Domain Wall Patterning and Giant Response Functions in Ferrimagnetic Spinels
The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechani...
Saved in:
Published in | Advanced science Vol. 8; no. 23; pp. e2101402 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.12.2021
Wiley John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.
Magnetostructural transitions in the ferrimagnetic spinels Mn3O4 and MnV2O4 are linked to increased spin–lattice coupling, from which novel magnetic domain structures emerge on the mesoscale. Small‐angle neutron scattering measures the response of these domain patterns to applied magnetic field and stress. Correlations between scattering and bulk probes demonstrate tuning of macroscopic response functions via alterations to the domain structure. |
---|---|
AbstractList | The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3 O4 and MnV2 O4 and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn 3 O 4 and MnV 2 O 4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. Magnetostructural transitions in the ferrimagnetic spinels Mn 3 O 4 and MnV 2 O 4 are linked to increased spin–lattice coupling, from which novel magnetic domain structures emerge on the mesoscale. Small‐angle neutron scattering measures the response of these domain patterns to applied magnetic field and stress. Correlations between scattering and bulk probes demonstrate tuning of macroscopic response functions via alterations to the domain structure. The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. Magnetostructural transitions in the ferrimagnetic spinels Mn3O4 and MnV2O4 are linked to increased spin–lattice coupling, from which novel magnetic domain structures emerge on the mesoscale. Small‐angle neutron scattering measures the response of these domain patterns to applied magnetic field and stress. Correlations between scattering and bulk probes demonstrate tuning of macroscopic response functions via alterations to the domain structure. The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn O and MnV O and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. Abstract The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4 and MnV2O4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn 3 O 4 and MnV 2 O 4 and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data. |
Author | Lee, Minseong Wang, Xu Thaler, Alex Zakrzewski, Alexander V. Littrell, Kenneth C. Aczel, Adam A. Wolin, Brian A. Frontzek, Matthias D. MacDougall, Gregory J. Zapf, Vivien S. Zhou, Haidong Gai, Zheng Kish, Lazar L. DeBeer‐Schmitt, Lisa Budakian, Raffi Reig‐i‐Plessis, Dalmau |
AuthorAffiliation | 2 National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87544 USA 1 Department of Physics and Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA 4 Department of Physics and Astronomy University of Tennessee Knoxville Tennessee 37996 USA 5 Department of Physics and Astronomy University of Waterloo Waterloo Ontario N2L 3G1 Canada 6 Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA 7 Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA 3 Department of Physics and Astronomy and Quantum Matter Institute University of British Columbia Vancouver British Columbia V6T 1Z1 Canada |
AuthorAffiliation_xml | – name: 4 Department of Physics and Astronomy University of Tennessee Knoxville Tennessee 37996 USA – name: 7 Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA – name: 1 Department of Physics and Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA – name: 2 National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87544 USA – name: 3 Department of Physics and Astronomy and Quantum Matter Institute University of British Columbia Vancouver British Columbia V6T 1Z1 Canada – name: 6 Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA – name: 5 Department of Physics and Astronomy University of Waterloo Waterloo Ontario N2L 3G1 Canada |
Author_xml | – sequence: 1 givenname: Lazar L. orcidid: 0000-0001-7132-8415 surname: Kish fullname: Kish, Lazar L. email: lazark2@illinois.edu organization: University of Illinois at Urbana‐Champaign – sequence: 2 givenname: Alex surname: Thaler fullname: Thaler, Alex organization: Oak Ridge National Laboratory – sequence: 3 givenname: Minseong surname: Lee fullname: Lee, Minseong organization: Los Alamos National Laboratory – sequence: 4 givenname: Alexander V. surname: Zakrzewski fullname: Zakrzewski, Alexander V. organization: University of Illinois at Urbana‐Champaign – sequence: 5 givenname: Dalmau surname: Reig‐i‐Plessis fullname: Reig‐i‐Plessis, Dalmau organization: University of British Columbia – sequence: 6 givenname: Brian A. surname: Wolin fullname: Wolin, Brian A. organization: University of Illinois at Urbana‐Champaign – sequence: 7 givenname: Xu surname: Wang fullname: Wang, Xu organization: University of Illinois at Urbana‐Champaign – sequence: 8 givenname: Kenneth C. surname: Littrell fullname: Littrell, Kenneth C. organization: Oak Ridge National Laboratory – sequence: 9 givenname: Raffi surname: Budakian fullname: Budakian, Raffi organization: University of Waterloo – sequence: 10 givenname: Haidong surname: Zhou fullname: Zhou, Haidong organization: Department of Physics and Astronomy University of Tennessee – sequence: 11 givenname: Zheng surname: Gai fullname: Gai, Zheng organization: Oak Ridge National Laboratory – sequence: 12 givenname: Matthias D. surname: Frontzek fullname: Frontzek, Matthias D. organization: Oak Ridge National Laboratory – sequence: 13 givenname: Vivien S. surname: Zapf fullname: Zapf, Vivien S. organization: Los Alamos National Laboratory – sequence: 14 givenname: Adam A. surname: Aczel fullname: Aczel, Adam A. organization: Oak Ridge National Laboratory – sequence: 15 givenname: Lisa surname: DeBeer‐Schmitt fullname: DeBeer‐Schmitt, Lisa email: debeerschmlm@ornl.gov organization: Oak Ridge National Laboratory – sequence: 16 givenname: Gregory J. surname: MacDougall fullname: MacDougall, Gregory J. email: gmacdoug@illinois.edu organization: University of Illinois at Urbana‐Champaign |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34719881$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1828393$$D View this record in Osti.gov |
BookMark | eNqFks1vEzEQxS1UREvolSNawYVLgr_W9l6QqpaUSpFAlI-j5bVnU0cbO9i7Rf3vcdgStVw4eeT5-c3z6D1HRyEGQOglwQuCMX1n3G1eUEwJJhzTJ-iEkkbNmeL86EF9jE5z3mCMSc0kJ-oZOmZclq4iJ2h1EbfGh-qH6fvqsxkGSMGHdWWCqy69CUP1BfIuhgzVcgx28KWsCr-ElPzWrAMM3lbXOx-gzy_Q0870GU7vzxn6tvzw9fzjfPXp8ur8bDW3Za6Y10ZSVrMaih9wHWWiwZY6J4ltCXWdEq0w2FolpMCtbDGXErsOF5DXirZshq4mXRfNRu_2RtKdjsbrPxcxrbVJxVcPuiGAnZTMmq7hgnPFaQNSmFZRQ3nZyAy9n7R2Y7sFZyEMyfSPRB93gr_R63irlahrSkgReD0JxDx4na0fwN7YGALYQRNFFWtYgd7eT0nx5wh50FufLfS9CRDHrGndEEoZFbKgb_5BN3FMoexTU4Flw5QU-6mLibIp5pygOzgmWO_Doffh0IdwlAevHv7zgP-NQgH4BPzyPdz9R06fXXy_ZoQI9hudr8SR |
Cites_doi | 10.1103/PhysRevB.93.014437 10.1103/PhysRevLett.89.067601 10.1146/annurev.matsci.37.052506.084303 10.1103/PhysRevB.89.134402 10.1038/nmat1804 10.1103/PhysRevLett.100.066404 10.1111/j.1151-2916.1988.tb05057.x 10.1143/JPSJ.79.011004 10.1016/0304-8853(86)90132-0 10.1038/s41524-018-0121-8 10.1063/1.3681581 10.1146/annurev.matsci.37.061206.113016 10.1103/PhysRevB.95.195134 10.1103/PhysRevB.90.064418 10.1146/annurev-matsci-070511-155022 10.1103/PhysRevLett.106.056602 10.1103/PhysRevMaterials.2.104411 10.1103/PhysRevB.87.054432 10.1016/S1572-4859(05)80007-5 10.1103/PhysRevB.87.195115 10.1103/PhysRevLett.96.207204 10.1103/PhysRevB.93.184418 10.1103/PhysRevB.84.094406 10.1103/PhysRevB.86.060414 10.25080/Majora-92bf1922-00a 10.1007/978-3-642-20943-7 10.1016/j.epsl.2010.05.004 10.1088/0953-8984/22/7/075902 10.1103/PhysRevB.76.174403 10.1038/ncomms5677 10.1103/PhysRevLett.98.127203 10.1038/s41598-018-30132-2 10.1103/PhysRevMaterials.2.064407 10.1103/PhysRevB.102.144404 10.1103/PhysRevB.77.220402 10.1103/RevModPhys.91.015004 10.1088/0022-3719/7/2/019 10.1103/PhysRevB.84.054421 10.1063/1.4990608 10.1038/s41467-020-15595-0 10.1063/1.2836410 10.1109/MCSE.2007.55 10.1103/PhysRevB.76.024409 10.1107/S1600576718001231 10.1140/epjst/e2010-01212-5 10.1016/j.progsolidstchem.2009.08.001 10.1063/1.3490249 10.1063/1.2177543 10.1103/PhysRevB.84.174424 10.1109/9780470544624 10.1038/s41563-018-0275-2 10.1016/j.jeurceramsoc.2014.09.037 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – sequence: 0 name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) – sequence: 0 name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | 24P WIN NPM AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 OTOTI 5PM DOA |
DOI | 10.1002/advs.202101402 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library Free Content PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database (ProQuest) Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_91e0d773caf946448429e76ab82a2415 1828393 10_1002_advs_202101402 34719881 ADVS3116 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1455264‐CAR – fundername: Office of Science – fundername: National Science Foundation grantid: DMR-1455264-CAR – fundername: ; – fundername: ; grantid: DMR‐1455264‐CAR |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN EJD ITC NPM AAYXX CITATION 3V. 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-c4716-5a723535e537edf23690c2dd71cb12df86b6a0cc86760b7b04770df02364582b3 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Oct 22 15:14:37 EDT 2024 Tue Sep 17 21:11:09 EDT 2024 Thu Dec 05 06:26:24 EST 2024 Fri Oct 25 09:28:17 EDT 2024 Thu Oct 10 15:43:24 EDT 2024 Fri Dec 06 02:17:53 EST 2024 Wed Oct 16 00:41:22 EDT 2024 Sat Aug 24 01:03:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | magnetostructural transitions small-angle neutron scattering domain walls magnetoelastics magnetodielectrics |
Language | English |
License | Attribution 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4716-5a723535e537edf23690c2dd71cb12df86b6a0cc86760b7b04770df02364582b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-00OR22725; DMR-1455264-CAR; DMR-1157490; SC0014664; 89233218CNA000001 National Science Foundation (NSF) LA-UR-20-29866 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0001-7132-8415 0000000171328415 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655211/ |
PMID | 34719881 |
PQID | 2607938761 |
PQPubID | 4365299 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_91e0d773caf946448429e76ab82a2415 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8655211 osti_scitechconnect_1828393 proquest_miscellaneous_2591223267 proquest_journals_2607938761 crossref_primary_10_1002_advs_202101402 pubmed_primary_34719881 wiley_primary_10_1002_advs_202101402_ADVS3116 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley John Wiley and Sons Inc |
Publisher_xml | – sequence: 0 name: Wiley – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2015; 35 2019; 91 2017; 7 2010; 108 2008; 38 2019; 18 2008; 77 2008; 103 2020; 11 1974; 7 2007; 76 2008; 100 1988; 71 2007; 37 2010; 22 2018; 8 2014; 5 2018; 2 2018; 4 2002; 89 2007; 9 2007; 6 1992; 2 2006; 96 2012; 100 2014; 90 2010; 79 2012 2009; 180 2013; 87 2010 2011; 84 1986; 58 2009 2016; 93 1993 2020; 102 2012; 148 2007; 98 2014; 89 2017; 95 2011; 106 2006; 88 2020 2004; 12 2010; 297 2018; 51 2012; 42 2009; 37 2012; 86 35199496 - Adv Sci (Weinh). 2022 Feb;9(6):e2200207 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 Bozorth R. M. (e_1_2_8_48_1) 1993 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Bellet D. (e_1_2_8_37_1) 1992; 2 e_1_2_8_14_1 e_1_2_8_35_1 Hubert A. (e_1_2_8_1_1) 2009 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – year: 2009 – volume: 12 start-page: 339 year: 2004 end-page: 402 – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 9 start-page: 90 year: 2007 publication-title: Comput. Sci. Eng. – volume: 297 start-page: 10 year: 2010 publication-title: Earth Planet. Sc. Lett. – volume: 5 start-page: 4677 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 65 year: 2018 publication-title: npj Comput. Mater. – volume: 180 start-page: 61 year: 2009 publication-title: Eur. Phys. J. Spec. Top. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 84 year: 2011 publication-title: Phys. Rev. B – start-page: 1 year: 1993 – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 42 start-page: 265 year: 2012 publication-title: Annu. Rev. Mater. Res. – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 71 start-page: 379 year: 1988 publication-title: J. Am. Ceram. Soc. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 37 start-page: 589 year: 2007 publication-title: Annu. Rev. Mater. Res. – volume: 35 start-page: 411 year: 2015 publication-title: J. Eur. Ceram. Soc. – volume: 108 year: 2010 publication-title: J. Appl. Phys. – volume: 58 start-page: 128 year: 1986 publication-title: J. Magn. Magn. Mater. – volume: 38 start-page: 351 year: 2008 publication-title: Annu. Rev. Mater. Res. – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 89 start-page: 6 year: 2002 publication-title: Phys. Rev. Lett. – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 51 start-page: 242 year: 2018 publication-title: J. Appl. Crystallogr. – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 91 year: 2019 publication-title: Rev. Mod. Phys. – volume: 96 year: 2006 publication-title: Phys. Rev. Lett. – volume: 86 year: 2012 publication-title: Phys. Rev. B ‐ Condens. Matter Mater. Phys. – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 37 start-page: 40 year: 2009 publication-title: Prog. Solid State Chem. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 79 year: 2010 publication-title: J. Phys. Soc. Japan – volume: 6 start-page: 13 year: 2007 publication-title: Nat. Mater. – volume: 148 year: 2012 – year: 2010 – year: 2012 – volume: 22 start-page: 2 year: 2010 publication-title: J. Phys. Condens. Matter – volume: 76 year: 2007 publication-title: Phys. Rev. B – year: 2020 – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 11 start-page: 1762 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 409 year: 1974 publication-title: J. Phys. C Solid State – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 7 year: 2017 publication-title: AIP Adv. – volume: 2 start-page: 1097 year: 1992 publication-title: J. Phys. – volume: 103 year: 2008 publication-title: J. Appl. Phys. – volume: 18 start-page: 203 year: 2019 publication-title: Nat. Mater. – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.93.014437 – ident: e_1_2_8_7_1 doi: 10.1103/PhysRevLett.89.067601 – ident: e_1_2_8_10_1 doi: 10.1146/annurev.matsci.37.052506.084303 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevB.89.134402 – ident: e_1_2_8_14_1 doi: 10.1038/nmat1804 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevLett.100.066404 – ident: e_1_2_8_28_1 doi: 10.1111/j.1151-2916.1988.tb05057.x – ident: e_1_2_8_18_1 doi: 10.1143/JPSJ.79.011004 – ident: e_1_2_8_30_1 doi: 10.1016/0304-8853(86)90132-0 – ident: e_1_2_8_8_1 doi: 10.1038/s41524-018-0121-8 – ident: e_1_2_8_35_1 doi: 10.1063/1.3681581 – ident: e_1_2_8_50_1 doi: 10.1146/annurev.matsci.37.061206.113016 – ident: e_1_2_8_44_1 – ident: e_1_2_8_9_1 doi: 10.1103/PhysRevB.95.195134 – ident: e_1_2_8_58_1 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevB.90.064418 – ident: e_1_2_8_2_1 doi: 10.1146/annurev-matsci-070511-155022 – ident: e_1_2_8_53_1 doi: 10.1103/PhysRevLett.106.056602 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevMaterials.2.104411 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.87.054432 – ident: e_1_2_8_4_1 doi: 10.1016/S1572-4859(05)80007-5 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevB.87.195115 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevLett.96.207204 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevB.93.184418 – ident: e_1_2_8_41_1 doi: 10.1103/PhysRevB.84.094406 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevB.86.060414 – ident: e_1_2_8_57_1 doi: 10.25080/Majora-92bf1922-00a – ident: e_1_2_8_5_1 doi: 10.1007/978-3-642-20943-7 – ident: e_1_2_8_27_1 doi: 10.1016/j.epsl.2010.05.004 – ident: e_1_2_8_19_1 doi: 10.1088/0953-8984/22/7/075902 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevB.76.174403 – ident: e_1_2_8_6_1 doi: 10.1038/ncomms5677 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.98.127203 – ident: e_1_2_8_56_1 – ident: e_1_2_8_16_1 doi: 10.1038/s41598-018-30132-2 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevMaterials.2.064407 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevB.102.144404 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevB.77.220402 – ident: e_1_2_8_38_1 doi: 10.1103/RevModPhys.91.015004 – ident: e_1_2_8_29_1 doi: 10.1088/0022-3719/7/2/019 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevB.84.054421 – ident: e_1_2_8_47_1 doi: 10.1063/1.4990608 – ident: e_1_2_8_43_1 doi: 10.1038/s41467-020-15595-0 – ident: e_1_2_8_15_1 doi: 10.1063/1.2836410 – ident: e_1_2_8_59_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevB.84.094406 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevB.76.024409 – volume-title: Magnetic Domains year: 2009 ident: e_1_2_8_1_1 contributor: fullname: Hubert A. – ident: e_1_2_8_55_1 doi: 10.1107/S1600576718001231 – ident: e_1_2_8_11_1 doi: 10.1140/epjst/e2010-01212-5 – ident: e_1_2_8_12_1 doi: 10.1016/j.progsolidstchem.2009.08.001 – ident: e_1_2_8_42_1 doi: 10.1063/1.3490249 – ident: e_1_2_8_17_1 doi: 10.1063/1.2177543 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevB.84.174424 – start-page: 1 volume-title: Ferromagnetism year: 1993 ident: e_1_2_8_48_1 doi: 10.1109/9780470544624 contributor: fullname: Bozorth R. M. – ident: e_1_2_8_13_1 doi: 10.1038/s41563-018-0275-2 – ident: e_1_2_8_3_1 doi: 10.1016/j.jeurceramsoc.2014.09.037 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevB.84.174424 – volume: 2 start-page: 1097 year: 1992 ident: e_1_2_8_37_1 publication-title: J. Phys. contributor: fullname: Bellet D. |
SSID | ssj0001537418 |
Score | 2.2565713 |
Snippet | The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its... Abstract The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices,... |
SourceID | doaj pubmedcentral osti proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2101402 |
SubjectTerms | Collaboration Crystal structure domain walls Ferroelectrics High Magnetic Field Science magnetodielectrics magnetoelastics magnetostructural transitions MATERIALS SCIENCE Microscopy small‐angle neutron scattering |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnrggymdoi4yEBByi-iOxnWNLWSoECFEq9WY5tkORaLai2_7-ztjZ1a5A6oVTpMSJnBlP_J4z8wzw2igZOx9FLUOLBKVHwmp5iHXorEf84JFC04L-l6_6-LT5dNaerW31RTlhRR64GG6_E4lHY1TwQ9cQmcAPaDLa91Z6WcrLibWskalSH6xIlmWp0sjlvo83pM4taW_aaQ1lOQtlsX48zDGo_gU0_86XXMexeSKaPYQHE4JkB6Xn23AvjY9ge4rRK_Z2EpJ-9xg-H80vkPgzWixn37KQJq2CMD9G9hGHxYJ9Lxmyic1wessjkGH7Gak1XvifIxU4spNLBKK_r57A6ezDj_fH9bR7Qh1wwtF1641UrWoTmiLFQSrkwUHGaETohYyD1b32PASrjea96XljDI9DVpRvrezVU9ga52N6TnXd2EjxKC0fGu9bhFRWJ9GFLhqbQlPBm6U13WURyXBFDlk6srtb2b2CQzL2qhWJW-cT6HI3udzd5fIKdshVDjECCd0GyggKC4dMCdGeqmB36UE3xSN2QJMQIH75RQWvVpcxkuj3iB_T_BrbtJ1AsCS1qeBZcfiqnwpN2lmLd5uNobDxIptXxl_nWa2bKn-RZVdQ50Fzh4EcopETJYR-8T8stQP36ckl_WYXthZ_rtMegqhF_zLHyy24hxSa priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVge-GCWj5DCzISEnCIGtuJ7ZwQhS4VgqpqqdSb5dhOW4km2-6W38-M4wRWIDhFSsZSMp7JvBmPnwl5pQT3tfUs566CBKWBhFUXzueu1hbwg4UUGgv6Xw_lwWn5-aw6SwW3ZWqrHP-J8Ufte4c18l3A3WBK4Lvs3eI6x1OjcHU1HaFxl2xwJrSekY29_cOj419VlkogPcvI1ljwXet_IEs3xzNqUy1ljEaRtB8uPTjX3wDnn32Tv-PZGJDmm-R-QpL0_TD1W-RO6B6QreSrS_omEUq_fUi-fOyv7GVHsWhOjyKhJlZDqO08_QTmsaLHQ6dsoHMIc9ESKcjPkbXxyp53uNGRniwAkH5fPiKn8_1vHw7ydIpC7iDwyLyyiotKVAFUEXzLBeTDjnuvmGsY962WjbSFc1oqWTSqKUqlCt9GZvlK80Y8JrOu78JT3N8NQqLwXBdtaW0F0ErLwGpXe6WDKzPyetSmWQxkGWagReYG9W4mvWdkD5U9SSHJdbzR35yb5DOmZqHwSgln27rEPBJiZ1DSNppbBB4Z2capMoAVkPDWYWeQWxnImAD1iYzsjDNokl_CC0xWlJGX02PwKFwmsV3ob0GmqhmAJi5VRp4MEz69pwCV1lrDaLVmCmsfsv6ku7yIrN24Axiy7Yzk0Wj-oyADqOREMCaf_fsztsk9HDM02OyQ2ermNjwHmLRqXiRf-An2uQ6K priority: 102 providerName: ProQuest – databaseName: Open Access: Wiley-Blackwell Open Access Journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQuXBBlPIIbZGRkIBDVMeOHzm2haVCgCpKpd4sv1J6aFJ1t_x-Zpxs2gikilMkexI545nMNxP7MyFvteCxcbEqeZCQoHhIWA0LsQyNcYAfHKTQWND_9l0dndZfzuTZnV38Az_EVHBDz8jfa3Rw55d7t6ShLv5Gum2Oh80im-RDwDYKzzDg9fFtlUUKpGfBE-Yguy6Fqes1cyPje_NHzCJTJvCHSw-O9i_w-fcayrvYNgenxRPyeESVdH8wg03yIHVPyebot0v6fiSX_rBFvn7sL91FR7GATo8zuSZWRqjrIv0MprKiP4ZVs4kuIORlq6Qgv0AGx0t33uGmR3pyhepbPiOni08_D4_K8USFMkAQUqV0mgspZAK1pNhyAblx4DHqKviKx9YorxwLwSitmNee1Vqz2GaWeWm4F8_JRtd36SXu9QYhwSI3rK2dkwCzjEpVE5qoTQp1Qd6ttWmvBuIMO1Akc4t6t5PeC3KAyp6kkPA6N_TX53b0H9tUiUWtRXBtU2NOCXE0aeW84Q5BSEG2caos4AYkvw24SiisLGRPgABFQXbWM2hHH4UBKCQHhGhQFeTN1A3ehb9MXJf6G5CRTQUAiitdkBfDhE_jFKDSxhi4W89MYfYi857u4ldm8MbdwJB5F6TMRnOPgiwglBNRVerVf8pvk0fYOKy-2SEbq-ubtAsYauVfZzf5A9MAEXU priority: 102 providerName: Wiley-Blackwell |
Title | Domain Wall Patterning and Giant Response Functions in Ferrimagnetic Spinels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101402 https://www.ncbi.nlm.nih.gov/pubmed/34719881 https://www.proquest.com/docview/2607938761 https://search.proquest.com/docview/2591223267 https://www.osti.gov/biblio/1828393 https://pubmed.ncbi.nlm.nih.gov/PMC8655211 https://doaj.org/article/91e0d773caf946448429e76ab82a2415 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED6a7mUvY91Pr13wYLDtwY1-2JL8uHbNylhLaFfom5EluSs0TmjT_f27k-3QsMFgT4FYJLLuzvd98t0ngPdaCl9azzPhCiQoNRJWw5zPXGks4geLFJo29E9O1fFF_u2yuNyCYuiFiUX7rr7eb2_m--31z1hbuZy7yVAnNpmdHFIzJRKXyQhGmH4fUPSuNViSIssg0MjExPpfJMwt6FhaRsfXSHwil8bwjVwUJfvxY4Gh9Te4-WfV5EM0G9PR9Ck86XFk-rmb7w5shfYZ7PSRepd-7OWkPz2H718Wc6T_KW2Zp7Mop0l7IaltffoVnWOVnnV1siGdYpKLfpji-ClpNs7tVUttjun5EuHozd0LuJge_Tg8zvozFDKHN6mywmohC1kEXJXgGyGRDTvhveau5sI3RtXKMueM0orVuma51sw3UVe-MKKWL2G7XbThNXV34yDJvDCsya0tEFgZFXjpSq9NcHkCH4bVrJadVEbViSKLikxQrU2QwAEt9noUSVzHLxa3V1Vv6KrkgXmtpbNNmROLxMwZtLK1EZZgRwK7ZKoKkQLJ3TqqC3KrCvkSYj6ZwN5gwaqPSpyAIjlAfP7zBN6tL2M80UsS24bFPY4pSo6QSSidwKvO4Ot5Dn6TgN5whY0b2byCLhw1u3uXTSCLTvOPBaoQk5xLztWb__6nXXhMP9dV3uzB9ur2PrxF_LSqxzAS-WwMjw6OTmdn47gLMY4x9Bs3yhlz |
link.rule.ids | 230,314,727,780,784,864,885,2102,11562,21388,27924,27925,33744,33745,43805,46052,46476,50814,50923,53791,53793,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge4ALojzTFjASEnCImtjxIydEocsC21XVh9Sb5dhOqUSTbXfL72cmcRZWIDhFSsZSMp7JfDMefybkleLMl9bnKXMCEpQKEladOZ-6UlvADxZSaCzoH8zk5LT4cibOYsFtEdsqh39i96P2rcMa-S7gbjAl8N383fwqxVOjcHU1HqFxm2wgc7oYkY29_dnh0a8qi-BIzzKwNWZs1_ofyNLN8IzaWEsZolFH2g-XFpzrb4Dzz77J3_FsF5DG98m9iCTp-37qN8mt0Dwgm9FXF_RNJJR--5BMP7aX9qKhWDSnhx2hJlZDqG08_QTmsaRHfadsoGMIc50lUpAfI2vjpT1vcKMjPZ4DIP2-eEROx_snHyZpPEUhdRB4ZCqsYlxwEUAVwdeMQz7smPcqd1XOfK1lJW3mnJZKZpWqskKpzNcds7zQrOKPyahpm_AU93eDEM8801ldWCsAWmkZ8tKVXungioS8HrRp5j1ZhulpkZlBvZuV3hOyh8peSSHJdXejvT430WdMmYfMK8WdrcsC80iInUFJW2lmEXgkZBunygBWQMJbh51BbmkgYwLUxxOyM8ygiX4JL7CyooS8XD0Gj8JlEtuE9gZkRJkDaGJSJeRJP-Gr9-Sg0lJrGK3WTGHtQ9afNBffOtZu3AEM2XZC0s5o_qMgA6jkmOe53Pr3Z7wgdyYnB1Mz_Tz7uk3u4vi-2WaHjJbXN-EZQKZl9Tz6xU--rBFy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVgKyEuqOWroQWMhAQconXsJHZOiNKGAmW1aqnUm-XYTqlEk213y-9nJnECKxCcIsWOZI9nPG8m42dCXkrBXWFcEnObQYBSQcCqmHWxLZQB_GAghMaE_pdZfniafjrLzkL90zKUVQ57YrdRu9ZijnwKuBtUCWw3mdahLGK-X75dXMV4gxT-aQ3XadwmG-AVGZ-Qjb2D2fz4V8YlE0jVMjA3Mj417gcydnO8rzbkVQbP1BH4w6MFQ_sb-PyzhvJ3bNs5p3KT3Auokr7r1WCL3PLNfbIV7HZJXwdy6TcPyNF-e2kuGooJdDrvyDUxM0JN4-gHUJUVPe6rZj0tweV1Wkmhf4kMjpfmvMFDj_RkAeD0-_IhOS0Pvr4_jMONCrEFJ5THmZFcZCLzIArvai4gNrbcOZnYKuGuVnmVG2atymXOKlmxVErm6o5lPlO8Eo_IpGkbv41nvaGTYI4rVqfGZACzVO6TwhZOKm_TiLwapKkXPXGG7imSuUa561HuEdlDYY-9kPC6e9Fen-tgP7pIPHNSCmvqIsWYEvyol7mpFDcIQiKyg0ulATcg-a3FKiG70hA9AQIUEdkdVlAHG4UBjBoVkRdjM1gX_jIxjW9voE9WJACgeC4j8rhf8HGcAkRaKAVfyzVVWJvIektz8a1j8MbTwBB5RyTulOY_AtKAUE5EkuRP_j2N5-QOmIQ--jj7vEPu4ud93c0umayub_xTQE-r6lkwi5-utBWf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Wall+Patterning+and+Giant+Response+Functions+in+Ferrimagnetic+Spinels&rft.jtitle=Advanced+science&rft.au=Kish%2C+Lazar+L.&rft.au=Thaler%2C+Alex&rft.au=Lee%2C+Minseong&rft.au=Zakrzewski%2C+Alexander+V.&rft.date=2021-12-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202101402&rft.externalDBID=10.1002%252Fadvs.202101402&rft.externalDocID=ADVS3116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |