Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd‐Acp) for Eshcerichia Coli Inactivation in Apple Juice
Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐AC...
Saved in:
Published in | Journal of food science Vol. 83; no. 2; pp. 401 - 408 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD‐ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD‐ACP as an alternative to thermal processing for fruit juices in food industry.
Practical Application
Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. |
---|---|
AbstractList | Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD‐ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD‐ACP as an alternative to thermal processing for fruit juices in food industry.
Practical Application
Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD‐ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD‐ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD‐ACP as an alternative to thermal processing for fruit juices in food industry. PRACTICAL APPLICATION: Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry. Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry.Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry.Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization.PRACTICAL APPLICATIONEscherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. |
Author | Liao, Xinyu Ding, Tian Suo, Yuanjie Muhammad, Aliyu Idris Ye, Xingqian Liu, Donghong Li, Jiao Chen, Shiguo |
Author_xml | – sequence: 1 givenname: Xinyu surname: Liao fullname: Liao, Xinyu organization: Zhejiang Univ – sequence: 2 givenname: Jiao surname: Li fullname: Li, Jiao organization: Zhejiang Key Laboratory for Agro‐Food Processing – sequence: 3 givenname: Aliyu Idris surname: Muhammad fullname: Muhammad, Aliyu Idris organization: Bayero Univ – sequence: 4 givenname: Yuanjie surname: Suo fullname: Suo, Yuanjie organization: Zhejiang Key Laboratory for Agro‐Food Processing – sequence: 5 givenname: Shiguo surname: Chen fullname: Chen, Shiguo organization: Zhejiang Key Laboratory for Agro‐Food Processing – sequence: 6 givenname: Xingqian surname: Ye fullname: Ye, Xingqian organization: Zhejiang Key Laboratory for Agro‐Food Processing – sequence: 7 givenname: Donghong surname: Liu fullname: Liu, Donghong organization: Zhejiang Univ – sequence: 8 givenname: Tian orcidid: 0000-0002-8403-5344 surname: Ding fullname: Ding, Tian email: tding@zju.edu.cn organization: Zhejiang Univ |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29355961$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFNTtkiU27SGsn_omXw0wLrSqBBKwtx3YYV04c7ATUHeoT8Iw8CU5TuuiCemP5-jv36N5zAPb60FsAXmN0gvM5xZyioqoJPsEEEfoMrB4qe2CFUFkWGBO-Dw5Sukbzu2IvwH4pKkoFwytwux4G77QaXehhaKGCW2e91WN0Gr5TMTobcynpnYrfLFyPXUjDzs6_m-AN_ORV6hQ82jbmz6_faz0cwzZEeJZ2eoZ2Ts2cgxe90qP7sfi4Hs62Fl5OTtuX4HmrfLKv7u9D8PX87MvmQ3H18f3FZn1VaMIxLRpCmCEM48oq3nJtOCOm0QLXgolGcEsaXTWaGlEaXtaKEmMNrRmjnDSUt9UhOFr6DjF8n2waZZfnst6r3oYpyTIvkAuGRP0kikUtBK4ophl9-wi9DlPs8yCZylBNBaoy9eaemprOGjlE16l4I_8FkYHTBdAxpBRt-4BgJOeo5RysnIOVd1FnBX2k0G682-8YlfP_0bFF99N5e_OUjbw8335ehH8B34u6JQ |
CitedBy_id | crossref_primary_10_1128_AEM_00159_20 crossref_primary_10_1016_j_lwt_2021_112213 crossref_primary_10_3389_fnut_2024_1504958 crossref_primary_10_3390_microorganisms12061131 crossref_primary_10_1016_j_foodchem_2021_131831 crossref_primary_10_1016_j_lwt_2019_108974 crossref_primary_10_1016_j_lwt_2019_01_062 crossref_primary_10_3390_foods12071531 crossref_primary_10_1007_s11947_019_02323_w crossref_primary_10_1016_j_ifset_2025_103932 crossref_primary_10_1016_j_foodcont_2018_12_019 crossref_primary_10_1080_10942912_2024_2409904 crossref_primary_10_3390_foods9070929 crossref_primary_10_1007_s00253_019_09877_x crossref_primary_10_1016_j_ijfoodmicro_2020_108665 crossref_primary_10_1007_s12393_020_09222_3 crossref_primary_10_1021_acsfoodscitech_4c00737 crossref_primary_10_1080_09593330_2019_1620866 crossref_primary_10_1016_j_lwt_2023_115563 crossref_primary_10_2139_ssrn_3986219 crossref_primary_10_1016_j_foodcont_2024_110537 crossref_primary_10_1016_j_ifset_2022_102945 crossref_primary_10_1016_j_tifs_2019_11_012 crossref_primary_10_1016_j_ijfoodmicro_2022_109913 crossref_primary_10_1016_j_jafr_2024_101061 crossref_primary_10_3390_app14031263 crossref_primary_10_1016_j_ifset_2019_01_019 crossref_primary_10_1016_j_fochms_2022_100098 crossref_primary_10_1007_s12161_024_02661_2 crossref_primary_10_1016_j_foodcont_2019_107082 crossref_primary_10_1016_j_ifset_2020_102381 crossref_primary_10_1016_j_lwt_2024_116380 crossref_primary_10_1016_j_foodcont_2020_107489 crossref_primary_10_1039_D2FB00014H crossref_primary_10_1016_j_lwt_2020_109336 crossref_primary_10_1016_j_ultsonch_2023_106464 crossref_primary_10_1016_j_ifset_2018_11_012 crossref_primary_10_1016_j_foodcont_2022_109381 crossref_primary_10_1007_s11947_021_02686_z crossref_primary_10_1038_s41598_020_77977_0 crossref_primary_10_1142_S0217979224500218 crossref_primary_10_1088_2058_6272_abb454 crossref_primary_10_1016_j_foodres_2022_111985 crossref_primary_10_1016_j_fpsl_2023_101087 crossref_primary_10_1016_j_foodcont_2019_06_004 crossref_primary_10_3389_fmicb_2019_00622 crossref_primary_10_1016_j_tifs_2020_07_020 crossref_primary_10_1016_j_foodchem_2022_132707 crossref_primary_10_1111_1750_3841_16494 crossref_primary_10_1016_j_foodchem_2020_127826 crossref_primary_10_1111_1541_4337_12379 crossref_primary_10_4315_JFP_20_065 crossref_primary_10_1111_1750_3841_15448 crossref_primary_10_1080_19476337_2024_2303450 crossref_primary_10_1016_j_meafoo_2024_100183 crossref_primary_10_1128_AEM_02216_19 crossref_primary_10_1016_j_scitotenv_2018_07_190 crossref_primary_10_1016_j_foodcont_2025_111136 crossref_primary_10_1016_j_scitotenv_2018_05_342 crossref_primary_10_1007_s11947_024_03328_w crossref_primary_10_1080_10408398_2020_1743967 crossref_primary_10_4315_JFP_20_200 crossref_primary_10_1016_j_focha_2023_100249 crossref_primary_10_1111_jfpp_16181 crossref_primary_10_1111_1541_4337_12667 crossref_primary_10_1088_2516_1067_aaf067 crossref_primary_10_1016_j_foodchem_2023_137841 crossref_primary_10_3390_app13010578 crossref_primary_10_1007_s11694_020_00440_1 crossref_primary_10_1002_fsn3_4691 crossref_primary_10_1016_j_foodres_2024_115117 crossref_primary_10_1128_AEM_02380_20 crossref_primary_10_1016_j_foodres_2018_07_042 crossref_primary_10_1109_TPS_2021_3140089 crossref_primary_10_1111_jfpe_14542 crossref_primary_10_1016_j_lwt_2020_110223 crossref_primary_10_1016_j_lwt_2020_110465 crossref_primary_10_1016_j_foodcont_2021_108772 crossref_primary_10_3390_life11121333 crossref_primary_10_1016_j_foodchem_2024_142017 crossref_primary_10_1016_j_fochx_2019_100049 crossref_primary_10_1016_j_foodchem_2023_137616 crossref_primary_10_1016_j_jfoodeng_2020_109952 crossref_primary_10_1016_j_foodchem_2022_133770 crossref_primary_10_1016_j_foodcont_2018_07_026 crossref_primary_10_1590_1519_6984_272709 crossref_primary_10_1016_j_fbio_2024_104220 crossref_primary_10_1016_j_foodres_2020_109041 crossref_primary_10_1007_s12393_022_09317_z crossref_primary_10_1063_5_0198876 crossref_primary_10_3389_fmicb_2022_1100102 crossref_primary_10_1007_s12393_021_09295_8 crossref_primary_10_1111_jfpp_16110 crossref_primary_10_1016_j_lwt_2023_115089 crossref_primary_10_1038_s41598_020_78131_6 crossref_primary_10_1016_j_ifset_2019_02_008 crossref_primary_10_1007_s12393_022_09316_0 crossref_primary_10_1016_j_sjbs_2021_12_023 crossref_primary_10_1007_s13197_019_04035_7 crossref_primary_10_1016_j_foodcont_2019_106741 crossref_primary_10_3389_fmicb_2021_771770 crossref_primary_10_47836_ifrj_28_1_01 crossref_primary_10_1007_s11694_024_02764_8 crossref_primary_10_1016_j_foodcont_2023_109913 crossref_primary_10_3390_foods11050651 crossref_primary_10_1016_j_foodcont_2022_108926 crossref_primary_10_29050_harranziraat_1405216 crossref_primary_10_1111_jfpe_14203 crossref_primary_10_1111_ijfs_15220 crossref_primary_10_1016_j_jafr_2023_100867 crossref_primary_10_1007_s11947_025_03790_0 crossref_primary_10_1016_j_ifset_2024_103905 crossref_primary_10_1590_fst_02622 crossref_primary_10_1016_j_ijbiomac_2023_123557 crossref_primary_10_1111_ijfs_14536 crossref_primary_10_1007_s11947_023_03310_y crossref_primary_10_3920_JIFF2020_0121 crossref_primary_10_1007_s11090_020_10110_1 crossref_primary_10_1038_s41598_022_22335_5 crossref_primary_10_1007_s11694_024_02907_x crossref_primary_10_1016_j_ifset_2022_102935 crossref_primary_10_1021_envhealth_4c00100 crossref_primary_10_1016_j_ifset_2024_103878 crossref_primary_10_1093_lambio_ovac007 crossref_primary_10_1007_s13197_020_04801_y crossref_primary_10_1080_10408398_2022_2118660 crossref_primary_10_1016_j_ifset_2022_103100 crossref_primary_10_1016_j_ifset_2023_103461 crossref_primary_10_1080_10408398_2022_2121806 crossref_primary_10_1128_AEM_02221_18 crossref_primary_10_1007_s11947_024_03458_1 crossref_primary_10_1007_s11947_023_03229_4 crossref_primary_10_1016_j_foodchem_2021_130809 crossref_primary_10_1038_s41598_019_44946_1 crossref_primary_10_1007_s00253_020_10926_z crossref_primary_10_1007_s42853_024_00222_3 crossref_primary_10_1016_j_ifset_2019_102230 crossref_primary_10_1038_s41598_021_95452_2 crossref_primary_10_1016_j_foodcont_2023_110164 crossref_primary_10_1016_j_foodcont_2024_110464 crossref_primary_10_1111_1541_4337_12503 crossref_primary_10_1016_j_foodchem_2021_131903 crossref_primary_10_1016_j_foodp_2024_100025 crossref_primary_10_1016_j_foodres_2024_114861 crossref_primary_10_1016_j_foodchem_2020_127635 crossref_primary_10_1111_jfs_12581 crossref_primary_10_3390_foods11091196 crossref_primary_10_1016_j_foodcont_2021_108338 crossref_primary_10_1016_j_ifset_2023_103475 crossref_primary_10_4315_0362_028X_JFP_18_586 crossref_primary_10_3390_foods10092055 crossref_primary_10_3390_foods12173181 crossref_primary_10_1088_2058_6272_aca06e crossref_primary_10_1007_s11947_024_03677_6 crossref_primary_10_1016_j_fbio_2022_101857 |
Cites_doi | 10.1155/2014/758942 10.1111/ijfs.12395 10.1016/j.bioelechem.2014.08.018 10.1002/jsfa.2740140302 10.1016/j.anaerobe.2011.04.005 10.1038/cr.2013.13 10.1111/j.1541-4337.2009.00076.x 10.1177/1082013216685484 10.1016/B978-0-12-801365-6.00003-2 10.1016/j.foodchem.2015.05.099 10.1016/j.ijantimicag.2013.08.022 10.1007/s10068-015-0223-8 10.1016/j.ijfoodmicro.2013.12.031 10.1016/j.ifset.2015.04.002 10.1109/TPS.2011.2142012 10.4315/0362-028X.JFP-16-499 10.1002/jsfa.8268 10.1016/S0021-9258(18)84277-6 10.1111/j.1365-2672.2006.03002.x 10.4315/0362-028X-71.2.356 10.1002/ppap.200900090 10.1016/j.foodcont.2015.08.043 10.1016/j.biotechadv.2015.01.002 10.1016/j.ifset.2015.09.001 10.1016/j.lwt.2011.05.004 10.1016/j.foodres.2014.04.028 10.1016/j.foodcont.2016.12.021 10.1128/AAC.01002-10 10.1111/j.1365-2621.2002.tb10653.x 10.1016/j.fm.2014.09.010 10.1016/j.ifset.2013.09.012 10.1002/ppap.200900077 10.1016/j.postharvbio.2015.04.008 10.1128/AEM.03080-15 10.1016/j.foodcont.2011.06.025 |
ContentType | Journal Article |
Copyright | 2018 Institute of Food Technologists 2018 Institute of Food Technologists®. |
Copyright_xml | – notice: 2018 Institute of Food Technologists – notice: 2018 Institute of Food Technologists®. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QR 7ST 7T7 7U7 8FD C1K F28 FR3 K9. NAPCQ P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/1750-3841.14045 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Chemoreception Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Public Health |
EISSN | 1750-3841 |
EndPage | 408 |
ExternalDocumentID | 29355961 10_1111_1750_3841_14045 JFDS14045 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Major R & D Program of China funderid: 2017YFD0400403 |
GroupedDBID | --- -~X .3N .DC .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29K 3-9 31~ 33P 3EH 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABJNI ABPVW ACAHQ ACBNA ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFDN AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG P-O P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR RNS ROL RX1 RXW SAMSI SJN SUPJJ TAE TN5 UB1 UBH UHB UKR V8K VH1 W8V W99 WBFHL WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XOL Y6R YQJ ZCA ZCG ZGI ZT4 ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN Z5M 7QO 7QR 7ST 7T7 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 K9. NAPCQ P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4715-b446d46113ea7f7cd764dbc918969b97e4bc3bc5d92d728a54ded5866574b57f3 |
IEDL.DBID | DR2 |
ISSN | 0022-1147 1750-3841 |
IngestDate | Fri Jul 11 18:24:51 EDT 2025 Fri Jul 11 00:45:40 EDT 2025 Fri Jul 25 09:59:52 EDT 2025 Wed Feb 19 02:27:50 EST 2025 Tue Jul 01 02:39:32 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Wed Jan 22 16:22:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | apple juice, cold plasma, Escherichia coli inactivation mechanism, quality |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 Institute of Food Technologists®. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4715-b446d46113ea7f7cd764dbc918969b97e4bc3bc5d92d728a54ded5866574b57f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8403-5344 |
PMID | 29355961 |
PQID | 1999185903 |
PQPubID | 40513 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2045796098 proquest_miscellaneous_1989913515 proquest_journals_1999185903 pubmed_primary_29355961 crossref_primary_10_1111_1750_3841_14045 crossref_citationtrail_10_1111_1750_3841_14045 wiley_primary_10_1111_1750_3841_14045_JFDS14045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chicago |
PublicationTitle | Journal of food science |
PublicationTitleAlternate | J Food Sci |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 80 2015; 103 2013; 23 2015; 33 2015; 32 2017; 23 2014; 49 2011; 55 2014; 2014 2002 2015; 107 2011; 39 2011; 17 2014; 62 2014; 174 2008; 71 2014; 23 2014; 43 2014; 21 1927; 73 2015; 46 2015; 24 1963; 14 2017; 75 2004; 30 2015; 29 2017; 17 2002; 67 2011; 44 2017 2009; 8 2016 2016; 82 2016; 60 2012; 23 2016; 190 2012; 66 2010; 7 2006; 101 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 Whitehead J. C. (e_1_2_7_40_1) 2016 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Scholtz V. (e_1_2_7_30_1) 2015; 33 e_1_2_7_13_1 e_1_2_7_12_1 Gouma M. (e_1_2_7_11_1) 2015; 29 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Dolezalova E. (e_1_2_7_7_1) 2015; 103 Lukes P. (e_1_2_7_21_1) 2014; 23 Park I. (e_1_2_7_26_1) 2017; 17 Pankaj S. K. (e_1_2_7_25_1) 2017 Zhong K. (e_1_2_7_41_1) 2004; 30 e_1_2_7_31_1 Oehmigen K. (e_1_2_7_23_1) 2010; 7 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Vantarakis A. (e_1_2_7_37_1) 2011; 17 e_1_2_7_38_1 Wang R. X. (e_1_2_7_39_1) 2012; 66 |
References_xml | – start-page: 53 year: 2016 end-page: 81 article-title: Chapter 3 – the chemistry of cold plasma publication-title: Cold Plasma in Food & Agriculture – volume: 75 start-page: 83 year: 2017 end-page: 91 article-title: Inactivation mechanisms of non‐thermal plasma on microbes: A review publication-title: Food Control – volume: 67 start-page: 646 issue: 2 year: 2002 end-page: 648 article-title: Inactivation of O157 : H7 using a pulsed nonthermal plasma system publication-title: Journal of Food Science – volume: 39 start-page: 1591 issue: 7 year: 2011 end-page: 1597 article-title: Effect of low‐temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice publication-title: Ieee Transactions On Plasma Science – volume: 14 start-page: 138 issue: 3 year: 1963 article-title: Determination of nitrite and nitrate in meat products publication-title: Journal of the Science of Food and Agriculture – volume: 46 start-page: 479 year: 2015 end-page: 484 article-title: Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes publication-title: Food Microbiology – volume: 8 start-page: 157 issue: 3 year: 2009 end-page: 180 article-title: Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 23 start-page: 265 issue: 3 year: 2017 end-page: 276 article-title: Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing publication-title: Food Science and Technology International – volume: 24 start-page: 1717 issue: 5 year: 2015 end-page: 1724 article-title: Cold plasma treatment for microbial safety and preservation of fresh lettuce publication-title: Food Science and Biotechnology – volume: 29 start-page: 319 issue: SI year: 2015 article-title: Modeling microbial inactivation kinetics of combined UV‐H treatments in apple juice (vol 27, pg 111, 2015) publication-title: Innovative Food Science & Emerging Technologies – volume: 21 start-page: 114 year: 2014 end-page: 122 article-title: Atmospheric gas plasma treatment of fresh‐cut apples publication-title: Innovative Food Science & Emerging Technologies – volume: 82 start-page: 1828 issue: 6 year: 2016 end-page: 1837 article-title: Evaluation of ultrasound‐induced damage to and by flow cytometry and transmission electron microscopy publication-title: Applied and Environmental Microbiology – volume: 7 start-page: 33 issue: 1 year: 2010 end-page: 42 article-title: Effects of pH on bacterial inactivation in aqueous solutions due to low‐temperature atmospheric pressure plasma application publication-title: Plasma Processes and Polymers – volume: 43 start-page: 154 issue: 2 year: 2014 end-page: 160 article-title: Potential cellular targets and antibacterial efficacy of atmospheric pressure non‐thermal plasma publication-title: International Journal of Antimicrobial Agents – volume: 33 start-page: 1108 issue: 6SI2 year: 2015 end-page: 1119 article-title: Nonthermal plasma—A tool for decontamination and disinfection publication-title: Biotechnology Advances – volume: 2014 start-page: 758942 year: 2014 article-title: Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices publication-title: International Journal of Microbiology – volume: 32 start-page: 127 year: 2015 end-page: 135 article-title: Effects of atmospheric cold plasma and ozone on prebiotic orange juice publication-title: Innovative Food Science & Emerging Technologies – volume: 103 start-page: 7 issue: SI year: 2015 end-page: 14 article-title: Membrane damage and active but nonculturable state in liquid cultures of treated with an atmospheric pressure plasma jet publication-title: Bioelectrochemistry – volume: 7 start-page: 250 issue: 3‐4SI year: 2010 end-page: 257 article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids publication-title: Plasma Processes and Polymers – volume: 174 start-page: 63 year: 2014 end-page: 71 article-title: Impact of cold plasma on in apple juice: Inactivation kinetics and mechanisms publication-title: International Journal of Food Microbiology – volume: 17 start-page: 288 issue: 6SI year: 2011 end-page: 291 article-title: Occurrence of microorganisms of public health and spoilage significance in fruit juices sold in retail markets in Greece publication-title: Anaerobe – volume: 60 start-page: 552 year: 2016 end-page: 559 article-title: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, .) publication-title: Food Control – volume: 55 start-page: 1053 issue: 3 year: 2011 end-page: 1062 article-title: Nonthermal dielectric‐barrier discharge plasma‐induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in publication-title: Antimicrobial Agents and Chemotherapy – volume: 62 start-page: 653 year: 2014 end-page: 661 article-title: Consumers' perception of symbols and health claims as health‐related label messages. A cross‐cultural study publication-title: Food Research International – volume: 107 start-page: 55 year: 2015 end-page: 65 article-title: Effect of cold plasma treatment on physico‐chemical parameters and antioxidant activity of minimally processed kiwifruit publication-title: Postharvest Biology and Technology – volume: 30 start-page: 49 year: 2004 end-page: 54 article-title: Effect of pulsed electric fields on the quality of apple juice and comparison with heat treatment publication-title: Food and Fermentation Industries – volume: 44 start-page: 2285 issue: 10 year: 2011 end-page: 2289 article-title: Treating lamb's lettuce with a cold plasma—Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of publication-title: Lwt‐Food Science and Technology – volume: 23 issue: 0150191 year: 2014 article-title: Aqueous‐phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo‐second‐order post‐discharge reaction of H O and HNO publication-title: Plasma Sources Science & Technology – year: 2017 article-title: Effect of high voltage atmospheric cold plasma on white grape juice quality publication-title: Journal of the Science of Food and Agriculture – volume: 73 start-page: 627 issue: 2 year: 1927 end-page: 650 article-title: On tyrosine and tryptophane determinations in proteins publication-title: Journal of Biological Chemistry – year: 2002 – volume: 66 issue: 27610 year: 2012 article-title: Atmospheric‐pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation publication-title: European Physical Journal D – volume: 71 start-page: 356 issue: 2 year: 2008 end-page: 364 article-title: Juice‐associated outbreaks of human illness in the United States, 1995 through 2005 publication-title: Journal of Food Protection – volume: 80 start-page: 928 issue: 6 year: 2017 end-page: 932 article-title: Lethal and sublethal effect of a dielectric barrier discharge atmospheric cold plasma on publication-title: Journal of Food Protection – volume: 23 start-page: 282 issue: 1 year: 2012 end-page: 285 article-title: Incidence of microorganisms from fresh orange juice processed by squeezing machines publication-title: Food Control – volume: 190 start-page: 317 year: 2016 end-page: 323 article-title: Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice publication-title: Food Chemistry – volume: 23 start-page: 635 issue: 5 year: 2013 end-page: 644 article-title: L‐glutamine provides acid resistance for through enzymatic release of ammonia publication-title: Cell Research – volume: 17 issue: 117 year: 2017 article-title: Investigation of optimum ohmic heating conditions for inactivation of O157:H7, serovar , and in apple juice publication-title: Bmc Microbiology – volume: 101 start-page: 242 issue: 1 year: 2006 end-page: 250 article-title: Inactivation of and in acidic fruit and vegetable juices by peroxidase systems publication-title: Journal of Applied Microbiology – volume: 49 start-page: 1020 issue: 4 year: 2014 end-page: 1026 article-title: An investigation into low‐temperature nitrogen plasma environment effect on the content of polyphenols during withering in made Kenyan tea publication-title: International Journal of Food Science and Technology – ident: e_1_2_7_4_1 doi: 10.1155/2014/758942 – ident: e_1_2_7_15_1 doi: 10.1111/ijfs.12395 – volume: 103 start-page: 7 year: 2015 ident: e_1_2_7_7_1 article-title: Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2014.08.018 – ident: e_1_2_7_10_1 doi: 10.1002/jsfa.2740140302 – volume: 17 start-page: 288 issue: 6 year: 2011 ident: e_1_2_7_37_1 article-title: Occurrence of microorganisms of public health and spoilage significance in fruit juices sold in retail markets in Greece publication-title: Anaerobe doi: 10.1016/j.anaerobe.2011.04.005 – ident: e_1_2_7_20_1 doi: 10.1038/cr.2013.13 – ident: e_1_2_7_29_1 doi: 10.1111/j.1541-4337.2009.00076.x – ident: e_1_2_7_34_1 doi: 10.1177/1082013216685484 – start-page: 53 year: 2016 ident: e_1_2_7_40_1 article-title: Chapter 3 – the chemistry of cold plasma publication-title: Cold Plasma in Food & Agriculture doi: 10.1016/B978-0-12-801365-6.00003-2 – ident: e_1_2_7_5_1 doi: 10.1016/j.foodchem.2015.05.099 – ident: e_1_2_7_2_1 doi: 10.1016/j.ijantimicag.2013.08.022 – ident: e_1_2_7_33_1 doi: 10.1007/s10068-015-0223-8 – ident: e_1_2_7_35_1 doi: 10.1016/j.ijfoodmicro.2013.12.031 – volume: 29 start-page: 319 year: 2015 ident: e_1_2_7_11_1 article-title: Modeling microbial inactivation kinetics of combined UV‐H treatments in apple juice (vol 27, pg 111, 2015) publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2015.04.002 – volume: 23 issue: 0150191 year: 2014 ident: e_1_2_7_21_1 article-title: Aqueous‐phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo‐second‐order post‐discharge reaction of H2O2 and HNO2 publication-title: Plasma Sources Science & Technology – ident: e_1_2_7_31_1 doi: 10.1109/TPS.2011.2142012 – ident: e_1_2_7_19_1 doi: 10.4315/0362-028X.JFP-16-499 – year: 2017 ident: e_1_2_7_25_1 article-title: Effect of high voltage atmospheric cold plasma on white grape juice quality publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.8268 – volume: 66 issue: 27610 year: 2012 ident: e_1_2_7_39_1 article-title: Atmospheric‐pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation publication-title: European Physical Journal D – ident: e_1_2_7_9_1 doi: 10.1016/S0021-9258(18)84277-6 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-2672.2006.03002.x – ident: e_1_2_7_38_1 doi: 10.4315/0362-028X-71.2.356 – ident: e_1_2_7_13_1 doi: 10.1002/ppap.200900090 – ident: e_1_2_7_8_1 – volume: 17 issue: 117 year: 2017 ident: e_1_2_7_26_1 article-title: Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice publication-title: Bmc Microbiology – ident: e_1_2_7_27_1 doi: 10.1016/j.foodcont.2015.08.043 – volume: 33 start-page: 1108 issue: 6 year: 2015 ident: e_1_2_7_30_1 article-title: Nonthermal plasma—A tool for decontamination and disinfection publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2015.01.002 – volume: 30 start-page: 49 year: 2004 ident: e_1_2_7_41_1 article-title: Effect of pulsed electric fields on the quality of apple juice and comparison with heat treatment publication-title: Food and Fermentation Industries – ident: e_1_2_7_3_1 doi: 10.1016/j.ifset.2015.09.001 – ident: e_1_2_7_12_1 doi: 10.1016/j.lwt.2011.05.004 – ident: e_1_2_7_6_1 doi: 10.1016/j.foodres.2014.04.028 – ident: e_1_2_7_18_1 doi: 10.1016/j.foodcont.2016.12.021 – ident: e_1_2_7_14_1 doi: 10.1128/AAC.01002-10 – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-2621.2002.tb10653.x – ident: e_1_2_7_16_1 doi: 10.1016/j.fm.2014.09.010 – ident: e_1_2_7_36_1 doi: 10.1016/j.ifset.2013.09.012 – volume: 7 start-page: 250 issue: 3 year: 2010 ident: e_1_2_7_23_1 article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids publication-title: Plasma Processes and Polymers doi: 10.1002/ppap.200900077 – ident: e_1_2_7_28_1 doi: 10.1016/j.postharvbio.2015.04.008 – ident: e_1_2_7_17_1 doi: 10.1128/AEM.03080-15 – ident: e_1_2_7_32_1 doi: 10.1016/j.foodcont.2011.06.025 |
SSID | ssj0002236 |
Score | 2.6003768 |
Snippet | Atmospheric cold plasma (ACP) is a promising non‐thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)‐ACP exhibited strong... Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 401 |
SubjectTerms | Acidity antibacterial properties antioxidant activity Antioxidants apple juice apple juice, cold plasma, Escherichia coli Apples Bacteria brix cell membranes Cold Cold treatment Colony Count, Microbial Color Deactivation Dielectric barrier discharge Dielectric strength E coli Escherichia coli Escherichia coli O157 Escherichia coli O157 - growth & development Food Industry Food Microbiology - methods Food processing industry Food technology Fruit and Vegetable Juices - microbiology Fruit juices Fruits Hydrogen peroxide Inactivation inactivation mechanism, quality Malus nitrates Ozone Pasteurization Pasteurization - methods pH effects Phenolic compounds Phenols Plasma Plasma Gases Public health Quality management Reduction risk titratable acidity Weibull statistics |
Title | Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd‐Acp) for Eshcerichia Coli Inactivation in Apple Juice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1750-3841.14045 https://www.ncbi.nlm.nih.gov/pubmed/29355961 https://www.proquest.com/docview/1999185903 https://www.proquest.com/docview/1989913515 https://www.proquest.com/docview/2045796098 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UClGegICNxKIcsefgRH5duV2UlEAIqcYv8VCPapGp2Lz1V_QX9jfwSZvLY0qIKIW5RMlYcZ8bzjT3-hpA3IsgsODAkoSFWhfgrxCpxSewdA7RfOJFYXND_-EnsH7DFdz5mE-JZmJ4fYr3ghpbRzddo4Nq0vxk5-D1khmXpBBli8Jg5ZmwhLPpyRSAFzk-MfOGA_OVA7oO5PDfaX_dLf4DN69i1cz7z-8SM3e5zTn5MVkszsWc3GB3_67sekHsDNKXTXpe2yB1fPySb48nl9hG5mF7tdtMmUE1nVV9Gp7L0vT7F4ndwq-3YlzydLo-bFlkL4Oluc-ToZ0Dqx5ruzIz7eX45tSdvKUBmutceWhQ6rDTKVfRDjact-rViWtUUX-vpYgVz2mNyMN_7trsfDzUcYgtuj8cGwk3HRJrmXssgrZOCOWNVWiihjJKeGZsby53KnMwKzZnzjiMJn2SGy5A_IRt1U_tnhHKuPcDJxAqTMxHSIiTBMgURKc9CLm1EJuMfLO1AcI51No7KMdDBoS1xaMtuaCOys25w0nN73C66PapEORh5WyKDA8AdleQReb1-DOaJey669s0KZSCgxSqI_HYZrAggkfmviMjTXt3W_cmQ_16JNCLvOqX5W0fLxXz2tbt6_s8tXpC7AAeLPid9m2wsT1f-JUCupXnVWdUvBqsc2g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcAgX9mVCgEYCKRw8eO22DxyGOKOZySIEiZSb416sWEnsKJ4RghPiC_gWfoU_4Euo8jIhQRHikAM3y11tt7qrquv18grgBc-Em2k0JJ4iVkX8lVmRrW3LaB-j_VBzW9GC_tY2H-36k71gbwG-d3dhGn6I-YIbWUbtr8nAaUH6NyvHiY-oYX2nTxQx3cHKDfPpI8K26s04xjF-6brD9Z21kdVmFrAUOuPAkgiCtM8dxzOpyITSgvtaqsgJIx7JSBhfKk-qQEeuFm6YBr42OiBqOOHLQGQefvcaXKc84sTXH78_o6zC6ZZ3DOWINURLJ0Snhy40-PxM-Ed4ez5arqe74S340XVUc8rlsD-byr76fIFD8v_qydtws42-2aAxlzuwYIq7sNRdzq7uwdfB2YY-KzOWsjhvMgXlir1NTym_H76qaoIpwwbT47IiYgYsXSuPNHuHYOQ4Zaux1D-_fBuok1cMUQFbrw4UCR3kKcnlbFzQhZJmOZzlBaPfGjaZodu-D7tX0gUPYLEoC_MIWBCkBiNmW3Hp-TxzwszOlB8h6A7czBOqB_1OZRLVcrhTKpGjpMNyNJQJDWVSD2UPVucVThr6kstFVzodTFo_ViVEUoERXWR7PXg-L0YPRNtKaWHKGckgZqdEj8HlMpT0QBC5YdiDh41-z9vjEsV_xJ0evK619G8NTSbD-EP9tPzPNZ7B0mhnazPZHG9vPIYbGP2GzRH8FVicns7ME4wwp_JpbdIM9q9a838BwDh6kg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAEX9mUgQCOBFA4evLS77QOHIc4oM4EoAiLl5ti9KCMSexTPCMEJ8QX8Cr_CJ_AlVHmZkKAIcciBm-WutlvdVdX1enkF8FRY6VuNhiQyxKqIv6wTu9p1jOYY7UdauIoW9N9siY0dPt4Nd5fge3cXpuGHWCy4kWXU_poMfKrtb0aO8x4xw3KvTwwx3bnKTfPpI6K26uUowSF-5vvD9fdrG06bWMBR6ItDJ0cMpLnwvMBk0kqlpeA6V7EXxSLOY2l4roJchTr2tfSjLOTa6JCY4STPQ2kD_O4FuMiFG1O2iOTtMWMVzraiIyhHqCFbNiE6PHSqwScnwj-i25PBcj3bDa_Bj66fmkMuH_rzWd5Xn09RSP5XHXkdrraxNxs0xnIDlkxxEy53V7OrW_B1cLydz0rLMpZMmjxBE8VeZUeU3Q9fVTW9lGGD2WFZES0Dlq6VB5ptIxQ5zNhqkuufX74N1PQ5Q0zA1qt9RUL7k4zkJmxU0HWSZjGcTQpGvzVsPEenfRt2zqUL7sByURbmHrAwzAzGy64SecCF9SLrWsVjhNyhbwOpetDvNCZVLYM7JRI5SDskR0OZ0lCm9VD2YHVRYdqQl5wtutKpYNp6sSoligqM52I36MGTRTH6H9pUygpTzkkGETuleQzPlqGUB5KoDaMe3G3Ue9Eenwj-Y-H14EWtpH9raDoeJu_qp_v_XOMxXNpOhunr0dbmA7iCoW_UnL9fgeXZ0dw8xPBylj-qDZrB3nkr_i-qeHlB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Dielectric+Barrier+Discharge+Atmospheric+Cold+Plasma+%28Dbd-Acp%29+for+Eshcerichia+Coli+Inactivation+in+Apple+Juice&rft.jtitle=Journal+of+food+science&rft.au=Liao%2C+Xinyu&rft.au=Li%2C+Jiao&rft.au=Muhammad%2C+Aliyu+Idris&rft.au=Suo%2C+Yuanjie&rft.date=2018-02-01&rft.issn=1750-3841&rft.eissn=1750-3841&rft.volume=83&rft.issue=2&rft.spage=401&rft_id=info:doi/10.1111%2F1750-3841.14045&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1147&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1147&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1147&client=summon |