Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution

The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 5; no. 3; pp. 521 - 533
Main Authors Villa, Alberto, Chanussot, Jocelyn, Benediktsson, Jón Atli, Jutten, Christian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4553
1941-0484
DOI10.1109/JSTSP.2010.2096798

Cover

Loading…
Abstract The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this paper, we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by simulated annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view.
AbstractList The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this work we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by Simulated Annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view.
The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote sensing applications. The wide spectral range of such imagery, providing a very high spectral resolution, allows to detect and classify surfaces and chemical elements of the observed image. The main problem of hyperspectral data is the (relatively) low spatial resolution, which can vary from a few to tens of meters. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. For classification, the major problem caused by low spatial resolution are the mixed pixels, i.e., parts of the image where more than one land cover map lie in the same pixel. In this paper, we propose a method to address the problem of mixed pixels and to obtain a finer spatial resolution of the land cover classification maps. The method exploits the advantages of both soft classification techniques and spectral unmixing algorithms, in order to determine the fractional abundances of the classes at a sub-pixel scale. Spatial regularization by simulated annealing is finally performed to spatially locate the obtained classes. Experiments carried out on synthetic real data sets show excellent results both from a qualitative and quantitative point of view.
Author Chanussot, Jocelyn
Benediktsson, Jón Atli
Villa, Alberto
Jutten, Christian
Author_xml – sequence: 1
  givenname: Alberto
  surname: Villa
  fullname: Villa, Alberto
  email: alberto.villa@hyperinet.eu
  organization: Signal & Image Dept., Grenoble Inst. of Technol.-INP, Grenoble, France
– sequence: 2
  givenname: Jocelyn
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn.chanussot@gipsa-lab.grenoble-inp.fr
  organization: Signal & Image Dept., Grenoble Inst. of Technol.-INP, Grenoble, France
– sequence: 3
  givenname: Jón Atli
  surname: Benediktsson
  fullname: Benediktsson, Jón Atli
  email: benedikt@hi.is
  organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland
– sequence: 4
  givenname: Christian
  surname: Jutten
  fullname: Jutten, Christian
  email: christian.jutten@gipsa-lab.grenoble-inp.fr
  organization: Signal & Image Dept., Grenoble Inst. of Technol.-INP, Grenoble, France
BackLink https://hal.science/hal-00578890$$DView record in HAL
BookMark eNp9kUtPJCEUhYnRxOcf0A1xY1yUAxTPpenotKaTMbZuJUBTiqkuSqg2-u-HstWFC1fA5Tvn5t6zCza72HkADjE6wxipP9fzu_nNGUHlTZDiQskNsIMVxRWikm6O95pUlLF6G-zm_IwQExzTHfAw770bkmnhfbcMb6F7hE1McHjycNKanEMTnBlC7GBs4PS99yl_Ca6W5tFnaAZo4GXofILzvqDl59bn2K5G1T7Yakyb_cHnuQfuLy_uJtNq9u_v1eR8Vjkq0FA1C6EQU1hZZ5XlzooFp1LVQlhGHXPEE-Yow1hSompMhFgobi1yYmGVoLbeA6dr3yfT6j6FpUnvOpqgp-czPdbGgaVU6BUX9mTN9im-rHwe9DJk59vWdD6usi4YrQXivJDHP8jnuEpdGURLLigvfqMdWUMuxZyTb777Y6THcPRHOHoMR3-GU0Tyh8iF4WPPZbWh_V16tJYG7_13L8aZxIjU_wHksJ3h
CODEN IJSTGY
CitedBy_id crossref_primary_10_1109_JSTARS_2022_3194065
crossref_primary_10_1109_ACCESS_2018_2873813
crossref_primary_10_1080_01431161_2020_1823039
crossref_primary_10_1109_JSTARS_2015_2496660
crossref_primary_10_3390_app11062586
crossref_primary_10_1109_TGRS_2020_3004353
crossref_primary_10_1109_TGRS_2018_2842748
crossref_primary_10_1038_s41598_024_51668_6
crossref_primary_10_1109_JSTARS_2012_2216514
crossref_primary_10_1109_JSTARS_2019_2939670
crossref_primary_10_3390_s20195684
crossref_primary_10_1038_s41598_020_68433_0
crossref_primary_10_1080_07038992_2019_1573137
crossref_primary_10_3390_rs11222695
crossref_primary_10_1109_TGRS_2015_2486780
crossref_primary_10_3390_rs15123168
crossref_primary_10_1080_01431161_2016_1226523
crossref_primary_10_1080_15481603_2019_1623003
crossref_primary_10_1109_TGRS_2013_2296031
crossref_primary_10_1109_TGRS_2013_2267802
crossref_primary_10_2473_journalofmmij_132_96
crossref_primary_10_1109_JSTARS_2018_2885793
crossref_primary_10_1109_JSTARS_2014_2313978
crossref_primary_10_3390_rs13173402
crossref_primary_10_1109_JSTARS_2012_2227246
crossref_primary_10_14358_PERS_81_1_59
crossref_primary_10_1109_LGRS_2016_2614810
crossref_primary_10_1109_TGRS_2011_2167193
crossref_primary_10_14358_PERS_24_00038R2
crossref_primary_10_1109_TGRS_2019_2891354
crossref_primary_10_1109_LGRS_2014_2318758
crossref_primary_10_1109_JSTARS_2011_2176721
crossref_primary_10_1109_JSTARS_2012_2236539
crossref_primary_10_1080_10095020_2024_2332638
crossref_primary_10_1109_JSTARS_2017_2713439
crossref_primary_10_1109_TGRS_2019_2961703
crossref_primary_10_1109_JSTARS_2012_2189556
crossref_primary_10_3390_app10124207
crossref_primary_10_1080_10106049_2021_1941307
crossref_primary_10_1109_JSTARS_2014_2320256
crossref_primary_10_1007_s12524_014_0408_2
crossref_primary_10_3390_rs9090924
crossref_primary_10_1016_j_sigpro_2020_107949
crossref_primary_10_1109_TGRS_2015_2474132
crossref_primary_10_1109_TGRS_2013_2281992
crossref_primary_10_1016_j_rse_2017_03_002
crossref_primary_10_1109_TGRS_2011_2166766
crossref_primary_10_1016_j_patcog_2018_07_026
crossref_primary_10_1016_j_compag_2022_107433
crossref_primary_10_1080_01431161_2015_1049381
crossref_primary_10_1109_TGRS_2014_2363682
crossref_primary_10_1109_LGRS_2014_2320135
crossref_primary_10_1016_j_patrec_2011_12_014
crossref_primary_10_1007_s11045_016_0415_2
crossref_primary_10_1016_j_isprsjprs_2014_06_019
crossref_primary_10_1016_j_asr_2022_12_044
crossref_primary_10_1109_TGRS_2020_2996064
crossref_primary_10_1109_LGRS_2014_2302034
crossref_primary_10_1109_TGRS_2014_2340734
crossref_primary_10_3390_rs10060884
crossref_primary_10_3390_rs8030250
crossref_primary_10_1117_1_JRS_10_026019
crossref_primary_10_1109_TGRS_2013_2268539
crossref_primary_10_1109_JSTARS_2017_2732227
crossref_primary_10_1109_TGRS_2012_2205004
crossref_primary_10_1109_TGRS_2017_2691906
crossref_primary_10_1186_1687_6180_2012_207
crossref_primary_10_1109_TGRS_2018_2853268
crossref_primary_10_1029_2017JE005399
crossref_primary_10_1016_j_sedgeo_2016_07_004
crossref_primary_10_1080_01431161_2025_2452319
crossref_primary_10_1109_TGRS_2016_2527841
crossref_primary_10_3390_rs14184433
crossref_primary_10_1002_ece3_10545
crossref_primary_10_1109_JSTSP_2015_2416683
crossref_primary_10_1016_j_isprsjprs_2014_02_012
crossref_primary_10_1007_s12524_019_01088_1
crossref_primary_10_1109_TGRS_2013_2291902
crossref_primary_10_3390_rs10111790
crossref_primary_10_1109_JSTARS_2012_2191145
crossref_primary_10_1109_JSTARS_2013_2292824
crossref_primary_10_1080_01431161_2019_1595210
crossref_primary_10_1109_JSTARS_2013_2262927
crossref_primary_10_1109_TGRS_2012_2227757
crossref_primary_10_1016_j_image_2019_05_004
crossref_primary_10_1146_annurev_ento_010715_023834
crossref_primary_10_1109_JSTARS_2020_3012982
crossref_primary_10_1109_JSTARS_2013_2264828
crossref_primary_10_3390_rs15112822
crossref_primary_10_3390_agriculture15060597
crossref_primary_10_1109_TGRS_2023_3325825
crossref_primary_10_1080_10106049_2018_1497096
crossref_primary_10_1109_TGRS_2015_2415587
crossref_primary_10_1109_TGRS_2014_2346811
crossref_primary_10_1016_j_cviu_2019_102797
crossref_primary_10_1109_TGRS_2017_2748701
crossref_primary_10_1117_1_JEI_28_1_013046
crossref_primary_10_3390_rs9111139
crossref_primary_10_1117_1_JRS_13_026501
crossref_primary_10_1080_22797254_2019_1673216
crossref_primary_10_1109_JSTARS_2016_2624560
crossref_primary_10_3390_rs13173345
crossref_primary_10_1109_TGRS_2018_2868690
crossref_primary_10_3390_app10113773
crossref_primary_10_1109_TGRS_2015_2506168
Cites_doi 10.1109/36.911111
10.1016/0034-4257(93)90012-M
10.1109/TGRS.2009.2029340
10.1109/TGRS.2004.831865
10.1016/0734-189X(83)90069-5
10.21236/ADA296533
10.1080/014311698214848
10.1109/79.974727
10.1016/j.patcog.2004.01.006
10.1177/001316446002000104
10.1109/TSMCB.2009.2037132
10.1002/0471723800
10.1109/LGRS.2009.2020924
10.1063/1.1699114
10.1109/TGRS.2008.922034
10.1109/36.992798
10.1126/science.220.4598.671
10.1109/TGRS.2003.822750
10.14358/PERS.73.8.923
10.1109/TGRS.2008.916477
10.1109/72.991427
10.1109/TGRS.2006.881125
10.1109/TGRS.2003.820314
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
1XC
VOOES
DOI 10.1109/JSTSP.2010.2096798
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0484
EndPage 533
ExternalDocumentID oai_HAL_hal_00578890v1
2351406841
10_1109_JSTSP_2010_2096798
5658102
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
8FD
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c470t-fd7905919bcb9b6cb7d6489377b54c5c2e25c4511842931277d96bb0c7db974b3
IEDL.DBID RIE
ISSN 1932-4553
IngestDate Fri May 09 12:10:29 EDT 2025
Fri Jul 11 01:40:56 EDT 2025
Sun Jun 29 16:47:07 EDT 2025
Tue Jul 01 02:38:39 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Aug 26 17:17:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Spatial regularization
Source separation
Hyperspectral data
Spatial resolution improvement
Simulated annealing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-fd7905919bcb9b6cb7d6489377b54c5c2e25c4511842931277d96bb0c7db974b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-4817-2875
0000-0002-4477-4847
OpenAccessLink https://hal.science/hal-00578890
PQID 867468901
PQPubID 75721
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00578890v1
proquest_journals_867468901
ieee_primary_5658102
proquest_miscellaneous_889437066
crossref_primary_10_1109_JSTSP_2010_2096798
crossref_citationtrail_10_1109_JSTSP_2010_2096798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References clark (ref30) 2007
ref34
ref15
ref14
ref31
lin (ref23) 2003
ref11
ref32
ref10
atkinson (ref12) 1997; 4
ref2
ref1
ref16
ref19
ref18
gualtieri (ref33) 1999
chang (ref24) 2001
ref26
ref25
ref20
(ref5) 2007
ref28
kirkpatrick (ref29) 1983; 220
ref27
plaza (ref8) 2010
ref7
ref9
platt (ref22) 2000
ref3
ref6
(ref4) 2009
mertens (ref13) 2008
vapnik (ref17) 1998
aronszajn (ref21) 1950
References_xml – volume: 4
  start-page: 166
  year: 1997
  ident: ref12
  publication-title: Innovations in GIS
– ident: ref26
  doi: 10.1109/36.911111
– ident: ref2
  doi: 10.1016/0034-4257(93)90012-M
– year: 2007
  ident: ref30
  publication-title: USGS Digital Spectral Library splib06a
– ident: ref19
  doi: 10.1109/TGRS.2009.2029340
– ident: ref18
  doi: 10.1109/TGRS.2004.831865
– ident: ref27
  doi: 10.1016/0734-189X(83)90069-5
– year: 2008
  ident: ref13
  publication-title: Sub-pixel mapping A comparison of techniques
– year: 1950
  ident: ref21
  publication-title: Theory of reprodusing kernel
  doi: 10.21236/ADA296533
– ident: ref3
  doi: 10.1080/014311698214848
– ident: ref6
  doi: 10.1109/79.974727
– ident: ref11
  doi: 10.1016/j.patcog.2004.01.006
– year: 2000
  ident: ref22
  publication-title: Advances in Large Margin Classifiers
– ident: ref32
  doi: 10.1177/001316446002000104
– ident: ref34
  doi: 10.1109/TSMCB.2009.2037132
– ident: ref1
  doi: 10.1002/0471723800
– ident: ref10
  doi: 10.1109/LGRS.2009.2020924
– year: 2003
  ident: ref23
  publication-title: A note on Platt's probabilistic outputs for support vector machines
– ident: ref28
  doi: 10.1063/1.1699114
– year: 2007
  ident: ref5
  publication-title: Soft Computing in Image Processing
– ident: ref20
  doi: 10.1109/TGRS.2008.922034
– ident: ref14
  doi: 10.1109/36.992798
– volume: 220
  start-page: 671
  year: 1983
  ident: ref29
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: ref9
  doi: 10.1109/TGRS.2003.822750
– year: 2001
  ident: ref24
  publication-title: LIBSVM A library for support vector machines
– year: 2010
  ident: ref8
  publication-title: Optical Remote SensingAdvances in Signal Processing and Exploitation Techniques
– year: 2009
  ident: ref4
  publication-title: Kernel Methods for Remote Sensing Data Analysis
– start-page: 217
  year: 1999
  ident: ref33
  article-title: Support vector machine classifiers as applied to AVIRIS data
  publication-title: Proc 8th JPL Airborne Geosci Workshop
– ident: ref25
  doi: 10.14358/PERS.73.8.923
– ident: ref15
  doi: 10.1109/TGRS.2008.916477
– year: 1998
  ident: ref17
  publication-title: Statistical Learning Theory
– ident: ref31
  doi: 10.1109/72.991427
– ident: ref16
  doi: 10.1109/TGRS.2006.881125
– ident: ref7
  doi: 10.1109/TGRS.2003.820314
SSID ssj0057614
Score 2.3692057
Snippet The problem of classification of hyperspectral images containing mixed pixels is addressed. Hyperspectral imaging is a continuously growing area of remote...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 521
SubjectTerms Algorithms
Classification
Computer Science
Hyperspectral data
Hyperspectral imaging
Image Processing
Land cover
Meters
Pixel
Pixels
Probabilistic logic
Remote sensing
Simulated annealing
source separation
spatial regularization
Spatial resolution
spatial resolution improvement
Spectra
Support vector machines
Title Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution
URI https://ieeexplore.ieee.org/document/5658102
https://www.proquest.com/docview/867468901
https://www.proquest.com/docview/889437066
https://hal.science/hal-00578890
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLIN60a9ukTXoUcVlFRdAFT5YmzaKoXdGuiL_emfSBL8RbSZPSMtPkm9c3ADuaZ0oF8ZAamggP7S_uZZxLLzRcKR1lUZBTRPfsPO4PxMl1dD0Be20tjLXWJZ_ZLl26WH4-MmNyle0j-FABMUdOouFW1Wo1uy7C5qCOIIeeiCLeFMj4yT6q-OVFlcUVImKXifpyCE3eUgqk663yY0N2p0xvDs6a96uSS-6741J3zfs36sb_fsA8zNZwkx1U-rEAE7ZYhJlPJIRLcEMt6MnfwQbF490bjjEEsgyBIXMdMymXyImPjYasj2ZrVZ1JC44fcTd6YVnJMtajKkJGHY5RoxlFBSqdXoZB7-jqsO_VXRc8I6RfesOcOLuSINFGJzo2WuYxMdRIqSNhIhPaMDLEaqbwKONBKGWexFr7RuYajRPNV2CqGBV2FZiyiDeJAswKIwRXmaQwpxr6caa51rIDQSOG1NSU5NQZ4yF1pomfpE50KYkurUXXgd12zVNFyPHn7G2UbjuRuLT7B6cpjZHOKJX4r0EHlkhU7axaSh1Yb5QhrX_sl1TFUsS4Chex9i7-kRRmyQo7GuMUorSXCOXWfn_uOkxXjmly5WzAVPk8tpuIbEq95VT6A9Qm8hs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5ty6HlUKAFdVseFuoNso3jJHaOFWKVwu4KqbvSnrBixysQbRbRLKr665lxHqIFIW6RH1GiGduf5_ENwIkRhVI8XVFBkzjA-5cICiFkEFmhlEmKhJfk0Z3O0nwRf1gmywG87XNhnHM--MyN6NH78su13ZCp7BTBh-LEHPkAz_2EN9la3b6LwJm3PuQowG7RpciE2Skq-cWnJo4rQswuM3XnGNr6QkGQvrrKH1uyP2fGj2DafWETXvJttKnNyN7eI2_83194DHst4GRnjYY8gYGr9uHhbzSEB_CZitCTxYMtqquvN9jGEMoyhIbM18ykaCIvQLZesRwvrk1-Jk04v8L96JoVNSvYmPIIGdU4Rp1m5BdotPopLMbv5-_yoK27ENhYhnWwKom1K-OZsSYzqTWyTImjRkqTxDaxkYsSS7xmCg8zwSMpyyw1JrSyNHg9MeIZbFfryh0CUw4RJ5GAudjGsVCFJEenWoVpYYQxcgi8E4O2LSk51ca41P5yEmbai06T6HQruiG86ed8byg5_jn6NUq3H0hs2vnZRFMb6YxSWfiTD-GARNWPaqU0hONOGXS7tK-1SmWc4iycxPpeXJPkaCkqt97gECK1lwjmjv7-3lewk8-nEz05n308ht3GTE2GneewXf_YuBeIc2rz0qv3L5qC9WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Unmixing+for+the+Classification+of+Hyperspectral+Images+at+a+Finer+Spatial+Resolution&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Villa%2C+Alberto&rft.au=Chanussot%2C+Jocelyn&rft.au=Benediktsson%2C+J%C3%B3n+Atli&rft.au=Jutten%2C+Christian&rft.date=2011-06-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=5&rft.issue=3&rft.spage=521&rft.epage=533&rft_id=info:doi/10.1109%2FJSTSP.2010.2096798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2010_2096798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon