GRETNA: a graph theoretical network analysis toolbox for imaging connectomics
Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network con...
Saved in:
Published in | Frontiers in human neuroscience Vol. 9; p. 386 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
30.06.2015
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website. |
---|---|
AbstractList | Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface; (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website (http://www.nitrc.org/projects/gretna/). Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website.Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website. Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website. 1 Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website. |
Author | Evans, Alan Xia, Mingrui He, Yong Liao, Xuhong Wang, Jinhui Wang, Xindi |
AuthorAffiliation | 4 McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University Montreal, QC, Canada 3 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou, China 1 State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China 2 Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China – name: 2 Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China – name: 3 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou, China – name: 4 McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University Montreal, QC, Canada |
Author_xml | – sequence: 1 givenname: Jinhui surname: Wang fullname: Wang, Jinhui – sequence: 2 givenname: Xindi surname: Wang fullname: Wang, Xindi – sequence: 3 givenname: Mingrui surname: Xia fullname: Xia, Mingrui – sequence: 4 givenname: Xuhong surname: Liao fullname: Liao, Xuhong – sequence: 5 givenname: Alan surname: Evans fullname: Evans, Alan – sequence: 6 givenname: Yong surname: He fullname: He, Yong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26175682$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhS1URB-wZ4UiselmBtuJXyyQqqqUSgUkVNaW49xkPDj2YCdA_z2emVK1lfDG1vW5n861zzE6CDEAQq8JXta1VO_6sJrHJcWELTGuJX-GjgjndMEIJwcPzofoOOc1xpxyRl6gQ8qJYFzSI_T58tvFzZez95WphmQ2q2paQUwwOWt8FWD6HdOPygTjb7PL1RSjb-Ofqo-pcqMZXBgqG0MAO8XR2fwSPe-Nz_Dqbj9B3z9e3Jx_Wlx_vbw6P7te2EYQvrB13YnWmJYownorreUCjAXSMYqVZdRCS1mHKeO9qm2DywLZqU7VNVCO6xN0ted20az1JhUv6VZH4_SuENOgTSozeNCqKWzJTS8EayxIxcBI1gkjWEtxSwvrw561mdsROgthSsY_gj6-CW6lh_hLN41kWJACOL0DpPhzhjzp0WUL3psAcc6acCUokQqrIn37RLqOcyqvmzWlijRCKL4Fvnno6N7Kv18rArwX2BRzTtDfSwjW22DoXTD0Nhh6F4zSwp-0WDeZycXtTM7_v_Ev1XW9-w |
CitedBy_id | crossref_primary_10_1007_s11682_023_00848_5 crossref_primary_10_3389_fncom_2022_885126 crossref_primary_10_3389_fneur_2022_763305 crossref_primary_10_3389_fpsyt_2017_00246 crossref_primary_10_2147_JPR_S406374 crossref_primary_10_3389_fnbeh_2017_00174 crossref_primary_10_3389_fneur_2022_834277 crossref_primary_10_1007_s00234_021_02770_3 crossref_primary_10_3389_fnhum_2021_634113 crossref_primary_10_3389_fnhum_2022_972538 crossref_primary_10_3389_fnagi_2022_754600 crossref_primary_10_3389_fnbeh_2020_563152 crossref_primary_10_3389_fneur_2022_982520 crossref_primary_10_3389_fnagi_2019_00237 crossref_primary_10_3389_fneur_2017_00179 crossref_primary_10_1111_ejn_16615 crossref_primary_10_3389_fneur_2022_850642 crossref_primary_10_1186_s12883_021_02525_w crossref_primary_10_3389_fnagi_2020_00028 crossref_primary_10_3389_fneur_2020_556569 crossref_primary_10_3389_fnagi_2019_00113 crossref_primary_10_1007_s10548_024_01092_w crossref_primary_10_1038_s42003_022_04148_4 crossref_primary_10_3389_fnins_2020_577887 crossref_primary_10_3389_fnagi_2023_1039496 crossref_primary_10_3389_fneur_2021_602716 crossref_primary_10_3389_fpsyg_2023_1264221 crossref_primary_10_1007_s10548_023_00962_z crossref_primary_10_2147_DMSO_S400197 crossref_primary_10_3389_fnins_2021_620750 crossref_primary_10_3389_fnins_2022_885425 crossref_primary_10_1002_hbm_26194 crossref_primary_10_1136_bmjopen_2018_028188 crossref_primary_10_1111_cns_14414 crossref_primary_10_3389_fnhum_2017_00473 crossref_primary_10_3389_fnhum_2022_985986 crossref_primary_10_1111_ejn_16176 crossref_primary_10_3389_fnagi_2023_1117973 crossref_primary_10_3389_fnins_2023_1191859 crossref_primary_10_1007_s11265_020_01583_6 crossref_primary_10_3389_fnins_2021_726350 crossref_primary_10_3389_fnagi_2022_944925 crossref_primary_10_1088_1741_2552_ac5bf6 crossref_primary_10_3389_fnagi_2022_974114 crossref_primary_10_1038_s41598_020_79845_3 crossref_primary_10_1186_s12967_023_04164_w crossref_primary_10_3390_e22090939 crossref_primary_10_3389_fnins_2022_829755 crossref_primary_10_3389_fneur_2021_710078 crossref_primary_10_3389_fnins_2022_864040 crossref_primary_10_1002_aur_2936 crossref_primary_10_1007_s11356_020_10728_w crossref_primary_10_3389_fneur_2018_00608 crossref_primary_10_3389_fnins_2024_1508077 crossref_primary_10_1007_s00429_022_02488_9 crossref_primary_10_3389_fnins_2024_1417986 crossref_primary_10_3389_fnhum_2016_00114 crossref_primary_10_1080_0954898X_2023_2215860 crossref_primary_10_3389_fnins_2023_1140801 crossref_primary_10_3389_fnagi_2017_00279 crossref_primary_10_3389_fnins_2018_00235 crossref_primary_10_3389_fnins_2023_1203104 crossref_primary_10_1007_s12553_024_00823_0 crossref_primary_10_31083_j_jin2305102 crossref_primary_10_3389_fnins_2021_666651 crossref_primary_10_1007_s11682_021_00478_9 crossref_primary_10_3389_fnagi_2020_00246 crossref_primary_10_3389_fnagi_2018_00289 crossref_primary_10_1093_scan_nsab080 crossref_primary_10_3389_fnhum_2021_748919 crossref_primary_10_1007_s00429_021_02249_0 crossref_primary_10_31083_j_jin_2020_01_1188 crossref_primary_10_3389_fphys_2018_00067 crossref_primary_10_1002_aur_2827 crossref_primary_10_3390_s25051356 crossref_primary_10_1155_2020_8838498 crossref_primary_10_3389_fpsyt_2022_959696 crossref_primary_10_3389_fpsyg_2019_02945 crossref_primary_10_3389_fnhum_2021_667619 crossref_primary_10_1007_s11682_024_00915_5 crossref_primary_10_3389_fnhum_2018_00204 crossref_primary_10_1109_TCDS_2021_3101643 crossref_primary_10_3389_fpsyt_2023_1232015 crossref_primary_10_1038_s41598_025_86553_3 crossref_primary_10_1007_s11682_017_9713_z crossref_primary_10_3389_fninf_2022_1032636 crossref_primary_10_3389_fonc_2022_840871 crossref_primary_10_3389_fpsyt_2019_00300 crossref_primary_10_3389_fnins_2022_987248 crossref_primary_10_3389_fnagi_2024_1459652 crossref_primary_10_1155_2018_8420658 crossref_primary_10_3389_fpsyt_2024_1516846 crossref_primary_10_3389_fneur_2022_790607 crossref_primary_10_1002_brb3_70102 crossref_primary_10_1162_netn_a_00409 crossref_primary_10_3389_fnagi_2022_905487 crossref_primary_10_1007_s11682_021_00554_0 crossref_primary_10_3389_fnins_2021_785595 crossref_primary_10_3389_fnins_2022_830808 crossref_primary_10_3389_fnins_2023_1131862 crossref_primary_10_1002_mp_17568 crossref_primary_10_1364_BOE_542078 crossref_primary_10_1002_alz_13068 crossref_primary_10_1111_ejn_16531 crossref_primary_10_3389_fnins_2017_00561 crossref_primary_10_3389_fnins_2021_782995 crossref_primary_10_3389_fnins_2019_00614 crossref_primary_10_3389_fnins_2022_1031163 crossref_primary_10_1007_s11357_025_01515_x crossref_primary_10_1080_17470919_2023_2218619 crossref_primary_10_3389_fnagi_2022_884741 crossref_primary_10_1007_s00429_020_02200_9 crossref_primary_10_3389_fneur_2021_687959 crossref_primary_10_3389_fnins_2023_1084270 crossref_primary_10_1007_s11357_024_01366_y crossref_primary_10_1111_jnp_12303 crossref_primary_10_1007_s11682_020_00390_8 crossref_primary_10_3389_fpsyg_2022_1002548 crossref_primary_10_1007_s00406_024_01847_3 crossref_primary_10_3389_fnagi_2024_1467054 crossref_primary_10_3389_fnins_2023_1011283 crossref_primary_10_1002_hbm_26038 crossref_primary_10_3389_fnins_2016_00235 crossref_primary_10_1186_s12885_019_5576_6 crossref_primary_10_1523_JNEUROSCI_1946_16_2016 crossref_primary_10_3389_fnagi_2021_630677 crossref_primary_10_18632_aging_102986 crossref_primary_10_3389_fneur_2022_1029669 crossref_primary_10_1002_ima_22844 crossref_primary_10_1007_s10902_023_00674_y crossref_primary_10_3389_fnmol_2022_1001557 crossref_primary_10_3389_fnins_2022_952940 crossref_primary_10_3389_fnins_2021_722231 crossref_primary_10_3389_fpsyt_2023_1084443 crossref_primary_10_3389_fnins_2017_00214 crossref_primary_10_1007_s00330_023_10550_1 crossref_primary_10_3389_fneur_2024_1487985 crossref_primary_10_1007_s11682_021_00593_7 crossref_primary_10_3389_fnhum_2021_729677 crossref_primary_10_1002_hbm_26621 crossref_primary_10_3389_fnins_2022_913377 crossref_primary_10_1007_s11682_021_00571_z crossref_primary_10_1002_jnr_25047 crossref_primary_10_3389_fnana_2017_00034 crossref_primary_10_1038_s41598_020_73679_9 crossref_primary_10_3389_fnins_2023_1117340 crossref_primary_10_1080_17470919_2020_1714718 crossref_primary_10_3389_fnhum_2022_907332 crossref_primary_10_5498_wjp_v12_i8_1016 crossref_primary_10_3389_fpsyt_2019_00691 crossref_primary_10_1155_2022_2731007 crossref_primary_10_3389_fnhum_2018_00138 crossref_primary_10_3389_fnagi_2020_00203 crossref_primary_10_3389_fneur_2018_01178 crossref_primary_10_2147_IJGM_S444384 crossref_primary_10_3389_fneur_2020_00684 crossref_primary_10_1002_alz_14130 crossref_primary_10_1541_ieejeiss_143_430 crossref_primary_10_3389_fneur_2020_00561 crossref_primary_10_1007_s11682_019_00220_6 crossref_primary_10_3389_fnhum_2020_00172 crossref_primary_10_2463_mrms_mp_2020_0081 crossref_primary_10_1631_jzus_B2300880 crossref_primary_10_1002_hbm_25883 crossref_primary_10_1002_jnr_25178 crossref_primary_10_3389_fnins_2022_852822 crossref_primary_10_2147_IJGM_S342673 crossref_primary_10_1541_ieejeiss_141_1059 crossref_primary_10_3389_fnhum_2021_654750 crossref_primary_10_1007_s11571_024_10091_3 crossref_primary_10_3389_fnins_2020_00344 crossref_primary_10_3389_fpsyg_2022_1051256 crossref_primary_10_1002_ejp_4702 crossref_primary_10_1007_s00406_020_01111_4 crossref_primary_10_1007_s11682_018_9843_y crossref_primary_10_21769_BioProtoc_4221 crossref_primary_10_1007_s11682_020_00293_8 crossref_primary_10_3389_fnins_2022_814477 crossref_primary_10_1007_s00234_023_03209_7 crossref_primary_10_1007_s12035_017_0519_1 crossref_primary_10_1038_s41598_017_17069_8 crossref_primary_10_1186_s12993_025_00272_3 crossref_primary_10_1162_netn_a_00291 crossref_primary_10_1007_s11682_022_00658_1 crossref_primary_10_1007_s11682_020_00278_7 crossref_primary_10_3389_fimmu_2024_1345843 crossref_primary_10_1089_neu_2023_0183 crossref_primary_10_3389_fonc_2022_882313 crossref_primary_10_1007_s10548_024_01060_4 crossref_primary_10_1117_1_NPh_12_1_015011 crossref_primary_10_1007_s00429_020_02064_z crossref_primary_10_1111_cns_14805 crossref_primary_10_1007_s11357_024_01393_9 crossref_primary_10_1007_s11571_022_09838_7 crossref_primary_10_3389_fnins_2022_833837 crossref_primary_10_1111_psyp_14209 crossref_primary_10_3389_fpsyg_2024_1464273 crossref_primary_10_14336_AD_2019_0929 crossref_primary_10_3389_fnins_2021_737993 crossref_primary_10_3389_fneur_2022_789655 crossref_primary_10_3389_fneur_2021_743135 crossref_primary_10_3389_fnagi_2021_755931 crossref_primary_10_1007_s11682_024_00922_6 crossref_primary_10_1007_s12671_024_02480_w crossref_primary_10_3389_fnins_2022_898902 crossref_primary_10_1109_TCBB_2022_3222592 crossref_primary_10_1002_hbm_70198 crossref_primary_10_3389_fneur_2022_821470 crossref_primary_10_3389_fnhum_2022_948706 crossref_primary_10_3934_mbe_2022416 crossref_primary_10_1038_s42003_022_03190_6 crossref_primary_10_1155_2018_4325096 crossref_primary_10_1002_ird3_110 crossref_primary_10_1007_s00429_022_02517_7 crossref_primary_10_1186_s13098_024_01484_9 crossref_primary_10_3389_fnagi_2015_00169 crossref_primary_10_1111_psyp_14458 crossref_primary_10_1088_1741_2552_ac20e7 crossref_primary_10_3934_mbe_2024171 crossref_primary_10_1007_s11682_021_00521_9 crossref_primary_10_3389_fninf_2019_00010 crossref_primary_10_3389_fnins_2019_01249 crossref_primary_10_3389_fnins_2024_1458897 crossref_primary_10_3389_fnagi_2022_970159 crossref_primary_10_3389_fncom_2024_1387004 crossref_primary_10_3389_fnins_2022_1029388 crossref_primary_10_1007_s00234_022_03061_1 crossref_primary_10_3389_fnins_2021_630278 crossref_primary_10_1155_2022_8034757 crossref_primary_10_3389_fnins_2022_1087176 crossref_primary_10_3389_fnhum_2017_00636 crossref_primary_10_18632_oncotarget_22358 crossref_primary_10_3389_fnagi_2024_1426754 crossref_primary_10_1088_1741_2552_ac9ede crossref_primary_10_3389_fninf_2018_00052 crossref_primary_10_1093_scan_nsae077 crossref_primary_10_3389_fnagi_2020_599112 crossref_primary_10_1007_s00429_024_02864_7 crossref_primary_10_3389_fneur_2022_880902 crossref_primary_10_3389_fnins_2019_01377 crossref_primary_10_3389_fnins_2022_952067 crossref_primary_10_3389_fnhum_2021_716719 crossref_primary_10_1038_s41598_024_58682_8 crossref_primary_10_3389_fnins_2018_00875 crossref_primary_10_1007_s11571_023_09939_x crossref_primary_10_1212_WNL_0000000000207484 crossref_primary_10_1007_s00415_019_09645_x crossref_primary_10_3389_fneur_2022_825177 crossref_primary_10_1007_s11682_020_00287_6 crossref_primary_10_1002_aur_3183 crossref_primary_10_1155_2021_2727596 crossref_primary_10_1038_s41598_020_76495_3 crossref_primary_10_3389_fnins_2021_693623 crossref_primary_10_52586_5041 crossref_primary_10_1002_hbm_25606 crossref_primary_10_3389_fneur_2021_668856 crossref_primary_10_3389_fneur_2022_869871 crossref_primary_10_3934_mbe_2021303 crossref_primary_10_1007_s10278_024_01230_7 crossref_primary_10_1038_s41598_017_00678_8 crossref_primary_10_3389_fnins_2023_1282232 crossref_primary_10_3389_fonc_2022_927771 crossref_primary_10_1007_s11682_021_00560_2 crossref_primary_10_1155_2020_4838291 crossref_primary_10_1002_hbm_25962 crossref_primary_10_1007_s11682_023_00839_6 crossref_primary_10_3389_fneur_2021_627130 crossref_primary_10_3389_fnins_2022_1035153 crossref_primary_10_1007_s00429_020_02119_1 crossref_primary_10_1007_s10548_023_00966_9 crossref_primary_10_1007_s00415_024_12545_4 crossref_primary_10_3389_fnagi_2018_00316 crossref_primary_10_1007_s11682_022_00671_4 crossref_primary_10_12677_CSA_2022_129224 crossref_primary_10_1186_s12967_024_05580_2 crossref_primary_10_3389_fnins_2018_00860 crossref_primary_10_62762_TIS_2024_680959 crossref_primary_10_1007_s10862_024_10178_5 crossref_primary_10_1007_s11682_021_00462_3 crossref_primary_10_1007_s00406_022_01505_6 crossref_primary_10_1007_s41105_021_00362_5 crossref_primary_10_1002_hbm_25836 crossref_primary_10_1038_s41598_021_82241_0 crossref_primary_10_3389_fnins_2024_1363255 crossref_primary_10_1007_s12194_022_00670_6 crossref_primary_10_3389_fnagi_2022_893297 crossref_primary_10_3389_fpsyt_2017_00205 crossref_primary_10_7554_eLife_58301 crossref_primary_10_3389_fnins_2021_757838 crossref_primary_10_3174_ajnr_A5527 crossref_primary_10_3389_fpsyg_2019_02235 crossref_primary_10_3389_fnagi_2021_728622 crossref_primary_10_3390_brainsci14090945 crossref_primary_10_1007_s11682_024_00865_y crossref_primary_10_1117_1_NPh_6_2_025005 crossref_primary_10_31083_j_jin2201024 crossref_primary_10_1007_s11682_023_00809_y crossref_primary_10_3389_fpsyt_2018_00090 crossref_primary_10_1007_s11682_020_00306_6 crossref_primary_10_3389_fnhum_2018_00513 crossref_primary_10_3389_fnagi_2020_00061 crossref_primary_10_3389_fnhum_2018_00514 crossref_primary_10_1007_s00415_021_10817_x crossref_primary_10_1007_s11682_019_00241_1 crossref_primary_10_1155_2022_7495371 crossref_primary_10_3389_fneur_2020_01032 crossref_primary_10_1155_2020_8884318 crossref_primary_10_1155_2021_2804533 crossref_primary_10_1002_brb3_3241 crossref_primary_10_1161_HYPERTENSIONAHA_120_15296 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_3389_fnagi_2021_639529 crossref_primary_10_1007_s12035_023_03597_0 crossref_primary_10_1155_2023_5522658 crossref_primary_10_1162_netn_a_00356 crossref_primary_10_1002_brb3_3488 crossref_primary_10_2147_JPR_S470194 crossref_primary_10_3389_fnins_2022_903703 crossref_primary_10_3389_fnagi_2022_1041744 crossref_primary_10_1021_acschemneuro_1c00256 crossref_primary_10_3389_fnins_2021_746264 crossref_primary_10_5057_ijae_IJAE_D_20_00026 crossref_primary_10_1186_s10194_024_01899_9 crossref_primary_10_3389_fpsyt_2023_1152332 crossref_primary_10_3389_fonc_2023_1098748 crossref_primary_10_3389_fpsyg_2023_1181989 crossref_primary_10_3389_fnagi_2025_1498666 crossref_primary_10_1002_hbm_26345 crossref_primary_10_3389_fnins_2023_1158928 crossref_primary_10_3389_fnhum_2016_00552 crossref_primary_10_1007_s11682_024_00888_5 crossref_primary_10_1007_s40846_021_00676_2 crossref_primary_10_7759_cureus_70133 crossref_primary_10_1007_s11682_022_00702_0 crossref_primary_10_18632_aging_102939 crossref_primary_10_3389_fnins_2022_814745 crossref_primary_10_3390_anesthres1030018 crossref_primary_10_3389_fninf_2020_00039 crossref_primary_10_3389_fpsyt_2022_973921 crossref_primary_10_31083_j_jin2306117 crossref_primary_10_3389_fneur_2018_00363 crossref_primary_10_3389_fnagi_2022_1002642 crossref_primary_10_1002_hbm_26450 crossref_primary_10_1089_brain_2022_0020 crossref_primary_10_1002_hbm_26577 crossref_primary_10_1002_eat_23939 crossref_primary_10_1007_s11682_022_00704_y crossref_primary_10_3389_fnins_2025_1519939 crossref_primary_10_1089_neu_2022_0257 crossref_primary_10_3389_fpsyt_2021_771147 crossref_primary_10_1007_s11682_021_00563_z crossref_primary_10_3174_ajnr_A8115 crossref_primary_10_3389_fnins_2021_642390 crossref_primary_10_3390_brainsci14111122 crossref_primary_10_1002_brb3_2969 crossref_primary_10_3389_fnins_2023_1272514 crossref_primary_10_3389_fneur_2022_913241 crossref_primary_10_1007_s00429_016_1243_8 crossref_primary_10_1038_srep46522 |
ContentType | Journal Article |
Copyright | 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2015 Wang, Wang, Xia, Liao, Evans and He. 2015 Wang, Wang, Xia, Liao, Evans and He |
Copyright_xml | – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2015 Wang, Wang, Xia, Liao, Evans and He. 2015 Wang, Wang, Xia, Liao, Evans and He |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2015.00386 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_9467e86af7754ce895ea85d7a75b20b2 PMC4485071 26175682 10_3389_fnhum_2015_00386 |
Genre | Journal Article |
GeographicLocations | Beijing China Montreal Quebec Canada China |
GeographicLocations_xml | – name: China – name: Beijing China – name: Montreal Quebec Canada |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars grantid: 81225012 – fundername: Beijing Natural Science Foundation grantid: Z111107067311036; 7102090 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ13C090001 – fundername: Natural Science Foundation grantid: 81030028; 31221003; 30870667; 81401479 – fundername: Beijing Funding for Training Talents grantid: 2012D009012000003 – fundername: National Key Basic Research Program of China grantid: 2014CB846102 – fundername: Open Research Fund of Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments grantid: PD11001005002013 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IHW IPNFZ IPY ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4716-c33d7baab1915fc8cc67eace1d5209c52ceb25d0256f93c40000e8d9d933e2603 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:29:35 EDT 2025 Thu Aug 21 17:41:58 EDT 2025 Fri Jul 11 13:04:23 EDT 2025 Fri Jul 25 11:59:15 EDT 2025 Thu Jan 02 22:40:54 EST 2025 Tue Jul 01 03:44:11 EDT 2025 Thu Apr 24 23:04:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | connectome hub resting fMRI graph theory small-world network |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4716-c33d7baab1915fc8cc67eace1d5209c52ceb25d0256f93c40000e8d9d933e2603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors have contributed equally to this work. Edited by: Wei Gao, University of North Carolina at Chapel Hill, USA Reviewed by: Qingbao Yu, The Mind Research Network, USA; Fumihiko Taya, National University of Singapore, Singapore |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2015.00386 |
PMID | 26175682 |
PQID | 2291477961 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9467e86af7754ce895ea85d7a75b20b2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4485071 proquest_miscellaneous_1697218909 proquest_journals_2291477961 pubmed_primary_26175682 crossref_primary_10_3389_fnhum_2015_00386 crossref_citationtrail_10_3389_fnhum_2015_00386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-30 |
PublicationDateYYYYMMDD | 2015-06-30 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2015 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 16089800 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):065103 24179229 - Science. 2013 Nov 1;342(6158):1238411 20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43 10975887 - Magn Reson Med. 2000 Sep;44(3):373-8 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 25514514 - Neuroimage. 2015 Feb 15;107:345-55 10329292 - Neuroimage. 1999 May;9(5):526-33 21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48 25083734 - Brain Connect. 2014 Dec;4(10):780-90 20493761 - Trends Cogn Sci. 2010 Jun;14(6):277-90 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 24238779 - Trends Cogn Sci. 2013 Dec;17(12):641-7 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98 23899725 - Neuroimage. 2013 Dec;83:969-82 22432450 - Brain Connect. 2011;1(5):349-65 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36 20600983 - Neuroimage. 2010 Dec;53(4):1197-207 24982140 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6 21878484 - Cereb Cortex. 2012 Jul;22(7):1530-41 22808240 - PLoS One. 2012;7(7):e40709 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 10659085 - Memory. 1999 Sep-Nov;7(5-6):523-48 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42 23898179 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13642-7 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 10348457 - J Comput Assist Tomogr. 1999 May-Jun;23(3):463-73 19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 9651132 - Cereb Cortex. 1998 Jun;8(4):372-84 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 21194570 - Neuroimage. 2011 Apr 1;55(3):1132-46 22412922 - PLoS One. 2012;7(3):e32766 21757015 - Neuroimage. 2011 Sep 15;58(2):588-94 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 21130115 - J Neurosci Methods. 2011 Feb 15;195(2):261-9 20035887 - Neuroimage. 2010 Apr 15;50(3):970-83 9558644 - Neuroimage. 1998 Feb;7(2):119-32 21791259 - Biol Psychiatry. 2011 Aug 15;70(4):334-42 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81 25186238 - Nat Rev Neurosci. 2014 Oct;15(10):683-95 20829489 - Science. 2010 Sep 10;329(5997):1358-61 21980454 - PLoS One. 2011;6(9):e25423 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 23804091 - J Neurosci. 2013 Jun 26;33(26):10676-87 12636753 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17 21151783 - Front Neurosci. 2010 Dec 08;4:200 23439846 - Front Hum Neurosci. 2013 Feb 21;7:42 16452642 - Cereb Cortex. 2007 Jan;17(1):92-9 25619771 - Hum Brain Mapp. 2015 May;36(5):1828-46 11771995 - Neuroimage. 2002 Jan;15(1):273-89 22919427 - Comput Math Methods Med. 2012;2012:130985 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 16731517 - Neuron. 2006 Jun 1;50(5):799-812 18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66 20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50 26347640 - Front Hum Neurosci. 2015;9:458 9918726 - Neuroimage. 1999 Jan;9(1):18-45 20589099 - Front Syst Neurosci. 2010 Jun 07;4:16 23861951 - PLoS One. 2013 Jul 04;8(7):e68910 23840672 - PLoS One. 2013 Jun 28;8(6):e67354 21888983 - Neuroimage. 2012 Jan 16;59(2):1404-12 19439423 - Brain. 2009 Dec;132(Pt 12):3366-79 2260847 - Ann Neurol. 1990 Nov;28(5):597-613 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321 23641208 - Front Hum Neurosci. 2013 May 01;7:168 11988575 - Science. 2002 May 3;296(5569):910-3 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8 21118724 - Neuroimage. 2011 Mar 1;55(1):287-95 12144443 - Phys Rev Lett. 2002 Jul 29;89(5):054101 19909818 - Neuroimage. 2010 Feb 15;49(4):3132-48 12443515 - Phys Rev Lett. 2002 Nov 11;89(20):208701 24657780 - Neuroimage. 2014 Aug 1;96:22-35 21060892 - PLoS One. 2010 Oct 28;5(10):e13701 17611629 - PLoS One. 2007 Jul 04;2(7):e597 21858129 - PLoS One. 2011;6(8):e23460 22343126 - Neuroimage. 2012 May 1;60(4):2096-106 21949842 - PLoS One. 2011;6(9):e25031 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 24120645 - Lancet Neurol. 2013 Dec;12(12):1189-99 12399590 - Science. 2002 Oct 25;298(5594):824-7 24657353 - Neuroimage. 2014 Jul 15;95:287-304 10408769 - Hum Brain Mapp. 1999;7(4):254-66 23182443 - Schizophr Res. 2013 Jan;143(1):165-71 17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104 24246488 - Neuroimage. 2014 Feb 15;87:265-75 17919927 - Neuroimage. 2008 Jan 1;39(1):279-89 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51 17240167 - Neuroimage. 2007 Mar;35(1):83-8 9623998 - Nature. 1998 Jun 4;393(6684):440-2 15319512 - Neuroinformatics. 2004;2(2):145-62 22493575 - Front Neuroinform. 2012 Apr 03;6:7 25725332 - J Neurosci Methods. 2015 Apr 30;245:107-15 18649353 - Hum Brain Mapp. 2009 May;30(5):1511-23 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701 22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86 22642651 - Brain Connect. 2012;2(3):125-41 25331602 - Cereb Cortex. 2015 Oct;25(10):3723-42 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905 19782143 - Neuroimage. 2010 Jan 15;49(2):1432-45 24055506 - Neuroimage. 2014 Jan 1;84:888-900 20457896 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9885-90 25641208 - Hum Brain Mapp. 2015 May;36(5):1995-2013 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16 22008374 - Neuroimage. 2012 Feb 1;59(3):2196-207 21818285 - PLoS One. 2011;6(7):e21976 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19 24473186 - J Alzheimers Dis. 2014;40(2):387-97 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381 19339462 - J Neurophysiol. 2009 Jun;101(6):3270-83 22099467 - Neuron. 2011 Nov 17;72(4):665-78 17466539 - Neuroimage. 2007 Jul 1;36(3):645-60 21073960 - Neuroimage. 2011 Feb 14;54(4):2683-94 23029235 - PLoS One. 2012;7(9):e45771 |
References_xml | – reference: 11988575 - Science. 2002 May 3;296(5569):910-3 – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 25514514 - Neuroimage. 2015 Feb 15;107:345-55 – reference: 19909818 - Neuroimage. 2010 Feb 15;49(4):3132-48 – reference: 23898179 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13642-7 – reference: 23899725 - Neuroimage. 2013 Dec;83:969-82 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 21073960 - Neuroimage. 2011 Feb 14;54(4):2683-94 – reference: 22412922 - PLoS One. 2012;7(3):e32766 – reference: 21757015 - Neuroimage. 2011 Sep 15;58(2):588-94 – reference: 12443515 - Phys Rev Lett. 2002 Nov 11;89(20):208701 – reference: 10329292 - Neuroimage. 1999 May;9(5):526-33 – reference: 12399590 - Science. 2002 Oct 25;298(5594):824-7 – reference: 21194570 - Neuroimage. 2011 Apr 1;55(3):1132-46 – reference: 25083734 - Brain Connect. 2014 Dec;4(10):780-90 – reference: 23840672 - PLoS One. 2013 Jun 28;8(6):e67354 – reference: 24238779 - Trends Cogn Sci. 2013 Dec;17(12):641-7 – reference: 21151783 - Front Neurosci. 2010 Dec 08;4:200 – reference: 20829489 - Science. 2010 Sep 10;329(5997):1358-61 – reference: 22919427 - Comput Math Methods Med. 2012;2012:130985 – reference: 21791259 - Biol Psychiatry. 2011 Aug 15;70(4):334-42 – reference: 21818285 - PLoS One. 2011;6(7):e21976 – reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 – reference: 17611629 - PLoS One. 2007 Jul 04;2(7):e597 – reference: 9651132 - Cereb Cortex. 1998 Jun;8(4):372-84 – reference: 23641208 - Front Hum Neurosci. 2013 May 01;7:168 – reference: 16731517 - Neuron. 2006 Jun 1;50(5):799-812 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 17919927 - Neuroimage. 2008 Jan 1;39(1):279-89 – reference: 10348457 - J Comput Assist Tomogr. 1999 May-Jun;23(3):463-73 – reference: 24473186 - J Alzheimers Dis. 2014;40(2):387-97 – reference: 22493575 - Front Neuroinform. 2012 Apr 03;6:7 – reference: 18649353 - Hum Brain Mapp. 2009 May;30(5):1511-23 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 19339462 - J Neurophysiol. 2009 Jun;101(6):3270-83 – reference: 10408769 - Hum Brain Mapp. 1999;7(4):254-66 – reference: 20493761 - Trends Cogn Sci. 2010 Jun;14(6):277-90 – reference: 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 – reference: 9918726 - Neuroimage. 1999 Jan;9(1):18-45 – reference: 23804091 - J Neurosci. 2013 Jun 26;33(26):10676-87 – reference: 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701 – reference: 21858129 - PLoS One. 2011;6(8):e23460 – reference: 21060892 - PLoS One. 2010 Oct 28;5(10):e13701 – reference: 22432450 - Brain Connect. 2011;1(5):349-65 – reference: 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321 – reference: 18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66 – reference: 22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81 – reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 – reference: 12144443 - Phys Rev Lett. 2002 Jul 29;89(5):054101 – reference: 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36 – reference: 2260847 - Ann Neurol. 1990 Nov;28(5):597-613 – reference: 25641208 - Hum Brain Mapp. 2015 May;36(5):1995-2013 – reference: 26347640 - Front Hum Neurosci. 2015;9:458 – reference: 17240167 - Neuroimage. 2007 Mar;35(1):83-8 – reference: 20457896 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9885-90 – reference: 16089800 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):065103 – reference: 10659085 - Memory. 1999 Sep-Nov;7(5-6):523-48 – reference: 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42 – reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2 – reference: 17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104 – reference: 20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43 – reference: 21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48 – reference: 23439846 - Front Hum Neurosci. 2013 Feb 21;7:42 – reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 – reference: 19439423 - Brain. 2009 Dec;132(Pt 12):3366-79 – reference: 24179229 - Science. 2013 Nov 1;342(6158):1238411 – reference: 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17 – reference: 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905 – reference: 16452642 - Cereb Cortex. 2007 Jan;17(1):92-9 – reference: 21878484 - Cereb Cortex. 2012 Jul;22(7):1530-41 – reference: 12636753 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112 – reference: 20600983 - Neuroimage. 2010 Dec;53(4):1197-207 – reference: 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16 – reference: 10975887 - Magn Reson Med. 2000 Sep;44(3):373-8 – reference: 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 – reference: 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 – reference: 21888983 - Neuroimage. 2012 Jan 16;59(2):1404-12 – reference: 17466539 - Neuroimage. 2007 Jul 1;36(3):645-60 – reference: 24246488 - Neuroimage. 2014 Feb 15;87:265-75 – reference: 21118724 - Neuroimage. 2011 Mar 1;55(1):287-95 – reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78 – reference: 25619771 - Hum Brain Mapp. 2015 May;36(5):1828-46 – reference: 21130115 - J Neurosci Methods. 2011 Feb 15;195(2):261-9 – reference: 23861951 - PLoS One. 2013 Jul 04;8(7):e68910 – reference: 24982140 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6 – reference: 20035887 - Neuroimage. 2010 Apr 15;50(3):970-83 – reference: 25331602 - Cereb Cortex. 2015 Oct;25(10):3723-42 – reference: 24055506 - Neuroimage. 2014 Jan 1;84:888-900 – reference: 20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50 – reference: 25725332 - J Neurosci Methods. 2015 Apr 30;245:107-15 – reference: 21980454 - PLoS One. 2011;6(9):e25423 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 – reference: 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8 – reference: 22642651 - Brain Connect. 2012;2(3):125-41 – reference: 21949842 - PLoS One. 2011;6(9):e25031 – reference: 22008374 - Neuroimage. 2012 Feb 1;59(3):2196-207 – reference: 24657353 - Neuroimage. 2014 Jul 15;95:287-304 – reference: 24120645 - Lancet Neurol. 2013 Dec;12(12):1189-99 – reference: 20589099 - Front Syst Neurosci. 2010 Jun 07;4:16 – reference: 15319512 - Neuroinformatics. 2004;2(2):145-62 – reference: 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381 – reference: 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 – reference: 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19 – reference: 23182443 - Schizophr Res. 2013 Jan;143(1):165-71 – reference: 23029235 - PLoS One. 2012;7(9):e45771 – reference: 19782143 - Neuroimage. 2010 Jan 15;49(2):1432-45 – reference: 24657780 - Neuroimage. 2014 Aug 1;96:22-35 – reference: 19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73 – reference: 25186238 - Nat Rev Neurosci. 2014 Oct;15(10):683-95 – reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51 – reference: 9558644 - Neuroimage. 1998 Feb;7(2):119-32 – reference: 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98 – reference: 22808240 - PLoS One. 2012;7(7):e40709 – reference: 22343126 - Neuroimage. 2012 May 1;60(4):2096-106 – reference: 22049421 - J Neurosci. 2011 Nov 2;31(44):15775-86 |
SSID | ssj0062651 |
Score | 2.62226 |
Snippet | Recent studies have suggested that the brain's structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies... Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 386 |
SubjectTerms | Brain mapping Brain research connectome Construction EEG Electroencephalography Functional magnetic resonance imaging graph theory Hub Laboratories modularity network Neural networks Neuroimaging Neuroscience Neurosciences NMR Nuclear magnetic resonance Researchers Schizophrenia Small-world Spectrum analysis Statistical analysis Structure-function relationships User interface Young adults |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4tr6IIIKHsrZJ2sbbKj4Q9CAK3kJeRUFbcXdB_70zSXfZFdGL175IJ5PON-k33xByUHtXskyYlLGCp9yLPJWWy1RnSNL1XHKHxck3t8XVA79-FI9Trb6QExblgaPhetgC3leFrlGqzfpKCq8r4UpdCpMfm_D1hZg3TqbiNxhQusjiT0lIwWSvbp5GWHae4QYKw7rpqSAUtPp_ApjfeZJTgediiSx2iJH240iXyZxvVshqv4Fs-fWTHtLA4Qyb46vk5vLu_P62f0I1DUrUdKpOkTaR8U11p0NCh237YtoPCriVPr-GdkXUIvHFDrFWebBGHi7O78-u0q5hQmohxhSpZcyVRmsDSRhys6wF22nrM4dkFytyC3m0cAhzasksx2DlKyedZMxDYsPWyXzTNn6TUGeNAexjeF15mEGvuRBO2LwGAFMZbxLSG1tQ2U5NHJtavCjIKtDmKthcoc1VsHlCjiZ3vEUljV-uPcVJmVyHGtjhAHiG6jxD_eUZCdkZT6nqFuZA5bnMeFnKIkvI_uQ0LCn8T6Ib344GKitQ0qiSxzIhG9EDJiNBAXtRVPDwcsY3ZoY6e6Z5fgqy3ZAII_je-o932yYLaK1IXNwh88P3kd8FdDQ0e2EhfAGIrw9m priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA5WX_pSbK3tWisRSsGH5dxNspv0pZxyVgoeRRR8C_m1VdBd9e6g_vfOZHPXu1J83ewuYZJMvkm--YaQL03wNSuEzRmreM6DKHPluMpNgSTdwBX3mJx8Nq5OL_nPK3GVDtwmiVY594nRUfvO4Rn5oCxVwetaVcX3-4ccq0bh7WoqofGKbIALlhB8bRyNxr_O574Y0Loo-stJCMXUoGmvZ5h-XuBBCsP86aXNKGr2_w9o_suXXNqATjbJm4Qc6bAf6rdkLbTvyNawhaj57ol-pZHLGQ_Jt8jZj_PRxXj4jRoaFanpUr4ibXvmNzVJj4ROu-7Wdn8o4Fd6cxfLFlGHBBg3xZzlyXtyeTK6OD7NU-GE3MFeU-WOMV9bYywEY8jRcq6qwcGGwiPpxYnSQTwtPMKdRjHHcdMK0iuvGAsQ4LBtst52bfhIqHfWAgayvJEBRjIYLoQXrmwAyEgbbEYGcwtql1TFsbjFrYboAm2uo8012lxHm2fkYPHFfa-o8cK7Rzgoi_dQCzs-6B5_67S0tAJfH2RlGhTzc0Eq6KUUvja1sOWhLTOyOx9SnRboRP-dThnZXzTD0sL7EtOGbjbRRYXSRlIdqox86GfAoicoZC8qCT-vV-bGSldXW9qb6yjfDQExgvCdl7v1ibxGO_TUxF2yPn2chc-Af6Z2L03yZzmLCGs priority: 102 providerName: ProQuest |
Title | GRETNA: a graph theoretical network analysis toolbox for imaging connectomics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26175682 https://www.proquest.com/docview/2291477961 https://www.proquest.com/docview/1697218909 https://pubmed.ncbi.nlm.nih.gov/PMC4485071 https://doaj.org/article/9467e86af7754ce895ea85d7a75b20b2 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7a5NJLaZo-3KSLCqXQg5vYkmyrUMqmbBIKu5SQhb0J6-EksLHbfUDy7zsje7fZsvTQiw-2BGI04_lGmvkG4H3lXc4TaWLOMxELL9NYWaHiMqEkXS-UcFScPBxl52PxfSInf8qjOwHOt4Z21E9qPJt-uvt1_xUN_gtFnOhvj6r6eklF5Qkdj_Aiewy76JdyMtOhWN8pIHKXSXtRuXUW0QKjO5dZkW74qEDlvw1__p1G-cAvnT6Dpx2gZP1WA_bgka-fw36_xmD69p59YCHFM5yd78Pw7GJwOep_ZiULRNXsQRkjq9uEcFZ2NCVs0TRT09wxhLXs5jZ0M2KW8mLsgkqZ5y9gfDq4_HYed_0UYosuKIst5y43ZWkwRqPULWuzHP-7PnGUC2NlajHMlo5QUKW4FeTLfOGUU5x7jHv4S9ipm9q_BuasMQiNjKgKjxvsSyGlkzatEN8UxpsIjlYS1LYjG6eeF1ONQQeJXwfxaxK_DuKP4ON6xs-WaOMfY09oU9bjiCI7vGhmV7qzOK3QBfgiKyvi-LO-ULjKQrq8zKVJj00aweFqS_VK7XSaqkTkucqSCN6tP6PF0TVKWftmOddJRoxHhTpWEbxqNWC9kpUGRZBv6MbGUje_1DfXgdUb42TC5m_-e-YBPCERtcmMh7CzmC39W0RMC9OD3ZPB6MdFL5w44PNskvSCcfwGvtgbeQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAXBJSPQIFFAiQOVmp71_YiIZRCSkqbCFWp1NvW-2FaqbVLkwj6p_iNzKztkCDUW6-xY61mZ2fn7b55A_C6cDaNQ6GDOE54wJ2IAmm4DPKQSLqOS26pOHk0ToaH_OuROFqD320tDNEq25joA7WtDJ2R96JIhjxNZRJ-vPgRUNcoul1tW2jUbrHnrn4iZJt-2P2M8_sminYGk0_DoOkqEBgMxElg4timOs81IhUiMBmTpBh9XGiJEWJEZBBsCku5QCFjwymiu8xKi9DfYfYf43dvwTqPEcp0YH17MP520MZ-RAcirC9DEfrJXlGezKncPaSDm5jqtZc2P98j4H-J7b_8zKUNb-ce3G0yVdavXes-rLnyAWz0S0Tp51fsLfPcUX8ovwGjLweDybj_nuXMK2CzpfpIVtZMc5Y3-idsVlVnuvrFMF9mp-e-TRIzRLgxM6qRnj6Ewxsx6SPolFXpngCzRmvMuTQvMoee43IuhBUmKjBxyrTTXei1FlSmUTGnZhpnCtEM2Vx5myuyufI278K7xT8uagWPa97dpklZvEfa2_6H6vK7apaykri3uCzJCxIPNC6TOMpM2DRPhY62dNSFzXZKVRMQpuqv-3bh1eIxLmW6n8lLV82nKkxISimTW7ILj2sPWIyEhPNFkuHH0xXfWBnq6pPy9MTLhSMAp6T_6fXDegm3h5PRvtrfHe89gztkk5oWuQmd2eXcPcfca6ZfNA7P4Pim19gfhvBFKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkK8IGD86DbASIDEQ9QmsZMYCaGOtWyMVdO0SXsz8Y-wSVsy1lawf42_jjsnKS1Ce9trk0bW-Xy-z_7uO4DXhbNpHAodxHHCA-5EFEjDZZCHRNJ1XHJLxcn742TnmH85EScr8LuthSFaZRsTfaC2laEz8l4UyZCnqUzCXtHQIg62Rx8vfwTUQYpuWtt2GrWL7LnrnwjfJh92t3Gu30TRaHj0aSdoOgwEBoNyEpg4tqnOc42ohchMxiQpRiIXWmKHGBEZBJ7CUl5QyNhwiu4us9LKOHaIBGL87h1YTREV9TuwujUcHxy2-wAiBRHWF6MIA2WvKE9nVPoe0iFOTLXbCxuh7xfwvyT3X67mwuY3egD3m6yVDWo3ewgrrnwEa4MSEfvFNXvLPI_UH9Cvwf7nw-HRePCe5cyrYbOFWklW1qxzljdaKGxaVee6-sUwd2ZnF75lEjNEvjFTqpeePIbjWzHpE-iUVemeAbNGa8y_NC8yh17kci6EFSYqMInKtNNd6LUWVKZRNKfGGucKkQ3ZXHmbK7K58jbvwrv5Py5rNY8b3t2iSZm_Rzrc_ofq6rtqlrWSuM-4LMkLEhI0LpM4ykzYNE-Fjvo66sJmO6WqCQ4T9deVu_Bq_hiXNd3V5KWrZhMVJiSrlMm-7MLT2gPmIyERfZFk-PF0yTeWhrr8pDw79dLhCMYJAKzfPKyXcBfXlvq6O97bgHtkkpohuQmd6dXMPcc0bKpfNP7O4NttL7E_bVBJXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRETNA%3A+a+graph+theoretical+network+analysis+toolbox+for+imaging+connectomics&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Wang%2C+Jinhui&rft.au=Wang%2C+Xindi&rft.au=Xia%2C+Mingrui&rft.au=Liao%2C+Xuhong&rft.date=2015-06-30&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=9&rft_id=info:doi/10.3389%2Ffnhum.2015.00386&rft_id=info%3Apmid%2F26175682&rft.externalDocID=PMC4485071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |