Research on gravity compensation control of BPNN upper limb rehabilitation robot based on particle swarm optimization

A four‐degree‐of‐freedom upper limb exoskeleton rehabilitation robot system with a gravity compensation device is constructed. The objective is to address the rehabilitation training needs of patients with upper limb motor dysfunction. A BP neural network adaptive control method based on particle sw...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 60; no. 15
Main Authors Pang, Zaixiang, Deng, Xiaomeng, Gong, Linan, Guo, Danqiu, Wang, Nan, Li, Ye
Format Journal Article
LanguageEnglish
Published Wiley 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A four‐degree‐of‐freedom upper limb exoskeleton rehabilitation robot system with a gravity compensation device is constructed. The objective is to address the rehabilitation training needs of patients with upper limb motor dysfunction. A BP neural network adaptive control method based on particle swarm optimization is proposed. First, the degrees of freedom of the human body are analyzed, and a Lagrange method is employed to construct a dynamic model. Second, a particle swarm optimization back propagation neural network adaptive control algorithm based on particle swarm optimization is presented. Subsequently, the range of motion of the upper limbs is analyzed with reference to muscle anatomy and a three‐dimensional motion capture system. And the robot structure design is analyzed in detail. Finally, simulation experiments were conducted, and the results demonstrated that the proposed method exhibited high effectiveness and accuracy. This paper presents the construction of a four‐degree‐of‐freedom upper extremity exoskeleton rehabilitation robotic system. The objective is to address the rehabilitation training needs of patients with upper limb motor dysfunction. The shoulder joint was designed with a gravity compensation device with the objective of enabling zero‐gravity interaction between the robot and the patient. The elbow joint was designed with an auxiliary ratchet to counteract the interference caused by the weight of the robot. By combining Particle Swarm Optimization and Back Propagation Neural Network, an improved BPNN control algorithm is proposed. This results in enhanced control accuracy and performance of the robot, facilitating more effective patient training.
AbstractList A four‐degree‐of‐freedom upper limb exoskeleton rehabilitation robot system with a gravity compensation device is constructed. The objective is to address the rehabilitation training needs of patients with upper limb motor dysfunction. A BP neural network adaptive control method based on particle swarm optimization is proposed. First, the degrees of freedom of the human body are analyzed, and a Lagrange method is employed to construct a dynamic model. Second, a particle swarm optimization back propagation neural network adaptive control algorithm based on particle swarm optimization is presented. Subsequently, the range of motion of the upper limbs is analyzed with reference to muscle anatomy and a three‐dimensional motion capture system. And the robot structure design is analyzed in detail. Finally, simulation experiments were conducted, and the results demonstrated that the proposed method exhibited high effectiveness and accuracy.
A four‐degree‐of‐freedom upper limb exoskeleton rehabilitation robot system with a gravity compensation device is constructed. The objective is to address the rehabilitation training needs of patients with upper limb motor dysfunction. A BP neural network adaptive control method based on particle swarm optimization is proposed. First, the degrees of freedom of the human body are analyzed, and a Lagrange method is employed to construct a dynamic model. Second, a particle swarm optimization back propagation neural network adaptive control algorithm based on particle swarm optimization is presented. Subsequently, the range of motion of the upper limbs is analyzed with reference to muscle anatomy and a three‐dimensional motion capture system. And the robot structure design is analyzed in detail. Finally, simulation experiments were conducted, and the results demonstrated that the proposed method exhibited high effectiveness and accuracy. This paper presents the construction of a four‐degree‐of‐freedom upper extremity exoskeleton rehabilitation robotic system. The objective is to address the rehabilitation training needs of patients with upper limb motor dysfunction. The shoulder joint was designed with a gravity compensation device with the objective of enabling zero‐gravity interaction between the robot and the patient. The elbow joint was designed with an auxiliary ratchet to counteract the interference caused by the weight of the robot. By combining Particle Swarm Optimization and Back Propagation Neural Network, an improved BPNN control algorithm is proposed. This results in enhanced control accuracy and performance of the robot, facilitating more effective patient training.
Abstract A four‐degree‐of‐freedom upper limb exoskeleton rehabilitation robot system with a gravity compensation device is constructed. The objective is to address the rehabilitation training needs of patients with upper limb motor dysfunction. A BP neural network adaptive control method based on particle swarm optimization is proposed. First, the degrees of freedom of the human body are analyzed, and a Lagrange method is employed to construct a dynamic model. Second, a particle swarm optimization back propagation neural network adaptive control algorithm based on particle swarm optimization is presented. Subsequently, the range of motion of the upper limbs is analyzed with reference to muscle anatomy and a three‐dimensional motion capture system. And the robot structure design is analyzed in detail. Finally, simulation experiments were conducted, and the results demonstrated that the proposed method exhibited high effectiveness and accuracy.
Author Guo, Danqiu
Li, Ye
Deng, Xiaomeng
Wang, Nan
Gong, Linan
Pang, Zaixiang
Author_xml – sequence: 1
  givenname: Zaixiang
  surname: Pang
  fullname: Pang, Zaixiang
  organization: Changchun University of Technology
– sequence: 2
  givenname: Xiaomeng
  orcidid: 0009-0009-5729-4576
  surname: Deng
  fullname: Deng, Xiaomeng
  organization: Changchun University of Technology
– sequence: 3
  givenname: Linan
  surname: Gong
  fullname: Gong, Linan
  email: 51192061@qq.com
  organization: Changchun Polytechnic
– sequence: 4
  givenname: Danqiu
  surname: Guo
  fullname: Guo, Danqiu
  organization: The Tourism College of Changchun University
– sequence: 5
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: Jilin Weimiao Medical Technology Co., Ltd
– sequence: 6
  givenname: Ye
  surname: Li
  fullname: Li, Ye
  organization: Changchun University of Technology
BookMark eNp9kE1Lw0AQhhepYFu9-Av2LFT3I02yRxW_oKiIgrdldjNpV5Js2I1K_fUmTfHoaZiZZx6Gd0YmjW-QkFPOzjlL1AVWlTjnUuTygEy5XLKF4vx9QqaMcblYcpUckVmMH30rlMqm5PMFI0KwG-obug7w5bottb5usYnQuX5ofdMFX1Ff0qvnx0f62bYYaOVqQwNuwLjKdSMZvPEdNRCxGGwthM7ZCmn8hlBT33audj879JgcllBFPNnXOXm7vXm9vl-snu4eri9XC5tkw795BljaPJXMgEitNcuECbR5hkaKopC5AZmmeZEZ1i-AMVTIVV4wsKkyXM7Jw-gtPHzoNrgawlZ7cHo38GGt909qLFlqDOttsEwwYQaTTIkMhChKzrjpXWejywYfY8Dyz8eZHsLXQ_h6F34P8xH-dhVu_yH1zWolxptfLm6Kxg
Cites_doi 10.1016/j.engappai.2021.104306
10.1016/j.neucom.2019.11.035
10.1016/j.swevo.2022.101060
10.1016/j.cor.2016.10.011
10.1016/j.applthermaleng.2012.03.022
10.3390/s22114071
10.1016/j.neucom.2020.06.050
10.1016/j.bspc.2021.102416
10.1016/j.jbiomech.2022.111104
10.1016/j.enconman.2008.06.009
10.1016/j.energy.2024.130594
10.1142/S0219519423500100
10.1016/j.bspc.2021.103115
10.1109/TSMC.2022.3163916
10.1016/j.ejor.2022.06.009
10.1007/s42235-022-00172-6
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ell2.13283
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ef06bb0668a54e40be47927a22df101b
10_1049_ell2_13283
ELL213283
Genre shortCommunication
GrantInformation_xml – fundername: Jilin Province Science and Technology Department Key Research and Development Project
  funderid: 20220204102YY
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
ESX
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
IFIPE
IPLJI
ITC
JAVBF
K1G
K7-
L6V
LAI
LXO
LXU
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P0-
P2P
P62
PTHSS
QWB
R4Z
RIE
RIG
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
PUEGO
ID FETCH-LOGICAL-c4713-587aefc8630ba26ccb5402ec87eb32dd38ba3668d7b0402a00e9e198d0ac69b13
IEDL.DBID 24P
ISSN 0013-5194
IngestDate Wed Aug 27 01:29:15 EDT 2025
Tue Aug 05 12:00:11 EDT 2025
Wed Jan 22 17:15:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4713-587aefc8630ba26ccb5402ec87eb32dd38ba3668d7b0402a00e9e198d0ac69b13
ORCID 0009-0009-5729-4576
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13283
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_ef06bb0668a54e40be47927a22df101b
crossref_primary_10_1049_ell2_13283
wiley_primary_10_1049_ell2_13283_ELL213283
PublicationCentury 2000
PublicationDate August 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 84
2021; 49
2021; 67
2023; 23
2023
2020; 382
2022; 71
2021; 103
2008; 49
2020; 413
2022; 52
2023; 305
2022; 22
2022; 138
2012; 42
2024; 292
2022; 19
e_1_2_12_3_1
e_1_2_12_6_1
Shiwei Y.U. (e_1_2_12_17_1) 2023
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_16_1
Yuyi Z. (e_1_2_12_4_1) 2021; 49
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 413
  start-page: 158
  year: 2020
  end-page: 172
  article-title: Noise‐tolerant neural algorithm for online solving time‐varying full‐rank matrix Moore–Penrose inverse problems: A control‐theoretic approach
  publication-title: Neurocomputing
– volume: 67
  year: 2021
  article-title: A novel method based on long short term memory network and discrete‐time zeroing neural algorithm for upper‐limb continuous estimation using sEMG signals
  publication-title: Biomed. Signal Process. Control
– volume: 19
  start-page: 1
  issue: 3
  year: 2022
  end-page: 12
  article-title: Development and Evaluation of a Wearable Lower Limb Rehabilitation Robot
  publication-title: J. Bionic Eng.
– volume: 103
  year: 2021
  article-title: Five‐step discrete‐time noise‐tolerant zeroing neural network model for time‐varying matrix inversion with application to manipulator motion generation
  publication-title: Eng. Appl. Artif. Intell.
– volume: 49
  start-page: 3080
  issue: 11
  year: 2008
  end-page: 3085
  article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve‐point effects
  publication-title: Energy Convers. Manage.
– volume: 84
  start-page: 205
  year: 2017
  end-page: 215
  article-title: Static force capability optimization of humanoids robots based on modified self‐adaptive differential evolution
  publication-title: Comp. Oper. Res.
– volume: 138
  start-page: 111104
  year: 2022
  end-page: 111104
  article-title: EMG‐driven fatigue‐based self‐adapting admittance control of a hand rehabilitation robot
  publication-title: J. Biomech.
– volume: 49
  start-page: 19
  issue: 06
  year: 2021
  end-page: 27
  article-title: Joint motion control of flexible wearable upper limb rehabilitation robot
  publication-title: J. South China Univ. Technol. (Nat. Sci. Ed.)
– volume: 22
  start-page: 4071
  issue: 11
  year: 2022
  end-page: 4071
  article-title: Trajectory planning and simulation study of redundant robotic arm for upper limb rehabilitation based on back propagation neural network and genetic algorithm
  publication-title: Sensors
– volume: 23
  issue: 01
  year: 2023
  article-title: Fractional order PIΛDΜ for tracking control of a novel rehabilitation robot based on IIMO‐BP neural network algorithm
  publication-title: J. Mech. Med. Biol.
– volume: 292
  year: 2024
  article-title: Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing‐back propagation methods for state of health estimation of energy storage batteries
  publication-title: Energy
– volume: 71
  year: 2022
  article-title: Particle swarm optimization: Stability analysis using N‐informers under arbitrary coefficient distributions
  publication-title: Swarm and Evol. Comput.
– volume: 305
  start-page: 562
  issue: 02
  year: 2023
  end-page: 593
  article-title: Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy
  publication-title: Eur. J. Oper. Res.
– volume: 52
  start-page: 7737
  issue: 12
  year: 2022
  end-page: 7747
  article-title: A control framework for adaptation of training task and robotic assistance for promoting motor learning with an upper limb rehabilitation robot
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 382
  start-page: 233
  year: 2020
  end-page: 248
  article-title: Noise‐tolerant Z‐type neural dynamics for online solving time‐varying inverse square root problems: A control‐based approach
  publication-title: Neurocomputing
– start-page: 83
  issue: 10
  year: 2023
  end-page: 88
  article-title: Adaptive control method for upper limb exoskeleton rehabilitation robot based on RBF neural network
  publication-title: Comput. Age
– volume: 71
  year: 2022
  article-title: A neural network‐based model for lower limb continuous estimation against the disturbance of uncertainty
  publication-title: Biomed. Signal Process. Control
– volume: 42
  start-page: 119
  year: 2012
  end-page: 128
  article-title: A chaotic quantum‐behaved particle swarm approach applied to optimization of heat exchangers
  publication-title: Appl. Therm. Eng.
– ident: e_1_2_12_5_1
  doi: 10.1016/j.engappai.2021.104306
– ident: e_1_2_12_9_1
  doi: 10.1016/j.neucom.2019.11.035
– ident: e_1_2_12_15_1
  doi: 10.1016/j.swevo.2022.101060
– ident: e_1_2_12_2_1
  doi: 10.1016/j.cor.2016.10.011
– ident: e_1_2_12_11_1
  doi: 10.1016/j.applthermaleng.2012.03.022
– ident: e_1_2_12_16_1
  doi: 10.3390/s22114071
– ident: e_1_2_12_18_1
  doi: 10.1016/j.neucom.2020.06.050
– ident: e_1_2_12_8_1
  doi: 10.1016/j.bspc.2021.102416
– ident: e_1_2_12_6_1
  doi: 10.1016/j.jbiomech.2022.111104
– ident: e_1_2_12_12_1
  doi: 10.1016/j.enconman.2008.06.009
– ident: e_1_2_12_13_1
  doi: 10.1016/j.energy.2024.130594
– ident: e_1_2_12_10_1
  doi: 10.1142/S0219519423500100
– ident: e_1_2_12_19_1
  doi: 10.1016/j.bspc.2021.103115
– volume: 49
  start-page: 19
  issue: 06
  year: 2021
  ident: e_1_2_12_4_1
  article-title: Joint motion control of flexible wearable upper limb rehabilitation robot
  publication-title: J. South China Univ. Technol. (Nat. Sci. Ed.)
– ident: e_1_2_12_7_1
  doi: 10.1109/TSMC.2022.3163916
– ident: e_1_2_12_14_1
  doi: 10.1016/j.ejor.2022.06.009
– start-page: 83
  issue: 10
  year: 2023
  ident: e_1_2_12_17_1
  article-title: Adaptive control method for upper limb exoskeleton rehabilitation robot based on RBF neural network
  publication-title: Comput. Age
– ident: e_1_2_12_3_1
  doi: 10.1007/s42235-022-00172-6
SSID ssj0012997
Score 2.4434202
Snippet A four‐degree‐of‐freedom upper limb exoskeleton rehabilitation robot system with a gravity compensation device is constructed. The objective is to address the...
Abstract A four‐degree‐of‐freedom upper limb exoskeleton rehabilitation robot system with a gravity compensation device is constructed. The objective is to...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms adaptive control
artificial intelligence
backpropagation
control engineering
data acquisition
medical robotics
neural nets
particle swarm optimisation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ET5xfBPQk1LVp2iRHJxtD5vDgYLeSNAkIW1vqhv--L2kr20Uv9lTa0iS_fLzfa15_D6F7ZWUUaWODULA8AEYcBVILGfAocbc4l9Z9GnidpZM5fVkki61UXy4mrJEHboAbGBumSoFh5DKhhobKUCYIk4RoC8NJudUXbF7nTLX7B7DIsi53AXAU2gmTUjEwyyV5BB-MxzumyCv27zJUb2LGR-iw5Yb4qanTMdozxQk62FIMPEWbLlIOlwV2qYOARGMXFg7eqMcYt7HnuLR4-Dab4U1VmRovP1YK1zuq3LguVbnGzoxp97aqxQJ_fsl6hUtYS1btT5pnaD4evT9PgjZzQpCDsYEmcyaNzXkah0qSNM8VEDNics7AdyZax1zJGCDVTMEkJjIMjTCR4DqUeSpUFJ-jXlEW5gJhLRLwngXM1EhSYa1K4KDG5KFWcWRYH911IGZVI5CR-Y1tKjIHdeah7qOhw_fnCSdq7S9AV2dt87K_urqPHnzv_FJONppOiT-7_I8Sr9A-ARLTBPxdo9663pgbICFrdevH2zesu9nR
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on gravity compensation control of BPNN upper limb rehabilitation robot based on particle swarm optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13283
https://doaj.org/article/ef06bb0668a54e40be47927a22df101b
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOhB_MT5MQJ6EqptmrUJeJniENHhwYl4KUmTiLCto2747_uSttNdBHsqbdqQl7z3fi95-QXgTFkZRdrYIBRpHiAijgKphQx41HWvOJfWTQ08DpK7Ibt_7b6uwFWzF6bih1hMuDnN8PbaKbhU1SkkCGpdJ45G9AJjKR6vwprbW-uY8yl7WqwhoKFNm_MLEKewhpyUicufb5fckWftX0ap3s30t2CzxoekV3XoNqyYyQ5s_GIN3IV5ky1HiglxxwchkCYuNRwjUi9nUuefk8KS66fBgMynU1OS0cdYkXKJmZuUhSpmxLky7f42rQcS-fyS5ZgUaE_G9UbNPRj2b59v7oL69IQgR4eDTeapNDbnSRwqSZM8VwjOqMl5ivEz1TrmSsZJwnWqUJGpDEMjTCS4DmWeCBXF-9CaFBNzAESLLkbQArU1kkxYq7p4MWPyUKs4MmkbThshZtOKJCPzi9tMZE7UmRd1G66dfBclHLG1f1CU71ndvMzYMFEKcRCXWAMLlWGpoKmkVFu0HqoN5753_qgnu314oP7u8D-Fj2CdImCpkvuOoTUr5-YEAcdMdfy46sBa72X4Nuz4sP0bimPUug
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6D-rB-BnnJ4meTKotZQWOzrhM3ZYdtmS3BgoYk21d6hb_fR-0m-5iYk9NS0t48N77PXj8QOhWWRlF2tggFCwLABFHgdRCBjxquFecS-umBrq9pD2kr6PGqMrNcXthSn6I1YSb0wxvr52CuwnpMuCkjiTTjMfkHoIpHm-iLZoQ5vSS0P5qEQEsLVseYABAhS7ZSal4-Pl2zR952v51mOr9TGsf7VUAET-WPXqANsz0EO3-og08QotluhzOp9idHwRIGrvccAhJvaBxlYCOc4ub_V4PL2YzU-Dxx0ThYo2aGxe5yufY-TLt_jarRhL-_JLFBOdgUCbVTs1jNGw9D57aQXV8QpCBx4EmcyaNzXgSh0qSJMsUoDNiMs4ggCZax1zJOEm4Zgo0mcgwNMJEgutQZolQUXyCatN8ak4R1qIBIbQAdY0kFdaqBlzUmCzUKo4Mq6ObpRDTWcmSkfrVbSpSJ-rUi7qOmk6-qxKO2do_yIv3tGpeamyYKAVAiEuogYbKUCYIk4RoC-ZD1dGd750_6kmfOx3i787-U_gabbcH3U7aeem9naMdAuilzPS7QLV5sTCXgD7m6sqPsW9betVz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BkRA8oG2AKLDN0vY0KSxx3MSWeOFX1W1d1QeK0F4iO7YRUttEoRX_PmcnKfQFaXmKEieWz7677-zzZ4Dvysoo0sYGoUjzABFxFEgtZMCjnnvFubRuauDvKBlM2O_73v0GnLd7YWp-iNWEm9MMb6-dgpfa1vEmcxyZZjqlZxhL8XgTthxNHo7prYu7yb_JahUBTW3anmCASIW19KRM_Hz9es0hed7-dZzqHU3_A-w1CJFc1F36ETbM_BPsvuEN3Idlmy9HijlxBwghlCYuORxjUi9p0mSgk8KSy_FoRJZlaSoyfZwpUq1xc5OqUMWCOGem3d_KZiiRp2dZzUiBFmXWbNU8gEn_5vZqEDTnJwQ5uhxsMk-lsTlP4lBJmuS5QnhGTc5TjKCp1jFXMk4SrlOFqkxlGBphIsF1KPNEqCg-hM68mJsjIFr0MIYWqK-RZMJa1cOLGZOHWsWRSbvwrRViVtY0GZlf3mYic6LOvKi7cOnkuyrhqK39g6J6yJrmZcaGiVKIhLjEGlioDEsFTSWl2qL9UF344XvnnXqym-GQ-rvj_yn8FbbH1_1s-Gv05wR2KKKXOtPvFDqLamk-I_pYqC_NIHsBS37Waw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+gravity+compensation+control+of+BPNN+upper+limb+rehabilitation+robot+based+on+particle+swarm+optimization&rft.jtitle=Electronics+letters&rft.au=Pang%2C+Zaixiang&rft.au=Deng%2C+Xiaomeng&rft.au=Gong%2C+Linan&rft.au=Guo%2C+Danqiu&rft.date=2024-08-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=60&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fell2.13283&rft.externalDBID=10.1049%252Fell2.13283&rft.externalDocID=ELL213283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon