mapp. 2015 May;36(5):1995-2013
19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16
22008374 - Neuroimage. 2012 Feb 1;59(3):2196-207
21818285 - PLoS One. 2011;6(7):e21976
17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19
24473186 - J Alzheimers Dis. 2014;40(2):387-97
19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381
19339462 - J Neurophysiol. 2009 Jun;101(6):3270-83
22099467 - Neuron. 2011 Nov 17;72(4):665-78
17466539 - Neuroimage. 2007 Jul 1;36(3):645-60
21073960 - Neuroimage. 2011 Feb 14;54(4):2683-94
23029235 - PLoS One. 2012;7(9):e45771
References_xml – reference: 11988575 - Science. 2002 May 3;296(5569):910-3
– reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 25514514 - Neuroimage. 2015 Feb 15;107:345-55
– reference: 19909818 - Neuroimage. 2010 Feb 15;49(4):3132-48
– reference: 23898179 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13642-7
– reference: 23899725 - Neuroimage. 2013 Dec;83:969-82
– reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
– reference: 21073960 - Neuroimage. 2011 Feb 14;54(4):2683-94
– reference: 22412922 - PLoS One. 2012;7(3):e32766
– reference: 21757015 - Neuroimage. 2011 Sep 15;58(2):588-94
– reference: 12443515 - Phys Rev Lett. 2002 Nov 11;89(20):208701
– reference: 10329292 - Neuroimage. 1999 May;9(5):526-33
– reference: 12399590 - Science. 2002 Oct 25;298(5594):824-7
– reference: 21194570 - Neuroimage. 2011 Apr 1;55(3):1132-46
– reference: 25083734 - Brain Connect. 2014 Dec;4(10):780-90
– reference: 23840672 - PLoS One. 2013 Jun 28;8(6):e67354
– reference: 24238779 - Trends Cogn Sci. 2013 Dec;17(12):641-7
– reference: 21151783 - Front Neurosci. 2010 Dec 08;4:200
– reference: 20829489 - Science. 2010 Sep 10;329(5997):1358-61
– reference: 22919427 - Comput Math Methods Med. 2012;2012:130985
– reference: 21791259 - Biol Psychiatry. 2011 Aug 15;70(4):334-42
– reference: 21818285 - PLoS One. 2011;6(7):e21976
– reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159
– reference: 17611629 - PLoS One. 2007 Jul 04;2(7):e597
– reference: 9651132 - Cereb Cortex. 1998 Jun;8(4):372-84
– reference: 23641208 - Front Hum Neurosci. 2013 May 01;7:168
– reference: 16731517 - Neuron. 2006 Jun 1;50(5):799-812
– reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
– reference: 17919927 - Neuroimage. 2008 Jan 1;39(1):279-89
– reference: 10348457 - J Comput Assist Tomogr. 1999 May-Jun;23(3):463-73
– reference: 24473186 - J Alzheimers Dis. 2014;40(2):387-97
– reference: 22493575 - Front Neuroinform. 2012 Apr 03;6:7
– reference: 18649353 - Hum Brain Mapp. 2009 May;30(5):1511-23
– reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
– reference: 19339462 - J Neurophysiol. 2009 Jun;101(6):3270-83
– reference: 10408769 - Hum Brain Mapp. 1999;7(4):254-66
– reference: 20493761 - Trends Cogn Sci. 2010 Jun;14(6):277-90
– reference: 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9
– reference: 9918726 - Neuroimage. 1999 Jan;9(1):18-45
– reference: 23804091 - J Neurosci. 2013 Jun 26;33(26):10676-87
– reference: 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701
– reference: 21858129 - PLoS One. 2011;6(8):e23460
– reference: 21060892 - PLoS One. 2010 Oct 28;5(10):e13701
– reference: 22432450 - Brain Connect. 2011;1(5):349-65
– reference: 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321
– reference: 18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66
– reference: 22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81
– reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
– reference: 12144443 - Phys Rev Lett. 2002 Jul 29;89(5):054101
– reference: 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36
– reference: 2260847 - Ann Neurol. 1990 Nov;28(5):597-613
– reference: 25641208 - Hum Brain Mapp. 2015 May;36(5):1995-2013
– reference: 26347640 - Front Hum Neurosci. 2015;9:458
– reference: 17240167 - Neuroimage. 2007 Mar;35(1):83-8
– reference: 20457896 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9885-90
– reference: 16089800 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):065103
– reference: 10659085 - Memory. 1999 Sep-Nov;7(5-6):523-48
– reference: 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42
– reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2
– reference: 17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104
– reference: 20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43
– reference: 21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48
– reference: 23439846 - Front Hum Neurosci. 2013 Feb 21;7:42
– reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
– reference: 19439423 - Brain. 2009 Dec;132(Pt 12):3366-79
– reference: 24179229 - Science. 2013 Nov 1;342(6158):1238411
– reference: 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17
– reference: 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905
– reference: 16452642 - Cereb Cortex. 2007 Jan;17(1):92-9
– reference: 21878484 - Cereb Cortex. 2012 Jul;22(7):1530-41
– reference: 12636753 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112
– reference: 20600983 - Neuroimage. 2010 Dec;53(4):1197-207
– reference: 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16
– reference: 10975887 - Magn Reson Med. 2000 Sep;44(3):373-8
– reference: 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34
– reference: 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42
– reference: 21888983 - Neuroimage. 2012 Jan 16;59(2):1404-12
– reference: 17466539 - Neuroimage. 2007 Jul 1;36(3):645-60
– reference: 24246488 - Neuroimage. 2014 Feb 15;87:265-75
– reference: 21118724 - Neuroimage. 2011 Mar 1;55(1):287-95
– reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78
– reference: 25619771 - Hum Brain Mapp. 2015 May;36(5):1828-46
– reference: 21130115 - J Neurosci Methods. 2011 Feb 15;195(2):261-9
– reference: 23861951 - PLoS One. 2013 Jul 04;8(7):e68910
– reference: 24982140 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6
– reference: 20035887 - Neuroimage. 2010 Apr 15;50(3):970-83
– reference: 25331602 - Cereb Cortex. 2015 Oct;25(10):3723-42
– reference: 24055506 - Neuroimage. 2014 Jan 1;84:888-900
– reference: 20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50
– reference: 25725332 - J Neurosci Methods. 2015 Apr 30;245:107-15
– reference: 21980454 - PLoS One. 2011;6(9):e25423
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69
– reference: 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8
– reference: 22642651 - Brain Connect. 2012;2(3):125-41
– reference: 21949842 - PLoS One. 2011;6(9):e25031
– reference: 22008374 - Neuroimage. 2012 Feb 1;59(3):2196-207
– reference: 24657353 - Neuroimage. 2014 Jul 15;95:287-304
– reference: 24120645 - Lancet Neurol. 2013 Dec;12(12):1189-99
– reference: 20589099 - Front Syst Neurosci. 2010 Jun 07;4:16
– reference: 15319512 - Neuroinformatics. 2004;2(2):145-62
– reference: 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381
– reference: 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48
– reference: 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19
– reference: 23182443 - Schizophr Res. 2013 Jan;143(1):165-71
– reference: 23029235 - PLoS One. 2012;7(9):e45771
– reference: 19782143 - Neuroimage. 2010 Jan 15;49(2):1432-45
– reference: 24657780 - Neuroimage. 2014 Aug 1;96:22-35
– reference: 19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73
– reference: 25186238 - Nat Rev Neurosci. 2014 Oct;15(10):683-95
– reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
– reference: 9558644 - Neuroimage. 1998 Feb;7(2):119-32
– reference: 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
– reference: 22808240 - PLoS One. 2012;7(7):e40709
– reference: 22343126 - Neuroimage. 2012 May 1;60(4):2096-106
– reference: 22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86
SSID ssj0062651
Score 2.62226
Snippet Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies...
Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 386
SubjectTerms Brain mapping
Brain research
connectome
Construction
EEG
Electroencephalography
Functional magnetic resonance imaging
graph theory
Hub
Laboratories
modularity
network
Neural networks
Neuroimaging
Neuroscience
Neurosciences
NMR
Nuclear magnetic resonance
Researchers
Schizophrenia
Small-world
Spectrum analysis
Statistical analysis
Structure-function relationships
User interface
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4tr6IIIKHsrZJ2sbbKj4Q9CAK3kJeRUFbcXdB_70zSXfZFdGL175IJ5PON-k33xByUHtXskyYlLGCp9yLPJWWy1RnSNL1XHKHxck3t8XVA79-FI9Trb6QExblgaPhetgC3leFrlGqzfpKCq8r4UpdCpMfm_D1hZg3TqbiNxhQusjiT0lIwWSvbp5GWHae4QYKw7rpqSAUtPp_ApjfeZJTgediiSx2iJH240iXyZxvVshqv4Fs-fWTHtLA4Qyb46vk5vLu_P62f0I1DUrUdKpOkTaR8U11p0NCh237YtoPCriVPr-GdkXUIvHFDrFWebBGHi7O78-u0q5hQmohxhSpZcyVRmsDSRhys6wF22nrM4dkFytyC3m0cAhzasksx2DlKyedZMxDYsPWyXzTNn6TUGeNAexjeF15mEGvuRBO2LwGAFMZbxLSG1tQ2U5NHJtavCjIKtDmKthcoc1VsHlCjiZ3vEUljV-uPcVJmVyHGtjhAHiG6jxD_eUZCdkZT6nqFuZA5bnMeFnKIkvI_uQ0LCn8T6Ib344GKitQ0qiSxzIhG9EDJiNBAXtRVPDwcsY3ZoY6e6Z5fgqy3ZAII_je-o932yYLaK1IXNwh88P3kd8FdDQ0e2EhfAGIrw9m
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA5WX_pSbK3tWisRSsGH5dxNspv0pZxyVgoeRRR8C_m1VdBd9e6g_vfOZHPXu1J83ewuYZJMvkm--YaQL03wNSuEzRmreM6DKHPluMpNgSTdwBX3mJx8Nq5OL_nPK3GVDtwmiVY594nRUfvO4Rn5oCxVwetaVcX3-4ccq0bh7WoqofGKbIALlhB8bRyNxr_O574Y0Loo-stJCMXUoGmvZ5h-XuBBCsP86aXNKGr2_w9o_suXXNqATjbJm4Qc6bAf6rdkLbTvyNawhaj57ol-pZHLGQ_Jt8jZj_PRxXj4jRoaFanpUr4ibXvmNzVJj4ROu-7Wdn8o4Fd6cxfLFlGHBBg3xZzlyXtyeTK6OD7NU-GE3MFeU-WOMV9bYywEY8jRcq6qwcGGwiPpxYnSQTwtPMKdRjHHcdMK0iuvGAsQ4LBtst52bfhIqHfWAgayvJEBRjIYLoQXrmwAyEgbbEYGcwtql1TFsbjFrYboAm2uo8012lxHm2fkYPHFfa-o8cK7Rzgoi_dQCzs-6B5_67S0tAJfH2RlGhTzc0Eq6KUUvja1sOWhLTOyOx9SnRboRP-dThnZXzTD0sL7EtOGbjbRRYXSRlIdqox86GfAoicoZC8qCT-vV-bGSldXW9qb6yjfDQExgvCdl7v1ibxGO_TUxF2yPn2chc-Af6Z2L03yZzmLCGs
  priority: 102
  providerName: ProQuest
Title GRETNA: a graph theoretical network analysis toolbox for imaging connectomics
URI https://www.ncbi.nlm.nih.gov/pubmed/26175682
https://www.proquest.com/docview/2291477961
https://www.proquest.com/docview/1697218909
https://pubmed.ncbi.nlm.nih.gov/PMC4485071
https://doaj.org/article/9467e86af7754ce895ea85d7a75b20b2
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7a5NJLaZo-3KSLCqXQg5vYkmyrUMqmbBIKu5SQhb0J6-EksLHbfUDy7zsje7fZsvTQiw-2BGI04_lGmvkG4H3lXc4TaWLOMxELL9NYWaHiMqEkXS-UcFScPBxl52PxfSInf8qjOwHOt4Z21E9qPJt-uvt1_xUN_gtFnOhvj6r6eklF5Qkdj_Aiewy76JdyMtOhWN8pIHKXSXtRuXUW0QKjO5dZkW74qEDlvw1__p1G-cAvnT6Dpx2gZP1WA_bgka-fw36_xmD69p59YCHFM5yd78Pw7GJwOep_ZiULRNXsQRkjq9uEcFZ2NCVs0TRT09wxhLXs5jZ0M2KW8mLsgkqZ5y9gfDq4_HYed_0UYosuKIst5y43ZWkwRqPULWuzHP-7PnGUC2NlajHMlo5QUKW4FeTLfOGUU5x7jHv4S9ipm9q_BuasMQiNjKgKjxvsSyGlkzatEN8UxpsIjlYS1LYjG6eeF1ONQQeJXwfxaxK_DuKP4ON6xs-WaOMfY09oU9bjiCI7vGhmV7qzOK3QBfgiKyvi-LO-ULjKQrq8zKVJj00aweFqS_VK7XSaqkTkucqSCN6tP6PF0TVKWftmOddJRoxHhTpWEbxqNWC9kpUGRZBv6MbGUje_1DfXgdUb42TC5m_-e-YBPCERtcmMh7CzmC39W0RMC9OD3ZPB6MdFL5w44PNskvSCcfwGvtgbeQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAXBJSPQIFFAiQOVmp71_YiIZRCSkqbCFWp1NvW-2FaqbVLkwj6p_iNzKztkCDUW6-xY61mZ2fn7b55A_C6cDaNQ6GDOE54wJ2IAmm4DPKQSLqOS26pOHk0ToaH_OuROFqD320tDNEq25joA7WtDJ2R96JIhjxNZRJ-vPgRUNcoul1tW2jUbrHnrn4iZJt-2P2M8_sminYGk0_DoOkqEBgMxElg4timOs81IhUiMBmTpBh9XGiJEWJEZBBsCku5QCFjwymiu8xKi9DfYfYf43dvwTqPEcp0YH17MP520MZ-RAcirC9DEfrJXlGezKncPaSDm5jqtZc2P98j4H-J7b_8zKUNb-ce3G0yVdavXes-rLnyAWz0S0Tp51fsLfPcUX8ovwGjLweDybj_nuXMK2CzpfpIVtZMc5Y3-idsVlVnuvrFMF9mp-e-TRIzRLgxM6qRnj6Ewxsx6SPolFXpngCzRmvMuTQvMoee43IuhBUmKjBxyrTTXei1FlSmUTGnZhpnCtEM2Vx5myuyufI278K7xT8uagWPa97dpklZvEfa2_6H6vK7apaykri3uCzJCxIPNC6TOMpM2DRPhY62dNSFzXZKVRMQpuqv-3bh1eIxLmW6n8lLV82nKkxISimTW7ILj2sPWIyEhPNFkuHH0xXfWBnq6pPy9MTLhSMAp6T_6fXDegm3h5PRvtrfHe89gztkk5oWuQmd2eXcPcfca6ZfNA7P4Pim19gfhvBFKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkK8IGD86DbASIDEQ9QmsZMYCaGOtWyMVdO0SXsz8Y-wSVsy1lawf42_jjsnKS1Ce9trk0bW-Xy-z_7uO4DXhbNpHAodxHHCA-5EFEjDZZCHRNJ1XHJLxcn742TnmH85EScr8LuthSFaZRsTfaC2laEz8l4UyZCnqUzCXtHQIg62Rx8vfwTUQYpuWtt2GrWL7LnrnwjfJh92t3Gu30TRaHj0aSdoOgwEBoNyEpg4tqnOc42ohchMxiQpRiIXWmKHGBEZBJ7CUl5QyNhwiu4us9LKOHaIBGL87h1YTREV9TuwujUcHxy2-wAiBRHWF6MIA2WvKE9nVPoe0iFOTLXbCxuh7xfwvyT3X67mwuY3egD3m6yVDWo3ewgrrnwEa4MSEfvFNXvLPI_UH9Cvwf7nw-HRePCe5cyrYbOFWklW1qxzljdaKGxaVee6-sUwd2ZnF75lEjNEvjFTqpeePIbjWzHpE-iUVemeAbNGa8y_NC8yh17kci6EFSYqMInKtNNd6LUWVKZRNKfGGucKkQ3ZXHmbK7K58jbvwrv5Py5rNY8b3t2iSZm_Rzrc_ofq6rtqlrWSuM-4LMkLEhI0LpM4ykzYNE-Fjvo66sJmO6WqCQ4T9deVu_Bq_hiXNd3V5KWrZhMVJiSrlMm-7MLT2gPmIyERfZFk-PF0yTeWhrr8pDw79dLhCMYJAKzfPKyXcBfXlvq6O97bgHtkkpohuQmd6dXMPcc0bKpfNP7O4NttL7E_bVBJXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRETNA%3A+a+graph+theoretical+network+analysis+toolbox+for+imaging+connectomics&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Wang%2C+Jinhui&rft.au=Wang%2C+Xindi&rft.au=Xia%2C+Mingrui&rft.au=Liao%2C+Xuhong&rft.date=2015-06-30&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=9&rft_id=info:doi/10.3389%2Ffnhum.2015.00386&rft_id=info%3Apmid%2F26175682&rft.externalDocID=PMC4485071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon