Combining food web and species distribution models for improved community projections
The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic in...
Saved in:
Published in | Ecology and evolution Vol. 3; no. 13; pp. 4572 - 4583 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.11.2013
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant–herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks.
We combine a predictive food web model that can infer the potential interaction links between species, with species distribution models. Using a plant–herbivore (butterfly) interaction, dataset collected in the Swiss Alps and dissected in previous studies, we demonstrate for the first time that this combined approach is able to improve both species distribution and community forecasts. Our combined approach points a promising direction forward to model the spatial variation in entire species interaction networks. |
---|---|
AbstractList | The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant–herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks. The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant–herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks. We combine a predictive food web model that can infer the potential interaction links between species, with species distribution models. Using a plant–herbivore (butterfly) interaction, dataset collected in the Swiss Alps and dissected in previous studies, we demonstrate for the first time that this combined approach is able to improve both species distribution and community forecasts. Our combined approach points a promising direction forward to model the spatial variation in entire species interaction networks. The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks. We combine a predictive food web model that can infer the potential interaction links between species, with species distribution models. Using a plant-herbivore (butterfly) interaction, dataset collected in the Swiss Alps and dissected in previous studies, we demonstrate for the first time that this combined approach is able to improve both species distribution and community forecasts. Our combined approach points a promising direction forward to model the spatial variation in entire species interaction networks. The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks.The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks. |
Author | Salamin, Nicolas Ndiribe, Charlotte Pradervand, Jean‐Nicolas Wisz, Mary Pellissier, Loïc Guisan, Antoine Rohr, Rudolf P. |
Author_xml | – sequence: 1 givenname: Loïc surname: Pellissier fullname: Pellissier, Loïc organization: Aarhus University – sequence: 2 givenname: Rudolf P. surname: Rohr fullname: Rohr, Rudolf P. organization: Estación Biológica de Doñana (EBD – CSIC) – sequence: 3 givenname: Charlotte surname: Ndiribe fullname: Ndiribe, Charlotte organization: University of Lausanne – sequence: 4 givenname: Jean‐Nicolas surname: Pradervand fullname: Pradervand, Jean‐Nicolas organization: University of Lausanne – sequence: 5 givenname: Nicolas surname: Salamin fullname: Salamin, Nicolas organization: University of Lausanne – sequence: 6 givenname: Antoine surname: Guisan fullname: Guisan, Antoine organization: University of Lausanne – sequence: 7 givenname: Mary surname: Wisz fullname: Wisz, Mary organization: Aarhus University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24340196$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rHSEUhqWkNJ_QX1CEbrqZGx11dDaFcrltCoFskrU4eib1MqO3OpNw_30ckqZpaKkb5fic93y8x-ggxAAIvadkRQmpz8ECWynO3qCjmnBRSSnUwYv3ITrLeUvKaUjNiXyHDmvOOKFtc4Ru1nHsfPDhFvcxOnwPHTbB4bwD6yFj5_OUfDdPPgY8RgdDLmDCftyleAcO2ziOc_DTHpfAFuwC5lP0tjdDhrOn-wTdfN1cry-qy6tv39dfLivLJWUVbxvjVMc70rdKlVms64WlSilmWwYNFR1TQlJe27a3bacaZYjrrWkNLZxgJ-jzo-5u7kZwFsKUzKB3yY8m7XU0Xv_5E_wPfRvvdJFtpFgEPj0JpPhzhjzp0WcLw2ACxDlrKmktJG-U_D_Ky7JFrVRb0I-v0G2cUyib0DUre-eKNEvtDy-bf-76lzm_K9oUc07QPyOU6MV6vVivi_UFXb1CrZ_M4kUZ2w9_S6geE-79APt_CuvNesMW_gFow76B |
CitedBy_id | crossref_primary_10_1002_ece3_6096 crossref_primary_10_1515_mammalia_2016_0155 crossref_primary_10_1007_s10021_015_9926_1 crossref_primary_10_1111_ecog_01937 crossref_primary_10_1111_ecog_04006 crossref_primary_10_1093_icb_icac147 crossref_primary_10_1111_ecog_03315 crossref_primary_10_1111_2041_210X_12502 crossref_primary_10_1111_gcb_17397 crossref_primary_10_1111_brv_12366 crossref_primary_10_1111_geb_12217 crossref_primary_10_1371_journal_pclm_0000490 crossref_primary_10_1007_s12080_015_0281_9 crossref_primary_10_1111_1365_2656_14164 crossref_primary_10_1038_srep15395 crossref_primary_10_3389_fmars_2021_730762 crossref_primary_10_1111_jbi_12485 crossref_primary_10_1038_ncomms13965 crossref_primary_10_1016_j_tree_2016_08_005 crossref_primary_10_1111_2041_210X_12357 crossref_primary_10_1016_j_biocon_2023_110038 crossref_primary_10_1016_j_hydres_2024_03_002 crossref_primary_10_1016_j_ecolmodel_2021_109826 crossref_primary_10_1111_ecog_01714 crossref_primary_10_1111_ecog_01557 crossref_primary_10_1146_annurev_ento_120120_102424 crossref_primary_10_1111_1365_2745_14415 crossref_primary_10_1098_rspb_2015_2444 crossref_primary_10_1111_jbi_12825 crossref_primary_10_1093_femsec_fiaa051 crossref_primary_10_1038_s41598_017_09573_8 crossref_primary_10_3897_neotropical_19_e117386 crossref_primary_10_1071_WR23010 crossref_primary_10_1111_geb_12759 crossref_primary_10_1111_ecog_00819 crossref_primary_10_1111_ecog_01941 crossref_primary_10_1002_ecy_2504 crossref_primary_10_1002_eap_2966 crossref_primary_10_1017_S0954102021000183 crossref_primary_10_1111_ele_12770 crossref_primary_10_1111_jbi_14319 crossref_primary_10_1017_S0031182022001718 crossref_primary_10_1002_ecy_2221 crossref_primary_10_1111_1365_2745_13354 crossref_primary_10_3390_insects15120971 crossref_primary_10_1134_S1062359021030122 crossref_primary_10_3389_fmars_2020_578717 crossref_primary_10_1111_oik_04536 crossref_primary_10_1086_695984 crossref_primary_10_1126_sciadv_aav2539 |
Cites_doi | 10.1111/j.1461-0248.2011.01675.x 10.1111/j.1469-185X.2012.00235.x 10.1073/pnas.1107004109 10.1111/j.1365-2699.2011.02663.x 10.1111/j.1461-0248.2011.01588.x 10.1111/1365-2435.12058 10.1890/10-0173.1 10.1098/rspb.2012.0327 10.1111/j.1600-0587.2010.06386.x 10.1111/ele.12016 10.1086/343873 10.1111/j.1365-2486.2010.02177.x 10.1111/j.1600-0587.2008.05742.x 10.1111/j.1461-0248.2012.01852.x 10.1111/j.1600-0587.2011.07047.x 10.1073/pnas.0710672105 10.1111/j.1466-8238.2010.00607.x 10.1111/j.1461-0248.2005.00792.x 10.1890/12-1482.1 10.1086/653667 10.1098/rstb.2010.0037 10.1098/rspb.2011.1430 10.1046/j.1461-0248.2002.00304.x 10.1098/rspb.2010.2213 10.1890/11-0503.1 10.1111/j.1472-4642.2010.00735.x 10.1111/j.1466-8238.2007.00359.x 10.1371/journal.pone.0019374 10.1111/j.1365-2699.2012.02705.x 10.1111/j.1469-8137.2005.01349.x 10.1111/j.1420-9101.2012.02555.x 10.1111/j.1461-0248.2012.01772.x 10.1086/505157 10.1111/j.1472-4642.2011.00792.x 10.1016/S0304-3800(02)00203-X 10.1038/nature06830 10.1111/j.1600-0587.2012.07191.x 10.1111/j.1095-8312.2005.00426.x 10.1111/ele.12104 10.1111/j.1558-5646.1985.tb00420.x 10.1111/j.1469-185X.2012.00224.x 10.1111/j.1654-1103.2009.01098.x 10.1126/science.1214833 10.2307/3237182 10.1017/S1464793105006767 10.1126/science.1216980 10.1111/ele.12083 |
ContentType | Journal Article |
Copyright | 2013 The Authors. published by John Wiley & Sons Ltd. 2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd 2013 |
Copyright_xml | – notice: 2013 The Authors. published by John Wiley & Sons Ltd. – notice: 2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd 2013 |
DBID | 24P AAYXX CITATION NPM 3V. 7SN 7SS 7ST 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 7U6 5PM |
DOI | 10.1002/ece3.843 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Sustainability Science Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Sustainability Science Abstracts |
DatabaseTitleList | Agricultural Science Database Entomology Abstracts CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2045-7758 |
EndPage | 4583 |
ExternalDocumentID | PMC3856755 24340196 10_1002_ece3_843 ECE3843 |
Genre | article Journal Article |
GeographicLocations | Switzerland, Alps Mts |
GeographicLocations_xml | – name: Switzerland, Alps Mts |
GrantInformation_xml | – fundername: National Science Foundation (NSF) funderid: 31003A‐125145 – fundername: EcoGenes Project funderid: 264125 – fundername: Danish Council for Independent Research funderid: 12‐126430; FP7‐REGPOT 2010‐1 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X2 8-0 8-1 8FE 8FH AAFWJ AAHBH AAHHS AAZKR ACCFJ ACCMX ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AFRAH AIAGR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ATCPS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI CCPQU D-8 D-9 DIK EBS ECGQY EJD GODZA GROUPED_DOAJ GX1 HCIFZ HYE IAO IEP ITC KQ8 LK8 M0K M48 M7P M~E OK1 PIMPY PROAC RNS ROL RPM SUPJJ WIN AAYXX AFPKN CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM PQGLB 3V. 7SN 7SS 7ST 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 7U6 5PM |
ID | FETCH-LOGICAL-c4713-496ad8b4b0f988002cdf5c18883c93e615b3857142c9fc9b868a0dfca9a15c153 |
IEDL.DBID | M48 |
ISSN | 2045-7758 |
IngestDate | Thu Aug 21 14:11:19 EDT 2025 Fri Jul 11 15:50:17 EDT 2025 Fri Jul 11 16:55:10 EDT 2025 Wed Aug 13 06:30:40 EDT 2025 Mon Jul 21 05:49:03 EDT 2025 Tue Jul 01 01:37:36 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Wed Jan 22 16:23:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | ecological niche modeling plant–herbivore interactions phylogeny Biotic interactions trophic network |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/3.0 Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4713-496ad8b4b0f988002cdf5c18883c93e615b3857142c9fc9b868a0dfca9a15c153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 A. G and M. W — Co-last authors. Funding Information This study was supported by the National Science Foundation (NSF) Grant Nr. 31003A-125145 (BIOASSEMBLE project), the Danish Council for Independent Research Grant no. 12-126430 and FP7-REGPOT 2010-1 EcoGenes Project (Grant No. 264125). L. P and R. P. R — Co-first authors. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/ece3.843 |
PMID | 24340196 |
PQID | 2301948065 |
PQPubID | 2034651 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3856755 proquest_miscellaneous_1712574687 proquest_miscellaneous_1477552889 proquest_journals_2301948065 pubmed_primary_24340196 crossref_primary_10_1002_ece3_843 crossref_citationtrail_10_1002_ece3_843 wiley_primary_10_1002_ece3_843_ECE3843 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2013 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: November 2013 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Ecology and evolution |
PublicationTitleAlternate | Ecol Evol |
PublicationYear | 2013 |
Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd |
References | 2010; 33 2011; 334 2011; 278 2010; 16 2013; 27 2009; 20 2013; 88 2002; 157 2002; 5 2010; 365 2005; 84 2012b; 25 2005; 80 2012; 39 2012; 15 2011; 14 2008; 101 2011; 17 2004; 428 2011; 6 2012; 109 2007; 16 2012; 93 1985; 39 2012a; 35 2002; 160 2013; 36 2009; 32 2013; 16 2005; 8 2013; 94 2005; 105 2010; 176 1999; 10 2012; 279 2010; 91 2012; 336 2012; 87 2012; 21 2006; 168 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 start-page: 469 year: 1999 end-page: 482 article-title: Predictive mapping of alpine grasslands in Switzerland: species versus community approach publication-title: J. Veg. Sci. – volume: 16 start-page: 743 year: 2007 end-page: 753 article-title: The importance of biotic interactions for modelling species distributions under climate change publication-title: Glob. Ecol. Biogeogr. – volume: 87 start-page: 769 year: 2012 end-page: 785 article-title: Ecophylogenetics: advances and perspectives publication-title: Biol. Rev. – volume: 93 start-page: 211 year: 2012 end-page: 223 article-title: Predicting tropical insect herbivore abundance from host plant traits and phylogeny publication-title: Ecology – volume: 39 start-page: 783 year: 1985 end-page: 791 article-title: Confidence limits on phylogenies: an approach using the bootstrap publication-title: Evolution – volume: 157 start-page: 331 year: 2002 end-page: 341 article-title: Which is the optimal sampling strategy for habitat suitability modelling publication-title: Ecol. Mod. – volume: 334 start-page: 1070 year: 2011 end-page: 1071 article-title: Communities under climate change publication-title: Science – volume: 39 start-page: 2163 year: 2012 end-page: 2178 article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents publication-title: J. Biogeogr. – volume: 35 start-page: 684 year: 2012a end-page: 692 article-title: Climate‐based empirical models show biased predictions of butterfly communities along environmental gradients publication-title: Ecography – volume: 80 start-page: 489 year: 2005 end-page: 513 article-title: Terrestrial insects along elevation gradients: species and community responses to altitude publication-title: Biol. Rev. – volume: 91 start-page: 2514 year: 2010 end-page: 2521 article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions publication-title: Ecology – volume: 336 start-page: 1028 year: 2012 end-page: 1030 article-title: Temperature‐dependent alterations in host use drive rapid range expansion in a butterfly publication-title: Science – volume: 36 start-page: 649 year: 2013 end-page: 656 article-title: Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants publication-title: Ecography – volume: 8 start-page: 993 year: 2005 end-page: 1009 article-title: Predicting species distribution: offering more than simple habitat models publication-title: Ecol. Lett. – volume: 94 start-page: 671 year: 2013 end-page: 682 article-title: Horizontal, but not vertical, biotic interactions affect fine‐scale plant distribution patterns in a low energy system publication-title: Ecology – volume: 39 start-page: 2179 year: 2012 end-page: 2190 article-title: Biotic modifiers, environmental modulation and species distribution models publication-title: J. Biogeogr. – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 27 start-page: 479 year: 2013 end-page: 489 article-title: Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers publication-title: Funct. Ecol. – volume: 176 start-page: 170 year: 2010 end-page: 177 article-title: Modeling food webs: exploring unexplained structure using latent traits publication-title: Am. Nat. – volume: 16 start-page: 2923 year: 2010 end-page: 2929 article-title: Adaptation to host plants may prevent rapid insect responses to climate change publication-title: Glob. Ch. Biol. – volume: 15 start-page: 1291 year: 2012 end-page: 1299 article-title: A predictive model of community assembly that incorporates intraspecific trait variation publication-title: Ecol. Lett. – volume: 14 start-page: 313 year: 2011 end-page: 323 article-title: Linking community and ecosystem dynamics through spatial ecology publication-title: Ecol. Lett. – volume: 17 start-page: 374 year: 2011 end-page: 380 article-title: Predicting impacts of climate change on biodiversity: a role for semi‐mechanistic community‐level modelling publication-title: Divers. Distrib. – volume: 365 start-page: 2025 year: 2010 end-page: 2034 article-title: Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels publication-title: Phil. Trans. R. Soc. B. Biol. Sci. – volume: 16 start-page: 600 year: 2013 end-page: 608 article-title: Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients publication-title: Ecol. Lett. – volume: 160 start-page: 712 year: 2002 end-page: 726 article-title: Phylogenetic analysis and comparative data: a test and review of evidence publication-title: Am. Nat. – volume: 278 start-page: 2737 year: 2011 end-page: 2744 article-title: Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate‐regulated gateway to the New World publication-title: Proc. R. Soc. B: Biol. Sci. – volume: 33 start-page: 1004 year: 2010 end-page: 1014 article-title: Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants publication-title: Ecography – volume: 17 start-page: 1122 year: 2011 end-page: 1131 article-title: Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches publication-title: Divers. Distrib. – volume: 88 start-page: 15 year: 2013 end-page: 30 article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling publication-title: Biol. Rev. – volume: 6 start-page: e19374 year: 2011 article-title: Persistence increases with diversity and connectance in trophic metacommunities publication-title: PLoS ONE – volume: 21 start-page: 88 year: 2012 end-page: 99 article-title: Increasing range mismatching of interacting species under global change is related to their ecological characteristics publication-title: Glob. Ecol. Biogeogr. – volume: 16 start-page: 72 year: 2013 end-page: 80 article-title: Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marine amphipods publication-title: Ecol. Lett. – volume: 84 start-page: 225 year: 2005 end-page: 241 article-title: Phylogenetic patterns in larval host plant and ant association of Indo‐Australian Arhopalini butterflies Lycaenidae: Theclinae publication-title: Biol. J. Linn. Soc. – volume: 20 start-page: 996 year: 2009 end-page: 1008 article-title: Land use improves spatial predictions of mountain plant abundance but not presence‐absence publication-title: J. Veg. Sci. – volume: 5 start-page: 241 year: 2002 end-page: 245 article-title: Field evidence of trait‐mediated indirect interactions in a rocky intertidal food web publication-title: Ecol. Lett. – volume: 279 start-page: 3291 year: 2012 end-page: 3297 article-title: Phylogeny versus body size as determinants of food web structure publication-title: Proc. R. Soc. B Biol. Sci. – volume: 105 start-page: 4191 year: 2005 end-page: 4196 article-title: Size, foraging, and food web structure publication-title: Proc. Natl Acad. Sci. USA – volume: 279 start-page: 1093 year: 2012 end-page: 1099 article-title: Cretaceous origin and repeated tertiary diversification of the redefined butterflies publication-title: Proc. R. Soc. B Biol. Sci. – volume: 25 start-page: 1658 year: 2012b end-page: 1666 article-title: High host‐plant nitrogen content: a prerequisite for the evolution of ant–caterpillar mutualism? publication-title: J. Evol. Biol. – volume: 101 start-page: 98 year: 2008 end-page: 101 article-title: Hierarchical structure and the prediction of missing links in networks publication-title: Nature – volume: 14 start-page: 1043 year: 2011 end-page: 1051 article-title: Combining α ‐ and β ‐diversity models to fill gaps in our knowledge of biodiversity publication-title: Ecol. Lett. – volume: 109 start-page: 4521 year: 2012 end-page: 4526 article-title: Bitrophic interactions shape biodiversity in space publication-title: Proc. Natl Acad. Sci. USA – volume: 32 start-page: 369 year: 2009 end-page: 373 article-title: BIOMOD – a platform for ensemble forecasting of species distributions publication-title: Ecography – volume: 16 start-page: 94 year: 2013 end-page: 105 article-title: A road map for integrating eco‐evolutionary processes into biodiversity models publication-title: Ecol. Lett. – volume: 15 start-page: 584 year: 2012 end-page: 593 article-title: Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances publication-title: Ecol. Lett. – volume: 168 start-page: E1 year: 2006 end-page: E14 article-title: Phylogenetic analysis of trophic associations publication-title: Am. Nat. – ident: e_1_2_8_25_1 doi: 10.1111/j.1461-0248.2011.01675.x – ident: e_1_2_8_46_1 doi: 10.1111/j.1469-185X.2012.00235.x – ident: e_1_2_8_17_1 doi: 10.1073/pnas.1107004109 – ident: e_1_2_8_18_1 doi: 10.1111/j.1365-2699.2011.02663.x – ident: e_1_2_8_22_1 doi: 10.1111/j.1461-0248.2011.01588.x – ident: e_1_2_8_15_1 doi: 10.1111/1365-2435.12058 – ident: e_1_2_8_29_1 doi: 10.1890/10-0173.1 – ident: e_1_2_8_27_1 doi: 10.1098/rspb.2012.0327 – ident: e_1_2_8_32_1 doi: 10.1111/j.1600-0587.2010.06386.x – ident: e_1_2_8_3_1 doi: 10.1111/ele.12016 – ident: e_1_2_8_8_1 doi: 10.1086/343873 – ident: e_1_2_8_31_1 doi: 10.1111/j.1365-2486.2010.02177.x – ident: e_1_2_8_40_1 doi: 10.1111/j.1600-0587.2008.05742.x – ident: e_1_2_8_19_1 doi: 10.1111/j.1461-0248.2012.01852.x – ident: e_1_2_8_33_1 doi: 10.1111/j.1600-0587.2011.07047.x – ident: e_1_2_8_36_1 doi: 10.1073/pnas.0710672105 – ident: e_1_2_8_39_1 doi: 10.1111/j.1466-8238.2010.00607.x – ident: e_1_2_8_11_1 doi: 10.1111/j.1461-0248.2005.00792.x – ident: e_1_2_8_20_1 doi: 10.1890/12-1482.1 – ident: e_1_2_8_38_1 doi: 10.1086/653667 – ident: e_1_2_8_43_1 doi: 10.1098/rstb.2010.0037 – ident: e_1_2_8_12_1 doi: 10.1098/rspb.2011.1430 – ident: e_1_2_8_42_1 doi: 10.1046/j.1461-0248.2002.00304.x – ident: e_1_2_8_44_1 doi: 10.1098/rspb.2010.2213 – ident: e_1_2_8_45_1 doi: 10.1890/11-0503.1 – ident: e_1_2_8_24_1 doi: 10.1111/j.1472-4642.2010.00735.x – ident: e_1_2_8_2_1 doi: 10.1111/j.1466-8238.2007.00359.x – ident: e_1_2_8_10_1 doi: 10.1371/journal.pone.0019374 – ident: e_1_2_8_21_1 doi: 10.1111/j.1365-2699.2012.02705.x – ident: e_1_2_8_47_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_8_34_1 doi: 10.1111/j.1420-9101.2012.02555.x – ident: e_1_2_8_4_1 doi: 10.1111/j.1461-0248.2012.01772.x – ident: e_1_2_8_16_1 doi: 10.1086/505157 – ident: e_1_2_8_6_1 doi: 10.1111/j.1472-4642.2011.00792.x – ident: e_1_2_8_13_1 doi: 10.1016/S0304-3800(02)00203-X – ident: e_1_2_8_5_1 doi: 10.1038/nature06830 – ident: e_1_2_8_9_1 doi: 10.1111/j.1600-0587.2012.07191.x – ident: e_1_2_8_23_1 doi: 10.1111/j.1095-8312.2005.00426.x – ident: e_1_2_8_41_1 doi: 10.1111/ele.12104 – ident: e_1_2_8_7_1 doi: 10.1111/j.1558-5646.1985.tb00420.x – ident: e_1_2_8_26_1 doi: 10.1111/j.1469-185X.2012.00224.x – ident: e_1_2_8_37_1 doi: 10.1111/j.1654-1103.2009.01098.x – ident: e_1_2_8_28_1 doi: 10.1126/science.1214833 – ident: e_1_2_8_48_1 doi: 10.2307/3237182 – ident: e_1_2_8_14_1 doi: 10.1017/S1464793105006767 – ident: e_1_2_8_30_1 doi: 10.1126/science.1216980 – ident: e_1_2_8_35_1 doi: 10.1111/ele.12083 |
SSID | ssj0000602407 |
Score | 2.210967 |
Snippet | The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4572 |
SubjectTerms | Accounting Accuracy Biodiversity Biotic interactions Butterflies & moths Climate change Communities Constraint modelling Datasets ecological niche modeling Ecology Environmental gradient Flowers & plants Food Food chains Food webs Herbivores Host plants Larvae Links Original Research Phylogeny plant–herbivore interactions Species trophic network Trophic relationships |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_qFcEXsfXrtJUIok9rbzfZTfIkWrYUwSLiQd-WfGJBdmvv-tD_3plsbvWo9mkfMixJJpn8ZpL5DcAbzdHymsgLi9i1EFFRoKn0BR4VotRGhmgpUfjLWXO6FJ_P6_MccFvlZ5Ubm5gMtR8cxciPECqjv03XgB8ufxVUNYpuV3MJjXuwiyZYqRnsfmrPvn6boiyLhji85IZ1dlEdBRf4eyX49jl0C1zefiP5N3ZNh8_JI3iYUSP7OKp5D3ZCvw_328Q4ffMYlrirbar0wOIweIamkZneM0qjRE-YeWLHzYWtWKp9s0LBK3aRIgrBMzemiaxvWI7M0GJ8AsuT9vvxaZHrJRQOjxheCN0Yr6ywi6gVAUHnY-1K9HG50zwgdrFc1bIUldPRaasaZRY-OqNNiXI1fwqzfujDc2CyiZUXhqM3EYQpETfUEaVEXRlpUb9zeLeZvc5lMnGqafGzG2mQq47mucN5nsPrSfJyJND4h8zBRgFd3kKr7o_C8RdTMy5-utEwfRiuV-i3SFnXqHh9h4xEDCdFo-Qcno06nTpSCS6IIGgOckvbkwCRb2-39Bc_Egk3ziT6Wti3t2ld_HdsXXvccvy-uHuML-FBRYU2UpbjAczWV9fhEOHO2r7Ka_o3hEcB-g priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELyIb9cXEURP1W2StslRZGURFA8u7K3kiYJ0ZXc9-O-dSbvVxQeeeui0tDOZ5JtJ5htCThWHmVcHnhjArokIEhNNqUtgqRCp0oUPBguF7-7z_kDcDrNhc6oSa2Fqfog24YaeEedrdHBtJpefpKHeen4hBV8ky1hZi8f5mHho8yvdHNm7sFoaCdcBRGZyxj3bZZezh-dXo28Q8_tJya8INi5BN-tkrcGO9Ko29gZZ8NUmWelF3un3LTIA3zax3wMNo5GjMEFSXTmKxZQQD1OHHLlNeysaO-BMQHBMn2NewTtq62KR6Ttt8jM4JLfJ4Kb3eN1Pmq4JiYWFhidC5dpJI0w3KIlw0LqQ2RQiXW4V94BgDJdZkQpmVbDKyFzqrgtWK52CXMZ3yFI1qvweoUUemBOag-680CmghyyAlMiYLgxYuUPOZ9orbUMpjp0tXsqaDJmVqOcS9NwhJ63ka02j8YPM4cwAZeNIkxIipFQJ3P2FV7S3wQVwX0NXfvQ2gegFrJsxKdUfMgUguULksuiQ3dqm7YcwwQXSBHVIMWftVgApuOfvVM9PkYobNAkRF3zbWRwXv_5b2bvucbju_1fwgKwybLwRqx4PydJ0_OaPAP5MzXEc5x-45gHA priority: 102 providerName: Wiley-Blackwell |
Title | Combining food web and species distribution models for improved community projections |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.843 https://www.ncbi.nlm.nih.gov/pubmed/24340196 https://www.proquest.com/docview/2301948065 https://www.proquest.com/docview/1477552889 https://www.proquest.com/docview/1712574687 https://pubmed.ncbi.nlm.nih.gov/PMC3856755 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoNBLSN_bpIsKpT05jS3Zkg6ltMEhFBJC6UJuRk8aCN5kdwPZf98Z2V6yJO2hJx8868fMSPpG3vk-gA-a48xrIs8sYtdMREUbTbnPcKkQuTYyREuNwqdn1clE_LgoLzZgUNvsHTh_tLQjPanJ7Org7mb5FQf8l55A9HNwgR8owTdhG28gScfgtAf53XxMPF7UN03U6wgnSzWw0N77MbECCy6ILmZ9iXqAOx_-ffI-rE3r0vEu7PSAkn3rMuAZbIT2OTypExn18gVMcMDbJALB4nTqGc6azLSeUYclFsnME3Fur3nFkizOHA1n7DJtNgTPXNdBsliyftOG8vQlTI7rX0cnWS-lkDlcfXgmdGW8ssIeRq0IIzofS5dj-cud5gFhjeWqlLkonI5OW1Upc-ijM9rkaFfyV7DVTtvwBpisYuGF4ejGIEyOkKKMaCXKwkiLoR_Bp8F7jet5xknu4qrpGJKLhlzeoMtH8H5led1xazxisz8EoBmSo8GyKdeCPgnjJVancVzQxw7ThuntHEsaDHRZKKX_YSMR3klRKTmC111MVw8yJMMI5Fq0VwbEy71-pr38nfi50ZNYhuGzfUx58dd3a-qjmuPx7X_fYg-eFiTPkXoj92FrMbsN7xAkLewYNgtxPobt7_XZ-c9x2moYp3HxBzVbFLQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4sFDASj1NoYjuxc0AIylZb2q4Q6kq9BccPUQklpbsV2j_Fb2QmL1gVeusph4wiezwefzPOfAPwIhfoeU0QUYnYNZJBU6IpcREeFTLJjfKhpELhw1k2nctPx-nxBvzqa2Hot8reJzaO2tWWcuTbCJUx3qZrwHenPyLqGkW3q30LjdYs9v3qJ4Zsi7d7H3F9X3K-OznamUZdV4HIoiMWkcwz43QpyzjkmuCSdSG1CUaCwubC4wlfCp2qRHKbB5uXOtMmdsGa3CQoR10i0OVvSpHFfASbHyazz1-GrE6cEWeY6lluY77trRdvtBTr594FMHvxn8y_sXJz2O3egpsdSmXvW7O6DRu-ugPXJg3D9eouzNGLlE1nCRbq2jF0xcxUjlHZJkbezBEbb9dIizW9dhYoeMZOmgyGd8y2ZSnLFesyQWT892B-JZq8D6OqrvxDYCoL3EkjMHrx0iSIU9KAUjLlRpVoT2N43WuvsB15OfXQ-F60tMu8ID0XqOcxPB8kT1vCjn_IbPULUHRbdlH8MTD8xPAaNxvdoJjK1-cLjJOUSlOudX6JjELMqGSm1RgetGs6DIRLIYmQaAxqbbUHASL7Xn9TnXxrSL9Rkxjb4dheNXbx37kVk52JwOejy-f4DK5Pjw4PioO92f5juMGpyUdTYbkFo-XZuX-CUGtZPu3sm8HXq95SvwE5Az3h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcEG9SCiwSj5NJvLv2rg8IQZuopRBViEi9uet9iErIbptUKH-NX8eMXxAVeuspB48ie3Zm9pvZnW8AXmYCI68JIioQu0YyaCo0xS7CrULGmVE-FNQo_GWW7s3lp6PkaAN-db0wdK2yi4l1oHaVpRr5CKEy5tt0DDgK7bWIw93p-9OziCZI0UlrN06jMZEDv_qJ6dvi3f4urvUrzqeTbzt7UTthILIYlEUks9Q4XchiHDJN0Mm6kNgYs0JhM-Fxty-ETlQsuc2CzQqdajN2wZrMxChHEyMw_G8qyooGsPlxMjv82ld4xinxh6mO8XbMR9568VZLsb4HXgK2l-9n_o2b641vegdut4iVfWhM7C5s-PIe3JjUbNer-zDHiFLUUyZYqCrHMCwzUzpGLZyYhTNHzLztUC1Wz91ZoOA5O6mrGd4x27SoLFesrQqRIzyA-bVo8iEMyqr0j4GpNHAnjcBMxksTI2ZJAkrJhBtVoG0N4U2nvdy2ROY0T-NH3lAw85z0nKOeh_CilzxtyDv-IbPdLUDeuu8i_2Ns-Bf9Y3Q8Ok0xpa8uFpgzKZUkXOvsChmF-FHJVKshPGrWtH8RLoUkcqIhqLXV7gWI-Hv9SXnyvSYAR01inofv9rq2i_9-Wz7ZmQj83br6G5_DTXSl_PP-7OAJ3OI076NuttyGwfL8wj9F1LUsnrXmzeD4uj3qN9qjQhY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+food+web+and+species+distribution+models+for+improved+community+projections&rft.jtitle=Ecology+and+evolution&rft.au=Pellissier%2C+Lo%C3%AFc&rft.au=Rohr%2C+Rudolf+P&rft.au=Ndiribe%2C+Charlotte&rft.au=Pradervand%2C+Jean-Nicolas&rft.date=2013-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=3&rft.issue=13&rft.spage=4572&rft.epage=4583&rft_id=info:doi/10.1002%2Fece3.843&rft_id=info%3Apmid%2F24340196&rft.externalDocID=PMC3856755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon |