Domain Wall Patterning and Giant Response Functions in Ferrimagnetic Spinels

The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechani...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 23; pp. e2101402 - n/a
Main Authors Kish, Lazar L., Thaler, Alex, Lee, Minseong, Zakrzewski, Alexander V., Reig‐i‐Plessis, Dalmau, Wolin, Brian A., Wang, Xu, Littrell, Kenneth C., Budakian, Raffi, Zhou, Haidong, Gai, Zheng, Frontzek, Matthias D., Zapf, Vivien S., Aczel, Adam A., DeBeer‐Schmitt, Lisa, MacDougall, Gregory J.
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.12.2021
Wiley
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. Magnetostructural transitions in the ferrimagnetic spinels Mn3O4 and MnV2O4 are linked to increased spin–lattice coupling, from which novel magnetic domain structures emerge on the mesoscale. Small‐angle neutron scattering measures the response of these domain patterns to applied magnetic field and stress. Correlations between scattering and bulk probes demonstrate tuning of macroscopic response functions via alterations to the domain structure.
AbstractList The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3 O4 and MnV2 O4 and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.
The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.
The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn 3 O 4 and MnV 2 O 4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. Magnetostructural transitions in the ferrimagnetic spinels Mn 3 O 4 and MnV 2 O 4 are linked to increased spin–lattice coupling, from which novel magnetic domain structures emerge on the mesoscale. Small‐angle neutron scattering measures the response of these domain patterns to applied magnetic field and stress. Correlations between scattering and bulk probes demonstrate tuning of macroscopic response functions via alterations to the domain structure.
The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. Magnetostructural transitions in the ferrimagnetic spinels Mn3O4 and MnV2O4 are linked to increased spin–lattice coupling, from which novel magnetic domain structures emerge on the mesoscale. Small‐angle neutron scattering measures the response of these domain patterns to applied magnetic field and stress. Correlations between scattering and bulk probes demonstrate tuning of macroscopic response functions via alterations to the domain structure.
The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn O and MnV O and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.
Abstract The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.
The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn 3 O 4 and MnV 2 O 4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.
Author Lee, Minseong
Wang, Xu
Thaler, Alex
Zakrzewski, Alexander V.
Littrell, Kenneth C.
Aczel, Adam A.
Wolin, Brian A.
Frontzek, Matthias D.
MacDougall, Gregory J.
Zapf, Vivien S.
Zhou, Haidong
Gai, Zheng
Kish, Lazar L.
DeBeer‐Schmitt, Lisa
Budakian, Raffi
Reig‐i‐Plessis, Dalmau
AuthorAffiliation 2 National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87544 USA
1 Department of Physics and Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
4 Department of Physics and Astronomy University of Tennessee Knoxville Tennessee 37996 USA
5 Department of Physics and Astronomy University of Waterloo Waterloo Ontario N2L 3G1 Canada
6 Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
7 Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
3 Department of Physics and Astronomy and Quantum Matter Institute University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
AuthorAffiliation_xml – name: 4 Department of Physics and Astronomy University of Tennessee Knoxville Tennessee 37996 USA
– name: 7 Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
– name: 1 Department of Physics and Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
– name: 2 National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87544 USA
– name: 3 Department of Physics and Astronomy and Quantum Matter Institute University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
– name: 6 Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
– name: 5 Department of Physics and Astronomy University of Waterloo Waterloo Ontario N2L 3G1 Canada
Author_xml – sequence: 1
  givenname: Lazar L.
  orcidid: 0000-0001-7132-8415
  surname: Kish
  fullname: Kish, Lazar L.
  email: lazark2@illinois.edu
  organization: University of Illinois at Urbana‐Champaign
– sequence: 2
  givenname: Alex
  surname: Thaler
  fullname: Thaler, Alex
  organization: Oak Ridge National Laboratory
– sequence: 3
  givenname: Minseong
  surname: Lee
  fullname: Lee, Minseong
  organization: Los Alamos National Laboratory
– sequence: 4
  givenname: Alexander V.
  surname: Zakrzewski
  fullname: Zakrzewski, Alexander V.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 5
  givenname: Dalmau
  surname: Reig‐i‐Plessis
  fullname: Reig‐i‐Plessis, Dalmau
  organization: University of British Columbia
– sequence: 6
  givenname: Brian A.
  surname: Wolin
  fullname: Wolin, Brian A.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 7
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
  organization: University of Illinois at Urbana‐Champaign
– sequence: 8
  givenname: Kenneth C.
  surname: Littrell
  fullname: Littrell, Kenneth C.
  organization: Oak Ridge National Laboratory
– sequence: 9
  givenname: Raffi
  surname: Budakian
  fullname: Budakian, Raffi
  organization: University of Waterloo
– sequence: 10
  givenname: Haidong
  surname: Zhou
  fullname: Zhou, Haidong
  organization: Department of Physics and Astronomy University of Tennessee
– sequence: 11
  givenname: Zheng
  surname: Gai
  fullname: Gai, Zheng
  organization: Oak Ridge National Laboratory
– sequence: 12
  givenname: Matthias D.
  surname: Frontzek
  fullname: Frontzek, Matthias D.
  organization: Oak Ridge National Laboratory
– sequence: 13
  givenname: Vivien S.
  surname: Zapf
  fullname: Zapf, Vivien S.
  organization: Los Alamos National Laboratory
– sequence: 14
  givenname: Adam A.
  surname: Aczel
  fullname: Aczel, Adam A.
  organization: Oak Ridge National Laboratory
– sequence: 15
  givenname: Lisa
  surname: DeBeer‐Schmitt
  fullname: DeBeer‐Schmitt, Lisa
  email: debeerschmlm@ornl.gov
  organization: Oak Ridge National Laboratory
– sequence: 16
  givenname: Gregory J.
  surname: MacDougall
  fullname: MacDougall, Gregory J.
  email: gmacdoug@illinois.edu
  organization: University of Illinois at Urbana‐Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34719881$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1828393$$D View this record in Osti.gov
BookMark eNqFks1vEzEQxS1UREvolSNawYVLgr_W9l6QqpaUSpFAlI-j5bVnU0cbO9i7Rf3vcdgStVw4eeT5-c3z6D1HRyEGQOglwQuCMX1n3G1eUEwJJhzTJ-iEkkbNmeL86EF9jE5z3mCMSc0kJ-oZOmZclq4iJ2h1EbfGh-qH6fvqsxkGSMGHdWWCqy69CUP1BfIuhgzVcgx28KWsCr-ElPzWrAMM3lbXOx-gzy_Q0870GU7vzxn6tvzw9fzjfPXp8ur8bDW3Za6Y10ZSVrMaih9wHWWiwZY6J4ltCXWdEq0w2FolpMCtbDGXErsOF5DXirZshq4mXRfNRu_2RtKdjsbrPxcxrbVJxVcPuiGAnZTMmq7hgnPFaQNSmFZRQ3nZyAy9n7R2Y7sFZyEMyfSPRB93gr_R63irlahrSkgReD0JxDx4na0fwN7YGALYQRNFFWtYgd7eT0nx5wh50FufLfS9CRDHrGndEEoZFbKgb_5BN3FMoexTU4Flw5QU-6mLibIp5pygOzgmWO_Doffh0IdwlAevHv7zgP-NQgH4BPzyPdz9R06fXXy_ZoQI9hudr8SR
Cites_doi 10.1103/PhysRevB.93.014437
10.1103/PhysRevLett.89.067601
10.1146/annurev.matsci.37.052506.084303
10.1103/PhysRevB.89.134402
10.1038/nmat1804
10.1103/PhysRevLett.100.066404
10.1111/j.1151-2916.1988.tb05057.x
10.1143/JPSJ.79.011004
10.1016/0304-8853(86)90132-0
10.1038/s41524-018-0121-8
10.1063/1.3681581
10.1146/annurev.matsci.37.061206.113016
10.1103/PhysRevB.95.195134
10.1103/PhysRevB.90.064418
10.1146/annurev-matsci-070511-155022
10.1103/PhysRevLett.106.056602
10.1103/PhysRevMaterials.2.104411
10.1103/PhysRevB.87.054432
10.1016/S1572-4859(05)80007-5
10.1103/PhysRevB.87.195115
10.1103/PhysRevLett.96.207204
10.1103/PhysRevB.93.184418
10.1103/PhysRevB.84.094406
10.1103/PhysRevB.86.060414
10.25080/Majora-92bf1922-00a
10.1007/978-3-642-20943-7
10.1016/j.epsl.2010.05.004
10.1088/0953-8984/22/7/075902
10.1103/PhysRevB.76.174403
10.1038/ncomms5677
10.1103/PhysRevLett.98.127203
10.1038/s41598-018-30132-2
10.1103/PhysRevMaterials.2.064407
10.1103/PhysRevB.102.144404
10.1103/PhysRevB.77.220402
10.1103/RevModPhys.91.015004
10.1088/0022-3719/7/2/019
10.1103/PhysRevB.84.054421
10.1063/1.4990608
10.1038/s41467-020-15595-0
10.1063/1.2836410
10.1109/MCSE.2007.55
10.1103/PhysRevB.76.024409
10.1107/S1600576718001231
10.1140/epjst/e2010-01212-5
10.1016/j.progsolidstchem.2009.08.001
10.1063/1.3490249
10.1063/1.2177543
10.1103/PhysRevB.84.174424
10.1109/9780470544624
10.1038/s41563-018-0275-2
10.1016/j.jeurceramsoc.2014.09.037
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – sequence: 0
  name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
– sequence: 0
  name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
OTOTI
5PM
DOA
DOI 10.1002/advs.202101402
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Free Content
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database (ProQuest)
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


PubMed


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_91e0d773caf946448429e76ab82a2415
1828393
10_1002_advs_202101402
34719881
ADVS3116
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1455264‐CAR
– fundername: Office of Science
– fundername: National Science Foundation
  grantid: DMR-1455264-CAR
– fundername: ;
– fundername: ;
  grantid: DMR‐1455264‐CAR
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
EJD
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
OTOTI
5PM
ID FETCH-LOGICAL-c4716-5a723535e537edf23690c2dd71cb12df86b6a0cc86760b7b04770df02364582b3
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Oct 22 15:14:37 EDT 2024
Tue Sep 17 21:11:09 EDT 2024
Thu Dec 05 06:26:24 EST 2024
Fri Oct 25 09:28:17 EDT 2024
Thu Oct 10 15:43:24 EDT 2024
Fri Dec 06 02:17:53 EST 2024
Wed Oct 16 00:41:22 EDT 2024
Sat Aug 24 01:03:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords magnetostructural transitions
small-angle neutron scattering
domain walls
magnetoelastics
magnetodielectrics
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4716-5a723535e537edf23690c2dd71cb12df86b6a0cc86760b7b04770df02364582b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-00OR22725; DMR-1455264-CAR; DMR-1157490; SC0014664; 89233218CNA000001
National Science Foundation (NSF)
LA-UR-20-29866
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0001-7132-8415
0000000171328415
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655211/
PMID 34719881
PQID 2607938761
PQPubID 4365299
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_91e0d773caf946448429e76ab82a2415
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8655211
osti_scitechconnect_1828393
proquest_miscellaneous_2591223267
proquest_journals_2607938761
crossref_primary_10_1002_advs_202101402
pubmed_primary_34719881
wiley_primary_10_1002_advs_202101402_ADVS3116
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
John Wiley and Sons Inc
Publisher_xml – sequence: 0
  name: Wiley
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 35
2019; 91
2017; 7
2010; 108
2008; 38
2019; 18
2008; 77
2008; 103
2020; 11
1974; 7
2007; 76
2008; 100
1988; 71
2007; 37
2010; 22
2018; 8
2014; 5
2018; 2
2018; 4
2002; 89
2007; 9
2007; 6
1992; 2
2006; 96
2012; 100
2014; 90
2010; 79
2012
2009; 180
2013; 87
2010
2011; 84
1986; 58
2009
2016; 93
1993
2020; 102
2012; 148
2007; 98
2014; 89
2017; 95
2011; 106
2006; 88
2020
2004; 12
2010; 297
2018; 51
2012; 42
2009; 37
2012; 86
35199496 - Adv Sci (Weinh). 2022 Feb;9(6):e2200207
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
Bozorth R. M. (e_1_2_8_48_1) 1993
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Bellet D. (e_1_2_8_37_1) 1992; 2
e_1_2_8_14_1
e_1_2_8_35_1
Hubert A. (e_1_2_8_1_1) 2009
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2009
– volume: 12
  start-page: 339
  year: 2004
  end-page: 402
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 90
  year: 2007
  publication-title: Comput. Sci. Eng.
– volume: 297
  start-page: 10
  year: 2010
  publication-title: Earth Planet. Sc. Lett.
– volume: 5
  start-page: 4677
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  start-page: 65
  year: 2018
  publication-title: npj Comput. Mater.
– volume: 180
  start-page: 61
  year: 2009
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– start-page: 1
  year: 1993
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 265
  year: 2012
  publication-title: Annu. Rev. Mater. Res.
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 71
  start-page: 379
  year: 1988
  publication-title: J. Am. Ceram. Soc.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 37
  start-page: 589
  year: 2007
  publication-title: Annu. Rev. Mater. Res.
– volume: 35
  start-page: 411
  year: 2015
  publication-title: J. Eur. Ceram. Soc.
– volume: 108
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 58
  start-page: 128
  year: 1986
  publication-title: J. Magn. Magn. Mater.
– volume: 38
  start-page: 351
  year: 2008
  publication-title: Annu. Rev. Mater. Res.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 89
  start-page: 6
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 51
  start-page: 242
  year: 2018
  publication-title: J. Appl. Crystallogr.
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2019
  publication-title: Rev. Mod. Phys.
– volume: 96
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B ‐ Condens. Matter Mater. Phys.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 37
  start-page: 40
  year: 2009
  publication-title: Prog. Solid State Chem.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 79
  year: 2010
  publication-title: J. Phys. Soc. Japan
– volume: 6
  start-page: 13
  year: 2007
  publication-title: Nat. Mater.
– volume: 148
  year: 2012
– year: 2010
– year: 2012
– volume: 22
  start-page: 2
  year: 2010
  publication-title: J. Phys. Condens. Matter
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– year: 2020
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 11
  start-page: 1762
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 409
  year: 1974
  publication-title: J. Phys. C Solid State
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2017
  publication-title: AIP Adv.
– volume: 2
  start-page: 1097
  year: 1992
  publication-title: J. Phys.
– volume: 103
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 203
  year: 2019
  publication-title: Nat. Mater.
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.93.014437
– ident: e_1_2_8_7_1
  doi: 10.1103/PhysRevLett.89.067601
– ident: e_1_2_8_10_1
  doi: 10.1146/annurev.matsci.37.052506.084303
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevB.89.134402
– ident: e_1_2_8_14_1
  doi: 10.1038/nmat1804
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevLett.100.066404
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1151-2916.1988.tb05057.x
– ident: e_1_2_8_18_1
  doi: 10.1143/JPSJ.79.011004
– ident: e_1_2_8_30_1
  doi: 10.1016/0304-8853(86)90132-0
– ident: e_1_2_8_8_1
  doi: 10.1038/s41524-018-0121-8
– ident: e_1_2_8_35_1
  doi: 10.1063/1.3681581
– ident: e_1_2_8_50_1
  doi: 10.1146/annurev.matsci.37.061206.113016
– ident: e_1_2_8_44_1
– ident: e_1_2_8_9_1
  doi: 10.1103/PhysRevB.95.195134
– ident: e_1_2_8_58_1
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevB.90.064418
– ident: e_1_2_8_2_1
  doi: 10.1146/annurev-matsci-070511-155022
– ident: e_1_2_8_53_1
  doi: 10.1103/PhysRevLett.106.056602
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevMaterials.2.104411
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.87.054432
– ident: e_1_2_8_4_1
  doi: 10.1016/S1572-4859(05)80007-5
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevB.87.195115
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevLett.96.207204
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevB.93.184418
– ident: e_1_2_8_41_1
  doi: 10.1103/PhysRevB.84.094406
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevB.86.060414
– ident: e_1_2_8_57_1
  doi: 10.25080/Majora-92bf1922-00a
– ident: e_1_2_8_5_1
  doi: 10.1007/978-3-642-20943-7
– ident: e_1_2_8_27_1
  doi: 10.1016/j.epsl.2010.05.004
– ident: e_1_2_8_19_1
  doi: 10.1088/0953-8984/22/7/075902
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevB.76.174403
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms5677
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.98.127203
– ident: e_1_2_8_56_1
– ident: e_1_2_8_16_1
  doi: 10.1038/s41598-018-30132-2
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevMaterials.2.064407
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevB.102.144404
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevB.77.220402
– ident: e_1_2_8_38_1
  doi: 10.1103/RevModPhys.91.015004
– ident: e_1_2_8_29_1
  doi: 10.1088/0022-3719/7/2/019
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevB.84.054421
– ident: e_1_2_8_47_1
  doi: 10.1063/1.4990608
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467-020-15595-0
– ident: e_1_2_8_15_1
  doi: 10.1063/1.2836410
– ident: e_1_2_8_59_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevB.84.094406
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevB.76.024409
– volume-title: Magnetic Domains
  year: 2009
  ident: e_1_2_8_1_1
  contributor:
    fullname: Hubert A.
– ident: e_1_2_8_55_1
  doi: 10.1107/S1600576718001231
– ident: e_1_2_8_11_1
  doi: 10.1140/epjst/e2010-01212-5
– ident: e_1_2_8_12_1
  doi: 10.1016/j.progsolidstchem.2009.08.001
– ident: e_1_2_8_42_1
  doi: 10.1063/1.3490249
– ident: e_1_2_8_17_1
  doi: 10.1063/1.2177543
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevB.84.174424
– start-page: 1
  volume-title: Ferromagnetism
  year: 1993
  ident: e_1_2_8_48_1
  doi: 10.1109/9780470544624
  contributor:
    fullname: Bozorth R. M.
– ident: e_1_2_8_13_1
  doi: 10.1038/s41563-018-0275-2
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jeurceramsoc.2014.09.037
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevB.84.174424
– volume: 2
  start-page: 1097
  year: 1992
  ident: e_1_2_8_37_1
  publication-title: J. Phys.
  contributor:
    fullname: Bellet D.
SSID ssj0001537418
Score 2.2565713
Snippet The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its...
Abstract The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices,...
SourceID doaj
pubmedcentral
osti
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2101402
SubjectTerms Collaboration
Crystal structure
domain walls
Ferroelectrics
High Magnetic Field Science
magnetodielectrics
magnetoelastics
magnetostructural transitions
MATERIALS SCIENCE
Microscopy
small‐angle neutron scattering
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnrggymdoi4yEBByi-iOxnWNLWSoECFEq9WY5tkORaLai2_7-ztjZ1a5A6oVTpMSJnBlP_J4z8wzw2igZOx9FLUOLBKVHwmp5iHXorEf84JFC04L-l6_6-LT5dNaerW31RTlhRR64GG6_E4lHY1TwQ9cQmcAPaDLa91Z6WcrLibWskalSH6xIlmWp0sjlvo83pM4taW_aaQ1lOQtlsX48zDGo_gU0_86XXMexeSKaPYQHE4JkB6Xn23AvjY9ge4rRK_Z2EpJ-9xg-H80vkPgzWixn37KQJq2CMD9G9hGHxYJ9Lxmyic1wessjkGH7Gak1XvifIxU4spNLBKK_r57A6ezDj_fH9bR7Qh1wwtF1641UrWoTmiLFQSrkwUHGaETohYyD1b32PASrjea96XljDI9DVpRvrezVU9ga52N6TnXd2EjxKC0fGu9bhFRWJ9GFLhqbQlPBm6U13WURyXBFDlk6srtb2b2CQzL2qhWJW-cT6HI3udzd5fIKdshVDjECCd0GyggKC4dMCdGeqmB36UE3xSN2QJMQIH75RQWvVpcxkuj3iB_T_BrbtJ1AsCS1qeBZcfiqnwpN2lmLd5uNobDxIptXxl_nWa2bKn-RZVdQ50Fzh4EcopETJYR-8T8stQP36ckl_WYXthZ_rtMegqhF_zLHyy24hxSa
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVge-GCWj5DCzISEnCIGtuJ7ZwQhS4VgqpqqdSb5dhOW4km2-6W38-M4wRWIDhFSsZSMp7JvBmPnwl5pQT3tfUs566CBKWBhFUXzueu1hbwg4UUGgv6Xw_lwWn5-aw6SwW3ZWqrHP-J8Ufte4c18l3A3WBK4Lvs3eI6x1OjcHU1HaFxl2xwJrSekY29_cOj419VlkogPcvI1ljwXet_IEs3xzNqUy1ljEaRtB8uPTjX3wDnn32Tv-PZGJDmm-R-QpL0_TD1W-RO6B6QreSrS_omEUq_fUi-fOyv7GVHsWhOjyKhJlZDqO08_QTmsaLHQ6dsoHMIc9ESKcjPkbXxyp53uNGRniwAkH5fPiKn8_1vHw7ydIpC7iDwyLyyiotKVAFUEXzLBeTDjnuvmGsY962WjbSFc1oqWTSqKUqlCt9GZvlK80Y8JrOu78JT3N8NQqLwXBdtaW0F0ErLwGpXe6WDKzPyetSmWQxkGWagReYG9W4mvWdkD5U9SSHJdbzR35yb5DOmZqHwSgln27rEPBJiZ1DSNppbBB4Z2capMoAVkPDWYWeQWxnImAD1iYzsjDNokl_CC0xWlJGX02PwKFwmsV3ob0GmqhmAJi5VRp4MEz69pwCV1lrDaLVmCmsfsv6ku7yIrN24Axiy7Yzk0Wj-oyADqOREMCaf_fsztsk9HDM02OyQ2ermNjwHmLRqXiRf-An2uQ6K
  priority: 102
  providerName: ProQuest
– databaseName: Open Access: Wiley-Blackwell Open Access Journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQuXBBlPIIbZGRkIBDVMeOHzm2haVCgCpKpd4sv1J6aFJ1t_x-Zpxs2gikilMkexI545nMNxP7MyFvteCxcbEqeZCQoHhIWA0LsQyNcYAfHKTQWND_9l0dndZfzuTZnV38Az_EVHBDz8jfa3Rw55d7t6ShLv5Gum2Oh80im-RDwDYKzzDg9fFtlUUKpGfBE-Yguy6Fqes1cyPje_NHzCJTJvCHSw-O9i_w-fcayrvYNgenxRPyeESVdH8wg03yIHVPyebot0v6fiSX_rBFvn7sL91FR7GATo8zuSZWRqjrIv0MprKiP4ZVs4kuIORlq6Qgv0AGx0t33uGmR3pyhepbPiOni08_D4_K8USFMkAQUqV0mgspZAK1pNhyAblx4DHqKviKx9YorxwLwSitmNee1Vqz2GaWeWm4F8_JRtd36SXu9QYhwSI3rK2dkwCzjEpVE5qoTQp1Qd6ttWmvBuIMO1Akc4t6t5PeC3KAyp6kkPA6N_TX53b0H9tUiUWtRXBtU2NOCXE0aeW84Q5BSEG2caos4AYkvw24SiisLGRPgABFQXbWM2hHH4UBKCQHhGhQFeTN1A3ehb9MXJf6G5CRTQUAiitdkBfDhE_jFKDSxhi4W89MYfYi857u4ldm8MbdwJB5F6TMRnOPgiwglBNRVerVf8pvk0fYOKy-2SEbq-ubtAsYauVfZzf5A9MAEXU
  priority: 102
  providerName: Wiley-Blackwell
Title Domain Wall Patterning and Giant Response Functions in Ferrimagnetic Spinels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101402
https://www.ncbi.nlm.nih.gov/pubmed/34719881
https://www.proquest.com/docview/2607938761
https://search.proquest.com/docview/2591223267
https://www.osti.gov/biblio/1828393
https://pubmed.ncbi.nlm.nih.gov/PMC8655211
https://doaj.org/article/91e0d773caf946448429e76ab82a2415
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED6a7mUvY91Pr13wYLDtwY1-2JL8uHbNylhLaFfom5EluSs0TmjT_f27k-3QsMFgT4FYJLLuzvd98t0ngPdaCl9azzPhCiQoNRJWw5zPXGks4geLFJo29E9O1fFF_u2yuNyCYuiFiUX7rr7eb2_m--31z1hbuZy7yVAnNpmdHFIzJRKXyQhGmH4fUPSuNViSIssg0MjExPpfJMwt6FhaRsfXSHwil8bwjVwUJfvxY4Gh9Te4-WfV5EM0G9PR9Ck86XFk-rmb7w5shfYZ7PSRepd-7OWkPz2H718Wc6T_KW2Zp7Mop0l7IaltffoVnWOVnnV1siGdYpKLfpji-ClpNs7tVUttjun5EuHozd0LuJge_Tg8zvozFDKHN6mywmohC1kEXJXgGyGRDTvhveau5sI3RtXKMueM0orVuma51sw3UVe-MKKWL2G7XbThNXV34yDJvDCsya0tEFgZFXjpSq9NcHkCH4bVrJadVEbViSKLikxQrU2QwAEt9noUSVzHLxa3V1Vv6KrkgXmtpbNNmROLxMwZtLK1EZZgRwK7ZKoKkQLJ3TqqC3KrCvkSYj6ZwN5gwaqPSpyAIjlAfP7zBN6tL2M80UsS24bFPY4pSo6QSSidwKvO4Ot5Dn6TgN5whY0b2byCLhw1u3uXTSCLTvOPBaoQk5xLztWb__6nXXhMP9dV3uzB9ur2PrxF_LSqxzAS-WwMjw6OTmdn47gLMY4x9Bs3yhlz
link.rule.ids 230,314,727,780,784,864,885,2102,11562,21388,27924,27925,33744,33745,43805,46052,46476,50814,50923,53791,53793,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge4ALojzTFjASEnCImtjxIydEocsC21XVh9Sb5dhOqUSTbXfL72cmcRZWIDhFSsZSMp7JfDMefybkleLMl9bnKXMCEpQKEladOZ-6UlvADxZSaCzoH8zk5LT4cibOYsFtEdsqh39i96P2rcMa-S7gbjAl8N383fwqxVOjcHU1HqFxm2wgc7oYkY29_dnh0a8qi-BIzzKwNWZs1_ofyNLN8IzaWEsZolFH2g-XFpzrb4Dzz77J3_FsF5DG98m9iCTp-37qN8mt0Dwgm9FXF_RNJJR--5BMP7aX9qKhWDSnhx2hJlZDqG08_QTmsaRHfadsoGMIc50lUpAfI2vjpT1vcKMjPZ4DIP2-eEROx_snHyZpPEUhdRB4ZCqsYlxwEUAVwdeMQz7smPcqd1XOfK1lJW3mnJZKZpWqskKpzNcds7zQrOKPyahpm_AU93eDEM8801ldWCsAWmkZ8tKVXungioS8HrRp5j1ZhulpkZlBvZuV3hOyh8peSSHJdXejvT430WdMmYfMK8WdrcsC80iInUFJW2lmEXgkZBunygBWQMJbh51BbmkgYwLUxxOyM8ygiX4JL7CyooS8XD0Gj8JlEtuE9gZkRJkDaGJSJeRJP-Gr9-Sg0lJrGK3WTGHtQ9afNBffOtZu3AEM2XZC0s5o_qMgA6jkmOe53Pr3Z7wgdyYnB1Mz_Tz7uk3u4vi-2WaHjJbXN-EZQKZl9Tz6xU--rBFy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVgKyEuqOWroQWMhAQconXsJHZOiNKGAmW1aqnUm-XYTqlEk213y-9nJnECKxCcIsWOZI9nPG8m42dCXkrBXWFcEnObQYBSQcCqmHWxLZQB_GAghMaE_pdZfniafjrLzkL90zKUVQ57YrdRu9ZijnwKuBtUCWw3mdahLGK-X75dXMV4gxT-aQ3XadwmG-AVGZ-Qjb2D2fz4V8YlE0jVMjA3Mj417gcydnO8rzbkVQbP1BH4w6MFQ_sb-PyzhvJ3bNs5p3KT3Auokr7r1WCL3PLNfbIV7HZJXwdy6TcPyNF-e2kuGooJdDrvyDUxM0JN4-gHUJUVPe6rZj0tweV1Wkmhf4kMjpfmvMFDj_RkAeD0-_IhOS0Pvr4_jMONCrEFJ5THmZFcZCLzIArvai4gNrbcOZnYKuGuVnmVG2atymXOKlmxVErm6o5lPlO8Eo_IpGkbv41nvaGTYI4rVqfGZACzVO6TwhZOKm_TiLwapKkXPXGG7imSuUa561HuEdlDYY-9kPC6e9Fen-tgP7pIPHNSCmvqIsWYEvyol7mpFDcIQiKyg0ulATcg-a3FKiG70hA9AQIUEdkdVlAHG4UBjBoVkRdjM1gX_jIxjW9voE9WJACgeC4j8rhf8HGcAkRaKAVfyzVVWJvIektz8a1j8MbTwBB5RyTulOY_AtKAUE5EkuRP_j2N5-QOmIQ--jj7vEPu4ud93c0umayub_xTQE-r6lkwi5-utBWf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Wall+Patterning+and+Giant+Response+Functions+in+Ferrimagnetic+Spinels&rft.jtitle=Advanced+science&rft.au=Kish%2C+Lazar+L.&rft.au=Thaler%2C+Alex&rft.au=Lee%2C+Minseong&rft.au=Zakrzewski%2C+Alexander+V.&rft.date=2021-12-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202101402&rft.externalDBID=10.1002%252Fadvs.202101402&rft.externalDocID=ADVS3116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon