NAGNN: Classification of COVID‐19 based on neighboring aware representation from deep graph neural network
COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer...
Saved in:
Published in | International journal of intelligent systems Vol. 37; no. 2; pp. 1572 - 1598 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.02.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer learning to obtain the image‐level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k‐nearest neighbors algorithm, in which the ILRs were linked with their k‐nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end‐to‐end COVID‐19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state‐of‐the‐art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID‐19, which can be used in clinical diagnosis. |
---|---|
AbstractList | COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer learning to obtain the image‐level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k‐nearest neighbors algorithm, in which the ILRs were linked with their k‐nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end‐to‐end COVID‐19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state‐of‐the‐art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID‐19, which can be used in clinical diagnosis. COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k-nearest neighbors algorithm, in which the ILRs were linked with their k-nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis.COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k-nearest neighbors algorithm, in which the ILRs were linked with their k-nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis. COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer learning to obtain the image‐level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k ‐nearest neighbors algorithm, in which the ILRs were linked with their k ‐nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end‐to‐end COVID‐19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state‐of‐the‐art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID‐19, which can be used in clinical diagnosis. COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the -nearest neighbors algorithm, in which the ILRs were linked with their -nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis. |
Author | Zhang, Yu‐Dong Wang, Shui‐Hua Zhu, Ziquan Gorriz, Juan Manuel Lu, Siyuan |
AuthorAffiliation | 2 Science in Civil Engineering University of Florida Gainesville FL USA 3 Department of Signal Theory, Networking and Communications University of Granada Granada Spain 1 School of Informatics University of Leicester Leicester UK 4 School of Mathematics and Actuarial Science University of Leicester Leicester UK |
AuthorAffiliation_xml | – name: 3 Department of Signal Theory, Networking and Communications University of Granada Granada Spain – name: 1 School of Informatics University of Leicester Leicester UK – name: 4 School of Mathematics and Actuarial Science University of Leicester Leicester UK – name: 2 Science in Civil Engineering University of Florida Gainesville FL USA |
Author_xml | – sequence: 1 givenname: Siyuan orcidid: 0000-0001-6720-1323 surname: Lu fullname: Lu, Siyuan organization: University of Leicester – sequence: 2 givenname: Ziquan orcidid: 0000-0001-8792-9354 surname: Zhu fullname: Zhu, Ziquan organization: University of Florida – sequence: 3 givenname: Juan Manuel orcidid: 0000-0001-7069-1714 surname: Gorriz fullname: Gorriz, Juan Manuel organization: University of Granada – sequence: 4 givenname: Shui‐Hua orcidid: 0000-0003-4713-2791 surname: Wang fullname: Wang, Shui‐Hua email: shuihuawang@ieee.org organization: University of Leicester – sequence: 5 givenname: Yu‐Dong orcidid: 0000-0002-4870-1493 surname: Zhang fullname: Zhang, Yu‐Dong email: yudongzhang@ieee.org organization: University of Leicester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38607823$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URKeFBS-AIrGhi7T-i-OwQKoGKCNV001B7CzHuZ5xydhTO2HUXR-BZ-RJMKRUUAlWV7K_c3TuPQdozwcPCD0n-JhgTE-cH44pFVI8QjOCG1kSQj7voRmWkpeS1GwfHaR0hTEhNa-eoH0mBa4lZTPUL0_PlsvXxbzXKTnrjB5c8EWwxfzi0-Lt99tvpClanaAr8rMHt1q3ITq_KvRORygibCMk8MOkszFsig5gW6yi3q6zYIy6z2PYhfjlKXpsdZ_g2d08RB_fv7ucfyjPL84W89Pz0vCaiLKy1EpcEd41uMEgTSVqYriRtSCtIdA1huMOKO3y9tZKJrDlTcWaqm5rA5IdojeT73ZsN9CZHC-nUNvoNjreqKCd-vvHu7Vaha9Kioo2TGSDV3cGMVyPkAa1cclA32sPYUyKYSY5k5jQjL58gF6FMfq8nqKCcCEE5nWmXvyZ6D7K7yIycDQBJoaUIth7hGD1s2SVS1a_Ss7syQPWuOn-eRnX_0-xcz3c_NtaLZaXk-IHfl243A |
CitedBy_id | crossref_primary_10_3390_biomimetics8060449 crossref_primary_10_1049_tje2_12226 crossref_primary_10_1109_ACCESS_2024_3354809 crossref_primary_10_1016_j_bspc_2023_104672 crossref_primary_10_32604_cmc_2023_037413 crossref_primary_10_1155_2023_6850772 crossref_primary_10_1016_j_bspc_2024_106577 crossref_primary_10_1089_big_2022_0042 crossref_primary_10_1016_j_bspc_2023_105914 crossref_primary_10_1016_j_engappai_2024_109122 crossref_primary_10_1002_ima_22814 crossref_primary_10_1016_j_bspc_2024_105999 crossref_primary_10_1016_j_cmpb_2024_108009 crossref_primary_10_1002_ima_22819 crossref_primary_10_1016_j_jksuci_2023_101783 crossref_primary_10_3390_diagnostics13010101 crossref_primary_10_1016_j_neunet_2023_11_055 crossref_primary_10_1016_j_bspc_2023_105593 crossref_primary_10_1016_j_bspc_2023_105599 crossref_primary_10_1007_s13042_023_02022_1 crossref_primary_10_1016_j_bspc_2023_105116 crossref_primary_10_1016_j_isatra_2022_08_003 crossref_primary_10_1016_j_knosys_2023_110806 crossref_primary_10_1016_j_bspc_2023_105596 crossref_primary_10_1016_j_bspc_2024_107157 crossref_primary_10_1109_JBHI_2023_3274486 crossref_primary_10_1016_j_bspc_2023_105597 crossref_primary_10_1155_2023_5872359 crossref_primary_10_1016_j_engappai_2023_107590 crossref_primary_10_1016_j_bspc_2022_103622 crossref_primary_10_1007_s00354_024_00279_w crossref_primary_10_1016_j_eswa_2023_121845 crossref_primary_10_1109_JSEN_2023_3300995 crossref_primary_10_1109_JSEN_2022_3161733 crossref_primary_10_1109_JSEN_2023_3267101 crossref_primary_10_1016_j_jksuci_2023_101793 crossref_primary_10_1038_s41598_024_82299_6 crossref_primary_10_1016_j_bspc_2023_105908 crossref_primary_10_1109_JSEN_2023_3311644 crossref_primary_10_1109_JSEN_2023_3312975 crossref_primary_10_1109_JSEN_2023_3336667 crossref_primary_10_1002_ima_23160 crossref_primary_10_1002_ima_23161 crossref_primary_10_1016_j_bspc_2024_107362 crossref_primary_10_1007_s13042_024_02301_5 crossref_primary_10_1016_j_bspc_2023_105741 crossref_primary_10_1016_j_bspc_2024_106435 crossref_primary_10_1016_j_neunet_2022_04_027 crossref_primary_10_1002_ima_22995 crossref_primary_10_3390_s21227710 crossref_primary_10_1002_ima_22914 crossref_primary_10_1016_j_eswa_2023_122505 crossref_primary_10_4018_IJPCH_309118 crossref_primary_10_1155_2023_5917750 crossref_primary_10_1109_JSEN_2023_3246133 crossref_primary_10_1016_j_isatra_2022_08_029 crossref_primary_10_1016_j_bspc_2024_106207 crossref_primary_10_1016_j_bspc_2023_104642 crossref_primary_10_1016_j_compbiomed_2023_107914 crossref_primary_10_1002_ima_22987 crossref_primary_10_1016_j_bspc_2023_105850 crossref_primary_10_3390_s23020634 crossref_primary_10_1016_j_bspc_2023_105843 crossref_primary_10_1016_j_bspc_2023_104875 crossref_primary_10_1016_j_bspc_2024_106379 crossref_primary_10_1016_j_bspc_2022_104107 crossref_primary_10_3390_bioengineering10080981 crossref_primary_10_1002_ima_70015 crossref_primary_10_1016_j_bspc_2023_105712 crossref_primary_10_1016_j_neucom_2022_07_005 crossref_primary_10_1002_ima_70014 crossref_primary_10_1007_s00477_023_02435_y crossref_primary_10_1016_j_bspc_2023_104869 crossref_primary_10_1002_int_22901 crossref_primary_10_1007_s10489_022_03570_9 crossref_primary_10_1109_JSEN_2023_3317056 crossref_primary_10_1002_int_23058 crossref_primary_10_1109_JSEN_2023_3341428 crossref_primary_10_3390_diagnostics13213326 crossref_primary_10_1109_JSEN_2023_3305290 crossref_primary_10_1016_j_bspc_2024_105975 crossref_primary_10_1016_j_bspc_2023_104742 crossref_primary_10_3233_JIFS_232866 crossref_primary_10_1016_j_compbiomed_2023_106847 crossref_primary_10_1016_j_preteyeres_2025_101353 crossref_primary_10_1002_ima_22726 crossref_primary_10_1109_JSEN_2023_3315280 crossref_primary_10_1002_ima_22848 crossref_primary_10_1016_j_energy_2022_125865 crossref_primary_10_1016_j_bspc_2023_105429 crossref_primary_10_1109_JBHI_2023_3345837 crossref_primary_10_1016_j_knosys_2023_110834 crossref_primary_10_1109_JSEN_2023_3317426 crossref_primary_10_1016_j_bspc_2023_105543 crossref_primary_10_1016_j_bspc_2023_104694 crossref_primary_10_1016_j_bspc_2024_106237 crossref_primary_10_1016_j_bspc_2023_105787 crossref_primary_10_1007_s13042_023_02073_4 crossref_primary_10_1016_j_bspc_2023_105425 crossref_primary_10_3389_fninf_2021_778552 crossref_primary_10_1002_ima_23007 crossref_primary_10_3233_JCM237076 crossref_primary_10_1016_j_jksuci_2023_101888 crossref_primary_10_1016_j_isatra_2022_12_005 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1109_JBHI_2023_3329231 crossref_primary_10_1109_JSEN_2025_3529510 crossref_primary_10_1002_ima_23194 crossref_primary_10_1007_s11227_023_05633_1 crossref_primary_10_1016_j_bspc_2023_105493 crossref_primary_10_1016_j_bspc_2024_106880 crossref_primary_10_1016_j_bspc_2023_105412 crossref_primary_10_1016_j_bspc_2023_105655 crossref_primary_10_1016_j_bspc_2023_105650 crossref_primary_10_1007_s11042_024_18487_3 crossref_primary_10_1016_j_mex_2025_103201 crossref_primary_10_1109_JSEN_2023_3318371 crossref_primary_10_3934_mbe_2022322 crossref_primary_10_1016_j_bspc_2023_105767 crossref_primary_10_1016_j_bspc_2023_105801 crossref_primary_10_1016_j_jksuci_2023_101814 crossref_primary_10_1007_s13042_023_02043_w crossref_primary_10_1016_j_asoc_2023_110149 crossref_primary_10_1155_2023_7626478 crossref_primary_10_1016_j_neunet_2025_107312 crossref_primary_10_1016_j_jksuci_2024_102122 crossref_primary_10_1016_j_ins_2024_120159 crossref_primary_10_1016_j_jksuci_2024_102123 crossref_primary_10_1007_s13042_024_02391_1 crossref_primary_10_1007_s13721_023_00437_y crossref_primary_10_1155_2023_8835111 |
Cites_doi | 10.1016/j.compbiomed.2020.103792 10.1109/ACCESS.2020.3003810 10.1109/ACCESS.2020.3025010 10.1109/18.661502 10.1109/ACCESS.2020.2994762 10.1016/0925-2312(94)90053-1 10.1007/s40846-020-00529-4 10.1109/TIP.2010.2044957 10.1109/JBHI.2020.3023246 10.1109/TMI.2020.2994459 10.1109/ACCESS.2020.3010287 10.1007/s13246-020-00865-4 10.1109/CVPR.2016.90 10.1109/JBHI.2020.3019505 10.1109/CVPR.2017.243 10.1109/TMI.2020.2995965 10.1609/aaai.v33i01.33017370 10.1016/j.compbiomed.2020.103805 10.1109/CVPR.2018.00474 10.1016/j.inffus.2020.10.004 10.1109/ACCESS.2018.2839694 10.1016/j.neunet.2020.07.010 10.1109/JBHI.2020.3018181 10.1109/TMI.2020.2993291 10.1016/j.cogsys.2018.12.007 10.1016/j.patcog.2019.03.032 10.1145/3397271.3401123 10.1109/ACCESS.2020.3016780 10.1109/TMI.2020.2995508 10.1186/s12938-020-00807-x 10.1016/j.jocs.2018.11.008 10.1109/TMI.2020.3001810 10.1109/TITS.2019.2935152 10.7717/peerj.10086 10.1016/j.mehy.2020.109761 10.1007/s11263-019-01228-7 10.1109/TPAMI.2006.244 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1002/int.22686 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | LU et al |
EISSN | 1098-111X |
EndPage | 1598 |
ExternalDocumentID | PMC8652936 38607823 10_1002_int_22686 INT22686 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Royal Society International Exchanges Cost Share Award (GB) funderid: RP202G0230 – fundername: Global Challenges Research Fund (GCRF), UK funderid: P202PF11 – fundername: Hope Foundation for Cancer Research funderid: RM60G0680 – fundername: Medical Research Council Confidence in Concept Award, UK funderid: MC_PC_17171 – fundername: Royal Society International Exchanges Cost Share Award (GB) grantid: RP202G0230 – fundername: Hope Foundation for Cancer Research grantid: RM60G0680 – fundername: Medical Research Council Confidence in Concept Award, UK grantid: MC_PC_17171 – fundername: Global Challenges Research Fund (GCRF), UK grantid: P202PF11 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c4716-5f2f80514d9090e8c5671c4c8761bc1ed9c40de22d100ff8360f4953957b7ce83 |
IEDL.DBID | DR2 |
ISSN | 0884-8173 1098-111X |
IngestDate | Thu Aug 21 14:35:09 EDT 2025 Fri Jul 11 11:17:05 EDT 2025 Fri Jul 25 12:12:25 EDT 2025 Thu Apr 03 06:57:07 EDT 2025 Tue Jul 01 02:44:34 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Wed Jan 22 16:28:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | graph convolutional network transfer learning random vector functional link net convolutional neural network |
Language | English |
License | 2021 Wiley Periodicals LLC. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4716-5f2f80514d9090e8c5671c4c8761bc1ed9c40de22d100ff8360f4953957b7ce83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8792-9354 0000-0002-4870-1493 0000-0001-6720-1323 0000-0001-7069-1714 0000-0003-4713-2791 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8652936 |
PMID | 38607823 |
PQID | 2614666047 |
PQPubID | 1026350 |
PageCount | 27 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8652936 proquest_miscellaneous_3038438012 proquest_journals_2614666047 pubmed_primary_38607823 crossref_primary_10_1002_int_22686 crossref_citationtrail_10_1002_int_22686 wiley_primary_10_1002_int_22686_INT22686 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York – name: Hoboken |
PublicationTitle | International journal of intelligent systems |
PublicationTitleAlternate | Int J Intell Syst |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2019; 93 2021; 67 2020; 140 2012 2019; 30 2010; 19 2020; 40 2019; 54 2020; 121 2020; 39 1998; 44 2020; 19 2020; 8 2018; 6 2020; 130 2020 2006; 28 2019 2018 2017 2020; 24 2016 2020; 43 2020; 21 2017; 128 1994; 6 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 Yasar H (e_1_2_10_21_1) 2020 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 Krizhevsky A (e_1_2_10_41_1) 2012 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 43 start-page: 635 issue: 2 year: 2020 end-page: 640 article-title: COVID‐19: automatic detection from X‐ray images utilizing transfer learning with convolutional neural networks publication-title: Phys Eng Sci Med – start-page: 7370 year: 2019 end-page: 7377 – volume: 39 start-page: 2638 issue: 8 year: 2020 end-page: 2652 article-title: A rapid, accurate and machine‐agnostic segmentation and quantification method for CT‐based COVID‐19 diagnosis publication-title: IEEE Trans Med Imaging – volume: 19 start-page: 63 issue: 1 year: 2020 article-title: Rapid identification of COVID‐19 severity in CT scans through classification of deep features publication-title: Biomed Eng Online – volume: 121 year: 2020 article-title: Automated detection of COVID‐19 cases using deep neural networks with X‐ray images publication-title: Comput Biol Med – volume: 39 start-page: 2595 issue: 8 year: 2020 end-page: 2605 article-title: Dual‐sampling attention network for diagnosis of COVID‐19 from community acquired pneumonia publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 132665 year: 2020 end-page: 132676 article-title: Can AI help in screening viral and COVID‐19 pneumonia? publication-title: IEEE Access – start-page: 770 year: 2016 end-page: 778 – volume: 140 year: 2020 article-title: COVIDiagnosis‐Net: Deep Bayes‐SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID‐19) from X‐ray images publication-title: Med Hypotheses – volume: 128 start-page: 336 year: 2017 end-page: 359 article-title: Grad‐CAM: visual explanations from deep networks via gradient‐based localization publication-title: Int J Comput Vis – volume: 39 start-page: 2676 issue: 8 year: 2020 end-page: 2687 article-title: Deep learning for classification and localization of COVID‐19 markers in point‐of‐care lung ultrasound publication-title: IEEE Trans Med Imaging – volume: 24 start-page: 2806 issue: 10 year: 2020 end-page: 2813 article-title: Contrastive cross‐site learning with redesigned net for COVID‐19 CT classification publication-title: IEEE J Biomed Health Inf – volume: 39 start-page: 2615 issue: 8 year: 2020 end-page: 2625 article-title: A weakly‐supervised framework for COVID‐19 classification and lesion localization from chest CT publication-title: IEEE Trans Med Imaging – volume: 44 start-page: 525 issue: 2 year: 1998 end-page: 536 article-title: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network publication-title: IEEE Trans Inf Theory – volume: 8 start-page: 171575 year: 2020 end-page: 171589 article-title: DL‐CRC: deep learning‐based chest radiograph classification for COVID‐19 detection: a novel approach publication-title: IEEE Access – volume: 130 start-page: 185 year: 2020 end-page: 194 article-title: Towards explainable deep neural networks (xDNN) publication-title: Neural Net – start-page: 1289 year: 2020 end-page: 1298 – volume: 93 start-page: 1 year: 2019 end-page: 13 article-title: On the computation of distribution‐free performance bounds: Application to small sample sizes in neuroimaging publication-title: Pattern Recogn – volume: 39 start-page: 2688 issue: 8 year: 2020 end-page: 2700 article-title: Deep learning COVID‐19 features on CXR using limited training data sets publication-title: IEEE Trans Med Imaging – volume: 40 start-page: 462 year: 2020 end-page: 469 article-title: Extracting possibly representative COVID‐19 biomarkers from X‐ray images with deep learning approach and image data related to pulmonary diseases publication-title: J Med Biol Eng – start-page: 5423 year: 2020 end-page: 5447 article-title: A novel comparative study for detection of COVID‐19 on CT lung images using texture analysis, machine learning, and deep learning methods publication-title: Multimedia Tools Appl – start-page: 1097 year: 2012 end-page: 1105 – volume: 8 start-page: 115041 year: 2020 end-page: 115050 article-title: Iteratively pruned deep learning ensembles for COVID‐19 detection in chest X‐rays publication-title: IEEE Access – volume: 24 start-page: 2798 issue: 10 year: 2020 end-page: 2805 article-title: Adaptive feature selection guided deep forest for COVID‐19 classification with chest CT publication-title: IEEE J Biomed Health Inf – volume: 6 start-page: 163 year: 1994 end-page: 180 article-title: Learning and generalization characteristics of random vector functional‐link net publication-title: Neurocomputing – volume: 6 start-page: 36408 year: 2018 end-page: 36419 article-title: A new framework for the integrative analytics of intravascular ultrasound and optical coherence tomography images publication-title: IEEE Access – volume: 24 start-page: 2787 issue: 10 year: 2020 end-page: 2797 article-title: Efficient and effective training of COVID‐19 classification networks with self‐supervised dual‐track learning to rank publication-title: IEEE J Biomed Health Inf – volume: 28 start-page: 2037 issue: 12 year: 2006 end-page: 2041 article-title: Face description with local binary patterns: application to face recognition publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 2261 year: 2017 end-page: 2269 – volume: 67 start-page: 208 year: 2021 end-page: 229 article-title: COVID‐19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network publication-title: Inf Fusion – volume: 54 start-page: 176 year: 2019 end-page: 188 article-title: Application of deep transfer learning for automated brain abnormality classification using MR images publication-title: Cognit Syst Res – volume: 121 year: 2020 article-title: COVID‐19 detection using deep learning models to exploit social mimic optimization and structured chest X‐ray images using fuzzy color and stacking approaches publication-title: Comput Biol Med – volume: 8 start-page: 91916 year: 2020 end-page: 91923 article-title: COVIDGAN: data augmentation using auxiliary classifier GAN for improved COVID‐19 detection publication-title: IEEE Access – volume: 19 start-page: 1657 issue: 6 year: 2010 end-page: 1663 article-title: A completed modeling of local binary pattern operator for texture classification publication-title: IEEE Trans Image Process – start-page: 4510 year: 2018 end-page: 4520 – volume: 8 start-page: 149808 year: 2020 end-page: 149824 article-title: COVID‐19 detection through transfer learning using multimodal imaging data publication-title: IEEE Access – volume: 21 start-page: 3848 issue: 9 year: 2020 end-page: 3858 article-title: T‐GCN: a temporal graph convolutional network for traffic prediction publication-title: IEEE Trans Intell Transp Syst – volume: 8 year: 2020 article-title: MULTI‐DEEP: a novel CAD system for coronavirus (COVID‐19) diagnosis from CT images using multiple convolution neural networks publication-title: PeerJ – volume: 30 start-page: 41 year: 2019 end-page: 47 article-title: Pathological brain detection based on AlexNet and transfer learning publication-title: J Comput Sci – ident: e_1_2_10_17_1 doi: 10.1016/j.compbiomed.2020.103792 – ident: e_1_2_10_4_1 doi: 10.1109/ACCESS.2020.3003810 – ident: e_1_2_10_25_1 doi: 10.1109/ACCESS.2020.3025010 – ident: e_1_2_10_38_1 doi: 10.1109/18.661502 – ident: e_1_2_10_22_1 doi: 10.1109/ACCESS.2020.2994762 – ident: e_1_2_10_37_1 doi: 10.1016/0925-2312(94)90053-1 – ident: e_1_2_10_18_1 doi: 10.1007/s40846-020-00529-4 – ident: e_1_2_10_30_1 doi: 10.1109/TIP.2010.2044957 – ident: e_1_2_10_6_1 doi: 10.1109/JBHI.2020.3023246 – ident: e_1_2_10_35_1 – ident: e_1_2_10_5_1 doi: 10.1109/TMI.2020.2994459 – ident: e_1_2_10_2_1 doi: 10.1109/ACCESS.2020.3010287 – ident: e_1_2_10_19_1 doi: 10.1007/s13246-020-00865-4 – start-page: 5423 year: 2020 ident: e_1_2_10_21_1 article-title: A novel comparative study for detection of COVID‐19 on CT lung images using texture analysis, machine learning, and deep learning methods publication-title: Multimedia Tools Appl – ident: e_1_2_10_12_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_10_40_1 – ident: e_1_2_10_24_1 doi: 10.1109/JBHI.2020.3019505 – ident: e_1_2_10_13_1 doi: 10.1109/CVPR.2017.243 – start-page: 1097 volume-title: International Conference on Neural Information Processing Systems year: 2012 ident: e_1_2_10_41_1 – ident: e_1_2_10_3_1 doi: 10.1109/TMI.2020.2995965 – ident: e_1_2_10_33_1 doi: 10.1609/aaai.v33i01.33017370 – ident: e_1_2_10_23_1 doi: 10.1016/j.compbiomed.2020.103805 – ident: e_1_2_10_42_1 doi: 10.1109/CVPR.2018.00474 – ident: e_1_2_10_7_1 doi: 10.1016/j.inffus.2020.10.004 – ident: e_1_2_10_9_1 doi: 10.1109/ACCESS.2018.2839694 – ident: e_1_2_10_34_1 – ident: e_1_2_10_39_1 doi: 10.1016/j.neunet.2020.07.010 – ident: e_1_2_10_28_1 doi: 10.1109/JBHI.2020.3018181 – ident: e_1_2_10_27_1 doi: 10.1109/TMI.2020.2993291 – ident: e_1_2_10_14_1 doi: 10.1016/j.cogsys.2018.12.007 – ident: e_1_2_10_10_1 doi: 10.1016/j.patcog.2019.03.032 – ident: e_1_2_10_36_1 doi: 10.1145/3397271.3401123 – ident: e_1_2_10_8_1 doi: 10.1109/ACCESS.2020.3016780 – ident: e_1_2_10_26_1 doi: 10.1109/TMI.2020.2995508 – ident: e_1_2_10_11_1 doi: 10.1186/s12938-020-00807-x – ident: e_1_2_10_15_1 doi: 10.1016/j.jocs.2018.11.008 – ident: e_1_2_10_20_1 doi: 10.1109/TMI.2020.3001810 – ident: e_1_2_10_32_1 doi: 10.1109/TITS.2019.2935152 – ident: e_1_2_10_31_1 doi: 10.7717/peerj.10086 – ident: e_1_2_10_16_1 doi: 10.1016/j.mehy.2020.109761 – ident: e_1_2_10_43_1 doi: 10.1007/s11263-019-01228-7 – ident: e_1_2_10_29_1 doi: 10.1109/TPAMI.2006.244 |
SSID | ssj0011745 |
Score | 2.6190195 |
Snippet | COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided... COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1572 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Casualties Classification Computed tomography convolutional neural network COVID-19 Diagnosis Economic impact graph convolutional network Graph neural networks Graphical representations Intelligent systems Medical imaging Neural networks random vector functional link net transfer learning |
Title | NAGNN: Classification of COVID‐19 based on neighboring aware representation from deep graph neural network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22686 https://www.ncbi.nlm.nih.gov/pubmed/38607823 https://www.proquest.com/docview/2614666047 https://www.proquest.com/docview/3038438012 https://pubmed.ncbi.nlm.nih.gov/PMC8652936 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHVblwoXwTKJVBHHrJNnEc24HTqqW0CIIELeoBKbIdW1RU3qq7KyROPALPyJPgcT5gKUiIW5Q4imPP2H8nMz8DPGGKU8McT6l0NGWCsVQ67VKjbOYKXWTaRNpnzQ-O2cuT8mQNng25MB0fYvzghp4Rx2t0cKXnOz-hoad-MQnaQSJuG2O1UBC9HdFReVDaZacgw9NzUQxUoYzujHeuzkWXBOblOMlf9WucgPY34MNQ9S7u5NNkudAT8-U3quN_vtt1uNYLUzLtLOkGrFl_EzaGTR9IPwbcgrN6-qKun5K4mybGGcWuJTNHdt-8P9z7_vVbXhGcG1sSTnv88qpjkB9Rn9WFJZGiOWQ8eYLpLaS19pxEdDZBvmaohu-i02_D8f7zo92DtN-yITVhluNp6aiTiFRvq6zKrDQlF7lhJoy5uTa5bSvDstZS2oY3dQ4zSBxGuFal0MJYWdyBdT_z9h4QrsNKVQS1IjLNuBaqqoyRpRWKC10pncD20HmN6XnmuK3GWdORmGkTWrGJrZjA47HoeQfx-FOhzcECmt6P501YX7KwwMuYSODReDl4IP5WUd7OlvMmiACJ3P6cJnC3M5jxKYXkqMGKBMSKKY0FkO69esWffoyUb8nLIMVCtbajpfy94s1hfRQP7v970QdwlWIeRww_34T1xcXSPgzqaqG34Mp07_Wrd1vRnX4A6MEkIg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoBLyz8LBQwCqZdsE8exHSQOVZeyS0uQ0Bb1lsaOrVZU2aq7qwpOPAIPwqvwEjwJY-cHloLEpQduUWzFf-PxN87MNwBPWcGpZpYHVFoaMMFYIK2ygS5MaGMVh0p7ts-MD_fY6_1kfwm-trEwNT9Ed-HmdobX126DuwvpjZ-soUfVrI_gQfLGpXLHfDxDg236YjTA1X1G6fbL8dYwaHIKBBrVMA8SS610nN9lGqahkTrhItJMo1KIlI5MmWoWlobSElux1oU4WOeCmSZCCW1kjN-9BJddBnHH1D9415FVRYjtkxqz4ngjEbc8RiHd6Lq6ePqdg7TnPTN_Rcz-yNtehW_tZNWeLh_685nq60-_8Uj-L7N5DVYa7E02681yHZZMdQNW27wWpFFzN-E423yVZc-JTxjqXKm89JKJJVtv348G3z9_iVLijv-S4OvKXS4r78dIirPi1BBPFNoGdVXERfCQ0pgT4tnBiaMQxW5UtQP-Ldi7kDHfhuVqUpm7QLhCY1wgIBOhYlyJIk21lokRBRcqLVQP1ltpyXVD2e4yhxznNdk0zXHVcr9qPXjSVT2peUr-VGmtFbm8UVXTHE1ohjZsyEQPHnfFqGTcn6OiMpP5NEecI11qgoj24E4toV0rseQOZsY9EAuy21VwBOaLJdXRoScylzxBtIndWvei-feO56Ns7B_u_XvVR3BlOH6zm--Osp37cJW6sBXvbb8Gy7PTuXmAYHKmHvo9TODgosX8B-OyflE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiEulH8CBQwCqZdsE8exHSQOVZelS1FAqEW9hdixRUWVXXV3VcGJR-A9eBWegidh7PzAUpC49MAtip1kbI_Hn52ZbwAesZJTzSwPqbQ0ZIKxUFplQ12ayCYqiZT2bJ8539lnLw7SgxX42sXCNPwQ_YGbmxneXrsJPq3s5k_S0MN6PkDsIHnrUblrPp7gfm32dDzEwX1M6ejZ3vZO2KYUCDVaYR6mllrpKL-rLMoiI3XKRayZRpsQKx2bKtMsqgylFX7FWhfhYJ0HZpYKJbSRCb73HJxnHJ92COxNz1UVI7RPG8iKzY1F0tEYRXSzF3V58TuFaE87Zv4KmP2KN1qDb11fNY4uHwaLuRroT7_RSP4nnXkZLrXIm2w1U-UKrJj6Kqx1WS1Ia-SuwVG-9TzPnxCfLtQ5UnndJRNLtl-9HQ-_f_4SZ8Qt_hXB27U7Wlbei5GUJ-WxIZ4mtAvpqomL3yGVMVPiucGJIxBFMerG_f467J9Jm2_Aaj2pzS0gXOFWXCAcE5FiXIkyy7SWqRElFyorVQAbnbIUuiVsd3lDjoqGapoWOGqFH7UAHvZVpw1LyZ8qrXcaV7SGalbgBprhDjZiIoAHfTGaGPffqKzNZDErEOVIl5ggpgHcbBS0_0oiuQOZSQBiSXX7Co6-fLmkPnzvacwlTxFrolgbXjP_Lngxzvf8xe1_r3ofLrwejoqX43z3DlykLmbFu9qvw-r8eGHuIpKcq3t-BhN4d9Za_gPaMH0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAGNN%3A+Classification+of+COVID%E2%80%9019+based+on+neighboring+aware+representation+from+deep+graph+neural+network&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Lu%2C+Siyuan&rft.au=Zhu%2C+Ziquan&rft.au=Gorriz%2C+Juan+Manuel&rft.au=Wang%2C+Shui%E2%80%90Hua&rft.date=2022-02-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=2&rft.spage=1572&rft.epage=1598&rft_id=info:doi/10.1002%2Fint.22686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_int_22686 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |