Using clones and copper to resolve the genetic architecture of metal tolerance in a marine invader
The global spread of invasive species may be facilitated by adaptation to the practices that humans use to manage those species. For example, marine invertebrates that adapt to metal‐based antifouling biocides on ship hulls may be more likely to be introduced to and establish in metal‐polluted envir...
Saved in:
Published in | Ecology and evolution Vol. 2; no. 6; pp. 1319 - 1329 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2012
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The global spread of invasive species may be facilitated by adaptation to the practices that humans use to manage those species. For example, marine invertebrates that adapt to metal‐based antifouling biocides on ship hulls may be more likely to be introduced to and establish in metal‐polluted environments. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. We cloned colonies of this organism to independently test multiple environments in a genotype by environment design, and then created a genetic variance–covariance matrix. Genotypes were exposed to a gradient of copper concentrations and growth measured during exposure and after a recovery period. There was a significant genotype × environment interaction in growth during exposure and recovery. We found clonal variation in tolerance and ability to recover from exposure to copper, with growth during exposure apparently trading off against growth after exposure. A weak genetic correlation between growth during and after exposure further indicated that they are separate traits. Overall, the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments.
The global spread of invasive species may be facilitated by adaptation to the metal‐based antifouling biocides on ship hulls humans use to manage those species. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. Overall the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments. |
---|---|
AbstractList | The global spread of invasive species may be facilitated by adaptation to the practices that humans use to manage those species. For example, marine invertebrates that adapt to metal-based antifouling biocides on ship hulls may be more likely to be introduced to and establish in metal-polluted environments. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. We cloned colonies of this organism to independently test multiple environments in a genotype by environment design, and then created a genetic variance-covariance matrix. Genotypes were exposed to a gradient of copper concentrations and growth measured during exposure and after a recovery period. There was a significant genotype environment interaction in growth during exposure and recovery. We found clonal variation in tolerance and ability to recover from exposure to copper, with growth during exposure apparently trading off against growth after exposure. A weak genetic correlation between growth during and after exposure further indicated that they are separate traits. Overall, the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments. The global spread of invasive species may be facilitated by adaptation to the metal-based antifouling biocides on ship hulls humans use to manage those species. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. Overall the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments. The global spread of invasive species may be facilitated by adaptation to the practices that humans use to manage those species. For example, marine invertebrates that adapt to metal‐based antifouling biocides on ship hulls may be more likely to be introduced to and establish in metal‐polluted environments. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. We cloned colonies of this organism to independently test multiple environments in a genotype by environment design, and then created a genetic variance–covariance matrix. Genotypes were exposed to a gradient of copper concentrations and growth measured during exposure and after a recovery period. There was a significant genotype × environment interaction in growth during exposure and recovery. We found clonal variation in tolerance and ability to recover from exposure to copper, with growth during exposure apparently trading off against growth after exposure. A weak genetic correlation between growth during and after exposure further indicated that they are separate traits. Overall, the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments. The global spread of invasive species may be facilitated by adaptation to the practices that humans use to manage those species. For example, marine invertebrates that adapt to metal-based antifouling biocides on ship hulls may be more likely to be introduced to and establish in metal-polluted environments. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. We cloned colonies of this organism to independently test multiple environments in a genotype by environment design, and then created a genetic variance–covariance matrix. Genotypes were exposed to a gradient of copper concentrations and growth measured during exposure and after a recovery period. There was a significant genotype × environment interaction in growth during exposure and recovery. We found clonal variation in tolerance and ability to recover from exposure to copper, with growth during exposure apparently trading off against growth after exposure. A weak genetic correlation between growth during and after exposure further indicated that they are separate traits. Overall, the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments. The global spread of invasive species may be facilitated by adaptation to the practices that humans use to manage those species. For example, marine invertebrates that adapt to metal‐based antifouling biocides on ship hulls may be more likely to be introduced to and establish in metal‐polluted environments. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. We cloned colonies of this organism to independently test multiple environments in a genotype by environment design, and then created a genetic variance–covariance matrix. Genotypes were exposed to a gradient of copper concentrations and growth measured during exposure and after a recovery period. There was a significant genotype × environment interaction in growth during exposure and recovery. We found clonal variation in tolerance and ability to recover from exposure to copper, with growth during exposure apparently trading off against growth after exposure. A weak genetic correlation between growth during and after exposure further indicated that they are separate traits. Overall, the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments. The global spread of invasive species may be facilitated by adaptation to the metal‐based antifouling biocides on ship hulls humans use to manage those species. We tested this idea by studying clonal variation in tolerance to, and ability to recover from, exposure to copper in a widespread invasive marine bryozoan, Watersipora subtorquata. Overall the genetic variation within this population indicates that there is considerable potential for adaptation to copper, but this comes at a cost to growth in unpolluted environments. |
Author | Brooks, Robert Johnston, Emma L. McKenzie, Louise A. |
Author_xml | – sequence: 1 givenname: Louise A. surname: McKenzie fullname: McKenzie, Louise A. – sequence: 2 givenname: Emma L. surname: Johnston fullname: Johnston, Emma L. – sequence: 3 givenname: Robert surname: Brooks fullname: Brooks, Robert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22833804$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rVDEQhoNUbK0Ff4EEvPHm1MnHSbI3gizrBxS8sdchJztnNyWbrMk5W_rvzdJaqyDmJgN5eDIz70tyknJCQl4zuGQA_D16FJdcsmfkjIPsO617c_KkPiUXtd5AOwq4BP2CnHJuhDAgz8hwXUPaUB-bs1KX1tTn_R4LnTItWHM8IJ22SDeYcAqeuuK3YUI_zQVpHukOJxcbHLG45JGGRB3duRLSsT64NZZX5PnoYsWLh_ucXH9afV9-6a6-ff66_HjVeakZ66TvEUAzrmExOlw47keulEBw0gizZr7vmUCD3gyGsQGkgUGZUQ16odjgxTn5cO_dz8MO1x7TVFy0-xJaP3c2u2D_fElhazf5YIUE3rbVBO8eBCX_mLFOdheqxxhdwjxXy1pzvTJK6P-jINosqpeioW__Qm_yXFLbhBWgdPtZGfFb6EuuteD42DcDe4zZHmO2LeaGvnk65yP4K9QGdPfAbYh490-RXS1X4ij8CRs4sb8 |
CitedBy_id | crossref_primary_10_1007_s12549_021_00490_3 crossref_primary_10_1002_fee_1820 crossref_primary_10_1016_j_oceano_2018_10_002 crossref_primary_10_1007_s10530_014_0825_8 crossref_primary_10_1111_jpy_12820 crossref_primary_10_1007_s00343_017_6093_6 |
Cites_doi | 10.1034/j.1600-0706.2002.970201.x 10.1016/S0006-3207(01)00098-2 10.1007/s12665-009-0385-x 10.1111/j.1420-9101.2007.01452.x 10.1071/MF9580362 10.1111/j.1472-4642.2009.00587.x 10.1201/b10519-3 10.1016/j.envres.2010.12.007 10.1890/03-5399 10.1016/0169-5347(87)90135-2 10.1016/0166-445X(92)90026-J 10.1016/j.tree.2005.10.012 10.1007/s00267-005-0030-8 10.1086/279725 10.2307/1313420 10.3354/meps311103 10.1007/s002449900324 10.1111/j.1558-5646.1999.tb05376.x 10.1016/S0025-326X(03)00044-4 10.1016/j.envpol.2009.02.017 10.1016/S0025-326X(99)00090-9 10.1016/j.aquatox.2005.08.015 10.1111/j.1472-4642.2011.00798.x 10.3354/meps279073 10.1111/j.1558-5646.2009.00802.x 10.2307/5322 10.1534/genetics.105.054627 10.1111/j.1420-9101.2007.01491.x 10.1016/j.aquatox.2010.03.014 10.1071/MF98032 10.3354/meps285089 10.1016/S0166-445X(02)00081-4 10.1007/s10530-010-9799-3 10.1007/s10530-004-0952-8 10.1007/s00227-005-0156-5 10.1111/j.1420-9101.2005.00997.x 10.1016/j.chemosphere.2006.12.024 10.1146/annurev.ecolsys.32.081501.114037 10.1111/j.1365-2664.2009.01679.x 10.1080/08927010903063065 10.1111/j.1365-2435.2007.01283.x 10.1111/j.1752-4571.2008.00039.x 10.1016/S0048-9697(99)00007-8 10.1890/06-2079.1 10.1016/0273-1223(96)00205-3 10.1007/s00227-005-0196-x 10.1111/j.1365-2745.2010.01672.x 10.1002/jez.a.10244 10.1111/j.1472-4642.2007.00430.x 10.1890/1051-0761(2006)016[0645:CRPEBI]2.0.CO;2 10.1016/S0025-326X(96)00172-5 10.1016/S0025-326X(98)00188-X 10.2307/1541580 10.1016/j.envpol.2009.04.007 10.1016/j.jembe.2009.11.005 10.1111/j.1366-9516.2006.00265.x |
ContentType | Journal Article |
Copyright | 2011 The Authors. published by Blackwell Publishing Ltd. 2012. This work is published under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2012 The Authors. Published by Blackwell Publishing Ltd. 2012 |
Copyright_xml | – notice: 2011 The Authors. published by Blackwell Publishing Ltd. – notice: 2012. This work is published under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2012 The Authors. Published by Blackwell Publishing Ltd. 2012 |
DBID | 24P WIN NPM AAYXX CITATION 3V. 7SN 7SS 7ST 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 7TV 7U6 F1W H95 H99 L.F L.G 5PM |
DOI | 10.1002/ece3.241 |
DatabaseName | Wiley Open Access Journals Wiley Online Library Free Content PubMed CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Databases Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Pollution Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Pollution Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Agricultural Science Database PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2045-7758 |
EndPage | 1329 |
ExternalDocumentID | 10_1002_ece3_241 22833804 ECE3241 |
Genre | article Journal Article |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X2 8-0 8-1 8FE 8FH AAFWJ AAHBH AAHHS AAZKR ACCFJ ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AENEX AEQDE AFKRA AFPKN AFRAH AIAGR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ATCPS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI CCPQU D-8 D-9 DIK EBS ECGQY EJD GODZA GROUPED_DOAJ GX1 HCIFZ HYE IAO IEP KQ8 LK8 M0K M48 M7P M~E OK1 PIMPY PROAC RNS ROL RPM SUPJJ WIN ITC NPM AAYXX CITATION 3V. 7SN 7SS 7ST 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 7TV 7U6 F1W H95 H99 L.F L.G 5PM |
ID | FETCH-LOGICAL-c4711-4c5e00712709fae9a2cf2663e0a4838d1c5513e8ec8b811b0480b68f6b7961bc3 |
IEDL.DBID | RPM |
ISSN | 2045-7758 |
IngestDate | Tue Sep 17 21:26:06 EDT 2024 Thu Oct 24 23:11:36 EDT 2024 Fri Oct 25 23:06:53 EDT 2024 Thu Oct 10 20:07:04 EDT 2024 Fri Dec 06 05:40:52 EST 2024 Wed Oct 16 00:52:16 EDT 2024 Sat Aug 24 01:01:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | factor analytical modeling genetic variance and covariance trade-off Bryozoan genetic correlation modular organism contamination |
Language | English |
License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4711-4c5e00712709fae9a2cf2663e0a4838d1c5513e8ec8b811b0480b68f6b7961bc3 |
Notes | Supported by the Australian Government and Australian Research Council through research fellowships, postgraduate awards, and grants. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402204/ |
PMID | 22833804 |
PQID | 3067220683 |
PQPubID | 2034651 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3402204 proquest_miscellaneous_1712568637 proquest_miscellaneous_1030076543 proquest_journals_3067220683 crossref_primary_10_1002_ece3_241 pubmed_primary_22833804 wiley_primary_10_1002_ece3_241_ECE3241 |
PublicationCentury | 2000 |
PublicationDate | June 2012 2012-Jun 2012-06-00 20120601 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: June 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Bognor Regis |
PublicationTitle | Ecology and evolution |
PublicationTitleAlternate | Ecol Evol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | 2007; 39 2010; 99 1998; 48 2010; 98 1987; 2 2001; 102 2009; 46 2002; 97 2006; 76 2006; 173 2009; 157 2011; 13 2010; 382 2011; 17 2008; 1 2011; 111 2010; 61 1996; 33 2006; 21 2006b; 311 2003; 46 1984 1958; 9 2008; 21 1999; 53 1982 1999; 50 2007; 21 2007; 67 2009; 15 2007; 17 2009; 25 2009; 63 2006; 12 2011 2010 2006; 16 1989; 176 2008; 14 2008 1996 2006; 19 1999; 227 2006a; 148 2004; 279 2005; 285 2004; 14 1919; 43 1999; 38 2008; 49 2005; 7 2006; 149 2003; 62 1992; 22 2003; 297A 1998; 34 1992; 61 1998; 36 2001; 32 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Falconer D. S. (e_1_2_6_15_1) 1996 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 Becker W. A. (e_1_2_6_6_1) 1984 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Hood G. M. (e_1_2_6_25_1) 2008 Zhang Q. (e_1_2_6_63_1) 2008; 49 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Shepherd S. A. (e_1_2_6_53_1) 1982 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 297A start-page: 180 year: 2003 end-page: 188 article-title: Phenotypic plasticity of reproductive effort in a colonial ascidian, publication-title: J. Exp. Zool. – volume: 25 start-page: 633 year: 2009 end-page: 644 article-title: Mini‐review: the influence of antifouling practices on marine invasions publication-title: Biofouling – volume: 279 start-page: 73 year: 2004 end-page: 80 article-title: Variable effects of larval size on post‐metamorphic performance in the field publication-title: Mar. Ecol.-Prog. Ser. – volume: 21 start-page: 183 year: 2008 end-page: 193 article-title: Effect of metal stress on life history divergence and quantitative genetic architecture in a wolf spider publication-title: J. Evol. Biol. – volume: 67 start-page: 2105 year: 2007 end-page: 2114 article-title: Micro‐evolution due to pollution: possible consequences for ecosystem responses to toxic stress publication-title: Chemosphere – volume: 43 start-page: 468 year: 1919 end-page: 473 article-title: The English sparrow has arrived in death valley: an experiment in nature publication-title: Am. Nat. – volume: 111 start-page: 926 year: 2011 end-page: 932 article-title: Heritable pollution tolerance in a marine invader publication-title: Environ. Res. – volume: 13 start-page: 165 year: 2011 end-page: 176 article-title: Aquatic pollution increases the relative success of invasive species publication-title: Biol. Invasions – volume: 98 start-page: 800 year: 2010 end-page: 813 article-title: Evidence for a combination of pre‐adapted traits and rapid adaptive change in the invasive plant publication-title: J. Ecol. – volume: 285 start-page: 89 year: 2005 end-page: 96 article-title: Responses of polychaete life stages to copper stress publication-title: Mar. Ecol.-Prog. Ser. – volume: 2 start-page: 354 year: 1987 end-page: 359 article-title: Heavy metal tolerance in plants: a model evolutionary system publication-title: Trends Ecol. Evol. – volume: 76 start-page: 160 year: 2006 end-page: 202 article-title: Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers publication-title: Aquat. Toxicol. – volume: 173 start-page: 1135 year: 2006 end-page: 1144 article-title: Determining the effective dimensionality of the genetic variance‐covariance matrix publication-title: Genetics – volume: 14 start-page: 1724 year: 2004 end-page: 1736 article-title: Positive interactions between nonindigenous species facilitate transport by human vectors publication-title: Ecol. Appl. – volume: 38 start-page: 908 year: 1999 end-page: 920 article-title: Sources and Potential effects of copper and zinc concentrations in the estuarine waters of Essex and Suffolk, United Kingdom publication-title: Mar. Pollut. Bull. – volume: 19 start-page: 114 year: 2006 end-page: 122 article-title: A comparison of methods to estimate cross‐environment genetic correlations publication-title: J. Evol. Biol. – volume: 15 start-page: 807 year: 2009 end-page: 827 article-title: Links between estuarine condition and spatial distributions of marine invaders publication-title: Divers. Distrib. – year: 1982 – volume: 99 start-page: 10 year: 2010 end-page: 16 article-title: Genetic variability in tolerance to copper contamination in a herbivorous marine invertebrate publication-title: Aquat. Toxicol. – volume: 46 start-page: 770 year: 2009 end-page: 781 article-title: Contemporary ecological threats from historical pollution sources: impacts of large‐scale resuspension of contaminated sediments on sessile invertebrate recruitment publication-title: J. Appl. Ecol. – year: 2008 – volume: 61 start-page: 291 year: 1992 end-page: 306 article-title: Genotype‐environment interactions and relative clonal fitness in a marine bryozoan publication-title: J. Anim. Ecol. – volume: 63 start-page: 3147 year: 2009 end-page: 3157 article-title: The evolvability of growth form in a clonal seaweed publication-title: Evolution – volume: 176 start-page: 135 year: 1989 end-page: 141 article-title: Rapid evolution of metal resistence in a benthic oligochaete inhabiting a metal‐polluted site publication-title: Biol. Bull. – volume: 17 start-page: 2290 year: 2007 end-page: 2297 article-title: Genetic mechanisms of pollution resistance publication-title: Ecol. Appl. – volume: 382 start-page: 82 year: 2010 end-page: 87 article-title: Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae and publication-title: J. Exp. Mar. Biol. Ecol. – volume: 16 start-page: 645 year: 2006 end-page: 655 article-title: Community response patterns: evaluating benthic invertebrate composition in metal‐polluted streams publication-title: Ecol. Appl. – volume: 33 start-page: 1 year: 1996 end-page: 15 article-title: Transient pollution events: acute risks to the aquatic environment publication-title: Water Sci. Technol. – volume: 34 start-page: 313 year: 1998 end-page: 322 article-title: The extent of benthic impacts of CCA‐treated wood structures in Atlantic Coast estuaries publication-title: Arch. Environ. Contam. Toxicol. – volume: 39 start-page: 423 year: 2007 end-page: 441 article-title: Managing the use of copper‐based antifouling paints publication-title: Environ. Manage. – volume: 21 start-page: 394 year: 2007 end-page: 407 article-title: Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments publication-title: Funct. Ecol. – volume: 61 start-page: 703 year: 2010 end-page: 721 article-title: Nitrate and heavy metal pollution resulting from agricultural activity: a case study from Eskipazar (Karabuk, Turkey) publication-title: Environ. Earth Sci. – volume: 33 start-page: 226 year: 1996 end-page: 238 article-title: ‘Oyster watch’: monitoring trace metal and organochlorine concentrations in Sydney's coastal waters publication-title: Mar. Pollut. Bull. – volume: 7 start-page: 589 year: 2005 end-page: 606 article-title: Starting the invasion pathway: the interaction between source populations and human transport vectors publication-title: Biol Invasions – volume: 46 start-page: 763 year: 2003 end-page: 779 article-title: Measurement of copper release rates from antifouling paint under laboratory and conditions: implications for loading estimation to marine water bodies publication-title: Mar. Pollut. Bull. – year: 1996 – volume: 149 start-page: 285 year: 2006 end-page: 295 article-title: Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, , , and publication-title: Mar. Biol. – start-page: 25 year: 2011 end-page: 46 – volume: 97 start-page: 153 year: 2002 end-page: 166 article-title: Characterizing ecosystem‐level consequences of biological invasions: the role of ecosystem engineers publication-title: Oikos – year: 2010 – volume: 22 start-page: 81 year: 1992 end-page: 114 article-title: Metallothioneins in metal regulation and toxicity in aquatic animals publication-title: Aquat. Toxicol. – year: 1984 – volume: 50 start-page: 503 year: 1999 end-page: 513 article-title: Heavy metals in waters and sediments of Port Phillip Bay, Australia publication-title: Mar. Freshwater Res. – volume: 62 start-page: 135 year: 2003 end-page: 153 article-title: Insights into the mechanisms of copper tolerance of a population of black‐banded rainbowfish ( ) (Richardson) exposed to mine leachate, using Cu publication-title: Aquat. Toxicol. – volume: 49 start-page: 385 year: 2008 end-page: 391 article-title: Competitive interaction between the invasive and native in lead contaminated soil publication-title: Bot. Stud. – volume: 9 start-page: 362 year: 1958 end-page: 371 article-title: The settling and some experimental reactions of a bryozoan larva, (Busk) publication-title: Mar. Freshwater Res. – volume: 21 start-page: 492 year: 2008 end-page: 501 article-title: Rapid evolution towards heavy metal resistance by mountain birch around two subarctic copper‐nickel smelters publication-title: J. Evol. Biol. – volume: 48 start-page: 607 year: 1998 end-page: 615 article-title: Quantifying threats to imperiled species in the United States publication-title: BioScience – volume: 12 start-page: 443 year: 2006 end-page: 455 article-title: Biotic indirect effects: a neglected concept in invasion biology publication-title: Divers. Distrib. – volume: 1 start-page: 427 year: 2008 end-page: 448 article-title: Evolutionary origins of invasive populations publication-title: Evol. Appl. – volume: 53 start-page: 826 year: 1999 end-page: 836 article-title: Genetic basis of a between‐environment trade‐off involving resistance to cadmium in publication-title: Evolution – volume: 32 start-page: 305 year: 2001 end-page: 332 article-title: The population biology of invasive species publication-title: Annu. Rev. Ecol. Syst. – volume: 148 start-page: 997 year: 2006a end-page: 1010 article-title: Differential tolerance to metals among populations of the introduced bryozoan publication-title: Mar. Biol. – volume: 311 start-page: 103 year: 2006b end-page: 114 article-title: Differential resistance to extended copper exposure in four introduced bryozoans publication-title: Mar. Ecol.-Prog. Ser. – volume: 21 start-page: 130 year: 2006 end-page: 135 article-title: A general eco‐evolutionary framework for understanding bioinvasions publication-title: Trends Ecol. Evol. – volume: 14 start-page: 329 year: 2008 end-page: 342 article-title: Pollution reduces native diversity and increases invader dominance in marine hard‐substrate communities publication-title: Divers. Distrib. – volume: 157 start-page: 1745 year: 2009 end-page: 1752 article-title: Contaminants reduce the richness and evenness of marine communities: a review and meta‐analysis publication-title: Environ. Pollut. – volume: 36 start-page: 298 year: 1998 end-page: 304 article-title: Dissolved metal concentrations in the Torres Strait and Gulf of Papua publication-title: Mar. Pollut. Bull. – volume: 227 start-page: 123 year: 1999 end-page: 138 article-title: Source of heavy metals in sediments of the Port Jackson estuary, Australia publication-title: Sci. Total Environ. – volume: 17 start-page: 1161 year: 2011 end-page: 1172 article-title: Recreational boating: a large unregulated vector transporting marine invasive species publication-title: Divers. Distrib. – volume: 157 start-page: 2853 year: 2009 end-page: 2864 article-title: Comparing differential tolerance of native and non‐indigenous marine species to metal pollution using novel assay techniques publication-title: Environ. Pollut. – volume: 102 start-page: 143 year: 2001 end-page: 153 article-title: Biological invasions of estuaries without international shipping: the importance of intraregional transport publication-title: Biol. Conserv. – volume-title: Poptools version 3.0.3. year: 2008 ident: e_1_2_6_25_1 contributor: fullname: Hood G. M. – ident: e_1_2_6_9_1 doi: 10.1034/j.1600-0706.2002.970201.x – ident: e_1_2_6_57_1 doi: 10.1016/S0006-3207(01)00098-2 – ident: e_1_2_6_29_1 doi: 10.1007/s12665-009-0385-x – ident: e_1_2_6_22_1 doi: 10.1111/j.1420-9101.2007.01452.x – ident: e_1_2_6_61_1 doi: 10.1071/MF9580362 – ident: e_1_2_6_11_1 doi: 10.1111/j.1472-4642.2009.00587.x – ident: e_1_2_6_27_1 doi: 10.1201/b10519-3 – ident: e_1_2_6_39_1 doi: 10.1016/j.envres.2010.12.007 – ident: e_1_2_6_17_1 doi: 10.1890/03-5399 – ident: e_1_2_6_35_1 doi: 10.1016/0169-5347(87)90135-2 – volume-title: Manual of quantitative genetics year: 1984 ident: e_1_2_6_6_1 contributor: fullname: Becker W. A. – ident: e_1_2_6_50_1 doi: 10.1016/0166-445X(92)90026-J – ident: e_1_2_6_14_1 doi: 10.1016/j.tree.2005.10.012 – ident: e_1_2_6_55_1 doi: 10.1007/s00267-005-0030-8 – ident: e_1_2_6_21_1 doi: 10.1086/279725 – ident: e_1_2_6_60_1 doi: 10.2307/1313420 – ident: e_1_2_6_45_1 doi: 10.3354/meps311103 – ident: e_1_2_6_58_1 doi: 10.1007/s002449900324 – ident: e_1_2_6_54_1 doi: 10.1111/j.1558-5646.1999.tb05376.x – ident: e_1_2_6_56_1 doi: 10.1016/S0025-326X(03)00044-4 – ident: e_1_2_6_28_1 doi: 10.1016/j.envpol.2009.02.017 – ident: e_1_2_6_37_1 doi: 10.1016/S0025-326X(99)00090-9 – ident: e_1_2_6_2_1 doi: 10.1016/j.aquatox.2005.08.015 – ident: e_1_2_6_8_1 doi: 10.1111/j.1472-4642.2011.00798.x – ident: e_1_2_6_36_1 doi: 10.3354/meps279073 – ident: e_1_2_6_41_1 doi: 10.1111/j.1558-5646.2009.00802.x – ident: e_1_2_6_26_1 doi: 10.2307/5322 – ident: e_1_2_6_24_1 doi: 10.1534/genetics.105.054627 – ident: e_1_2_6_12_1 doi: 10.1111/j.1420-9101.2007.01491.x – ident: e_1_2_6_43_1 doi: 10.1016/j.aquatox.2010.03.014 – ident: e_1_2_6_13_1 doi: 10.1071/MF98032 – ident: e_1_2_6_62_1 doi: 10.3354/meps285089 – ident: e_1_2_6_18_1 doi: 10.1016/S0166-445X(02)00081-4 – ident: e_1_2_6_10_1 doi: 10.1007/s10530-010-9799-3 – volume: 49 start-page: 385 year: 2008 ident: e_1_2_6_63_1 article-title: Competitive interaction between the invasive Solidago canadensis and native Kummerowia striata in lead contaminated soil publication-title: Bot. Stud. contributor: fullname: Zhang Q. – ident: e_1_2_6_16_1 doi: 10.1007/s10530-004-0952-8 – ident: e_1_2_6_44_1 doi: 10.1007/s00227-005-0156-5 – volume-title: Marine invertebrates of southern Australia Part 1 year: 1982 ident: e_1_2_6_53_1 contributor: fullname: Shepherd S. A. – ident: e_1_2_6_4_1 doi: 10.1111/j.1420-9101.2005.00997.x – ident: e_1_2_6_40_1 doi: 10.1016/j.chemosphere.2006.12.024 – ident: e_1_2_6_51_1 doi: 10.1146/annurev.ecolsys.32.081501.114037 – ident: e_1_2_6_31_1 doi: 10.1111/j.1365-2664.2009.01679.x – ident: e_1_2_6_48_1 doi: 10.1080/08927010903063065 – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-2435.2007.01283.x – ident: e_1_2_6_32_1 doi: 10.1111/j.1752-4571.2008.00039.x – ident: e_1_2_6_7_1 doi: 10.1016/S0048-9697(99)00007-8 – ident: e_1_2_6_19_1 doi: 10.1890/06-2079.1 – ident: e_1_2_6_5_1 doi: 10.1016/0273-1223(96)00205-3 – ident: e_1_2_6_34_1 doi: 10.1007/s00227-005-0196-x – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2745.2010.01672.x – volume-title: Introduction to quantitative genetics year: 1996 ident: e_1_2_6_15_1 contributor: fullname: Falconer D. S. – ident: e_1_2_6_42_1 doi: 10.1002/jez.a.10244 – ident: e_1_2_6_46_1 doi: 10.1111/j.1472-4642.2007.00430.x – ident: e_1_2_6_49_1 doi: 10.1890/1051-0761(2006)016[0645:CRPEBI]2.0.CO;2 – ident: e_1_2_6_38_1 – ident: e_1_2_6_52_1 doi: 10.1016/S0025-326X(96)00172-5 – ident: e_1_2_6_3_1 doi: 10.1016/S0025-326X(98)00188-X – ident: e_1_2_6_30_1 doi: 10.2307/1541580 – ident: e_1_2_6_47_1 doi: 10.1016/j.envpol.2009.04.007 – ident: e_1_2_6_33_1 doi: 10.1016/j.jembe.2009.11.005 – ident: e_1_2_6_59_1 doi: 10.1111/j.1366-9516.2006.00265.x |
SSID | ssj0000602407 |
Score | 2.0161436 |
Snippet | The global spread of invasive species may be facilitated by adaptation to the practices that humans use to manage those species. For example, marine... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1319 |
SubjectTerms | Adaptation Antifouling substances Biocides Bryozoan contamination Copper Covariance matrix Ecosystem biology Evolution Exposure factor analytical modeling genetic correlation Genetic diversity Genetic variance genetic variance and covariance Genotype-environment interactions Genotypes Heavy metals Introduced species Invasive species Invertebrates Marine Marine invertebrates modular organism Nonnative species Original Research Polluted environments Pollution Population genetics Quantitative genetics Recovery Sediments Ship hulls trade‐off Trends Watersipora subtorquata |
SummonAdditionalLinks | – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBfblcFexr57a1c8GHvL6o_EcZ5GW1LKYGWMFfoWbEdhhWty610L--8rJblbj9K-BewEW3Ksny3pJ4DPMoSG3WWJpsWRpEpi4gMWSYNaBZNFaTwnCv84tSdn6ffz7Hy8cFuMYZWrPbHfqOsu8h35PkNbraV15tv8b8JVo9i7OpbQeApbWhnnJrB1WJ7-_LW-ZZGWObzyFeus1PsY0XzVqdq0Q_fA5f0YybvYtTc-xy_hxYgaxcGg5lfwBNvX8KzsGaf_vYHQO_5FnDHxvvBtLWI3n-OVWHaCjtPd7AYFAT1Bi4VzFsVd74HoGnGJBMGp8wy5zAaKi1Z4cek5MZCebzjY-S2cHZe_j06SsXhCEsne0LkwZsj4QeeyaDwWXseGjLFB6VNnXK0il3ZBh9EFp1Tg3PJgXWNDXlgVonkHk5ZGvQ2isbJGVRdp4enwmNtCB8zI8Lm6Tj0dKafwaSXKaj5wZFQDG7KuWNwViXsKuysZV-Nfsqj-65Q-sW6m9c1OC99id72ouAyazDkD9pE-NM3MOmvyKbwf1LYeCNP7GCfTKeQbCl13YH7tzZb24k_Ps21STkOmN7_0qn9wblV5VBIuVR8en-MOPCe0pYc4s12YLK-u8SMhmmXYG5ftLTx_9tE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEA-yIvhy-HHe7flBhOPe6qVJm6YPIrKsiLA-3YJvJUmnnLDb7q2r6H_vTD-WXfTEt0KSksxMO78hM79h7KdwrqDrskCicQRRKCCwDtKgABk6FXuhLBUKj2719Ti6uYvvNljXbbMV4MO7oR31kxrPJ2fP_14u8IM_bwlEf4MHdSapen1Toj-kxK5RC_Kb_zHxeFHdNFGvI5yMTcdCu7J43S-9AZtvcyZXsWztjK522JcWRfLLRu27bAPKPbY1rBmoX_aZqxMBuJ8QET-3Zc59NZvBnC8qjuF1NXkCjsCPo_FQDSNfvU3gVcGngNLAyROgthvA70tu-dRSoSA-P1Hy81c2vhr-GVwHbTOFwKP_wTjRx0B4QiYiLSykVvoCnbMCYSOjTB56avUCBrxxJgwd1Zo7bQrtklSHzqsD1itx198ZL7TIIczTKLUYTCY6lQ5idIQmzyOLIWafnXaizGYNZ0bWsCPLjMSdobj77KiTcdYpPaPwRUqhjcJXLIfR3ukSw5ZQPT5k1BZNJFQR-8EcPGasjVZJn31r1LbcCNH9KCOiPkvWFLqcQHzb6yPl_d-ad1tFVJaMK3_Vqv_v2bLhYIg4NfzxiQ0esm2EYLJJPjtivcX8EY4R5izcSW3Fr2Cx-tk priority: 102 providerName: Scholars Portal – databaseName: Wiley Open Access Journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA6iCL6Iv51OiSC-1aVJm6aPIhMRFB8UfCtJesXBbMc2Bf9779qtOobiWyFJSfOj910u33eMnQvnCgqXBRIXRxCFAgLrIA0KkKFTsRfKElH4_kHfPkd3L_HL7FYlcWEafYj2wI12Rv2_pg1u3aT3LRoKHtSlJM76GqIaTdkLZPTYnq8ITepdxJYmwXUEkbGZa88K2Zs3XrRGSxBz-abkTwRbm6CbLbY5w478qpnsbbYC5Q5b79e605-7zNXhf-6HJL_PbZlzX41GMObTiqNTXQ0_gCPc47hkiLnIf8YQeFXwN0AgjpWHQMk2gA9KbvmbJXogPn_Qlec99nzTf7q-DWYpFAKPVge9Qx8DoQiZiLSwkFrpCzTJCoSNjDJ56CnBCxjwxpkwdMQwd9oU2iWpDp1X-2y1xF4fMl5okUOYp1Fq0YVMdCodxGj-TJ5HFh3LDjubD2U2apQyskYTWWY03BkOd4d152OczfbKJCOnRUqhjcJXtMW4yil0YUuo3icZJUMTCfFg_6iDnxlro1XSYQfNtLUdIZEfZUTUYcnChLYVSGV7saQcvNZq2yoiMjK2vKin_tdvy_rXfUSn4dF_Kx6zDURfsrl31mWr0_E7nCDCmbrTeil_ATGG9n4 priority: 102 providerName: Wiley-Blackwell |
Title | Using clones and copper to resolve the genetic architecture of metal tolerance in a marine invader |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.241 https://www.ncbi.nlm.nih.gov/pubmed/22833804 https://www.proquest.com/docview/3067220683 https://search.proquest.com/docview/1030076543 https://search.proquest.com/docview/1712568637 https://pubmed.ncbi.nlm.nih.gov/PMC3402204 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-alsFexrqvumuDCmNvTmzLluXHLbiUQUoYK_TNSPKZBRI7tGlh_33v_BFSyvawF2OQsCXdyfc76-53AF8Cays-LvMjUg4_DgP0jcXMrzAKrUxcIA0nCs-v1dVN_OM2uT2AZMiFaYP2nV1O6tV6Ui9_t7GVm7WbDnFi08V8JmPOD42nIxiR-d1z0bvPL9N2cZo0M60Tekz0QDobRFN0KCdktZgEmCyr1H2Ftp1FegEzX0ZL7qPY1gxdvoU3PX4U37pxHsMB1u_gVd5yT_95D7YNARBuxRT8wtSlcM1mg3di2whyrJvVIwqCfILUhrMXxf45gmgqsUYC49R5hVxwA8WyFkasDacI0v0jhz1_gJvL_Nfsyu_LKPiOLA95iC5BRhJRGmSVwcxEriKzLDEwsZa6DB0XeUGNTlsdhpazzK3SlbJppkLr5Ec4rGnUJyAqFZQYllmcGXIjU5VFFhMygbosY0POpQcXw1IWm44to-h4kaOCV76glffgbFjjot8v9wU7LiRSpSU9YtdMms7HF6bG5uG-4IJoQcq5sP_oQ9NMlFYy9eBTJ7bdQAZ5e5A-E-iuAzNtP28hBWwZt3uF8-BrK_q_zq3IZzkh1PD0v1_xGV4TJIu6YLQzONzePeA5wZ6tHcMoihdjOPqeXy9-jtufB3Sdx3rcboAnjQwEeA |
link.rule.ids | 230,314,727,780,784,864,885,2221,11562,21388,24318,27924,27925,33744,33745,43805,46052,46476,50814,50923,53791,53793,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4KXiW86BhgJ8Rbmj8RxnhBMmQpsFUKbtDfLdi7apC4pazeJ_567JC2rJvYWyU5k3118P_t8v2PsgwihpnBZotA4klQKSHyAIqlByaCzKLSnROGjqZmcpN9Ps9PhwG0xXKtcrYndQl21kc7I9wjaKiWM1Z_nvxOqGkXR1aGExn22Rczp2YhtfS2nP3-tT1mEIQ6vfMU6K9QeRNCfVCo3_dAtcHn7juRN7No5n4PHbHtAjfxLr-Yn7B40T9mDsmOc_vOMhS7wz-OMiPe5byoe2_kcLvmy5bidbmfXwBHocTQWylnkN6MHvK35BSAEx84zoDIbwM8b7vmFp8RAfL6my87P2clBebw_SYbiCUlEf4P7wpgB4QeVi6L2UHgVa3TGGoRPrbaVjFTaBSxEG6yUgXLLg7G1CXlhZIj6BRs1OOpXjNdGVCCrIi08bh5zU6gAGTo-W1Wpxy3lmL1fidLNe44M17MhK0fidijuMdtdydgNf8nC_dMpfmLdjPZNQQvfQHu1cFQGTeSUAXtHH5xmZqzR-Zi97NW2HgjR-6BppGOWbyh03YH4tTdbmvOzjmdbp5SGjG9-7FT_37m5cr9EXCp37p7jO_Zwcnx06A6_TX-8Zo8Qean-ztkuGy0vr-ANoptleDuY8F_o4vm5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxDcdA4yEeAv1R-I4TwhGqvFVTYhJe7Ns5yImdUm3dpP477lL0rJqYm-R7ET23cX3s333O8beihBqui5LFBpHkkoBiQ9QJDUoGXQWhfaUKPxjZg6O0q_H2fEQ_7QcwirXa2K3UFdtpDPyCUFbpYSxelIPYRGHn6cfFmcJVZCim9ahnMZttoNeUagR2_lUzg5_bk5chCE-r3zNQCvUBCLo9yqV2z7pGtC8Hi95Fcd2jmj6gN0fECT_2Kv8IbsFzSN2p-zYp_88ZqELAuBxTiT83DcVj-1iAed81XLcWrfzS-AI-jgaDuUv8qs3Cbyt-SkgHMfOc6CSG8BPGu75qackQXy-pMDnJ-xoWv7aP0iGQgpJRN-De8SYAWEJlYui9lB4FWt0zBqET622lYxU5gUsRBuslIHyzIOxtQl5YWSI-ikbNTjq54zXRlQgqyItPG4kc1OoABk6QVtVqcft5Zi9WYvSLXq-DNczIytH4nYo7jHbW8vYDX_M0v3TL35i04y2ThcYvoH2YumoJJrIKRv2hj44zcxYo_Mxe9arbTMQovrRVqRjlm8pdNOBuLa3W5qT3x3ntk4pJRnffNep_r9zc-V-iRhV7t48x9fsLlqv-_5l9u0Fu4cgTPXhZ3tstDq_gJcIdFbh1WDBfwF1F_3m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+clones+and+copper+to+resolve+the+genetic+architecture+of+metal+tolerance+in+a+marine+invader&rft.jtitle=Ecology+and+evolution&rft.au=McKenzie%2C+Louise+A&rft.au=Johnston%2C+Emma+L&rft.au=Brooks%2C+Robert&rft.date=2012-06-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=2&rft.issue=6&rft.spage=1319&rft.epage=1329&rft_id=info:doi/10.1002%2Fece3.241&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon |