NAGNN: Classification of COVID‐19 based on neighboring aware representation from deep graph neural network

COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 37; no. 2; pp. 1572 - 1598
Main Authors Lu, Siyuan, Zhu, Ziquan, Gorriz, Juan Manuel, Wang, Shui‐Hua, Zhang, Yu‐Dong
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.02.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer learning to obtain the image‐level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k‐nearest neighbors algorithm, in which the ILRs were linked with their k‐nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end‐to‐end COVID‐19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state‐of‐the‐art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID‐19, which can be used in clinical diagnosis.
AbstractList COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer learning to obtain the image‐level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k‐nearest neighbors algorithm, in which the ILRs were linked with their k‐nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end‐to‐end COVID‐19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state‐of‐the‐art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID‐19, which can be used in clinical diagnosis.
COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k-nearest neighbors algorithm, in which the ILRs were linked with their k-nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis.COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k-nearest neighbors algorithm, in which the ILRs were linked with their k-nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis.
COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided diagnosis system based on artificial intelligence to automatically identify the COVID‐19 in chest computed tomography images. We utilized transfer learning to obtain the image‐level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k ‐nearest neighbors algorithm, in which the ILRs were linked with their k ‐nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end‐to‐end COVID‐19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state‐of‐the‐art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID‐19, which can be used in clinical diagnosis.
COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the -nearest neighbors algorithm, in which the ILRs were linked with their -nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis.
Author Zhang, Yu‐Dong
Wang, Shui‐Hua
Zhu, Ziquan
Gorriz, Juan Manuel
Lu, Siyuan
AuthorAffiliation 2 Science in Civil Engineering University of Florida Gainesville FL USA
3 Department of Signal Theory, Networking and Communications University of Granada Granada Spain
1 School of Informatics University of Leicester Leicester UK
4 School of Mathematics and Actuarial Science University of Leicester Leicester UK
AuthorAffiliation_xml – name: 3 Department of Signal Theory, Networking and Communications University of Granada Granada Spain
– name: 1 School of Informatics University of Leicester Leicester UK
– name: 4 School of Mathematics and Actuarial Science University of Leicester Leicester UK
– name: 2 Science in Civil Engineering University of Florida Gainesville FL USA
Author_xml – sequence: 1
  givenname: Siyuan
  orcidid: 0000-0001-6720-1323
  surname: Lu
  fullname: Lu, Siyuan
  organization: University of Leicester
– sequence: 2
  givenname: Ziquan
  orcidid: 0000-0001-8792-9354
  surname: Zhu
  fullname: Zhu, Ziquan
  organization: University of Florida
– sequence: 3
  givenname: Juan Manuel
  orcidid: 0000-0001-7069-1714
  surname: Gorriz
  fullname: Gorriz, Juan Manuel
  organization: University of Granada
– sequence: 4
  givenname: Shui‐Hua
  orcidid: 0000-0003-4713-2791
  surname: Wang
  fullname: Wang, Shui‐Hua
  email: shuihuawang@ieee.org
  organization: University of Leicester
– sequence: 5
  givenname: Yu‐Dong
  orcidid: 0000-0002-4870-1493
  surname: Zhang
  fullname: Zhang, Yu‐Dong
  email: yudongzhang@ieee.org
  organization: University of Leicester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38607823$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFBS-AIrGhi7T-i-OwQKoGKCNV001B7CzHuZ5xydhTO2HUXR-BZ-RJMKRUUAlWV7K_c3TuPQdozwcPCD0n-JhgTE-cH44pFVI8QjOCG1kSQj7voRmWkpeS1GwfHaR0hTEhNa-eoH0mBa4lZTPUL0_PlsvXxbzXKTnrjB5c8EWwxfzi0-Lt99tvpClanaAr8rMHt1q3ITq_KvRORygibCMk8MOkszFsig5gW6yi3q6zYIy6z2PYhfjlKXpsdZ_g2d08RB_fv7ucfyjPL84W89Pz0vCaiLKy1EpcEd41uMEgTSVqYriRtSCtIdA1huMOKO3y9tZKJrDlTcWaqm5rA5IdojeT73ZsN9CZHC-nUNvoNjreqKCd-vvHu7Vaha9Kioo2TGSDV3cGMVyPkAa1cclA32sPYUyKYSY5k5jQjL58gF6FMfq8nqKCcCEE5nWmXvyZ6D7K7yIycDQBJoaUIth7hGD1s2SVS1a_Ss7syQPWuOn-eRnX_0-xcz3c_NtaLZaXk-IHfl243A
CitedBy_id crossref_primary_10_3390_biomimetics8060449
crossref_primary_10_1049_tje2_12226
crossref_primary_10_1109_ACCESS_2024_3354809
crossref_primary_10_1016_j_bspc_2023_104672
crossref_primary_10_32604_cmc_2023_037413
crossref_primary_10_1155_2023_6850772
crossref_primary_10_1016_j_bspc_2024_106577
crossref_primary_10_1089_big_2022_0042
crossref_primary_10_1016_j_bspc_2023_105914
crossref_primary_10_1016_j_engappai_2024_109122
crossref_primary_10_1002_ima_22814
crossref_primary_10_1016_j_bspc_2024_105999
crossref_primary_10_1016_j_cmpb_2024_108009
crossref_primary_10_1002_ima_22819
crossref_primary_10_1016_j_jksuci_2023_101783
crossref_primary_10_3390_diagnostics13010101
crossref_primary_10_1016_j_neunet_2023_11_055
crossref_primary_10_1016_j_bspc_2023_105593
crossref_primary_10_1016_j_bspc_2023_105599
crossref_primary_10_1007_s13042_023_02022_1
crossref_primary_10_1016_j_bspc_2023_105116
crossref_primary_10_1016_j_isatra_2022_08_003
crossref_primary_10_1016_j_knosys_2023_110806
crossref_primary_10_1016_j_bspc_2023_105596
crossref_primary_10_1016_j_bspc_2024_107157
crossref_primary_10_1109_JBHI_2023_3274486
crossref_primary_10_1016_j_bspc_2023_105597
crossref_primary_10_1155_2023_5872359
crossref_primary_10_1016_j_engappai_2023_107590
crossref_primary_10_1016_j_bspc_2022_103622
crossref_primary_10_1007_s00354_024_00279_w
crossref_primary_10_1016_j_eswa_2023_121845
crossref_primary_10_1109_JSEN_2023_3300995
crossref_primary_10_1109_JSEN_2022_3161733
crossref_primary_10_1109_JSEN_2023_3267101
crossref_primary_10_1016_j_jksuci_2023_101793
crossref_primary_10_1038_s41598_024_82299_6
crossref_primary_10_1016_j_bspc_2023_105908
crossref_primary_10_1109_JSEN_2023_3311644
crossref_primary_10_1109_JSEN_2023_3312975
crossref_primary_10_1109_JSEN_2023_3336667
crossref_primary_10_1002_ima_23160
crossref_primary_10_1002_ima_23161
crossref_primary_10_1016_j_bspc_2024_107362
crossref_primary_10_1007_s13042_024_02301_5
crossref_primary_10_1016_j_bspc_2023_105741
crossref_primary_10_1016_j_bspc_2024_106435
crossref_primary_10_1016_j_neunet_2022_04_027
crossref_primary_10_1002_ima_22995
crossref_primary_10_3390_s21227710
crossref_primary_10_1002_ima_22914
crossref_primary_10_1016_j_eswa_2023_122505
crossref_primary_10_4018_IJPCH_309118
crossref_primary_10_1155_2023_5917750
crossref_primary_10_1109_JSEN_2023_3246133
crossref_primary_10_1016_j_isatra_2022_08_029
crossref_primary_10_1016_j_bspc_2024_106207
crossref_primary_10_1016_j_bspc_2023_104642
crossref_primary_10_1016_j_compbiomed_2023_107914
crossref_primary_10_1002_ima_22987
crossref_primary_10_1016_j_bspc_2023_105850
crossref_primary_10_3390_s23020634
crossref_primary_10_1016_j_bspc_2023_105843
crossref_primary_10_1016_j_bspc_2023_104875
crossref_primary_10_1016_j_bspc_2024_106379
crossref_primary_10_1016_j_bspc_2022_104107
crossref_primary_10_3390_bioengineering10080981
crossref_primary_10_1002_ima_70015
crossref_primary_10_1016_j_bspc_2023_105712
crossref_primary_10_1016_j_neucom_2022_07_005
crossref_primary_10_1002_ima_70014
crossref_primary_10_1007_s00477_023_02435_y
crossref_primary_10_1016_j_bspc_2023_104869
crossref_primary_10_1002_int_22901
crossref_primary_10_1007_s10489_022_03570_9
crossref_primary_10_1109_JSEN_2023_3317056
crossref_primary_10_1002_int_23058
crossref_primary_10_1109_JSEN_2023_3341428
crossref_primary_10_3390_diagnostics13213326
crossref_primary_10_1109_JSEN_2023_3305290
crossref_primary_10_1016_j_bspc_2024_105975
crossref_primary_10_1016_j_bspc_2023_104742
crossref_primary_10_3233_JIFS_232866
crossref_primary_10_1016_j_compbiomed_2023_106847
crossref_primary_10_1016_j_preteyeres_2025_101353
crossref_primary_10_1002_ima_22726
crossref_primary_10_1109_JSEN_2023_3315280
crossref_primary_10_1002_ima_22848
crossref_primary_10_1016_j_energy_2022_125865
crossref_primary_10_1016_j_bspc_2023_105429
crossref_primary_10_1109_JBHI_2023_3345837
crossref_primary_10_1016_j_knosys_2023_110834
crossref_primary_10_1109_JSEN_2023_3317426
crossref_primary_10_1016_j_bspc_2023_105543
crossref_primary_10_1016_j_bspc_2023_104694
crossref_primary_10_1016_j_bspc_2024_106237
crossref_primary_10_1016_j_bspc_2023_105787
crossref_primary_10_1007_s13042_023_02073_4
crossref_primary_10_1016_j_bspc_2023_105425
crossref_primary_10_3389_fninf_2021_778552
crossref_primary_10_1002_ima_23007
crossref_primary_10_3233_JCM237076
crossref_primary_10_1016_j_jksuci_2023_101888
crossref_primary_10_1016_j_isatra_2022_12_005
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1109_JBHI_2023_3329231
crossref_primary_10_1109_JSEN_2025_3529510
crossref_primary_10_1002_ima_23194
crossref_primary_10_1007_s11227_023_05633_1
crossref_primary_10_1016_j_bspc_2023_105493
crossref_primary_10_1016_j_bspc_2024_106880
crossref_primary_10_1016_j_bspc_2023_105412
crossref_primary_10_1016_j_bspc_2023_105655
crossref_primary_10_1016_j_bspc_2023_105650
crossref_primary_10_1007_s11042_024_18487_3
crossref_primary_10_1016_j_mex_2025_103201
crossref_primary_10_1109_JSEN_2023_3318371
crossref_primary_10_3934_mbe_2022322
crossref_primary_10_1016_j_bspc_2023_105767
crossref_primary_10_1016_j_bspc_2023_105801
crossref_primary_10_1016_j_jksuci_2023_101814
crossref_primary_10_1007_s13042_023_02043_w
crossref_primary_10_1016_j_asoc_2023_110149
crossref_primary_10_1155_2023_7626478
crossref_primary_10_1016_j_neunet_2025_107312
crossref_primary_10_1016_j_jksuci_2024_102122
crossref_primary_10_1016_j_ins_2024_120159
crossref_primary_10_1016_j_jksuci_2024_102123
crossref_primary_10_1007_s13042_024_02391_1
crossref_primary_10_1007_s13721_023_00437_y
crossref_primary_10_1155_2023_8835111
Cites_doi 10.1016/j.compbiomed.2020.103792
10.1109/ACCESS.2020.3003810
10.1109/ACCESS.2020.3025010
10.1109/18.661502
10.1109/ACCESS.2020.2994762
10.1016/0925-2312(94)90053-1
10.1007/s40846-020-00529-4
10.1109/TIP.2010.2044957
10.1109/JBHI.2020.3023246
10.1109/TMI.2020.2994459
10.1109/ACCESS.2020.3010287
10.1007/s13246-020-00865-4
10.1109/CVPR.2016.90
10.1109/JBHI.2020.3019505
10.1109/CVPR.2017.243
10.1109/TMI.2020.2995965
10.1609/aaai.v33i01.33017370
10.1016/j.compbiomed.2020.103805
10.1109/CVPR.2018.00474
10.1016/j.inffus.2020.10.004
10.1109/ACCESS.2018.2839694
10.1016/j.neunet.2020.07.010
10.1109/JBHI.2020.3018181
10.1109/TMI.2020.2993291
10.1016/j.cogsys.2018.12.007
10.1016/j.patcog.2019.03.032
10.1145/3397271.3401123
10.1109/ACCESS.2020.3016780
10.1109/TMI.2020.2995508
10.1186/s12938-020-00807-x
10.1016/j.jocs.2018.11.008
10.1109/TMI.2020.3001810
10.1109/TITS.2019.2935152
10.7717/peerj.10086
10.1016/j.mehy.2020.109761
10.1007/s11263-019-01228-7
10.1109/TPAMI.2006.244
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/int.22686
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate LU et al
EISSN 1098-111X
EndPage 1598
ExternalDocumentID PMC8652936
38607823
10_1002_int_22686
INT22686
Genre article
Journal Article
GrantInformation_xml – fundername: Royal Society International Exchanges Cost Share Award (GB)
  funderid: RP202G0230
– fundername: Global Challenges Research Fund (GCRF), UK
  funderid: P202PF11
– fundername: Hope Foundation for Cancer Research
  funderid: RM60G0680
– fundername: Medical Research Council Confidence in Concept Award, UK
  funderid: MC_PC_17171
– fundername: Royal Society International Exchanges Cost Share Award (GB)
  grantid: RP202G0230
– fundername: Hope Foundation for Cancer Research
  grantid: RM60G0680
– fundername: Medical Research Council Confidence in Concept Award, UK
  grantid: MC_PC_17171
– fundername: Global Challenges Research Fund (GCRF), UK
  grantid: P202PF11
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c4716-5f2f80514d9090e8c5671c4c8761bc1ed9c40de22d100ff8360f4953957b7ce83
IEDL.DBID DR2
ISSN 0884-8173
1098-111X
IngestDate Thu Aug 21 14:35:09 EDT 2025
Fri Jul 11 11:17:05 EDT 2025
Fri Jul 25 12:12:25 EDT 2025
Thu Apr 03 06:57:07 EDT 2025
Tue Jul 01 02:44:34 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Wed Jan 22 16:28:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords graph convolutional network
transfer learning
random vector functional link net
convolutional neural network
Language English
License 2021 Wiley Periodicals LLC.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4716-5f2f80514d9090e8c5671c4c8761bc1ed9c40de22d100ff8360f4953957b7ce83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8792-9354
0000-0002-4870-1493
0000-0001-6720-1323
0000-0001-7069-1714
0000-0003-4713-2791
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8652936
PMID 38607823
PQID 2614666047
PQPubID 1026350
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8652936
proquest_miscellaneous_3038438012
proquest_journals_2614666047
pubmed_primary_38607823
crossref_primary_10_1002_int_22686
crossref_citationtrail_10_1002_int_22686
wiley_primary_10_1002_int_22686_INT22686
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
– name: Hoboken
PublicationTitle International journal of intelligent systems
PublicationTitleAlternate Int J Intell Syst
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2019; 93
2021; 67
2020; 140
2012
2019; 30
2010; 19
2020; 40
2019; 54
2020; 121
2020; 39
1998; 44
2020; 19
2020; 8
2018; 6
2020; 130
2020
2006; 28
2019
2018
2017
2020; 24
2016
2020; 43
2020; 21
2017; 128
1994; 6
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
Yasar H (e_1_2_10_21_1) 2020
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
Krizhevsky A (e_1_2_10_41_1) 2012
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 43
  start-page: 635
  issue: 2
  year: 2020
  end-page: 640
  article-title: COVID‐19: automatic detection from X‐ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys Eng Sci Med
– start-page: 7370
  year: 2019
  end-page: 7377
– volume: 39
  start-page: 2638
  issue: 8
  year: 2020
  end-page: 2652
  article-title: A rapid, accurate and machine‐agnostic segmentation and quantification method for CT‐based COVID‐19 diagnosis
  publication-title: IEEE Trans Med Imaging
– volume: 19
  start-page: 63
  issue: 1
  year: 2020
  article-title: Rapid identification of COVID‐19 severity in CT scans through classification of deep features
  publication-title: Biomed Eng Online
– volume: 121
  year: 2020
  article-title: Automated detection of COVID‐19 cases using deep neural networks with X‐ray images
  publication-title: Comput Biol Med
– volume: 39
  start-page: 2595
  issue: 8
  year: 2020
  end-page: 2605
  article-title: Dual‐sampling attention network for diagnosis of COVID‐19 from community acquired pneumonia
  publication-title: IEEE Trans Med Imaging
– volume: 8
  start-page: 132665
  year: 2020
  end-page: 132676
  article-title: Can AI help in screening viral and COVID‐19 pneumonia?
  publication-title: IEEE Access
– start-page: 770
  year: 2016
  end-page: 778
– volume: 140
  year: 2020
  article-title: COVIDiagnosis‐Net: Deep Bayes‐SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID‐19) from X‐ray images
  publication-title: Med Hypotheses
– volume: 128
  start-page: 336
  year: 2017
  end-page: 359
  article-title: Grad‐CAM: visual explanations from deep networks via gradient‐based localization
  publication-title: Int J Comput Vis
– volume: 39
  start-page: 2676
  issue: 8
  year: 2020
  end-page: 2687
  article-title: Deep learning for classification and localization of COVID‐19 markers in point‐of‐care lung ultrasound
  publication-title: IEEE Trans Med Imaging
– volume: 24
  start-page: 2806
  issue: 10
  year: 2020
  end-page: 2813
  article-title: Contrastive cross‐site learning with redesigned net for COVID‐19 CT classification
  publication-title: IEEE J Biomed Health Inf
– volume: 39
  start-page: 2615
  issue: 8
  year: 2020
  end-page: 2625
  article-title: A weakly‐supervised framework for COVID‐19 classification and lesion localization from chest CT
  publication-title: IEEE Trans Med Imaging
– volume: 44
  start-page: 525
  issue: 2
  year: 1998
  end-page: 536
  article-title: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
  publication-title: IEEE Trans Inf Theory
– volume: 8
  start-page: 171575
  year: 2020
  end-page: 171589
  article-title: DL‐CRC: deep learning‐based chest radiograph classification for COVID‐19 detection: a novel approach
  publication-title: IEEE Access
– volume: 130
  start-page: 185
  year: 2020
  end-page: 194
  article-title: Towards explainable deep neural networks (xDNN)
  publication-title: Neural Net
– start-page: 1289
  year: 2020
  end-page: 1298
– volume: 93
  start-page: 1
  year: 2019
  end-page: 13
  article-title: On the computation of distribution‐free performance bounds: Application to small sample sizes in neuroimaging
  publication-title: Pattern Recogn
– volume: 39
  start-page: 2688
  issue: 8
  year: 2020
  end-page: 2700
  article-title: Deep learning COVID‐19 features on CXR using limited training data sets
  publication-title: IEEE Trans Med Imaging
– volume: 40
  start-page: 462
  year: 2020
  end-page: 469
  article-title: Extracting possibly representative COVID‐19 biomarkers from X‐ray images with deep learning approach and image data related to pulmonary diseases
  publication-title: J Med Biol Eng
– start-page: 5423
  year: 2020
  end-page: 5447
  article-title: A novel comparative study for detection of COVID‐19 on CT lung images using texture analysis, machine learning, and deep learning methods
  publication-title: Multimedia Tools Appl
– start-page: 1097
  year: 2012
  end-page: 1105
– volume: 8
  start-page: 115041
  year: 2020
  end-page: 115050
  article-title: Iteratively pruned deep learning ensembles for COVID‐19 detection in chest X‐rays
  publication-title: IEEE Access
– volume: 24
  start-page: 2798
  issue: 10
  year: 2020
  end-page: 2805
  article-title: Adaptive feature selection guided deep forest for COVID‐19 classification with chest CT
  publication-title: IEEE J Biomed Health Inf
– volume: 6
  start-page: 163
  year: 1994
  end-page: 180
  article-title: Learning and generalization characteristics of random vector functional‐link net
  publication-title: Neurocomputing
– volume: 6
  start-page: 36408
  year: 2018
  end-page: 36419
  article-title: A new framework for the integrative analytics of intravascular ultrasound and optical coherence tomography images
  publication-title: IEEE Access
– volume: 24
  start-page: 2787
  issue: 10
  year: 2020
  end-page: 2797
  article-title: Efficient and effective training of COVID‐19 classification networks with self‐supervised dual‐track learning to rank
  publication-title: IEEE J Biomed Health Inf
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  end-page: 2041
  article-title: Face description with local binary patterns: application to face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 2261
  year: 2017
  end-page: 2269
– volume: 67
  start-page: 208
  year: 2021
  end-page: 229
  article-title: COVID‐19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
  publication-title: Inf Fusion
– volume: 54
  start-page: 176
  year: 2019
  end-page: 188
  article-title: Application of deep transfer learning for automated brain abnormality classification using MR images
  publication-title: Cognit Syst Res
– volume: 121
  year: 2020
  article-title: COVID‐19 detection using deep learning models to exploit social mimic optimization and structured chest X‐ray images using fuzzy color and stacking approaches
  publication-title: Comput Biol Med
– volume: 8
  start-page: 91916
  year: 2020
  end-page: 91923
  article-title: COVIDGAN: data augmentation using auxiliary classifier GAN for improved COVID‐19 detection
  publication-title: IEEE Access
– volume: 19
  start-page: 1657
  issue: 6
  year: 2010
  end-page: 1663
  article-title: A completed modeling of local binary pattern operator for texture classification
  publication-title: IEEE Trans Image Process
– start-page: 4510
  year: 2018
  end-page: 4520
– volume: 8
  start-page: 149808
  year: 2020
  end-page: 149824
  article-title: COVID‐19 detection through transfer learning using multimodal imaging data
  publication-title: IEEE Access
– volume: 21
  start-page: 3848
  issue: 9
  year: 2020
  end-page: 3858
  article-title: T‐GCN: a temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans Intell Transp Syst
– volume: 8
  year: 2020
  article-title: MULTI‐DEEP: a novel CAD system for coronavirus (COVID‐19) diagnosis from CT images using multiple convolution neural networks
  publication-title: PeerJ
– volume: 30
  start-page: 41
  year: 2019
  end-page: 47
  article-title: Pathological brain detection based on AlexNet and transfer learning
  publication-title: J Comput Sci
– ident: e_1_2_10_17_1
  doi: 10.1016/j.compbiomed.2020.103792
– ident: e_1_2_10_4_1
  doi: 10.1109/ACCESS.2020.3003810
– ident: e_1_2_10_25_1
  doi: 10.1109/ACCESS.2020.3025010
– ident: e_1_2_10_38_1
  doi: 10.1109/18.661502
– ident: e_1_2_10_22_1
  doi: 10.1109/ACCESS.2020.2994762
– ident: e_1_2_10_37_1
  doi: 10.1016/0925-2312(94)90053-1
– ident: e_1_2_10_18_1
  doi: 10.1007/s40846-020-00529-4
– ident: e_1_2_10_30_1
  doi: 10.1109/TIP.2010.2044957
– ident: e_1_2_10_6_1
  doi: 10.1109/JBHI.2020.3023246
– ident: e_1_2_10_35_1
– ident: e_1_2_10_5_1
  doi: 10.1109/TMI.2020.2994459
– ident: e_1_2_10_2_1
  doi: 10.1109/ACCESS.2020.3010287
– ident: e_1_2_10_19_1
  doi: 10.1007/s13246-020-00865-4
– start-page: 5423
  year: 2020
  ident: e_1_2_10_21_1
  article-title: A novel comparative study for detection of COVID‐19 on CT lung images using texture analysis, machine learning, and deep learning methods
  publication-title: Multimedia Tools Appl
– ident: e_1_2_10_12_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_10_40_1
– ident: e_1_2_10_24_1
  doi: 10.1109/JBHI.2020.3019505
– ident: e_1_2_10_13_1
  doi: 10.1109/CVPR.2017.243
– start-page: 1097
  volume-title: International Conference on Neural Information Processing Systems
  year: 2012
  ident: e_1_2_10_41_1
– ident: e_1_2_10_3_1
  doi: 10.1109/TMI.2020.2995965
– ident: e_1_2_10_33_1
  doi: 10.1609/aaai.v33i01.33017370
– ident: e_1_2_10_23_1
  doi: 10.1016/j.compbiomed.2020.103805
– ident: e_1_2_10_42_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_10_7_1
  doi: 10.1016/j.inffus.2020.10.004
– ident: e_1_2_10_9_1
  doi: 10.1109/ACCESS.2018.2839694
– ident: e_1_2_10_34_1
– ident: e_1_2_10_39_1
  doi: 10.1016/j.neunet.2020.07.010
– ident: e_1_2_10_28_1
  doi: 10.1109/JBHI.2020.3018181
– ident: e_1_2_10_27_1
  doi: 10.1109/TMI.2020.2993291
– ident: e_1_2_10_14_1
  doi: 10.1016/j.cogsys.2018.12.007
– ident: e_1_2_10_10_1
  doi: 10.1016/j.patcog.2019.03.032
– ident: e_1_2_10_36_1
  doi: 10.1145/3397271.3401123
– ident: e_1_2_10_8_1
  doi: 10.1109/ACCESS.2020.3016780
– ident: e_1_2_10_26_1
  doi: 10.1109/TMI.2020.2995508
– ident: e_1_2_10_11_1
  doi: 10.1186/s12938-020-00807-x
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jocs.2018.11.008
– ident: e_1_2_10_20_1
  doi: 10.1109/TMI.2020.3001810
– ident: e_1_2_10_32_1
  doi: 10.1109/TITS.2019.2935152
– ident: e_1_2_10_31_1
  doi: 10.7717/peerj.10086
– ident: e_1_2_10_16_1
  doi: 10.1016/j.mehy.2020.109761
– ident: e_1_2_10_43_1
  doi: 10.1007/s11263-019-01228-7
– ident: e_1_2_10_29_1
  doi: 10.1109/TPAMI.2006.244
SSID ssj0011745
Score 2.6190195
Snippet COVID‐19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer‐aided...
COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1572
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Casualties
Classification
Computed tomography
convolutional neural network
COVID-19
Diagnosis
Economic impact
graph convolutional network
Graph neural networks
Graphical representations
Intelligent systems
Medical imaging
Neural networks
random vector functional link net
transfer learning
Title NAGNN: Classification of COVID‐19 based on neighboring aware representation from deep graph neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22686
https://www.ncbi.nlm.nih.gov/pubmed/38607823
https://www.proquest.com/docview/2614666047
https://www.proquest.com/docview/3038438012
https://pubmed.ncbi.nlm.nih.gov/PMC8652936
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHVblwoXwTKJVBHHrJNnEc24HTqqW0CIIELeoBKbIdW1RU3qq7KyROPALPyJPgcT5gKUiIW5Q4imPP2H8nMz8DPGGKU8McT6l0NGWCsVQ67VKjbOYKXWTaRNpnzQ-O2cuT8mQNng25MB0fYvzghp4Rx2t0cKXnOz-hoad-MQnaQSJuG2O1UBC9HdFReVDaZacgw9NzUQxUoYzujHeuzkWXBOblOMlf9WucgPY34MNQ9S7u5NNkudAT8-U3quN_vtt1uNYLUzLtLOkGrFl_EzaGTR9IPwbcgrN6-qKun5K4mybGGcWuJTNHdt-8P9z7_vVbXhGcG1sSTnv88qpjkB9Rn9WFJZGiOWQ8eYLpLaS19pxEdDZBvmaohu-i02_D8f7zo92DtN-yITVhluNp6aiTiFRvq6zKrDQlF7lhJoy5uTa5bSvDstZS2oY3dQ4zSBxGuFal0MJYWdyBdT_z9h4QrsNKVQS1IjLNuBaqqoyRpRWKC10pncD20HmN6XnmuK3GWdORmGkTWrGJrZjA47HoeQfx-FOhzcECmt6P501YX7KwwMuYSODReDl4IP5WUd7OlvMmiACJ3P6cJnC3M5jxKYXkqMGKBMSKKY0FkO69esWffoyUb8nLIMVCtbajpfy94s1hfRQP7v970QdwlWIeRww_34T1xcXSPgzqaqG34Mp07_Wrd1vRnX4A6MEkIg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoBLyz8LBQwCqZdsE8exHSQOVZeyS0uQ0Bb1lsaOrVZU2aq7qwpOPAIPwqvwEjwJY-cHloLEpQduUWzFf-PxN87MNwBPWcGpZpYHVFoaMMFYIK2ygS5MaGMVh0p7ts-MD_fY6_1kfwm-trEwNT9Ed-HmdobX126DuwvpjZ-soUfVrI_gQfLGpXLHfDxDg236YjTA1X1G6fbL8dYwaHIKBBrVMA8SS610nN9lGqahkTrhItJMo1KIlI5MmWoWlobSElux1oU4WOeCmSZCCW1kjN-9BJddBnHH1D9415FVRYjtkxqz4ngjEbc8RiHd6Lq6ePqdg7TnPTN_Rcz-yNtehW_tZNWeLh_685nq60-_8Uj-L7N5DVYa7E02681yHZZMdQNW27wWpFFzN-E423yVZc-JTxjqXKm89JKJJVtv348G3z9_iVLijv-S4OvKXS4r78dIirPi1BBPFNoGdVXERfCQ0pgT4tnBiaMQxW5UtQP-Ldi7kDHfhuVqUpm7QLhCY1wgIBOhYlyJIk21lokRBRcqLVQP1ltpyXVD2e4yhxznNdk0zXHVcr9qPXjSVT2peUr-VGmtFbm8UVXTHE1ohjZsyEQPHnfFqGTcn6OiMpP5NEecI11qgoj24E4toV0rseQOZsY9EAuy21VwBOaLJdXRoScylzxBtIndWvei-feO56Ns7B_u_XvVR3BlOH6zm--Osp37cJW6sBXvbb8Gy7PTuXmAYHKmHvo9TODgosX8B-OyflE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiEulH8CBQwCqZdsE8exHSQOVZelS1FAqEW9hdixRUWVXXV3VcGJR-A9eBWegidh7PzAUpC49MAtip1kbI_Hn52ZbwAesZJTzSwPqbQ0ZIKxUFplQ12ayCYqiZT2bJ8539lnLw7SgxX42sXCNPwQ_YGbmxneXrsJPq3s5k_S0MN6PkDsIHnrUblrPp7gfm32dDzEwX1M6ejZ3vZO2KYUCDVaYR6mllrpKL-rLMoiI3XKRayZRpsQKx2bKtMsqgylFX7FWhfhYJ0HZpYKJbSRCb73HJxnHJ92COxNz1UVI7RPG8iKzY1F0tEYRXSzF3V58TuFaE87Zv4KmP2KN1qDb11fNY4uHwaLuRroT7_RSP4nnXkZLrXIm2w1U-UKrJj6Kqx1WS1Ia-SuwVG-9TzPnxCfLtQ5UnndJRNLtl-9HQ-_f_4SZ8Qt_hXB27U7Wlbei5GUJ-WxIZ4mtAvpqomL3yGVMVPiucGJIxBFMerG_f467J9Jm2_Aaj2pzS0gXOFWXCAcE5FiXIkyy7SWqRElFyorVQAbnbIUuiVsd3lDjoqGapoWOGqFH7UAHvZVpw1LyZ8qrXcaV7SGalbgBprhDjZiIoAHfTGaGPffqKzNZDErEOVIl5ggpgHcbBS0_0oiuQOZSQBiSXX7Co6-fLmkPnzvacwlTxFrolgbXjP_Lngxzvf8xe1_r3ofLrwejoqX43z3DlykLmbFu9qvw-r8eGHuIpKcq3t-BhN4d9Za_gPaMH0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAGNN%3A+Classification+of+COVID%E2%80%9019+based+on+neighboring+aware+representation+from+deep+graph+neural+network&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Lu%2C+Siyuan&rft.au=Zhu%2C+Ziquan&rft.au=Gorriz%2C+Juan+Manuel&rft.au=Wang%2C+Shui%E2%80%90Hua&rft.date=2022-02-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=2&rft.spage=1572&rft.epage=1598&rft_id=info:doi/10.1002%2Fint.22686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_int_22686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon