De Novo Transcriptome Sequencing in Trigonella foenum‐graecum L. to Identify Genes Involved in the Biosynthesis of Diosgenin
Trigonella foenum‐graecum L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and consistent yield and quality. We studied de novo transcriptome analysis along with the diosgenin pathway in Trigonella foenum‐graecum and ide...
Saved in:
Published in | The plant genome Vol. 6; no. 2; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Crop Science Society of America
01.07.2013
Wiley |
Online Access | Get full text |
Cover
Loading…
Abstract | Trigonella foenum‐graecum L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and consistent yield and quality. We studied de novo transcriptome analysis along with the diosgenin pathway in Trigonella foenum‐graecum and identified the genes responsible for diosgenin biosynthesis. The GMV‐1 variety of Trigonella foenum‐graecum has been used in the present study for transcriptome analysis by sequencing messenger ribonucleic acid (RNA) with a SOLiD 4 Genome Analyzer. Deep sequencing data of the transcriptome was assembled using various assembly tools along with functional annotation of genes, and pathway analysis for diosgenin biosynthesis was deciphered. A total of 42 million high quality reads were obtained. De novo assembly was performed using Velvet at different k‐mer, Oases, and CLC Genomics Workbench, which generated 20,561 transcript contigs. CAP3 was used to reduce the redundancy of contigs obtained through these assemblers. A total of 18,333 transcript contigs were functionally annotated. Kyoto Encyclopedia of Genes and Genomes pathway mapping showed that 6775 transcripts were related to plant biochemical pathways including the diosgenin biosynthesis pathway. The large number of transcripts reported in the current study will serve as a valuable genetic resource for Trigonella foenum‐graecum. Sequence information of the genes that were involved in diosgenin biosynthesis could be used for metabolic engineering of Trigonella foenum‐graecum to increase diosgenin content. |
---|---|
AbstractList | Trigonella foenum‐graecum L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and consistent yield and quality. We studied de novo transcriptome analysis along with the diosgenin pathway in Trigonella foenum‐graecum and identified the genes responsible for diosgenin biosynthesis. The GMV‐1 variety of Trigonella foenum‐graecum has been used in the present study for transcriptome analysis by sequencing messenger ribonucleic acid (RNA) with a SOLiD 4 Genome Analyzer. Deep sequencing data of the transcriptome was assembled using various assembly tools along with functional annotation of genes, and pathway analysis for diosgenin biosynthesis was deciphered. A total of 42 million high quality reads were obtained. De novo assembly was performed using Velvet at different k‐mer, Oases, and CLC Genomics Workbench, which generated 20,561 transcript contigs. CAP3 was used to reduce the redundancy of contigs obtained through these assemblers. A total of 18,333 transcript contigs were functionally annotated. Kyoto Encyclopedia of Genes and Genomes pathway mapping showed that 6775 transcripts were related to plant biochemical pathways including the diosgenin biosynthesis pathway. The large number of transcripts reported in the current study will serve as a valuable genetic resource for Trigonella foenum‐graecum. Sequence information of the genes that were involved in diosgenin biosynthesis could be used for metabolic engineering of Trigonella foenum‐graecum to increase diosgenin content. T rigonella foenum‐graecum L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and consistent yield and quality. We studied de novo transcriptome analysis along with the diosgenin pathway in Trigonella foenum‐graecum and identified the genes responsible for diosgenin biosynthesis. The GMV‐1 variety of Trigonella foenum‐graecum has been used in the present study for transcriptome analysis by sequencing messenger ribonucleic acid (RNA) with a SOLiD 4 Genome Analyzer. Deep sequencing data of the transcriptome was assembled using various assembly tools along with functional annotation of genes, and pathway analysis for diosgenin biosynthesis was deciphered. A total of 42 million high quality reads were obtained. De novo assembly was performed using Velvet at different k ‐mer, Oases, and CLC Genomics Workbench, which generated 20,561 transcript contigs. CAP3 was used to reduce the redundancy of contigs obtained through these assemblers. A total of 18,333 transcript contigs were functionally annotated. Kyoto Encyclopedia of Genes and Genomes pathway mapping showed that 6775 transcripts were related to plant biochemical pathways including the diosgenin biosynthesis pathway. The large number of transcripts reported in the current study will serve as a valuable genetic resource for Trigonella foenum‐graecum . Sequence information of the genes that were involved in diosgenin biosynthesis could be used for metabolic engineering of Trigonella foenum‐graecum to increase diosgenin content. T L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and consistent yield and quality. We studied de novo transcriptome analysis along with the diosgenin pathway in and identified the genes responsible for diosgenin biosynthesis. The GMV-1 variety of has been used in the present study for transcriptome analysis by sequencing messenger ribonucleic acid (RNA) with a SOLiD 4 Genome Analyzer. Deep sequencing data of the transcriptome was assembled using various assembly tools along with functional annotation of genes, and pathway analysis for diosgenin biosynthesis was deciphered. A total of 42 million high quality reads were obtained. De novo assembly was performed using Velvet at different -mer, Oases, and CLC Genomics Workbench, which generated 20,561 transcript contigs. CAP3 was used to reduce the redundancy of contigs obtained through these assemblers. A total of 18,333 transcript contigs were functionally annotated. Kyoto Encyclopedia of Genes and Genomes pathway mapping showed that 6775 transcripts were related to plant biochemical pathways including the diosgenin biosynthesis pathway. The large number of transcripts reported in the current study will serve as a valuable genetic resource for Sequence information of the genes that were involved in diosgenin biosynthesis could be used for metabolic engineering of to increase diosgenin content. |
Author | Srivastava, Navin Tiwari, Tanushree Vaidya, Kanak Chaudhary, Spandan Ghosh, Arpita Katudia, Kalpesh Chikara, Surendra K. Kumar, Vinay |
Author_xml | – sequence: 1 givenname: Kanak surname: Vaidya fullname: Vaidya, Kanak organization: Xcelris Labs Ltd – sequence: 2 givenname: Arpita surname: Ghosh fullname: Ghosh, Arpita organization: Xcelris Labs Ltd – sequence: 3 givenname: Vinay surname: Kumar fullname: Kumar, Vinay organization: Xcelris Labs Ltd – sequence: 4 givenname: Spandan surname: Chaudhary fullname: Chaudhary, Spandan organization: Xcelris Labs Ltd – sequence: 5 givenname: Navin surname: Srivastava fullname: Srivastava, Navin organization: Xcelris Labs Ltd – sequence: 6 givenname: Kalpesh surname: Katudia fullname: Katudia, Kalpesh organization: Xcelris Labs Ltd – sequence: 7 givenname: Tanushree surname: Tiwari fullname: Tiwari, Tanushree organization: Xcelris Labs Ltd – sequence: 8 givenname: Surendra K. surname: Chikara fullname: Chikara, Surendra K. email: Surendra.chikara@xcelrislabs.com organization: Xcelris Labs Ltd |
BookMark | eNqNkUtu2zAQhokgBZqkPUN5ATtDUhKlZR6Oa8BxAtRdEww1VBjIpEPKDrwJeoSesScJHRdF0VVX88L_zQz-U3Lsg0dCvjAYi1qU5-te-6FDH1bIgfEx1GMAzo7ICWsKGAkh-fFf-UdymtITQCmbujghr9dIF2Eb6DJqn0x06yGD6Dd83qA3znfU-TxzXV7a95ragH6z-vXjZxc1ms2Kzsd0CHTWoh-c3dEpekx05reh32K7Fw-PSC9dSDufs-QSDZZe5zqf7Pwn8sHqPuHn3_GMfL-ZLK--juZ309nVxXxkCsnYiJUPBmQlbCWllbwSDcOiwtKUyEspcyd_3ADLj1eW1cC1FoCAD4BlI6QVZ2R24LZBP6l1dCsddypop94bIXZKx8GZHpVlUleVbZvC1EXb8lpDU2BbiCqv4SXLLHlgmRhSimj_8BiovSXqH0sU1GpvSVYuDsoX1-Puf2VqeT_l9_OLxXI6WdzdTvYzqN-Bb0dtnXo |
CitedBy_id | crossref_primary_10_1007_s00425_017_2657_0 crossref_primary_10_3390_genes15060811 crossref_primary_10_1038_srep45295 crossref_primary_10_3390_ijms222010953 crossref_primary_10_1186_s12870_024_05133_1 crossref_primary_10_1002_pca_2887 crossref_primary_10_1007_s00344_020_10178_1 crossref_primary_10_3390_molecules24010140 crossref_primary_10_1016_j_ygeno_2017_10_006 crossref_primary_10_1007_s13258_017_0516_9 crossref_primary_10_1007_s11240_021_02039_w crossref_primary_10_1038_s41598_024_61160_w crossref_primary_10_1016_j_indcrop_2019_02_003 crossref_primary_10_1155_2023_9507166 crossref_primary_10_1007_s00425_020_03458_3 crossref_primary_10_1016_j_scienta_2024_112952 crossref_primary_10_1007_s11295_017_1161_9 crossref_primary_10_1016_j_indcrop_2019_112075 crossref_primary_10_1016_j_jnc_2024_126624 crossref_primary_10_1016_j_gene_2023_147937 crossref_primary_10_1016_j_fitote_2019_04_008 crossref_primary_10_1007_s12298_021_01099_8 crossref_primary_10_3390_nu10050645 crossref_primary_10_1007_s11738_016_2289_1 crossref_primary_10_1016_j_jprot_2019_02_003 crossref_primary_10_1186_s12864_015_1494_4 crossref_primary_10_3390_genes11080893 crossref_primary_10_17660_ActaHortic_2021_1315_45 crossref_primary_10_1016_j_indcrop_2020_112775 crossref_primary_10_1016_j_plgene_2017_09_002 crossref_primary_10_3390_molecules23020454 |
Cites_doi | 10.2135/cropsci2007.09.0519 10.1104/pp.109.144105 10.1186/1471‐2164‐12‐191 10.1016/S0022‐2836(05)80360‐2 10.1093/bioinformatics/btr694 10.1186/1471‐2164‐12‐298 10.1093/bioinformatics/bts094 10.1186/1471‐2164‐11‐400 10.1038/nrg2484 10.1101/gr.9.9.868 10.1093/nar/gkm321 10.1093/jaoac/90.2.358 10.1038/nmeth.1226 10.1016/S1369‐5266(03)00006‐2 10.1007/s001220051056 10.1186/1471‐2164‐11‐180 10.1093/dnares/dsq028 10.1101/gr.074492.107 10.1016/S0271‐5317(02)00457‐8 10.1093/bioinformatics/bti610 10.1186/1471‐2164‐12‐131 |
ContentType | Journal Article |
Copyright | 2013 The Authors. |
Copyright_xml | – notice: 2013 The Authors. |
DBID | 24P WIN AAYXX CITATION DOA |
DOI | 10.3835/plantgenome2012.08.0021 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley-Blackwell Backfiles (Open access) CrossRef Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1940-3372 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_f17a66fd94c84dd28a094ed436726251 10_3835_plantgenome2012_08_0021 TPG2PLANTGENOME2012080021 |
Genre | article |
GrantInformation_xml | – fundername: Xcelris Labs Ltd. |
GroupedDBID | .~0 0R~ 123 18M 1OC 24P 5VS 6KN AAHBH AAHHS ACAWQ ACCFJ ACXQS ADBBV ADKYN ADZMN AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BBNVY BCNDV BENPR BHPHI CCPQU CS3 EBS ECGQY EJD FRP GROUPED_DOAJ H13 HCIFZ IAO IPNFZ KQ8 M7P MV1 M~E NHAZY O9- OK1 PIMPY RIG TR2 WIN AAYXX CITATION ITC |
ID | FETCH-LOGICAL-c4711-15bc0763f677f726391e46e5c5e25777260219010026f1802aa30e0eb0e5937f3 |
IEDL.DBID | DOA |
ISSN | 1940-3372 |
IngestDate | Tue Oct 22 15:16:30 EDT 2024 Thu Sep 26 18:17:16 EDT 2024 Sat Aug 24 01:09:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4711-15bc0763f677f726391e46e5c5e25777260219010026f1802aa30e0eb0e5937f3 |
Notes | All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Kanak Vaidya and Arpita Ghosh contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/f17a66fd94c84dd28a094ed436726251 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f17a66fd94c84dd28a094ed436726251 crossref_primary_10_3835_plantgenome2012_08_0021 wiley_primary_10_3835_plantgenome2012_08_0021_TPG2PLANTGENOME2012080021 |
PublicationCentury | 2000 |
PublicationDate | July 2013 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: July 2013 |
PublicationDecade | 2010 |
PublicationTitle | The plant genome |
PublicationYear | 2013 |
Publisher | Crop Science Society of America Wiley |
Publisher_xml | – name: Crop Science Society of America – name: Wiley |
References | 2010; 11 2008; 18 1998 1985; 81 2007; 90 2005; 64 2005; 21 2011; 10 2008; 5 2009; 151 2011; 12 2011; 18 2007; 35 1999; 9 1997; 91 1990; 215 2009; 10 2003; 6 2006; 28 2002; 22 2004; 13 2008; 48 1999; 98 2012; 28 2010; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Acharya S. (e_1_2_7_3_1) 2006; 28 Das A.B. (e_1_2_7_9_1) 1997; 91 Rosser A. (e_1_2_7_24_1) 1985; 81 e_1_2_7_15_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 Martin E. (e_1_2_7_13_1) 2011; 10 McCormick K.M. (e_1_2_7_16_1) 1998 Raju J. (e_1_2_7_23_1) 2004; 13 e_1_2_7_30_1 e_1_2_7_25_1 Trivedi P.D. (e_1_2_7_27_1) 2007; 90 e_1_2_7_31_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Mehrafarin A. (e_1_2_7_17_1) 2010; 9 Aasim M. (e_1_2_7_2_1) 2010; 9 Mathur V. (e_1_2_7_14_1) 2005; 64 |
References_xml | – volume: 9 start-page: 35 year: 2010 article-title: Bioengineering of important secondary metabolites and metabolic pathways in fenugreek ( L.) publication-title: J. Med. Plants – volume: 12 start-page: 191 year: 2011 article-title: De novo assembly and transcriptome analysis of five major tissues of L. using GS FLX titanium platform of 454 pyrosequencing publication-title: BMC Genomics – volume: 28 start-page: 1 year: 2006 end-page: 9 article-title: Improvement in the nutraceutical properties of fenugreek ( L.) publication-title: Songklanakarin J. Sci. Technol. – volume: 90 start-page: 2 year: 2007 article-title: A validated quantitative thin‐layer chromatographic method for estimation of diosgenin in various plant samples, extract, and market formulation publication-title: J. AOAC Int. – volume: 48 start-page: 841 year: 2008 end-page: 853 article-title: Fenugreek, an alternative crop for semiarid regions of North America publication-title: Crop Sci. – volume: 9 start-page: 868 year: 1999 end-page: 877 article-title: CAP3: A DNA sequence assembly program publication-title: Genome Res. – volume: 13 start-page: 1392 year: 2004 end-page: 1398 article-title: Diosgenin, a steroid saponin of (fenugreek), inhibits azoxymethane‐induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT‐29 human colon cancer cells publication-title: Cancer Epidemiol. – volume: 28 start-page: 889 issue: 6 year: 2012 end-page: 890 article-title: PathVisio‐Validator: A rule‐based validation plugin for graphical pathway notations publication-title: Bioinformatics – volume: 151 start-page: 991 year: 2009 end-page: 1001 article-title: Legume transcription factor genes: What makes legumes so special? publication-title: Plant Physiol. – volume: 6 start-page: 199 year: 2003 end-page: 204 article-title: Legume genomes: More than peas in a pod publication-title: Curr. Opin. Plant Biol. – volume: 9 start-page: 7174 year: 2010 end-page: 7179 article-title: In vitro shoot regeneration of fenugreek ( L.) using different cytokinins publication-title: Afr. J. Biotechnol. – year: 1998 – volume: 11 start-page: 180 issue: 1 year: 2010 article-title: Transcriptome sequencing in an ecologically important tree species: Assembly, annotation, and marker discovery publication-title: BMC Genomics – volume: 21 start-page: 3674 year: 2005 end-page: 3676 article-title: Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research publication-title: Bioinformatics – volume: 18 start-page: 821 year: 2008 end-page: 829 article-title: Velvet: Algorithm for de novo short read assembly using de Bruijn graphs publication-title: Genome Res. – volume: 28 start-page: 1086 year: 2012 end-page: 1092 article-title: Oases: Robust de novo RNA‐seq assembly across the dynamic range of expression levels publication-title: Bioinformatics – volume: 10 start-page: 116 year: 2011 end-page: 125 article-title: New chromosome numbers in the genus L. (Fabaceae) from Turkey publication-title: Afr. J. Biotechnol. – volume: 12 start-page: 131 year: 2011 article-title: Deep sequencing of the transcriptome revealed candidate genes for major metabolic pathways of tea‐specific compounds publication-title: BMC Genomics – volume: 5 start-page: 621 year: 2008 end-page: 628 article-title: Mapping and quantifying mammalian transcriptomes by RNA‐Seq publication-title: Nat. Methods – volume: 12 start-page: 298 year: 2011 article-title: De novo sequence assembly and characterization of the floral transcriptome in cross and self‐fertilizing plants publication-title: BMC Genomics – volume: 10 start-page: 57 year: 2009 end-page: 63 article-title: RNA‐Seq: A revolutionary tool for transcriptomics publication-title: Nat. Rev. Genet. – volume: 91 start-page: 171 issue: 366–367 year: 1997 end-page: 179 article-title: Cytophotometric estimation of nuclear DNA content and karyotype analysis of eight cultivars of publication-title: Cytobios – volume: 11 start-page: 400 year: 2010 article-title: De novo characterization of a whitefly transcriptome and analysis of its gene expression during development publication-title: BMC Genomics – volume: 98 start-page: 179 year: 1999 end-page: 185 article-title: Localization and activity of rRNA gene on fenugreek ( L.) chromosomes by fluorescent in situ hybridization and silver staining publication-title: Theor. Appl. Genet. – volume: 22 start-page: 1427 year: 2002 end-page: 1434 article-title: Plasma and liver lipid distributions in streptozotocin‐induced diabetic rats fed sapogenin extract of the Jamaican bitter yam ( ) publication-title: Nutr. Res. – volume: 81 start-page: 47 year: 1985 end-page: 48 article-title: The day of the yam publication-title: Nurs. Times – volume: 215 start-page: 403 year: 1990 end-page: 410 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. – volume: 35 start-page: W182 year: 2007 end-page: W185 article-title: KASS: An automatic genome annotation and pathway reconstruction server publication-title: Nucleic Acids Res. – volume: 18 start-page: 53 year: 2011 end-page: 63 article-title: De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification publication-title: DNA Res. – volume: 64 start-page: 475 year: 2005 end-page: 481 article-title: Fenugreek and other lesser known legume galactomannan‐polysaccharides: Scope for development publication-title: J. Sci. Ind. Res. (India) – volume: 9 start-page: 35 year: 2010 ident: e_1_2_7_17_1 article-title: Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum‐graecum L.) publication-title: J. Med. Plants contributor: fullname: Mehrafarin A. – ident: e_1_2_7_4_1 doi: 10.2135/cropsci2007.09.0519 – ident: e_1_2_7_12_1 doi: 10.1104/pp.109.144105 – ident: e_1_2_7_20_1 doi: 10.1186/1471‐2164‐12‐191 – ident: e_1_2_7_6_1 doi: 10.1016/S0022‐2836(05)80360‐2 – volume: 9 start-page: 7174 year: 2010 ident: e_1_2_7_2_1 article-title: In vitro shoot regeneration of fenugreek (Trigonella foenum‐graecum L.) using different cytokinins publication-title: Afr. J. Biotechnol. contributor: fullname: Aasim M. – ident: e_1_2_7_7_1 doi: 10.1093/bioinformatics/btr694 – volume-title: Agronomy, growing a greener future? Proceedings of the 9th Australian Agronomy Conference year: 1998 ident: e_1_2_7_16_1 contributor: fullname: McCormick K.M. – ident: e_1_2_7_21_1 doi: 10.1186/1471‐2164‐12‐298 – ident: e_1_2_7_26_1 doi: 10.1093/bioinformatics/bts094 – volume: 10 start-page: 116 year: 2011 ident: e_1_2_7_13_1 article-title: New chromosome numbers in the genus Trigonella L. (Fabaceae) from Turkey publication-title: Afr. J. Biotechnol. contributor: fullname: Martin E. – ident: e_1_2_7_28_1 doi: 10.1186/1471‐2164‐11‐400 – ident: e_1_2_7_29_1 doi: 10.1038/nrg2484 – ident: e_1_2_7_11_1 doi: 10.1101/gr.9.9.868 – ident: e_1_2_7_18_1 doi: 10.1093/nar/gkm321 – volume: 81 start-page: 47 year: 1985 ident: e_1_2_7_24_1 article-title: The day of the yam publication-title: Nurs. Times contributor: fullname: Rosser A. – volume: 64 start-page: 475 year: 2005 ident: e_1_2_7_14_1 article-title: Fenugreek and other lesser known legume galactomannan‐polysaccharides: Scope for development publication-title: J. Sci. Ind. Res. (India) contributor: fullname: Mathur V. – volume: 91 start-page: 171 issue: 366 year: 1997 ident: e_1_2_7_9_1 article-title: Cytophotometric estimation of nuclear DNA content and karyotype analysis of eight cultivars of Trigonella foenumgraecum publication-title: Cytobios contributor: fullname: Das A.B. – volume: 90 start-page: 2 year: 2007 ident: e_1_2_7_27_1 article-title: A validated quantitative thin‐layer chromatographic method for estimation of diosgenin in various plant samples, extract, and market formulation publication-title: J. AOAC Int. doi: 10.1093/jaoac/90.2.358 contributor: fullname: Trivedi P.D. – ident: e_1_2_7_19_1 doi: 10.1038/nmeth.1226 – ident: e_1_2_7_30_1 doi: 10.1016/S1369‐5266(03)00006‐2 – ident: e_1_2_7_5_1 doi: 10.1007/s001220051056 – volume: 28 start-page: 1 year: 2006 ident: e_1_2_7_3_1 article-title: Improvement in the nutraceutical properties of fenugreek (Trigonella foenum‐graecum L.) publication-title: Songklanakarin J. Sci. Technol. contributor: fullname: Acharya S. – ident: e_1_2_7_22_1 doi: 10.1186/1471‐2164‐11‐180 – volume: 13 start-page: 1392 year: 2004 ident: e_1_2_7_23_1 article-title: Diosgenin, a steroid saponin of Trigonella foenum‐graecum (fenugreek), inhibits azoxymethane‐induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT‐29 human colon cancer cells publication-title: Cancer Epidemiol. contributor: fullname: Raju J. – ident: e_1_2_7_10_1 doi: 10.1093/dnares/dsq028 – ident: e_1_2_7_31_1 doi: 10.1101/gr.074492.107 – ident: e_1_2_7_15_1 doi: 10.1016/S0271‐5317(02)00457‐8 – ident: e_1_2_7_8_1 doi: 10.1093/bioinformatics/bti610 – ident: e_1_2_7_25_1 doi: 10.1186/1471‐2164‐12‐131 |
SSID | ssj0057984 |
Score | 2.2115612 |
Snippet | Trigonella foenum‐graecum L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and... T rigonella foenum‐graecum L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and... T L. (fenugreek) is a viable alternative for production of diosgenin because of its shorter growing cycle, lower production costs, and consistent yield and... |
SourceID | doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SummonAdditionalLinks | – databaseName: Open Access: Wiley-Blackwell Open Access Journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PT9swFLcm2IELGoxp5Z982DWQOI7tHFsohYl1lVYkbpHj2FUkGqO2VOpl4iPwGfdJ9p5TkJiEtAM3J05s59l-7_ec558J-aYzZ4TObRSbMo04DwtNTEa5Yom1qZPMhSjfobi84d9vs9s1pRDuhWn5IV4W3HBmBH2NE1yX4RQS8KmQD-H-DqpGItOpBSPGTtqgSHCENgHkKBzyjI-elXImc9X-YOagdlLJ2lAvLOr0jYJeGarA5_8avwYDdPGJbK-RI-22Xb1DPthml3zseUB3q8_k97mlQ7_0NBifoAqgJvqrjZQG-0TrBvLqice4Fk2dxxj4P49Pk5m25mFKr0_owtN2365bUaSjntOrBrTX0lb4MiBF2qv9fNVAal7PqXf0HK7hm-pmj9xc9Mdnl9H6bIXIgDlKoiQrTQy6xQkpoUMApySWC5uZzMIkBsgtQAQYugE-mkOWOK3T2Ma2jG0GiMalX8hGAy3-SqiqeGVSFWfKCEjpPHFpyUUllDAyyWWHxM-CLO5bCo0CXA-UffGP7As8EhMq7pAeCvzlceTADjf8bFKsp1ThEqmFcFXOjeJVxZQGV9VWPBXQeoBtHTII3fW_lRbj0YCNrrvD8aA__Pmjj3kBTyf771bSAdli4TwNjPc9JBuL2YM9AlSzKI_DeP0L7y_vWA priority: 102 providerName: Wiley-Blackwell |
Title | De Novo Transcriptome Sequencing in Trigonella foenum‐graecum L. to Identify Genes Involved in the Biosynthesis of Diosgenin |
URI | https://onlinelibrary.wiley.com/doi/abs/10.3835%2Fplantgenome2012.08.0021 https://doaj.org/article/f17a66fd94c84dd28a094ed436726251 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagYmBBPEV5yQNrIHb8SEZKSwFBqUSR2CLHsVEkmiBakCrx4znbBQELDGxJnMiXy_nuu-TLHUKHilstVGaiWBdJxJh_0URllKWUGJNYSa1n-Q7E-R27vOf3X1p9OU5YKA8cFHdsiVRC2DJjOmVlSVMFCYkpWSIkBeweEh_ymUwFH8xllobvyQy8TCJpYHZBNsaPnx5BZFcAdWwg-NGjQKYk3-KSL9__Ha76eHO2ilbmQBGfBAHX0IKp19FSpwEwN9tAb12DB81rg32s8SsfZsK3gRgN4QhXNYxVD42jsShsG0d5jx6eldEvY3x1hKcNDj_p2hl2tacn-KIGV_VqSncpwELcqZrJrIatSTXBjcVd2Ic7qupNdHfWG52eR_NGCpGG2EMiwgsdgyOxQkrQPoASYpgwXHMDKxbwtQAFOJ4GJGTWlYRTKolNbIrYcIAvNtlCrRrk3UY4LVmpkzTmqRawpTJik4KJUqRCS5LJNoo_1Jg_hXoZOeQZTvP5D83nrv8lTNxGHafuz9NdwWt_AMwgn5tB_psZtFHfP6y_TpqPhn06vDoZjPq9wc11z4158Ex2_kOcXbRMfd8Mx-vdQ63p84vZB_QyLQ7QImXDA2-u77Cz6HU |
link.rule.ids | 315,786,790,870,2113,11583,27946,27947,46076,46500,50838,50947 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dT9swFLUmOml7mdgHooNtfthrWD4cO3lsobSwkiGtndBeIsexq0g0Rm2p1BfET-A38kt2rxOQmDSJh72lSWO71733nuucHBPyVcZGcZlqz1dF5DHmFppC4aVJGGgdGREax_LN-GjKTi_ii5b_hO_CNPoQjwtu6BkuXqOD44I0ejkUVSiIcHUJfaOS6VxDFgsPGlYkVEIdFIWDQqzT-zX9PX2Iy7FIk-YZM4PIE4mwYXthY9_-0dSTXOUk_Z9CWJeDjrfJmxY80l4z22_JC12_Iy_7FgDe5j25OdI0s2tLXf5x0QB6oj8bsjSkKFrVcK2aWaS2SGos0uDvb-9mC6nV9ZyOD-jK0ubVXbOhqEi9pCc1BLC1LvFmAIu0X9nlpoajZbWk1tAj-Ay_qao_kOnxYHI48trtFTwFGSnwgrhQPoQXw4WAOQGoEmjGdaxiDX4MqJuDCZC9AWWaQaE4KSNf-7rwdQygxkQ7ZKuGEe8SmpSsVFHix4nicCTTwEQF4yVPuBJBKrrEfzBkftWoaORQfaDt879sn-OumNBxl_TR4I9fRxlsd8IuZnnrVbkJhOTclClTCSvLMJEw87pkEYfRA3LrkqGbrud2mk_Oh-H5uJdNhoPsx9kArzlIHXz8by19Ia9Gk7NxPj7Jvu-R16HbXgPpv_tka7W41p8A5KyKz-2_9w-bivSV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlLaWX0DYt3fSlQ69ObEuW7GO2-0jSrbOQDeRmZD0WQ2Itu5vAXkp_Qn9jf0ln5E0ghUIPudmWLckjz8w38ugTIV9U5rRQhY1iXbOI8zDRlMqoyNPEWuZk6kKWbymOL_jpZXa5pRTCtTAdP8T9hBtqRrDXqOAL41DJIaZCPoTFFTSNRKbXFpxYetAlRUIg9JQLCM6R5JlP74xyJou8-8HMwewwmXapXljV4T8qeuCoAp__Q_waHNDoJdndIkd61A31K_LEtq_Js74HdLfZIz8Glpb-1tPgfIIpgJboeZcpDf6JNi2UNXOPeS2KOo858L9__povldU313RyQNeedut23YYiHfWKnrRgvW6twYcBKdJ-41ebFo5WzYp6RwdwDu_UtG_IxWg4-3ocbfdWiDS4oyRKslqDlJgTUsKAAE5JLBc205kFJQbILUAEmLoBMZpDljilWGxjW8c2A0Tj2Fuy00KP3xGaG240y-Ms1wKOVJE4VnNhRC60TArZI_GdIKtFR6FRQeiBsq_-kn2FW2JCwz3SR4Hf344c2OGCX86rrUpVLpFKCGcKrnNuTJorCFWt4UxA7wG29cg4DNf_NlrNpuN0OjkqZ-NhefZ9iGUBTyf7j1bTZ_J8OhhVk5Py23vyIg1ba2Dq7weys17e2I8AcNb1p_Dp_gFsa_Hv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+Novo+Transcriptome+Sequencing+in+Trigonella+foenum-graecum+L.+to+Identify+Genes+Involved+in+the+Biosynthesis+of+Diosgenin&rft.jtitle=The+plant+genome&rft.au=Kanak+Vaidya&rft.au=Arpita+Ghosh&rft.au=Vinay+Kumar&rft.au=Spandan+Chaudhary&rft.date=2013-07-01&rft.pub=Wiley&rft.issn=1940-3372&rft.eissn=1940-3372&rft.volume=6&rft.issue=2&rft_id=info:doi/10.3835%2Fplantgenome2012.08.0021&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f17a66fd94c84dd28a094ed436726251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-3372&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-3372&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-3372&client=summon |