Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd‐Acp) for Eshcerichia Coli Inactivation in Apple Juice

Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐AC...

Full description

Saved in:
Bibliographic Details
Published inJournal of food science Vol. 83; no. 2; pp. 401 - 408
Main Authors Liao, Xinyu, Li, Jiao, Muhammad, Aliyu Idris, Suo, Yuanjie, Chen, Shiguo, Ye, Xingqian, Liu, Donghong, Ding, Tian
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD‐ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD‐ACP as an alternative to thermal processing for fruit juices in food industry. Practical Application Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization.
AbstractList Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD‐ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD‐ACP as an alternative to thermal processing for fruit juices in food industry. Practical Application Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization.
Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD‐ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD‐ACP as an alternative to thermal processing for fruit juices in food industry. PRACTICAL APPLICATION: Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization.
Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry. Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization.
Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry.Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry.Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization.PRACTICAL APPLICATIONEscherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization.
Author Liao, Xinyu
Ding, Tian
Suo, Yuanjie
Muhammad, Aliyu Idris
Ye, Xingqian
Liu, Donghong
Li, Jiao
Chen, Shiguo
Author_xml – sequence: 1
  givenname: Xinyu
  surname: Liao
  fullname: Liao, Xinyu
  organization: Zhejiang Univ
– sequence: 2
  givenname: Jiao
  surname: Li
  fullname: Li, Jiao
  organization: Zhejiang Key Laboratory for Agro‐Food Processing
– sequence: 3
  givenname: Aliyu Idris
  surname: Muhammad
  fullname: Muhammad, Aliyu Idris
  organization: Bayero Univ
– sequence: 4
  givenname: Yuanjie
  surname: Suo
  fullname: Suo, Yuanjie
  organization: Zhejiang Key Laboratory for Agro‐Food Processing
– sequence: 5
  givenname: Shiguo
  surname: Chen
  fullname: Chen, Shiguo
  organization: Zhejiang Key Laboratory for Agro‐Food Processing
– sequence: 6
  givenname: Xingqian
  surname: Ye
  fullname: Ye, Xingqian
  organization: Zhejiang Key Laboratory for Agro‐Food Processing
– sequence: 7
  givenname: Donghong
  surname: Liu
  fullname: Liu, Donghong
  organization: Zhejiang Univ
– sequence: 8
  givenname: Tian
  orcidid: 0000-0002-8403-5344
  surname: Ding
  fullname: Ding, Tian
  email: tding@zju.edu.cn
  organization: Zhejiang Univ
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29355961$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFNTtkiU27SGsn_omXw0wLrSqBBKwtx3YYV04c7ATUHeoT8Iw8CU5TuuiCemP5-jv36N5zAPb60FsAXmN0gvM5xZyioqoJPsEEEfoMrB4qe2CFUFkWGBO-Dw5Sukbzu2IvwH4pKkoFwytwux4G77QaXehhaKGCW2e91WN0Gr5TMTobcynpnYrfLFyPXUjDzs6_m-AN_ORV6hQ82jbmz6_faz0cwzZEeJZ2eoZ2Ts2cgxe90qP7sfi4Hs62Fl5OTtuX4HmrfLKv7u9D8PX87MvmQ3H18f3FZn1VaMIxLRpCmCEM48oq3nJtOCOm0QLXgolGcEsaXTWaGlEaXtaKEmMNrRmjnDSUt9UhOFr6DjF8n2waZZfnst6r3oYpyTIvkAuGRP0kikUtBK4ophl9-wi9DlPs8yCZylBNBaoy9eaemprOGjlE16l4I_8FkYHTBdAxpBRt-4BgJOeo5RysnIOVd1FnBX2k0G682-8YlfP_0bFF99N5e_OUjbw8335ehH8B34u6JQ
CitedBy_id crossref_primary_10_1128_AEM_00159_20
crossref_primary_10_1016_j_lwt_2021_112213
crossref_primary_10_3389_fnut_2024_1504958
crossref_primary_10_3390_microorganisms12061131
crossref_primary_10_1016_j_foodchem_2021_131831
crossref_primary_10_1016_j_lwt_2019_108974
crossref_primary_10_1016_j_lwt_2019_01_062
crossref_primary_10_3390_foods12071531
crossref_primary_10_1007_s11947_019_02323_w
crossref_primary_10_1016_j_ifset_2025_103932
crossref_primary_10_1016_j_foodcont_2018_12_019
crossref_primary_10_1080_10942912_2024_2409904
crossref_primary_10_3390_foods9070929
crossref_primary_10_1007_s00253_019_09877_x
crossref_primary_10_1016_j_ijfoodmicro_2020_108665
crossref_primary_10_1007_s12393_020_09222_3
crossref_primary_10_1021_acsfoodscitech_4c00737
crossref_primary_10_1080_09593330_2019_1620866
crossref_primary_10_1016_j_lwt_2023_115563
crossref_primary_10_2139_ssrn_3986219
crossref_primary_10_1016_j_foodcont_2024_110537
crossref_primary_10_1016_j_ifset_2022_102945
crossref_primary_10_1016_j_tifs_2019_11_012
crossref_primary_10_1016_j_ijfoodmicro_2022_109913
crossref_primary_10_1016_j_jafr_2024_101061
crossref_primary_10_3390_app14031263
crossref_primary_10_1016_j_ifset_2019_01_019
crossref_primary_10_1016_j_fochms_2022_100098
crossref_primary_10_1007_s12161_024_02661_2
crossref_primary_10_1016_j_foodcont_2019_107082
crossref_primary_10_1016_j_ifset_2020_102381
crossref_primary_10_1016_j_lwt_2024_116380
crossref_primary_10_1016_j_foodcont_2020_107489
crossref_primary_10_1039_D2FB00014H
crossref_primary_10_1016_j_lwt_2020_109336
crossref_primary_10_1016_j_ultsonch_2023_106464
crossref_primary_10_1016_j_ifset_2018_11_012
crossref_primary_10_1016_j_foodcont_2022_109381
crossref_primary_10_1007_s11947_021_02686_z
crossref_primary_10_1038_s41598_020_77977_0
crossref_primary_10_1142_S0217979224500218
crossref_primary_10_1088_2058_6272_abb454
crossref_primary_10_1016_j_foodres_2022_111985
crossref_primary_10_1016_j_fpsl_2023_101087
crossref_primary_10_1016_j_foodcont_2019_06_004
crossref_primary_10_3389_fmicb_2019_00622
crossref_primary_10_1016_j_tifs_2020_07_020
crossref_primary_10_1016_j_foodchem_2022_132707
crossref_primary_10_1111_1750_3841_16494
crossref_primary_10_1016_j_foodchem_2020_127826
crossref_primary_10_1111_1541_4337_12379
crossref_primary_10_4315_JFP_20_065
crossref_primary_10_1111_1750_3841_15448
crossref_primary_10_1080_19476337_2024_2303450
crossref_primary_10_1016_j_meafoo_2024_100183
crossref_primary_10_1128_AEM_02216_19
crossref_primary_10_1016_j_scitotenv_2018_07_190
crossref_primary_10_1016_j_foodcont_2025_111136
crossref_primary_10_1016_j_scitotenv_2018_05_342
crossref_primary_10_1007_s11947_024_03328_w
crossref_primary_10_1080_10408398_2020_1743967
crossref_primary_10_4315_JFP_20_200
crossref_primary_10_1016_j_focha_2023_100249
crossref_primary_10_1111_jfpp_16181
crossref_primary_10_1111_1541_4337_12667
crossref_primary_10_1088_2516_1067_aaf067
crossref_primary_10_1016_j_foodchem_2023_137841
crossref_primary_10_3390_app13010578
crossref_primary_10_1007_s11694_020_00440_1
crossref_primary_10_1002_fsn3_4691
crossref_primary_10_1016_j_foodres_2024_115117
crossref_primary_10_1128_AEM_02380_20
crossref_primary_10_1016_j_foodres_2018_07_042
crossref_primary_10_1109_TPS_2021_3140089
crossref_primary_10_1111_jfpe_14542
crossref_primary_10_1016_j_lwt_2020_110223
crossref_primary_10_1016_j_lwt_2020_110465
crossref_primary_10_1016_j_foodcont_2021_108772
crossref_primary_10_3390_life11121333
crossref_primary_10_1016_j_foodchem_2024_142017
crossref_primary_10_1016_j_fochx_2019_100049
crossref_primary_10_1016_j_foodchem_2023_137616
crossref_primary_10_1016_j_jfoodeng_2020_109952
crossref_primary_10_1016_j_foodchem_2022_133770
crossref_primary_10_1016_j_foodcont_2018_07_026
crossref_primary_10_1590_1519_6984_272709
crossref_primary_10_1016_j_fbio_2024_104220
crossref_primary_10_1016_j_foodres_2020_109041
crossref_primary_10_1007_s12393_022_09317_z
crossref_primary_10_1063_5_0198876
crossref_primary_10_3389_fmicb_2022_1100102
crossref_primary_10_1007_s12393_021_09295_8
crossref_primary_10_1111_jfpp_16110
crossref_primary_10_1016_j_lwt_2023_115089
crossref_primary_10_1038_s41598_020_78131_6
crossref_primary_10_1016_j_ifset_2019_02_008
crossref_primary_10_1007_s12393_022_09316_0
crossref_primary_10_1016_j_sjbs_2021_12_023
crossref_primary_10_1007_s13197_019_04035_7
crossref_primary_10_1016_j_foodcont_2019_106741
crossref_primary_10_3389_fmicb_2021_771770
crossref_primary_10_47836_ifrj_28_1_01
crossref_primary_10_1007_s11694_024_02764_8
crossref_primary_10_1016_j_foodcont_2023_109913
crossref_primary_10_3390_foods11050651
crossref_primary_10_1016_j_foodcont_2022_108926
crossref_primary_10_29050_harranziraat_1405216
crossref_primary_10_1111_jfpe_14203
crossref_primary_10_1111_ijfs_15220
crossref_primary_10_1016_j_jafr_2023_100867
crossref_primary_10_1007_s11947_025_03790_0
crossref_primary_10_1016_j_ifset_2024_103905
crossref_primary_10_1590_fst_02622
crossref_primary_10_1016_j_ijbiomac_2023_123557
crossref_primary_10_1111_ijfs_14536
crossref_primary_10_1007_s11947_023_03310_y
crossref_primary_10_3920_JIFF2020_0121
crossref_primary_10_1007_s11090_020_10110_1
crossref_primary_10_1038_s41598_022_22335_5
crossref_primary_10_1007_s11694_024_02907_x
crossref_primary_10_1016_j_ifset_2022_102935
crossref_primary_10_1021_envhealth_4c00100
crossref_primary_10_1016_j_ifset_2024_103878
crossref_primary_10_1093_lambio_ovac007
crossref_primary_10_1007_s13197_020_04801_y
crossref_primary_10_1080_10408398_2022_2118660
crossref_primary_10_1016_j_ifset_2022_103100
crossref_primary_10_1016_j_ifset_2023_103461
crossref_primary_10_1080_10408398_2022_2121806
crossref_primary_10_1128_AEM_02221_18
crossref_primary_10_1007_s11947_024_03458_1
crossref_primary_10_1007_s11947_023_03229_4
crossref_primary_10_1016_j_foodchem_2021_130809
crossref_primary_10_1038_s41598_019_44946_1
crossref_primary_10_1007_s00253_020_10926_z
crossref_primary_10_1007_s42853_024_00222_3
crossref_primary_10_1016_j_ifset_2019_102230
crossref_primary_10_1038_s41598_021_95452_2
crossref_primary_10_1016_j_foodcont_2023_110164
crossref_primary_10_1016_j_foodcont_2024_110464
crossref_primary_10_1111_1541_4337_12503
crossref_primary_10_1016_j_foodchem_2021_131903
crossref_primary_10_1016_j_foodp_2024_100025
crossref_primary_10_1016_j_foodres_2024_114861
crossref_primary_10_1016_j_foodchem_2020_127635
crossref_primary_10_1111_jfs_12581
crossref_primary_10_3390_foods11091196
crossref_primary_10_1016_j_foodcont_2021_108338
crossref_primary_10_1016_j_ifset_2023_103475
crossref_primary_10_4315_0362_028X_JFP_18_586
crossref_primary_10_3390_foods10092055
crossref_primary_10_3390_foods12173181
crossref_primary_10_1088_2058_6272_aca06e
crossref_primary_10_1007_s11947_024_03677_6
crossref_primary_10_1016_j_fbio_2022_101857
Cites_doi 10.1155/2014/758942
10.1111/ijfs.12395
10.1016/j.bioelechem.2014.08.018
10.1002/jsfa.2740140302
10.1016/j.anaerobe.2011.04.005
10.1038/cr.2013.13
10.1111/j.1541-4337.2009.00076.x
10.1177/1082013216685484
10.1016/B978-0-12-801365-6.00003-2
10.1016/j.foodchem.2015.05.099
10.1016/j.ijantimicag.2013.08.022
10.1007/s10068-015-0223-8
10.1016/j.ijfoodmicro.2013.12.031
10.1016/j.ifset.2015.04.002
10.1109/TPS.2011.2142012
10.4315/0362-028X.JFP-16-499
10.1002/jsfa.8268
10.1016/S0021-9258(18)84277-6
10.1111/j.1365-2672.2006.03002.x
10.4315/0362-028X-71.2.356
10.1002/ppap.200900090
10.1016/j.foodcont.2015.08.043
10.1016/j.biotechadv.2015.01.002
10.1016/j.ifset.2015.09.001
10.1016/j.lwt.2011.05.004
10.1016/j.foodres.2014.04.028
10.1016/j.foodcont.2016.12.021
10.1128/AAC.01002-10
10.1111/j.1365-2621.2002.tb10653.x
10.1016/j.fm.2014.09.010
10.1016/j.ifset.2013.09.012
10.1002/ppap.200900077
10.1016/j.postharvbio.2015.04.008
10.1128/AEM.03080-15
10.1016/j.foodcont.2011.06.025
ContentType Journal Article
Copyright 2018 Institute of Food Technologists
2018 Institute of Food Technologists®.
Copyright_xml – notice: 2018 Institute of Food Technologists
– notice: 2018 Institute of Food Technologists®.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QR
7ST
7T7
7U7
8FD
C1K
F28
FR3
K9.
NAPCQ
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/1750-3841.14045
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Public Health
EISSN 1750-3841
EndPage 408
ExternalDocumentID 29355961
10_1111_1750_3841_14045
JFDS14045
Genre article
Journal Article
GrantInformation_xml – fundername: National Major R & D Program of China
  funderid: 2017YFD0400403
GroupedDBID ---
-~X
.3N
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29K
3-9
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABJNI
ABPVW
ACAHQ
ACBNA
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
P-O
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RXW
SAMSI
SJN
SUPJJ
TAE
TN5
UB1
UBH
UHB
UKR
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
Y6R
YQJ
ZCA
ZCG
ZGI
ZT4
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QO
7QR
7ST
7T7
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
K9.
NAPCQ
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4715-b446d46113ea7f7cd764dbc918969b97e4bc3bc5d92d728a54ded5866574b57f3
IEDL.DBID DR2
ISSN 0022-1147
1750-3841
IngestDate Fri Jul 11 18:24:51 EDT 2025
Fri Jul 11 00:45:40 EDT 2025
Fri Jul 25 09:59:52 EDT 2025
Wed Feb 19 02:27:50 EST 2025
Tue Jul 01 02:39:32 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Wed Jan 22 16:22:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords apple juice, cold plasma, Escherichia coli
inactivation mechanism, quality
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 Institute of Food Technologists®.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4715-b446d46113ea7f7cd764dbc918969b97e4bc3bc5d92d728a54ded5866574b57f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8403-5344
PMID 29355961
PQID 1999185903
PQPubID 40513
PageCount 8
ParticipantIDs proquest_miscellaneous_2045796098
proquest_miscellaneous_1989913515
proquest_journals_1999185903
pubmed_primary_29355961
crossref_primary_10_1111_1750_3841_14045
crossref_citationtrail_10_1111_1750_3841_14045
wiley_primary_10_1111_1750_3841_14045_JFDS14045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle Journal of food science
PublicationTitleAlternate J Food Sci
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 80
2015; 103
2013; 23
2015; 33
2015; 32
2017; 23
2014; 49
2011; 55
2014; 2014
2002
2015; 107
2011; 39
2011; 17
2014; 62
2014; 174
2008; 71
2014; 23
2014; 43
2014; 21
1927; 73
2015; 46
2015; 24
1963; 14
2017; 75
2004; 30
2015; 29
2017; 17
2002; 67
2011; 44
2017
2009; 8
2016
2016; 82
2016; 60
2012; 23
2016; 190
2012; 66
2010; 7
2006; 101
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Whitehead J. C. (e_1_2_7_40_1) 2016
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Scholtz V. (e_1_2_7_30_1) 2015; 33
e_1_2_7_13_1
e_1_2_7_12_1
Gouma M. (e_1_2_7_11_1) 2015; 29
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Dolezalova E. (e_1_2_7_7_1) 2015; 103
Lukes P. (e_1_2_7_21_1) 2014; 23
Park I. (e_1_2_7_26_1) 2017; 17
Pankaj S. K. (e_1_2_7_25_1) 2017
Zhong K. (e_1_2_7_41_1) 2004; 30
e_1_2_7_31_1
Oehmigen K. (e_1_2_7_23_1) 2010; 7
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Vantarakis A. (e_1_2_7_37_1) 2011; 17
e_1_2_7_38_1
Wang R. X. (e_1_2_7_39_1) 2012; 66
References_xml – start-page: 53
  year: 2016
  end-page: 81
  article-title: Chapter 3 – the chemistry of cold plasma
  publication-title: Cold Plasma in Food & Agriculture
– volume: 75
  start-page: 83
  year: 2017
  end-page: 91
  article-title: Inactivation mechanisms of non‐thermal plasma on microbes: A review
  publication-title: Food Control
– volume: 67
  start-page: 646
  issue: 2
  year: 2002
  end-page: 648
  article-title: Inactivation of O157 : H7 using a pulsed nonthermal plasma system
  publication-title: Journal of Food Science
– volume: 39
  start-page: 1591
  issue: 7
  year: 2011
  end-page: 1597
  article-title: Effect of low‐temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice
  publication-title: Ieee Transactions On Plasma Science
– volume: 14
  start-page: 138
  issue: 3
  year: 1963
  article-title: Determination of nitrite and nitrate in meat products
  publication-title: Journal of the Science of Food and Agriculture
– volume: 46
  start-page: 479
  year: 2015
  end-page: 484
  article-title: Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes
  publication-title: Food Microbiology
– volume: 8
  start-page: 157
  issue: 3
  year: 2009
  end-page: 180
  article-title: Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 23
  start-page: 265
  issue: 3
  year: 2017
  end-page: 276
  article-title: Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing
  publication-title: Food Science and Technology International
– volume: 24
  start-page: 1717
  issue: 5
  year: 2015
  end-page: 1724
  article-title: Cold plasma treatment for microbial safety and preservation of fresh lettuce
  publication-title: Food Science and Biotechnology
– volume: 29
  start-page: 319
  issue: SI
  year: 2015
  article-title: Modeling microbial inactivation kinetics of combined UV‐H treatments in apple juice (vol 27, pg 111, 2015)
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 21
  start-page: 114
  year: 2014
  end-page: 122
  article-title: Atmospheric gas plasma treatment of fresh‐cut apples
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 82
  start-page: 1828
  issue: 6
  year: 2016
  end-page: 1837
  article-title: Evaluation of ultrasound‐induced damage to and by flow cytometry and transmission electron microscopy
  publication-title: Applied and Environmental Microbiology
– volume: 7
  start-page: 33
  issue: 1
  year: 2010
  end-page: 42
  article-title: Effects of pH on bacterial inactivation in aqueous solutions due to low‐temperature atmospheric pressure plasma application
  publication-title: Plasma Processes and Polymers
– volume: 43
  start-page: 154
  issue: 2
  year: 2014
  end-page: 160
  article-title: Potential cellular targets and antibacterial efficacy of atmospheric pressure non‐thermal plasma
  publication-title: International Journal of Antimicrobial Agents
– volume: 33
  start-page: 1108
  issue: 6SI2
  year: 2015
  end-page: 1119
  article-title: Nonthermal plasma—A tool for decontamination and disinfection
  publication-title: Biotechnology Advances
– volume: 2014
  start-page: 758942
  year: 2014
  article-title: Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices
  publication-title: International Journal of Microbiology
– volume: 32
  start-page: 127
  year: 2015
  end-page: 135
  article-title: Effects of atmospheric cold plasma and ozone on prebiotic orange juice
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 103
  start-page: 7
  issue: SI
  year: 2015
  end-page: 14
  article-title: Membrane damage and active but nonculturable state in liquid cultures of treated with an atmospheric pressure plasma jet
  publication-title: Bioelectrochemistry
– volume: 7
  start-page: 250
  issue: 3‐4SI
  year: 2010
  end-page: 257
  article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids
  publication-title: Plasma Processes and Polymers
– volume: 174
  start-page: 63
  year: 2014
  end-page: 71
  article-title: Impact of cold plasma on in apple juice: Inactivation kinetics and mechanisms
  publication-title: International Journal of Food Microbiology
– volume: 17
  start-page: 288
  issue: 6SI
  year: 2011
  end-page: 291
  article-title: Occurrence of microorganisms of public health and spoilage significance in fruit juices sold in retail markets in Greece
  publication-title: Anaerobe
– volume: 60
  start-page: 552
  year: 2016
  end-page: 559
  article-title: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, .)
  publication-title: Food Control
– volume: 55
  start-page: 1053
  issue: 3
  year: 2011
  end-page: 1062
  article-title: Nonthermal dielectric‐barrier discharge plasma‐induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in
  publication-title: Antimicrobial Agents and Chemotherapy
– volume: 62
  start-page: 653
  year: 2014
  end-page: 661
  article-title: Consumers' perception of symbols and health claims as health‐related label messages. A cross‐cultural study
  publication-title: Food Research International
– volume: 107
  start-page: 55
  year: 2015
  end-page: 65
  article-title: Effect of cold plasma treatment on physico‐chemical parameters and antioxidant activity of minimally processed kiwifruit
  publication-title: Postharvest Biology and Technology
– volume: 30
  start-page: 49
  year: 2004
  end-page: 54
  article-title: Effect of pulsed electric fields on the quality of apple juice and comparison with heat treatment
  publication-title: Food and Fermentation Industries
– volume: 44
  start-page: 2285
  issue: 10
  year: 2011
  end-page: 2289
  article-title: Treating lamb's lettuce with a cold plasma—Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of
  publication-title: Lwt‐Food Science and Technology
– volume: 23
  issue: 0150191
  year: 2014
  article-title: Aqueous‐phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo‐second‐order post‐discharge reaction of H O and HNO
  publication-title: Plasma Sources Science & Technology
– year: 2017
  article-title: Effect of high voltage atmospheric cold plasma on white grape juice quality
  publication-title: Journal of the Science of Food and Agriculture
– volume: 73
  start-page: 627
  issue: 2
  year: 1927
  end-page: 650
  article-title: On tyrosine and tryptophane determinations in proteins
  publication-title: Journal of Biological Chemistry
– year: 2002
– volume: 66
  issue: 27610
  year: 2012
  article-title: Atmospheric‐pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation
  publication-title: European Physical Journal D
– volume: 71
  start-page: 356
  issue: 2
  year: 2008
  end-page: 364
  article-title: Juice‐associated outbreaks of human illness in the United States, 1995 through 2005
  publication-title: Journal of Food Protection
– volume: 80
  start-page: 928
  issue: 6
  year: 2017
  end-page: 932
  article-title: Lethal and sublethal effect of a dielectric barrier discharge atmospheric cold plasma on
  publication-title: Journal of Food Protection
– volume: 23
  start-page: 282
  issue: 1
  year: 2012
  end-page: 285
  article-title: Incidence of microorganisms from fresh orange juice processed by squeezing machines
  publication-title: Food Control
– volume: 190
  start-page: 317
  year: 2016
  end-page: 323
  article-title: Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice
  publication-title: Food Chemistry
– volume: 23
  start-page: 635
  issue: 5
  year: 2013
  end-page: 644
  article-title: L‐glutamine provides acid resistance for through enzymatic release of ammonia
  publication-title: Cell Research
– volume: 17
  issue: 117
  year: 2017
  article-title: Investigation of optimum ohmic heating conditions for inactivation of O157:H7, serovar , and in apple juice
  publication-title: Bmc Microbiology
– volume: 101
  start-page: 242
  issue: 1
  year: 2006
  end-page: 250
  article-title: Inactivation of and in acidic fruit and vegetable juices by peroxidase systems
  publication-title: Journal of Applied Microbiology
– volume: 49
  start-page: 1020
  issue: 4
  year: 2014
  end-page: 1026
  article-title: An investigation into low‐temperature nitrogen plasma environment effect on the content of polyphenols during withering in made Kenyan tea
  publication-title: International Journal of Food Science and Technology
– ident: e_1_2_7_4_1
  doi: 10.1155/2014/758942
– ident: e_1_2_7_15_1
  doi: 10.1111/ijfs.12395
– volume: 103
  start-page: 7
  year: 2015
  ident: e_1_2_7_7_1
  article-title: Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2014.08.018
– ident: e_1_2_7_10_1
  doi: 10.1002/jsfa.2740140302
– volume: 17
  start-page: 288
  issue: 6
  year: 2011
  ident: e_1_2_7_37_1
  article-title: Occurrence of microorganisms of public health and spoilage significance in fruit juices sold in retail markets in Greece
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2011.04.005
– ident: e_1_2_7_20_1
  doi: 10.1038/cr.2013.13
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1541-4337.2009.00076.x
– ident: e_1_2_7_34_1
  doi: 10.1177/1082013216685484
– start-page: 53
  year: 2016
  ident: e_1_2_7_40_1
  article-title: Chapter 3 – the chemistry of cold plasma
  publication-title: Cold Plasma in Food & Agriculture
  doi: 10.1016/B978-0-12-801365-6.00003-2
– ident: e_1_2_7_5_1
  doi: 10.1016/j.foodchem.2015.05.099
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ijantimicag.2013.08.022
– ident: e_1_2_7_33_1
  doi: 10.1007/s10068-015-0223-8
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ijfoodmicro.2013.12.031
– volume: 29
  start-page: 319
  year: 2015
  ident: e_1_2_7_11_1
  article-title: Modeling microbial inactivation kinetics of combined UV‐H treatments in apple juice (vol 27, pg 111, 2015)
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2015.04.002
– volume: 23
  issue: 0150191
  year: 2014
  ident: e_1_2_7_21_1
  article-title: Aqueous‐phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo‐second‐order post‐discharge reaction of H2O2 and HNO2
  publication-title: Plasma Sources Science & Technology
– ident: e_1_2_7_31_1
  doi: 10.1109/TPS.2011.2142012
– ident: e_1_2_7_19_1
  doi: 10.4315/0362-028X.JFP-16-499
– year: 2017
  ident: e_1_2_7_25_1
  article-title: Effect of high voltage atmospheric cold plasma on white grape juice quality
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.8268
– volume: 66
  issue: 27610
  year: 2012
  ident: e_1_2_7_39_1
  article-title: Atmospheric‐pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation
  publication-title: European Physical Journal D
– ident: e_1_2_7_9_1
  doi: 10.1016/S0021-9258(18)84277-6
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-2672.2006.03002.x
– ident: e_1_2_7_38_1
  doi: 10.4315/0362-028X-71.2.356
– ident: e_1_2_7_13_1
  doi: 10.1002/ppap.200900090
– ident: e_1_2_7_8_1
– volume: 17
  issue: 117
  year: 2017
  ident: e_1_2_7_26_1
  article-title: Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice
  publication-title: Bmc Microbiology
– ident: e_1_2_7_27_1
  doi: 10.1016/j.foodcont.2015.08.043
– volume: 33
  start-page: 1108
  issue: 6
  year: 2015
  ident: e_1_2_7_30_1
  article-title: Nonthermal plasma—A tool for decontamination and disinfection
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2015.01.002
– volume: 30
  start-page: 49
  year: 2004
  ident: e_1_2_7_41_1
  article-title: Effect of pulsed electric fields on the quality of apple juice and comparison with heat treatment
  publication-title: Food and Fermentation Industries
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ifset.2015.09.001
– ident: e_1_2_7_12_1
  doi: 10.1016/j.lwt.2011.05.004
– ident: e_1_2_7_6_1
  doi: 10.1016/j.foodres.2014.04.028
– ident: e_1_2_7_18_1
  doi: 10.1016/j.foodcont.2016.12.021
– ident: e_1_2_7_14_1
  doi: 10.1128/AAC.01002-10
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-2621.2002.tb10653.x
– ident: e_1_2_7_16_1
  doi: 10.1016/j.fm.2014.09.010
– ident: e_1_2_7_36_1
  doi: 10.1016/j.ifset.2013.09.012
– volume: 7
  start-page: 250
  issue: 3
  year: 2010
  ident: e_1_2_7_23_1
  article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids
  publication-title: Plasma Processes and Polymers
  doi: 10.1002/ppap.200900077
– ident: e_1_2_7_28_1
  doi: 10.1016/j.postharvbio.2015.04.008
– ident: e_1_2_7_17_1
  doi: 10.1128/AEM.03080-15
– ident: e_1_2_7_32_1
  doi: 10.1016/j.foodcont.2011.06.025
SSID ssj0002236
Score 2.6003768
Snippet Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong...
Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 401
SubjectTerms Acidity
antibacterial properties
antioxidant activity
Antioxidants
apple juice
apple juice, cold plasma, Escherichia coli
Apples
Bacteria
brix
cell membranes
Cold
Cold treatment
Colony Count, Microbial
Color
Deactivation
Dielectric barrier discharge
Dielectric strength
E coli
Escherichia coli
Escherichia coli O157
Escherichia coli O157 - growth & development
Food Industry
Food Microbiology - methods
Food processing industry
Food technology
Fruit and Vegetable Juices - microbiology
Fruit juices
Fruits
Hydrogen peroxide
Inactivation
inactivation mechanism, quality
Malus
nitrates
Ozone
Pasteurization
Pasteurization - methods
pH effects
Phenolic compounds
Phenols
Plasma
Plasma Gases
Public health
Quality management
Reduction
risk
titratable acidity
Weibull statistics
Title Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd‐Acp) for Eshcerichia Coli Inactivation in Apple Juice
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1750-3841.14045
https://www.ncbi.nlm.nih.gov/pubmed/29355961
https://www.proquest.com/docview/1999185903
https://www.proquest.com/docview/1989913515
https://www.proquest.com/docview/2045796098
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UClGegICNxKIcsefgRH5duV2UlEAIqcYv8VCPapGp2Lz1V_QX9jfwSZvLY0qIKIW5RMlYcZ8bzjT3-hpA3IsgsODAkoSFWhfgrxCpxSewdA7RfOJFYXND_-EnsH7DFdz5mE-JZmJ4fYr3ghpbRzddo4Nq0vxk5-D1khmXpBBli8Jg5ZmwhLPpyRSAFzk-MfOGA_OVA7oO5PDfaX_dLf4DN69i1cz7z-8SM3e5zTn5MVkszsWc3GB3_67sekHsDNKXTXpe2yB1fPySb48nl9hG5mF7tdtMmUE1nVV9Gp7L0vT7F4ndwq-3YlzydLo-bFlkL4Oluc-ToZ0Dqx5ruzIz7eX45tSdvKUBmutceWhQ6rDTKVfRDjact-rViWtUUX-vpYgVz2mNyMN_7trsfDzUcYgtuj8cGwk3HRJrmXssgrZOCOWNVWiihjJKeGZsby53KnMwKzZnzjiMJn2SGy5A_IRt1U_tnhHKuPcDJxAqTMxHSIiTBMgURKc9CLm1EJuMfLO1AcI51No7KMdDBoS1xaMtuaCOys25w0nN73C66PapEORh5WyKDA8AdleQReb1-DOaJey669s0KZSCgxSqI_HYZrAggkfmviMjTXt3W_cmQ_16JNCLvOqX5W0fLxXz2tbt6_s8tXpC7AAeLPid9m2wsT1f-JUCupXnVWdUvBqsc2g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcAgX9mVCgEYCKRw8eO22DxyGOKOZySIEiZSb416sWEnsKJ4RghPiC_gWfoU_4Euo8jIhQRHikAM3y11tt7qrquv18grgBc-Em2k0JJ4iVkX8lVmRrW3LaB-j_VBzW9GC_tY2H-36k71gbwG-d3dhGn6I-YIbWUbtr8nAaUH6NyvHiY-oYX2nTxQx3cHKDfPpI8K26s04xjF-6brD9Z21kdVmFrAUOuPAkgiCtM8dxzOpyITSgvtaqsgJIx7JSBhfKk-qQEeuFm6YBr42OiBqOOHLQGQefvcaXKc84sTXH78_o6zC6ZZ3DOWINURLJ0Snhy40-PxM-Ed4ez5arqe74S340XVUc8rlsD-byr76fIFD8v_qydtws42-2aAxlzuwYIq7sNRdzq7uwdfB2YY-KzOWsjhvMgXlir1NTym_H76qaoIpwwbT47IiYgYsXSuPNHuHYOQ4Zaux1D-_fBuok1cMUQFbrw4UCR3kKcnlbFzQhZJmOZzlBaPfGjaZodu-D7tX0gUPYLEoC_MIWBCkBiNmW3Hp-TxzwszOlB8h6A7czBOqB_1OZRLVcrhTKpGjpMNyNJQJDWVSD2UPVucVThr6kstFVzodTFo_ViVEUoERXWR7PXg-L0YPRNtKaWHKGckgZqdEj8HlMpT0QBC5YdiDh41-z9vjEsV_xJ0evK619G8NTSbD-EP9tPzPNZ7B0mhnazPZHG9vPIYbGP2GzRH8FVicns7ME4wwp_JpbdIM9q9a838BwDh6kg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAEX9mUgQCOBFA4evLS77QOHIc4oM4EoAiLl5ti9KCMSexTPCMEJ8QX8Cr_CJ_AlVHmZkKAIcciBm-WutlvdVdX1enkF8FRY6VuNhiQyxKqIv6wTu9p1jOYY7UdauIoW9N9siY0dPt4Nd5fge3cXpuGHWCy4kWXU_poMfKrtb0aO8x4xw3KvTwwx3bnKTfPpI6K26uUowSF-5vvD9fdrG06bWMBR6ItDJ0cMpLnwvMBk0kqlpeA6V7EXxSLOY2l4roJchTr2tfSjLOTa6JCY4STPQ2kD_O4FuMiFG1O2iOTtMWMVzraiIyhHqCFbNiE6PHSqwScnwj-i25PBcj3bDa_Bj66fmkMuH_rzWd5Xn09RSP5XHXkdrraxNxs0xnIDlkxxEy53V7OrW_B1cLydz0rLMpZMmjxBE8VeZUeU3Q9fVTW9lGGD2WFZES0Dlq6VB5ptIxQ5zNhqkuufX74N1PQ5Q0zA1qt9RUL7k4zkJmxU0HWSZjGcTQpGvzVsPEenfRt2zqUL7sByURbmHrAwzAzGy64SecCF9SLrWsVjhNyhbwOpetDvNCZVLYM7JRI5SDskR0OZ0lCm9VD2YHVRYdqQl5wtutKpYNp6sSoligqM52I36MGTRTH6H9pUygpTzkkGETuleQzPlqGUB5KoDaMe3G3Ue9Eenwj-Y-H14EWtpH9raDoeJu_qp_v_XOMxXNpOhunr0dbmA7iCoW_UnL9fgeXZ0dw8xPBylj-qDZrB3nkr_i-qeHlB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Dielectric+Barrier+Discharge+Atmospheric+Cold+Plasma+%28Dbd-Acp%29+for+Eshcerichia+Coli+Inactivation+in+Apple+Juice&rft.jtitle=Journal+of+food+science&rft.au=Liao%2C+Xinyu&rft.au=Li%2C+Jiao&rft.au=Muhammad%2C+Aliyu+Idris&rft.au=Suo%2C+Yuanjie&rft.date=2018-02-01&rft.issn=1750-3841&rft.eissn=1750-3841&rft.volume=83&rft.issue=2&rft.spage=401&rft_id=info:doi/10.1111%2F1750-3841.14045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1147&client=summon