Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution
The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces...
Saved in:
Published in | IEEE journal of selected topics in signal processing Vol. 5; no. 3; pp. 521 - 533 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4553 1941-0484 |
DOI | 10.1109/JSTSP.2010.2096798 |
Cover
Loading…
Abstract | The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this paper, we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by simulated annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view. |
---|---|
AbstractList | The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this work we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by Simulated Annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view. The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this paper, we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by simulated annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view. |
Author | Chanussot, Jocelyn Benediktsson, Jón Atli Villa, Alberto Jutten, Christian |
Author_xml | – sequence: 1 givenname: Alberto surname: Villa fullname: Villa, Alberto email: alberto.villa@hyperinet.eu organization: Signal & Image Dept., Grenoble Inst. of Technol.-INP, Grenoble, France – sequence: 2 givenname: Jocelyn surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn.chanussot@gipsa-lab.grenoble-inp.fr organization: Signal & Image Dept., Grenoble Inst. of Technol.-INP, Grenoble, France – sequence: 3 givenname: Jón Atli surname: Benediktsson fullname: Benediktsson, Jón Atli email: benedikt@hi.is organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland – sequence: 4 givenname: Christian surname: Jutten fullname: Jutten, Christian email: christian.jutten@gipsa-lab.grenoble-inp.fr organization: Signal & Image Dept., Grenoble Inst. of Technol.-INP, Grenoble, France |
BackLink | https://hal.science/hal-00578890$$DView record in HAL |
BookMark | eNp9kUtPJCEUhYnRxOcf0A1xY1yUAxTPpenotKaTMbZuJUBTiqkuSqg2-u-HstWFC1fA5Tvn5t6zCza72HkADjE6wxipP9fzu_nNGUHlTZDiQskNsIMVxRWikm6O95pUlLF6G-zm_IwQExzTHfAw770bkmnhfbcMb6F7hE1McHjycNKanEMTnBlC7GBs4PS99yl_Ca6W5tFnaAZo4GXofILzvqDl59bn2K5G1T7Yakyb_cHnuQfuLy_uJtNq9u_v1eR8Vjkq0FA1C6EQU1hZZ5XlzooFp1LVQlhGHXPEE-Yow1hSompMhFgobi1yYmGVoLbeA6dr3yfT6j6FpUnvOpqgp-czPdbGgaVU6BUX9mTN9im-rHwe9DJk59vWdD6usi4YrQXivJDHP8jnuEpdGURLLigvfqMdWUMuxZyTb777Y6THcPRHOHoMR3-GU0Tyh8iF4WPPZbWh_V16tJYG7_13L8aZxIjU_wHksJ3h |
CODEN | IJSTGY |
CitedBy_id | crossref_primary_10_1109_JSTARS_2022_3194065 crossref_primary_10_1109_ACCESS_2018_2873813 crossref_primary_10_1080_01431161_2020_1823039 crossref_primary_10_1109_JSTARS_2015_2496660 crossref_primary_10_3390_app11062586 crossref_primary_10_1109_TGRS_2020_3004353 crossref_primary_10_1109_TGRS_2018_2842748 crossref_primary_10_1038_s41598_024_51668_6 crossref_primary_10_1109_JSTARS_2012_2216514 crossref_primary_10_1109_JSTARS_2019_2939670 crossref_primary_10_3390_s20195684 crossref_primary_10_1038_s41598_020_68433_0 crossref_primary_10_1080_07038992_2019_1573137 crossref_primary_10_3390_rs11222695 crossref_primary_10_1109_TGRS_2015_2486780 crossref_primary_10_3390_rs15123168 crossref_primary_10_1080_01431161_2016_1226523 crossref_primary_10_1080_15481603_2019_1623003 crossref_primary_10_1109_TGRS_2013_2296031 crossref_primary_10_1109_TGRS_2013_2267802 crossref_primary_10_2473_journalofmmij_132_96 crossref_primary_10_1109_JSTARS_2018_2885793 crossref_primary_10_1109_JSTARS_2014_2313978 crossref_primary_10_3390_rs13173402 crossref_primary_10_1109_JSTARS_2012_2227246 crossref_primary_10_14358_PERS_81_1_59 crossref_primary_10_1109_LGRS_2016_2614810 crossref_primary_10_1109_TGRS_2011_2167193 crossref_primary_10_14358_PERS_24_00038R2 crossref_primary_10_1109_TGRS_2019_2891354 crossref_primary_10_1109_LGRS_2014_2318758 crossref_primary_10_1109_JSTARS_2011_2176721 crossref_primary_10_1109_JSTARS_2012_2236539 crossref_primary_10_1080_10095020_2024_2332638 crossref_primary_10_1109_JSTARS_2017_2713439 crossref_primary_10_1109_TGRS_2019_2961703 crossref_primary_10_1109_JSTARS_2012_2189556 crossref_primary_10_3390_app10124207 crossref_primary_10_1080_10106049_2021_1941307 crossref_primary_10_1109_JSTARS_2014_2320256 crossref_primary_10_1007_s12524_014_0408_2 crossref_primary_10_3390_rs9090924 crossref_primary_10_1016_j_sigpro_2020_107949 crossref_primary_10_1109_TGRS_2015_2474132 crossref_primary_10_1109_TGRS_2013_2281992 crossref_primary_10_1016_j_rse_2017_03_002 crossref_primary_10_1109_TGRS_2011_2166766 crossref_primary_10_1016_j_patcog_2018_07_026 crossref_primary_10_1016_j_compag_2022_107433 crossref_primary_10_1080_01431161_2015_1049381 crossref_primary_10_1109_TGRS_2014_2363682 crossref_primary_10_1109_LGRS_2014_2320135 crossref_primary_10_1016_j_patrec_2011_12_014 crossref_primary_10_1007_s11045_016_0415_2 crossref_primary_10_1016_j_isprsjprs_2014_06_019 crossref_primary_10_1016_j_asr_2022_12_044 crossref_primary_10_1109_TGRS_2020_2996064 crossref_primary_10_1109_LGRS_2014_2302034 crossref_primary_10_1109_TGRS_2014_2340734 crossref_primary_10_3390_rs10060884 crossref_primary_10_3390_rs8030250 crossref_primary_10_1117_1_JRS_10_026019 crossref_primary_10_1109_TGRS_2013_2268539 crossref_primary_10_1109_JSTARS_2017_2732227 crossref_primary_10_1109_TGRS_2012_2205004 crossref_primary_10_1109_TGRS_2017_2691906 crossref_primary_10_1186_1687_6180_2012_207 crossref_primary_10_1109_TGRS_2018_2853268 crossref_primary_10_1029_2017JE005399 crossref_primary_10_1016_j_sedgeo_2016_07_004 crossref_primary_10_1080_01431161_2025_2452319 crossref_primary_10_1109_TGRS_2016_2527841 crossref_primary_10_3390_rs14184433 crossref_primary_10_1002_ece3_10545 crossref_primary_10_1109_JSTSP_2015_2416683 crossref_primary_10_1016_j_isprsjprs_2014_02_012 crossref_primary_10_1007_s12524_019_01088_1 crossref_primary_10_1109_TGRS_2013_2291902 crossref_primary_10_3390_rs10111790 crossref_primary_10_1109_JSTARS_2012_2191145 crossref_primary_10_1109_JSTARS_2013_2292824 crossref_primary_10_1080_01431161_2019_1595210 crossref_primary_10_1109_JSTARS_2013_2262927 crossref_primary_10_1109_TGRS_2012_2227757 crossref_primary_10_1016_j_image_2019_05_004 crossref_primary_10_1146_annurev_ento_010715_023834 crossref_primary_10_1109_JSTARS_2020_3012982 crossref_primary_10_1109_JSTARS_2013_2264828 crossref_primary_10_3390_rs15112822 crossref_primary_10_3390_agriculture15060597 crossref_primary_10_1109_TGRS_2023_3325825 crossref_primary_10_1080_10106049_2018_1497096 crossref_primary_10_1109_TGRS_2015_2415587 crossref_primary_10_1109_TGRS_2014_2346811 crossref_primary_10_1016_j_cviu_2019_102797 crossref_primary_10_1109_TGRS_2017_2748701 crossref_primary_10_1117_1_JEI_28_1_013046 crossref_primary_10_3390_rs9111139 crossref_primary_10_1117_1_JRS_13_026501 crossref_primary_10_1080_22797254_2019_1673216 crossref_primary_10_1109_JSTARS_2016_2624560 crossref_primary_10_3390_rs13173345 crossref_primary_10_1109_TGRS_2018_2868690 crossref_primary_10_3390_app10113773 crossref_primary_10_1109_TGRS_2015_2506168 |
Cites_doi | 10.1109/36.911111 10.1016/0034-4257(93)90012-M 10.1109/TGRS.2009.2029340 10.1109/TGRS.2004.831865 10.1016/0734-189X(83)90069-5 10.21236/ADA296533 10.1080/014311698214848 10.1109/79.974727 10.1016/j.patcog.2004.01.006 10.1177/001316446002000104 10.1109/TSMCB.2009.2037132 10.1002/0471723800 10.1109/LGRS.2009.2020924 10.1063/1.1699114 10.1109/TGRS.2008.922034 10.1109/36.992798 10.1126/science.220.4598.671 10.1109/TGRS.2003.822750 10.14358/PERS.73.8.923 10.1109/TGRS.2008.916477 10.1109/72.991427 10.1109/TGRS.2006.881125 10.1109/TGRS.2003.820314 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M 1XC VOOES |
DOI | 10.1109/JSTSP.2010.2096798 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0484 |
EndPage | 533 |
ExternalDocumentID | oai_HAL_hal_00578890v1 2351406841 10_1109_JSTSP_2010_2096798 5658102 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG 7SP 8FD H8D L7M 1XC VOOES |
ID | FETCH-LOGICAL-c470t-fd7905919bcb9b6cb7d6489377b54c5c2e25c4511842931277d96bb0c7db974b3 |
IEDL.DBID | RIE |
ISSN | 1932-4553 |
IngestDate | Fri May 09 12:10:29 EDT 2025 Fri Jul 11 01:40:56 EDT 2025 Sun Jun 29 16:47:07 EDT 2025 Tue Jul 01 02:38:39 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Aug 26 17:17:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Spatial regularization Source separation Hyperspectral data Spatial resolution improvement Simulated annealing |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-fd7905919bcb9b6cb7d6489377b54c5c2e25c4511842931277d96bb0c7db974b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-4817-2875 0000-0002-4477-4847 |
OpenAccessLink | https://hal.science/hal-00578890 |
PQID | 867468901 |
PQPubID | 75721 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_00578890v1 proquest_journals_867468901 ieee_primary_5658102 proquest_miscellaneous_889437066 crossref_primary_10_1109_JSTSP_2010_2096798 crossref_citationtrail_10_1109_JSTSP_2010_2096798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of selected topics in signal processing |
PublicationTitleAbbrev | JSTSP |
PublicationYear | 2011 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | clark (ref30) 2007 ref34 ref15 ref14 ref31 lin (ref23) 2003 ref11 ref32 ref10 atkinson (ref12) 1997; 4 ref2 ref1 ref16 ref19 ref18 gualtieri (ref33) 1999 chang (ref24) 2001 ref26 ref25 ref20 (ref5) 2007 ref28 kirkpatrick (ref29) 1983; 220 ref27 plaza (ref8) 2010 ref7 ref9 platt (ref22) 2000 ref3 ref6 (ref4) 2009 mertens (ref13) 2008 vapnik (ref17) 1998 aronszajn (ref21) 1950 |
References_xml | – volume: 4 start-page: 166 year: 1997 ident: ref12 publication-title: Innovations in GIS – ident: ref26 doi: 10.1109/36.911111 – ident: ref2 doi: 10.1016/0034-4257(93)90012-M – year: 2007 ident: ref30 publication-title: USGS Digital Spectral Library splib06a – ident: ref19 doi: 10.1109/TGRS.2009.2029340 – ident: ref18 doi: 10.1109/TGRS.2004.831865 – ident: ref27 doi: 10.1016/0734-189X(83)90069-5 – year: 2008 ident: ref13 publication-title: Sub-pixel mapping A comparison of techniques – year: 1950 ident: ref21 publication-title: Theory of reprodusing kernel doi: 10.21236/ADA296533 – ident: ref3 doi: 10.1080/014311698214848 – ident: ref6 doi: 10.1109/79.974727 – ident: ref11 doi: 10.1016/j.patcog.2004.01.006 – year: 2000 ident: ref22 publication-title: Advances in Large Margin Classifiers – ident: ref32 doi: 10.1177/001316446002000104 – ident: ref34 doi: 10.1109/TSMCB.2009.2037132 – ident: ref1 doi: 10.1002/0471723800 – ident: ref10 doi: 10.1109/LGRS.2009.2020924 – year: 2003 ident: ref23 publication-title: A note on Platt's probabilistic outputs for support vector machines – ident: ref28 doi: 10.1063/1.1699114 – year: 2007 ident: ref5 publication-title: Soft Computing in Image Processing – ident: ref20 doi: 10.1109/TGRS.2008.922034 – ident: ref14 doi: 10.1109/36.992798 – volume: 220 start-page: 671 year: 1983 ident: ref29 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: ref9 doi: 10.1109/TGRS.2003.822750 – year: 2001 ident: ref24 publication-title: LIBSVM A library for support vector machines – year: 2010 ident: ref8 publication-title: Optical Remote SensingAdvances in Signal Processing and Exploitation Techniques – year: 2009 ident: ref4 publication-title: Kernel Methods for Remote Sensing Data Analysis – start-page: 217 year: 1999 ident: ref33 article-title: Support vector machine classifiers as applied to AVIRIS data publication-title: Proc 8th JPL Airborne Geosci Workshop – ident: ref25 doi: 10.14358/PERS.73.8.923 – ident: ref15 doi: 10.1109/TGRS.2008.916477 – year: 1998 ident: ref17 publication-title: Statistical Learning Theory – ident: ref31 doi: 10.1109/72.991427 – ident: ref16 doi: 10.1109/TGRS.2006.881125 – ident: ref7 doi: 10.1109/TGRS.2003.820314 |
SSID | ssj0057614 |
Score | 2.3692057 |
Snippet | The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 521 |
SubjectTerms | Algorithms Classification Computer Science Hyperspectral data Hyperspectral imaging Image Processing Land cover Meters Pixel Pixels Probabilistic logic Remote sensing Simulated annealing source separation spatial regularization Spatial resolution spatial resolution improvement Spectra Support vector machines |
Title | Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution |
URI | https://ieeexplore.ieee.org/document/5658102 https://www.proquest.com/docview/867468901 https://www.proquest.com/docview/889437066 https://hal.science/hal-00578890 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLIN60a9ukTXoUcVlFRdAFT5YmzaKoXdGuiL_emfSBL8RbSZPSMtPkm9c3ADuaZ0oF8ZAamggP7S_uZZxLLzRcKR1lUZBTRPfsPO4PxMl1dD0Be20tjLXWJZ_ZLl26WH4-MmNyle0j-FABMUdOouFW1Wo1uy7C5qCOIIeeiCLeFMj4yT6q-OVFlcUVImKXifpyCE3eUgqk663yY0N2p0xvDs6a96uSS-6741J3zfs36sb_fsA8zNZwkx1U-rEAE7ZYhJlPJIRLcEMt6MnfwQbF490bjjEEsgyBIXMdMymXyImPjYasj2ZrVZ1JC44fcTd6YVnJMtajKkJGHY5RoxlFBSqdXoZB7-jqsO_VXRc8I6RfesOcOLuSINFGJzo2WuYxMdRIqSNhIhPaMDLEaqbwKONBKGWexFr7RuYajRPNV2CqGBV2FZiyiDeJAswKIwRXmaQwpxr6caa51rIDQSOG1NSU5NQZ4yF1pomfpE50KYkurUXXgd12zVNFyPHn7G2UbjuRuLT7B6cpjZHOKJX4r0EHlkhU7axaSh1Yb5QhrX_sl1TFUsS4Chex9i7-kRRmyQo7GuMUorSXCOXWfn_uOkxXjmly5WzAVPk8tpuIbEq95VT6A9Qm8hs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5ty6HlUKAFdVseFuoNso3jJHaOFWKVwu4KqbvSnrBixysQbRbRLKr665lxHqIFIW6RH1GiGduf5_ENwIkRhVI8XVFBkzjA-5cICiFkEFmhlEmKhJfk0Z3O0nwRf1gmywG87XNhnHM--MyN6NH78su13ZCp7BTBh-LEHPkAz_2EN9la3b6LwJm3PuQowG7RpciE2Skq-cWnJo4rQswuM3XnGNr6QkGQvrrKH1uyP2fGj2DafWETXvJttKnNyN7eI2_83194DHst4GRnjYY8gYGr9uHhbzSEB_CZitCTxYMtqquvN9jGEMoyhIbM18ykaCIvQLZesRwvrk1-Jk04v8L96JoVNSvYmPIIGdU4Rp1m5BdotPopLMbv5-_yoK27ENhYhnWwKom1K-OZsSYzqTWyTImjRkqTxDaxkYsSS7xmCg8zwSMpyyw1JrSyNHg9MeIZbFfryh0CUw4RJ5GAudjGsVCFJEenWoVpYYQxcgi8E4O2LSk51ca41P5yEmbai06T6HQruiG86ed8byg5_jn6NUq3H0hs2vnZRFMb6YxSWfiTD-GARNWPaqU0hONOGXS7tK-1SmWc4iycxPpeXJPkaCkqt97gECK1lwjmjv7-3lewk8-nEz05n308ht3GTE2GneewXf_YuBeIc2rz0qv3L5qC9WQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Unmixing+for+the+Classification+of+Hyperspectral+Images+at+a+Finer+Spatial+Resolution&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Villa%2C+Alberto&rft.au=Chanussot%2C+Jocelyn&rft.au=Benediktsson%2C+J%C3%B3n+Atli&rft.au=Jutten%2C+Christian&rft.date=2011-06-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=5&rft.issue=3&rft.spage=521&rft.epage=533&rft_id=info:doi/10.1109%2FJSTSP.2010.2096798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2010_2096798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |