Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1

Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR -mutant lung cancers. Here, we modeled disease progression using EGFR -mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 31; pp. E2127 - E2133
Main Authors Ohashi, Kadoaki, Sequist, Lecia V, Arcila, Maria E, Moran, Teresa, Chmielecki, Juliann, Lin, Ya-Lun, Pan, Yumei, Wang, Lu, de Stanchina, Elisa, Shien, Kazuhiko, Aoe, Keisuke, Toyooka, Shinichi, Kiura, Katsuyuki, Fernandez-Cuesta, Lynnette, Fidias, Panos, Yang, James Chih-Hsin, Miller, Vincent A, Riely, Gregory J, Kris, Mark G, Engelman, Jeffrey A, Vnencak-Jones, Cindy L, Dias-Santagata, Dora, Ladanyi, Marc, Pao, William
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 31.07.2012
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR -mutant lung cancers. Here, we modeled disease progression using EGFR -mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS / RAF / MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS , KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR -mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment.
AbstractList Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR -mutant lung cancers. Here, we modeled disease progression using EGFR -mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS / RAF / MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS , KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR -mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment.
Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR-mutant lung cancers. Here, we modeled disease progression using EGFR-mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS/RAF/MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS, KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR-mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment. [PUBLICATION ABSTRACT]
Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR -mutant lung cancers. Here, we modeled disease progression using EGFR -mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS / RAF / MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS , KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR -mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment. Author Summary Targeted therapies are being developed at a rapid pace for various cancers. The data presented here further highlight the notion that, even though colorectal cancers, melanomas, GISTs, and lung cancers share common cell-proliferative signaling cascades, mediators of resistance must be elucidated separately for each disease to design individualized treatment. No recurrent NRAS , KRAS , or MEK1 mutations were detected in 212, 195, or 146 patient samples, respectively, but one tumor simultaneously harbored the mutations as follows: EGFR exon19 deletion, EGFR T790M, and BRAF V600E; another harbored an EGFR exon19 deletion with BRAF G469A. Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR -mutant cells conferred resistance to EGFR TKIs. In stable transfectants with mutant NRAS or BRAF , the combination of erlotinib and an MEK inhibitor significantly inhibited cell growth and reduced the levels of phospho-ERK ( Fig. P1 ) . In the case of BRAF V600E, erlotinib plus vemurafenib had the same effect as an MEK inhibitor. Mutations in KRAS , NRAS , MEK1 , or BRAF now have emerged as mediators of acquired resistance to targeted therapies in a variety of cancers. In colorectal cancers, KRAS mutations are associated with resistance to the anti-EGFR monoclonal antibody cetuximab. In melanomas, NRAS and MEK1 mutations mediate resistance to the inhibitor of mutant BRAF kinase, vemurafenib. In gastrointestinal stromal tumors (GISTs) harboring mutations in genes encoding other members of the protein tyrosine kinase receptor superfamily ( KIT and PDGFRα ), BRAF mutations occur in patients after long-term treatment with imatinib. KRAS mutations are not detected in lung tumors from patients with secondary resistance to EGFR-TKIs ( 2 – 4 ). However, the sample sizes are small ( n = 37, 14, and 6, respectively, in three studies). Only one study examined samples for BRAF mutations; no studies examined MEK1 . Prompted by these data and by the finding that a clinically relevant mouse lung tumor model of acquired resistance to TKIs also identified secondary Kras mutations ( 5 ), we systematically analyzed the frequency of known hotspot mutations in KRAS , NRAS , MEK1 , and BRAF in the largest known collection of samples from patients with acquired TKI resistance. Mechanisms of resistance to TKIs that have been revealed by studies of EGFR -mutant lung adenocarcinomas include second-site resistance EGFR mutations (>50%), amplification of the gene encoding the receptor MET (5–10%), mutations in the gene ( PIK3CA ) encoding the p110α catalytic subunit of the downstream signaling lipid kinase PI3K (<5%), and histologic transformation [i.e., cells display epithelial–mesenchymal transition (EMT) or small cell lung cancer] (<5%) ( 1 , 2 ). Here, to explore other potential modes of drug resistance, we used five TKI-sensitive parental human EGFR -mutant lines to develop six lines with acquired resistance. Five of six cells developed known mechanisms, i.e., an EGFR T790M mutation, MET amplification, or EMT. One cell line (11-18R) displayed an unexpected acquired NRAS Q61K mutation. Resistant cells were sensitive to concurrent treatment with EGFR and MEK inhibitors but to neither drug alone. Consistent with these findings, only the combination of erlotinib and an MEK inhibitor strongly diminished levels of phospho-ERK, a signaling protein that acts downstream of NRAS in the EGFR signaling pathway. Lung cancers with somatic epidermal growth factor receptor ( EGFR ) mutations initially are highly sensitive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib ( 1 ), but progression of disease (i.e., “acquired” or “secondary” resistance) occurs after about a year. In up to 40% of patients, mechanisms of resistance are unexplained. Here, through analysis of nearly 200 tumor samples for known “hotspot” mutations in genes ( KRAS, NRAS, MEK1, or BRAF ) encoding components of the EGFR signaling pathway ( Fig. P1 ) , we report that mutations in BRAF mediate resistance in 1% of cases. These results provide deeper insights into mechanisms of acquired resistance, inform ongoing clinical trials designed to treat refractory disease, and suggest that, among these genes, only BRAF mutations need be determined routinely in samples from such patients.
Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR -mutant lung cancers. Here, we modeled disease progression using EGFR -mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS / RAF / MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS , KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR -mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment.
Author Ladanyi, Marc
Pan, Yumei
Pao, William
Toyooka, Shinichi
Vnencak-Jones, Cindy L
Arcila, Maria E
Fidias, Panos
Shien, Kazuhiko
Aoe, Keisuke
Sequist, Lecia V
de Stanchina, Elisa
Yang, James Chih-Hsin
Kiura, Katsuyuki
Kris, Mark G
Engelman, Jeffrey A
Lin, Ya-Lun
Wang, Lu
Miller, Vincent A
Moran, Teresa
Riely, Gregory J
Dias-Santagata, Dora
Fernandez-Cuesta, Lynnette
Chmielecki, Juliann
Ohashi, Kadoaki
Author_xml – sequence: 1
  fullname: Ohashi, Kadoaki
– sequence: 2
  fullname: Sequist, Lecia V
– sequence: 3
  fullname: Arcila, Maria E
– sequence: 4
  fullname: Moran, Teresa
– sequence: 5
  fullname: Chmielecki, Juliann
– sequence: 6
  fullname: Lin, Ya-Lun
– sequence: 7
  fullname: Pan, Yumei
– sequence: 8
  fullname: Wang, Lu
– sequence: 9
  fullname: de Stanchina, Elisa
– sequence: 10
  fullname: Shien, Kazuhiko
– sequence: 11
  fullname: Aoe, Keisuke
– sequence: 12
  fullname: Toyooka, Shinichi
– sequence: 13
  fullname: Kiura, Katsuyuki
– sequence: 14
  fullname: Fernandez-Cuesta, Lynnette
– sequence: 15
  fullname: Fidias, Panos
– sequence: 16
  fullname: Yang, James Chih-Hsin
– sequence: 17
  fullname: Miller, Vincent A
– sequence: 18
  fullname: Riely, Gregory J
– sequence: 19
  fullname: Kris, Mark G
– sequence: 20
  fullname: Engelman, Jeffrey A
– sequence: 21
  fullname: Vnencak-Jones, Cindy L
– sequence: 22
  fullname: Dias-Santagata, Dora
– sequence: 23
  fullname: Ladanyi, Marc
– sequence: 24
  fullname: Pao, William
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22773810$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1uEzEUhS1URNPCmh1YYsu099qeH2-QQpUU1ABSSteWx-NJXBI7tWdAfQWemhkS2rK5lny-c3zlc0KOfPCWkNcIZwglP995nc6QAc85IMhnZDJMzAoh4YhMAFiZVYKJY3KS0i0AyLyCF-SYsbLkFcKE_F70fkWN9sbGRH-5bk21uetdtA2NNrnUjRLtAp1dzpfU-bWrXRcGNhijkwtebzb3dK1jHSL9uJzO6cp6S7d9p7tBTbTuO7rR5seTK-fp1XJ6_Z5-_TsH45fZFb4kz1u9SfbV4TwlN_PZ94tP2eLb5eeL6SIzooQua4UsaqhqKSAvsWWMcWyrqpFNw2oQoIumrItcFlC3qGuD2BiTI5eCtVhZwU_Jh33urq-3tjHWd1Fv1C66rY73Kmin_le8W6tV-Km4QJRFOQS8OwTEcNfb1Knb0MfhI5JC4FBigRUbqPM9ZWJIKdr24QUENZanxvLUY3mD483TxR74f20NAD0Ao_MxTiqOasaQjbu93SOtDkqvokvq5poBFgDIJBPA_wBD3asm
CitedBy_id crossref_primary_10_1016_j_critrevonc_2021_103225
crossref_primary_10_18632_oncotarget_20311
crossref_primary_10_1002_ijc_32358
crossref_primary_10_1053_j_semnuclmed_2019_06_003
crossref_primary_10_18632_oncotarget_7189
crossref_primary_10_2169_internalmedicine_4429_20
crossref_primary_10_1038_nm_4040
crossref_primary_10_1038_onc_2013_74
crossref_primary_10_4137_CIN_S19338
crossref_primary_10_1038_ncomms14768
crossref_primary_10_5306_wjco_v5_i4_560
crossref_primary_10_1634_theoncologist_2018_0567
crossref_primary_10_1038_ncomms11815
crossref_primary_10_1002_mco2_105
crossref_primary_10_1186_1746_1596_8_145
crossref_primary_10_1038_nrdp_2015_9
crossref_primary_10_18632_oncotarget_1891
crossref_primary_10_1080_14737159_2016_1181545
crossref_primary_10_1097_JTO_0000000000000648
crossref_primary_10_1177_1758835919890286
crossref_primary_10_18632_oncotarget_9931
crossref_primary_10_5858_arpa_2017_0158_RA
crossref_primary_10_1007_s11523_017_0479_4
crossref_primary_10_1158_1078_0432_CCR_15_0620
crossref_primary_10_1158_1535_7163_MCT_14_0723
crossref_primary_10_1158_0008_5472_CAN_15_0717
crossref_primary_10_3390_ijms19082411
crossref_primary_10_1158_1078_0432_CCR_14_3154
crossref_primary_10_3390_cancers12061587
crossref_primary_10_1016_j_bbadis_2017_12_021
crossref_primary_10_1210_jc_2013_2622
crossref_primary_10_1016_j_lungcan_2020_07_033
crossref_primary_10_1186_s12943_018_0793_1
crossref_primary_10_1146_annurev_cancerbio_030419_033502
crossref_primary_10_1586_erm_12_121
crossref_primary_10_1158_1078_0432_CCR_14_2748
crossref_primary_10_1136_esmoopen_2016_000088
crossref_primary_10_1038_ncomms12231
crossref_primary_10_1016_S0140_6736_21_00312_3
crossref_primary_10_4143_crt_2016_058
crossref_primary_10_1186_1471_2407_14_19
crossref_primary_10_1002_ccr3_95
crossref_primary_10_1186_1471_2407_14_748
crossref_primary_10_3389_fonc_2014_00190
crossref_primary_10_1016_j_jtho_2016_11_2231
crossref_primary_10_1111_1759_7714_12549
crossref_primary_10_18632_oncotarget_3956
crossref_primary_10_1016_j_lungcan_2020_06_004
crossref_primary_10_1016_j_currproblcancer_2014_08_007
crossref_primary_10_1101_gr_152322_112
crossref_primary_10_1186_s12885_018_4108_0
crossref_primary_10_3390_cancers13194734
crossref_primary_10_1016_j_bbrc_2020_07_055
crossref_primary_10_1016_j_jconrel_2020_05_043
crossref_primary_10_1186_s12885_015_1337_3
crossref_primary_10_1007_s00204_015_1524_7
crossref_primary_10_1186_s12885_020_06920_3
crossref_primary_10_3390_cancers14194863
crossref_primary_10_1158_2159_8290_CD_14_0750
crossref_primary_10_1016_j_semcancer_2016_11_002
crossref_primary_10_1016_j_jtho_2017_03_004
crossref_primary_10_1038_nm_3841
crossref_primary_10_18632_oncotarget_1431
crossref_primary_10_2217_fon_15_23
crossref_primary_10_3892_ol_2018_7808
crossref_primary_10_5301_tj_5000663
crossref_primary_10_2217_fon_2018_0097
crossref_primary_10_1158_1078_0432_CCR_17_2961
crossref_primary_10_1158_1535_7163_MCT_17_0464
crossref_primary_10_2174_0929867326666190222183219
crossref_primary_10_1177_1758834014532510
crossref_primary_10_1038_srep20913
crossref_primary_10_1080_14737140_2017_1390432
crossref_primary_10_1136_esmoopen_2016_000060
crossref_primary_10_2217_pgs_15_122
crossref_primary_10_1016_j_celrep_2015_03_012
crossref_primary_10_1021_acs_jmedchem_7b00178
crossref_primary_10_1016_j_hoc_2016_08_003
crossref_primary_10_1039_C8AN02029A
crossref_primary_10_1016_j_ctrv_2016_12_001
crossref_primary_10_1016_j_drup_2022_100863
crossref_primary_10_1016_j_pharmthera_2019_107438
crossref_primary_10_1177_1753465815588053
crossref_primary_10_1016_j_clinthera_2017_01_027
crossref_primary_10_1111_bjh_12599
crossref_primary_10_3390_cancers12092394
crossref_primary_10_1038_s41698_017_0007_0
crossref_primary_10_1038_s41388_018_0482_y
crossref_primary_10_1517_14656566_2014_909412
crossref_primary_10_1111_cts_12796
crossref_primary_10_1158_1078_0432_CCR_17_0782
crossref_primary_10_18632_oncotarget_19925
crossref_primary_10_1111_eva_12019
crossref_primary_10_1002_mco2_265
crossref_primary_10_1111_j_1440_1843_2012_02261_x
crossref_primary_10_1021_acsnano_2c00353
crossref_primary_10_1007_s11523_019_00669_x
crossref_primary_10_1158_0008_5472_CAN_12_4136
crossref_primary_10_1074_mcp_O115_056713
crossref_primary_10_18632_oncotarget_3871
crossref_primary_10_18632_oncotarget_7318
crossref_primary_10_1016_j_ccr_2014_02_025
crossref_primary_10_1016_j_ctrv_2013_06_002
crossref_primary_10_1038_s41698_021_00231_x
crossref_primary_10_1038_nm_3388
crossref_primary_10_1038_srep04413
crossref_primary_10_1080_14656566_2016_1261109
crossref_primary_10_2147_OTT_S254464
crossref_primary_10_1158_1078_0432_CCR_12_2246
crossref_primary_10_7554_eLife_06132
crossref_primary_10_1016_j_yexcr_2016_05_008
crossref_primary_10_1371_journal_pone_0082236
crossref_primary_10_1186_s13578_019_0322_y
crossref_primary_10_1016_j_canlet_2018_07_025
crossref_primary_10_3390_cancers13112748
crossref_primary_10_1016_j_compbiolchem_2016_05_009
crossref_primary_10_1038_s41698_021_00149_4
crossref_primary_10_1080_14737140_2017_1355243
crossref_primary_10_1186_s12906_018_2347_x
crossref_primary_10_1111_brv_12416
crossref_primary_10_1093_jjco_hyab048
crossref_primary_10_1155_2017_4517834
crossref_primary_10_1200_JCO_2012_43_3912
crossref_primary_10_2217_pgs_15_11
crossref_primary_10_1002_1878_0261_12063
crossref_primary_10_1038_s41698_021_00241_9
crossref_primary_10_1016_j_ejmech_2020_112640
crossref_primary_10_1517_13543784_2014_928283
crossref_primary_10_1073_pnas_1717782115
crossref_primary_10_1016_j_critrevonc_2020_103008
crossref_primary_10_1016_j_lungcan_2016_12_012
crossref_primary_10_1021_acs_jmedchem_1c01714
crossref_primary_10_1007_s12094_017_1702_6
crossref_primary_10_1021_acs_jmedchem_2c01242
crossref_primary_10_3390_cells7110212
crossref_primary_10_1016_j_semcancer_2014_07_009
crossref_primary_10_1124_pr_113_007807
crossref_primary_10_1158_2159_8290_CD_15_0654
crossref_primary_10_3390_cells10051206
crossref_primary_10_1016_j_trecan_2016_05_010
crossref_primary_10_1007_s00432_020_03192_z
crossref_primary_10_1097_CAD_0000000000001537
crossref_primary_10_1093_nar_gkx1218
crossref_primary_10_1016_j_jtho_2016_08_140
crossref_primary_10_1586_17512433_2015_1055252
crossref_primary_10_1038_s41598_021_94678_4
crossref_primary_10_1158_2159_8290_CD_14_0552
crossref_primary_10_1016_j_cllc_2020_06_008
crossref_primary_10_1101_gr_213546_116
crossref_primary_10_1016_j_celrep_2013_03_004
crossref_primary_10_2147_CMAR_S266069
crossref_primary_10_1016_S1470_2045_15_00246_6
crossref_primary_10_1016_j_bbrc_2017_10_175
crossref_primary_10_1016_j_tranon_2022_101364
crossref_primary_10_3390_ijms18112420
crossref_primary_10_1158_1535_7163_MCT_20_0965
crossref_primary_10_3389_fonc_2017_00113
crossref_primary_10_1016_j_jtho_2018_02_025
crossref_primary_10_1152_physiolgenomics_00062_2014
crossref_primary_10_1158_0008_5472_CAN_16_2300
crossref_primary_10_1002_1878_0261_12190
crossref_primary_10_1038_bjc_2014_210
crossref_primary_10_1016_j_molonc_2012_09_002
crossref_primary_10_1016_j_semcdb_2015_09_018
crossref_primary_10_1007_s00432_021_03828_8
crossref_primary_10_1016_j_cllc_2014_12_013
crossref_primary_10_1101_gad_291948_116
crossref_primary_10_1158_1535_7163_MCT_15_0088
crossref_primary_10_1007_s00432_018_2634_4
crossref_primary_10_1158_1078_0432_CCR_13_2437
crossref_primary_10_1200_JCO_2014_59_7328
crossref_primary_10_1200_JCO_2012_45_9867
crossref_primary_10_1039_D3LC00069A
crossref_primary_10_1158_2159_8290_CD_14_0462
crossref_primary_10_1016_j_drup_2015_05_002
crossref_primary_10_1016_j_ijscr_2016_10_076
crossref_primary_10_1016_j_pharmthera_2017_02_001
crossref_primary_10_1093_annonc_mdx703
crossref_primary_10_1016_j_neo_2017_10_003
crossref_primary_10_1016_j_semcancer_2023_05_006
crossref_primary_10_3892_ol_2017_7377
crossref_primary_10_3390_ijms21031102
crossref_primary_10_1016_j_lungcan_2023_107393
crossref_primary_10_1111_eci_12901
crossref_primary_10_7314_APJCP_2015_16_10_4147
crossref_primary_10_1186_s13045_017_0536_6
crossref_primary_10_4161_cbt_23627
crossref_primary_10_1016_j_resinv_2015_07_001
crossref_primary_10_1038_s41388_018_0362_5
crossref_primary_10_1007_s00109_019_01848_z
crossref_primary_10_1007_s11523_018_0554_5
crossref_primary_10_3390_ijms20225701
crossref_primary_10_1186_s12885_016_2902_0
crossref_primary_10_1007_s00216_013_6963_5
crossref_primary_10_1016_j_resinv_2013_07_007
crossref_primary_10_3349_ymj_2017_58_1_9
crossref_primary_10_7554_eLife_06907
crossref_primary_10_35713_aic_v1_i1_19
crossref_primary_10_1016_j_tranon_2016_11_008
crossref_primary_10_1038_onc_2016_431
crossref_primary_10_1016_j_jtho_2017_01_018
crossref_primary_10_1016_j_pharmthera_2020_107522
crossref_primary_10_1038_s41698_024_00554_5
crossref_primary_10_1371_journal_pone_0276161
crossref_primary_10_1038_s41598_018_20326_z
crossref_primary_10_1002_smtd_201900357
crossref_primary_10_1038_s41598_018_33816_x
crossref_primary_10_1158_2159_8290_CD_14_0337
crossref_primary_10_14694_EdBook_AM_2015_35_e165
crossref_primary_10_1016_j_lungcan_2020_09_024
crossref_primary_10_1097_PAS_0000000000000744
crossref_primary_10_1158_2159_8290_CD_15_0063
crossref_primary_10_1530_ERC_15_0555
crossref_primary_10_1111_1759_7714_12177
crossref_primary_10_1002_mc_23593
crossref_primary_10_1016_j_cllc_2019_04_012
crossref_primary_10_4046_trd_2016_79_4_248
crossref_primary_10_1016_j_ccell_2023_07_005
crossref_primary_10_18632_oncotarget_16350
crossref_primary_10_3390_cells12152014
crossref_primary_10_2217_lmt_15_11
crossref_primary_10_1016_j_lungcan_2014_03_016
crossref_primary_10_1038_s41568_020_00322_0
crossref_primary_10_1016_j_lungcan_2014_03_011
crossref_primary_10_1016_j_pharmthera_2018_08_007
crossref_primary_10_1586_14737140_2013_845092
crossref_primary_10_1517_13543776_2014_864279
crossref_primary_10_1126_scisignal_2004839
crossref_primary_10_3892_ol_2021_12845
crossref_primary_10_3389_fonc_2021_621992
crossref_primary_10_4103_lungindia_lungindia_451_17
crossref_primary_10_1016_j_cllc_2015_12_001
crossref_primary_10_1186_2050_7771_1_2
crossref_primary_10_3390_cancers13225639
crossref_primary_10_1038_nrclinonc_2014_104
crossref_primary_10_1016_j_ctrv_2014_05_009
crossref_primary_10_1158_0008_5472_CAN_17_3370
crossref_primary_10_18821_1028_9984_2016_21_4_179_185
crossref_primary_10_3390_cancers14061574
crossref_primary_10_18632_oncotarget_6826
crossref_primary_10_2217_pme_14_69
crossref_primary_10_1038_s41419_017_0063_y
crossref_primary_10_1111_cas_12905
crossref_primary_10_1158_1078_0432_CCR_19_1667
crossref_primary_10_1016_j_critrevonc_2018_01_013
crossref_primary_10_1158_1535_7163_MCT_17_1279
crossref_primary_10_1016_j_mam_2015_06_009
crossref_primary_10_1186_s12885_016_2201_9
crossref_primary_10_1364_BOE_9_004149
crossref_primary_10_1007_s00103_013_1823_1
crossref_primary_10_18632_oncotarget_11218
crossref_primary_10_4103_0366_6999_207478
crossref_primary_10_1111_1759_7714_13003
crossref_primary_10_18632_oncotarget_6957
crossref_primary_10_1016_j_lungcan_2019_08_019
crossref_primary_10_1038_s41388_017_0105_z
crossref_primary_10_1053_j_seminoncol_2015_09_028
crossref_primary_10_18632_oncotarget_21164
crossref_primary_10_3389_fonc_2021_722039
crossref_primary_10_3390_cancers12051283
crossref_primary_10_1021_acs_jproteome_6b00102
crossref_primary_10_1080_14728214_2018_1558203
crossref_primary_10_1172_jci_insight_120858
crossref_primary_10_3892_ol_2022_13528
crossref_primary_10_3390_ijerph192114324
crossref_primary_10_1038_nm_3667
crossref_primary_10_1080_14737140_2021_1940964
crossref_primary_10_1016_j_bulcan_2015_05_001
crossref_primary_10_1038_s41467_021_24661_0
crossref_primary_10_1158_1078_0432_CCR_18_1640
crossref_primary_10_1007_s12094_013_1143_9
crossref_primary_10_1200_PO_17_00238
crossref_primary_10_1093_annonc_mdt495
crossref_primary_10_1016_j_canlet_2022_01_030
crossref_primary_10_1158_0008_5472_CAN_13_0344
crossref_primary_10_1007_s10330_015_0052_5
crossref_primary_10_1159_000443368
crossref_primary_10_1016_j_rechem_2024_101413
crossref_primary_10_1080_14728222_2024_2374742
crossref_primary_10_1158_0008_5472_CAN_16_0069
crossref_primary_10_2217_lmt_14_35
crossref_primary_10_37882_2223_2966_2020_09_24
crossref_primary_10_1038_srep44206
crossref_primary_10_1080_14737140_2018_1508347
crossref_primary_10_1158_1535_7163_MCT_16_0313
crossref_primary_10_1038_s41573_022_00615_z
crossref_primary_10_1016_j_jtho_2015_10_002
crossref_primary_10_1016_j_resinv_2014_10_002
crossref_primary_10_1200_JCO_2012_45_2029
crossref_primary_10_1016_j_neo_2015_07_001
crossref_primary_10_1016_j_phrs_2015_09_016
crossref_primary_10_1016_j_ctrv_2018_04_006
crossref_primary_10_1016_j_apsb_2015_07_001
crossref_primary_10_1016_j_bbagrm_2015_01_003
crossref_primary_10_1586_17476348_2016_1164603
crossref_primary_10_1186_s43556_022_00107_x
crossref_primary_10_5306_wjco_v5_i4_576
crossref_primary_10_1016_j_biopha_2022_113942
crossref_primary_10_3390_ijms20163951
crossref_primary_10_1016_j_jtho_2018_04_005
crossref_primary_10_3892_ol_2017_7622
crossref_primary_10_1038_s41573_021_00195_4
crossref_primary_10_1378_chest_14_2663
crossref_primary_10_1200_PO_17_00263
crossref_primary_10_3892_mmr_2014_3058
crossref_primary_10_1016_j_jmoldx_2016_07_004
crossref_primary_10_1038_srep29752
crossref_primary_10_1007_s10555_016_9607_3
crossref_primary_10_1016_j_critrevonc_2015_08_004
crossref_primary_10_1038_nrc_2017_84
crossref_primary_10_1038_srep09925
crossref_primary_10_1007_s10735_014_9583_2
crossref_primary_10_1002_med_21700
crossref_primary_10_1016_j_critrevonc_2017_07_003
crossref_primary_10_1517_14740338_2014_973400
crossref_primary_10_1586_14737159_2014_908120
crossref_primary_10_1016_j_compbiolchem_2018_07_017
crossref_primary_10_1248_bpb_b17_00271
crossref_primary_10_1002_dc_24193
crossref_primary_10_1002_cncr_28723
crossref_primary_10_1158_0008_5472_CAN_14_3167
crossref_primary_10_1016_j_biopha_2022_113959
crossref_primary_10_3390_cancers11030341
crossref_primary_10_4155_fmc_2016_0019
crossref_primary_10_1007_s13402_015_0225_9
crossref_primary_10_1016_j_jtho_2016_05_008
Cites_doi 10.1126/scitranslmed.3002003
10.1158/1078-0432.CCR-06-1570
10.1158/0008-5472.CAN-08-0099
10.1056/NEJMoa0909530
10.1200/JCO.2010.33.1280
10.1038/onc.2008.109
10.1038/nature07423
10.1200/JCO.2011.35.9638
10.1056/NEJMoa040938
10.1158/0008-5472.CAN-07-5084
10.1158/0008-5472.CAN-07-0681
10.1158/0008-5472.CAN-08-4204
10.1158/1078-0432.CCR-10-1371
10.1093/jnci/dji055
10.1242/dmm.003681
10.1093/annonc/mdr489
10.1371/journal.pmed.0020073
10.1038/nature09626
10.1038/ng1975
10.1016/S1470-2045(10)70130-3
10.1200/JCO.2010.33.2312
10.1158/1078-0432.CCR-10-2277
10.1038/nature11156
10.1126/science.1099314
10.1097/JTO.0b013e318216ee52
10.1158/1078-0432.CCR-06-0714
10.1056/NEJMoa044238
10.1371/journal.pone.0000426
10.1056/NEJMc053610
10.1200/jco.2011.29.15_suppl.7525
10.1073/pnas.0710370104
10.1158/1535-7163.MCT-11-0692
10.1126/scitranslmed.3002356
10.1038/nrc2947
10.1016/j.jmoldx.2010.11.010
10.1002/emmm.201000070
10.1073/pnas.0405220101
10.1002/gcc.20589
10.1126/science.1141478
10.1371/journal.pmed.0020017
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 31, 2012
Copyright_xml – notice: Copyright National Academy of Sciences Jul 31, 2012
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1203530109
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList
MEDLINE
Virology and AIDS Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Acquired resistance to EGFR inhibitors
EISSN 1091-6490
EndPage E2133
ExternalDocumentID 2726542191
10_1073_pnas_1203530109
22773810
109_31_E2127
US201600129240
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA068485
– fundername: NCI NIH HHS
  grantid: P01-CA129243
– fundername: PHS HHS
  grantid: 1R21-156000
– fundername: NCI NIH HHS
  grantid: U54-CA143798
– fundername: NCI NIH HHS
  grantid: P30-CA68485
– fundername: NCI NIH HHS
  grantid: U54 CA143798
– fundername: NCI NIH HHS
  grantid: CA90949
– fundername: NCI NIH HHS
  grantid: P50 CA090949
– fundername: NCI NIH HHS
  grantid: P01 CA129243
– fundername: NCI NIH HHS
  grantid: R01 CA121210
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
ABXSQ
ADACV
AQVQM
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c470t-f496b08b940571f22231f88d9dd2b040a6d7b65960bf1abc11dcc513942f18e43
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:26:10 EDT 2024
Thu Oct 10 20:42:08 EDT 2024
Fri Aug 23 01:10:36 EDT 2024
Sat Sep 28 07:51:41 EDT 2024
Wed Nov 11 00:30:16 EST 2020
Wed Dec 27 19:00:28 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-f496b08b940571f22231f88d9dd2b040a6d7b65960bf1abc11dcc513942f18e43
Notes http://dx.doi.org/10.1073/pnas.1203530109
Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved May 31, 2012 (received for review March 2, 2012)
Author contributions: K.O. and W.P. designed research; K.O., M.E.A., J.C., Y.-L.L., Y.P., L.W., E.d.S., K.S., and L.F.-C. performed research; M.E.A., Y.-L.L., Y.P., C.L.V.-J., D.D.-S., and M.L. contributed new reagents/analytic tools; L.V.S., T.M., K.A., S.T., K.K., L.F.-C., P.F., J.C.-H.Y., V.A.M., G.J.R., M.G.K., and J.A.E. collected patient samples; K.O., L.V.S., M.E.A., T.M., Y.-L.L., Y.P., L.W., K.S., K.A., S.T., K.K., P.F., J.C.-H.Y., V.A.M., G.J.R., M.G.K., J.A.E., C.L.V.-J., D.D.-S., M.L., and W.P. analyzed data; and K.O. and W.P. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/31/E2127.full.pdf
PMID 22773810
PQID 1030716182
PQPubID 42026
ParticipantIDs fao_agris_US201600129240
crossref_primary_10_1073_pnas_1203530109
pnas_primary_109_31_E2127
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3411967
pubmed_primary_22773810
proquest_journals_1030716182
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-07-31
PublicationDateYYYYMMDD 2012-07-31
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 16837691 - N Engl J Med. 2006 Jul 13;355(2):213-5
21825258 - J Clin Oncol. 2011 Sep 10;29(26):3574-9
17463250 - Science. 2007 May 18;316(5827):1039-43
21734175 - Sci Transl Med. 2011 Jul 6;3(90):90ra59
21062933 - Clin Cancer Res. 2010 Nov 15;16(22):5489-98
15696205 - PLoS Med. 2005 Jan;2(1):e17
18093943 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20932-7
18757405 - Cancer Res. 2008 Sep 1;68(17):6913-21
17487277 - PLoS One. 2007;2(5):e426
20966921 - Nat Rev Cancer. 2010 Nov;10(11):760-74
22135231 - Mol Cancer Ther. 2012 Feb;11(2):485-91
18948947 - Nature. 2008 Oct 23;455(7216):1069-75
15737014 - PLoS Med. 2005 Mar;2(3):e73
20007486 - Dis Model Mech. 2010 Jan-Feb;3(1-2):111-9
20619739 - Lancet Oncol. 2010 Aug;11(8):753-62
20573926 - N Engl J Med. 2010 Jun 24;362(25):2380-8
18615679 - Genes Chromosomes Cancer. 2008 Oct;47(10):853-9
21383288 - J Clin Oncol. 2011 Aug 1;29(22):3085-96
17699786 - Cancer Res. 2007 Aug 15;67(16):7807-14
21248300 - Clin Cancer Res. 2011 Mar 1;17(5):1169-80
17085664 - Clin Cancer Res. 2006 Nov 1;12(21):6494-501
21227397 - J Mol Diagn. 2011 Jan;13(1):74-84
22722830 - Nature. 2012 Jun 28;486(7404):532-6
21430269 - Sci Transl Med. 2011 Mar 23;3(75):75ra26
15329413 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13306-11
17293865 - Nat Genet. 2007 Mar;39(3):347-51
15728811 - N Engl J Med. 2005 Feb 24;352(8):786-92
19759520 - J Clin Invest. 2009 Oct;119(10):3000-10
21483012 - J Clin Oncol. 2011 May 20;29(15):2046-51
17020982 - Clin Cancer Res. 2006 Oct 1;12(19):5764-9
15741570 - J Natl Cancer Inst. 2005 Mar 2;97(5):339-46
21107323 - Nature. 2010 Dec 16;468(7326):973-7
21597390 - J Thorac Oncol. 2011 Jul;6(7):1152-61
22071650 - Ann Oncol. 2011 Dec;22(12):2616-24
15118073 - N Engl J Med. 2004 May 20;350(21):2129-39
18632602 - Cancer Res. 2008 Jul 15;68(14):5524-8
20432502 - EMBO Mol Med. 2010 May;2(5):146-58
18408761 - Oncogene. 2008 Aug 7;27(34):4702-11
15118125 - Science. 2004 Jun 4;304(5676):1497-500
19491268 - Cancer Res. 2009 Jun 15;69(12):5091-8
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
Kris MG (e_1_3_3_22_2); 29
e_1_3_3_31_2
e_1_1_2_18_9_2_2
e_1_1_2_18_9_3_2
e_1_1_2_18_9_1_2
e_1_1_2_18_9_4_2
e_1_1_2_18_9_5_2
Regales L (e_1_3_3_40_2) 2009; 119
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_12_2
  doi: 10.1126/scitranslmed.3002003
– ident: e_1_3_3_8_2
  doi: 10.1158/1078-0432.CCR-06-1570
– ident: e_1_3_3_18_2
  doi: 10.1158/0008-5472.CAN-08-0099
– volume: 29
  ident: e_1_3_3_22_2
  article-title: The NCI’s Lung Cancer Mutation Consortium (LCMC) Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma (abstract CRA7506)
  publication-title: J Clin Oncol 2011
  contributor:
    fullname: Kris MG
– ident: e_1_3_3_5_2
  doi: 10.1056/NEJMoa0909530
– ident: e_1_3_3_16_2
  doi: 10.1200/JCO.2010.33.1280
– ident: e_1_3_3_37_2
  doi: 10.1038/onc.2008.109
– ident: e_1_3_3_15_2
  doi: 10.1038/nature07423
– ident: e_1_3_3_17_2
  doi: 10.1200/JCO.2011.35.9638
– ident: e_1_3_3_1_2
  doi: 10.1056/NEJMoa040938
– ident: e_1_3_3_19_2
  doi: 10.1158/0008-5472.CAN-07-5084
– ident: e_1_3_3_33_2
  doi: 10.1158/0008-5472.CAN-07-0681
– ident: e_1_3_3_34_2
  doi: 10.1158/0008-5472.CAN-08-4204
– ident: e_1_3_3_42_2
– ident: e_1_3_3_35_2
  doi: 10.1158/1078-0432.CCR-10-1371
– ident: e_1_3_3_4_2
  doi: 10.1093/jnci/dji055
– ident: e_1_3_3_30_2
  doi: 10.1242/dmm.003681
– ident: e_1_3_3_14_2
  doi: 10.1093/annonc/mdr489
– ident: e_1_3_3_7_2
  doi: 10.1371/journal.pmed.0020073
– ident: e_1_3_3_26_2
  doi: 10.1038/nature09626
– ident: e_1_3_3_39_2
  doi: 10.1038/ng1975
– ident: e_1_1_2_18_9_2_2
  doi: 10.1126/scitranslmed.3002003
– ident: e_1_3_3_24_2
  doi: 10.1016/S1470-2045(10)70130-3
– ident: e_1_3_3_27_2
  doi: 10.1200/JCO.2010.33.2312
– ident: e_1_3_3_9_2
  doi: 10.1158/1078-0432.CCR-10-2277
– ident: e_1_3_3_25_2
  doi: 10.1038/nature11156
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1099314
– ident: e_1_1_2_18_9_5_2
  doi: 10.1242/dmm.003681
– ident: e_1_3_3_36_2
  doi: 10.1097/JTO.0b013e318216ee52
– ident: e_1_1_2_18_9_3_2
  doi: 10.1158/1078-0432.CCR-06-0714
– ident: e_1_3_3_6_2
  doi: 10.1056/NEJMoa044238
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.pone.0000426
– volume: 119
  start-page: 3000
  year: 2009
  ident: e_1_3_3_40_2
  article-title: Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer
  publication-title: J Clin Invest
  contributor:
    fullname: Regales L
– ident: e_1_3_3_13_2
  doi: 10.1056/NEJMc053610
– ident: e_1_3_3_41_2
  doi: 10.1200/jco.2011.29.15_suppl.7525
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0710370104
– ident: e_1_3_3_20_2
  doi: 10.1158/1535-7163.MCT-11-0692
– ident: e_1_3_3_29_2
  doi: 10.1158/1078-0432.CCR-06-0714
– ident: e_1_3_3_31_2
  doi: 10.1126/scitranslmed.3002356
– ident: e_1_1_2_18_9_1_2
  doi: 10.1038/nrc2947
– ident: e_1_3_3_32_2
  doi: 10.1016/j.jmoldx.2010.11.010
– ident: e_1_1_2_18_9_4_2
  doi: 10.1371/journal.pmed.0020073
– ident: e_1_3_3_38_2
  doi: 10.1002/emmm.201000070
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.0405220101
– ident: e_1_3_3_28_2
  doi: 10.1002/gcc.20589
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1141478
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.pmed.0020017
SSID ssj0009580
Score 2.6020107
Snippet Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR -mutant lung cancers. Here, we modeled disease...
Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR-mutant lung cancers. Here, we modeled disease...
Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR -mutant lung cancers. Here, we modeled disease...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E2127
SubjectTerms Amino Acid Substitution
Biological Sciences
Cell Line, Tumor
Cells
clinical trials
Clinical Trials as Topic
colorectal neoplasms
Drug Resistance, Neoplasm
epidermal growth factor receptors
Female
gastrointestinal system
Gene expression
genes
Humans
Kinases
Lung cancer
lung neoplasms
Lung Neoplasms - drug therapy
Lung Neoplasms - enzymology
Male
MAP Kinase Kinase 1 - genetics
MAP Kinase Kinase 1 - metabolism
melanoma
Metastasis
mutants
Mutation
Mutation, Missense
neoplasm cells
patients
PNAS Plus
Protein Kinase Inhibitors - pharmacology
Protein Kinase Inhibitors - therapeutic use
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins B-raf - genetics
Proto-Oncogene Proteins B-raf - metabolism
Proto-Oncogene Proteins p21(ras)
ras Proteins - genetics
ras Proteins - metabolism
Receptor, Epidermal Growth Factor - antagonists & inhibitors
Receptor, Epidermal Growth Factor - genetics
Receptor, Epidermal Growth Factor - metabolism
Tumors
tyrosine
Title Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1
URI http://www.pnas.org/content/109/31/E2127.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22773810
https://www.proquest.com/docview/1030716182
https://pubmed.ncbi.nlm.nih.gov/PMC3411967
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED7EmboUTV9RmxYcOqRAZZsPidLoBnaDpg4KpwayCSQl1QJi2bDloX8hvzp3ejhx0amLBokkJH334vH4EeCTyNENpEPnozfKfJUb60dhHPqhcJmQGWpXzVswvQ4v5-r7bXB7BEG3F6Yu2ne26Jd3y35ZLOrayvXSDbo6scHP6QVaXhQcPehBT0vZTdH3TLtRs-9EoPlVQnV8PloO1qXZ9rkYykDSihARAQutiePqwCv1crMirlNs_a-48-_yySf-aPICnreBJBs1L3wCR1n5Ek5aVd2y85ZP-vMruP-BCs0cwbvZMkq8MuOoADhLGU62KYDER6xasfG3yYwV5aKwBR3Cw1b44xvWjrs_bGE2KC_s62w0YSh1GVvummX8LbO7ilEi8MmtomRXs9HNF3ZdX7HjdHzFX8N8Mv51cem3RzD4Tulh5ecqDu0wsjHFdTynYILnUZTGaSos6r8JU23DAKdBNufGOs5T5wKMKpXIeZQp-QaOy1WZnQJTsQmdDUzMnVGB0JGRqR3G2gYyt9KmHpx3ECTrhmkjqVfItUwIiuQROA9OEaLE_EY7mMxvBLHkUUINoxMPvLrx4whxInkyJiJ7D846MJNWU3FUsnJ0aoDw4G2D675zJx0e6APE9w2Im_vwCYpszdHdiui7_-75Hp7hd4kmjXwGx9Vml33A-KeyH2t5fwDcRQAf
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwEN5pywEuQHnVUEAHDmUGO5bk5zF0EgJ5DJM2TG8aSbaJh8bJJM4BfgK_mpUfadPhAhcfrMeMZj_tfpJWnwDesQzDQOJqG6NRanuZVHYUxIEdMJ0ynuLsqnQLxpNgMPO-XPlXB-C3d2GqpH2tcqe4XjhFPq9yK1cL3WnzxDpfx-foeRE4YecQ7uF8ZX67SN9p7Ub1zROGDthjXqvoE_LOqpAbhzKX-9ycCRkpYBaGRuVqLy4dZnJp1E6x9t-Y590EylsRqf8IvrVjqRNRfjjbUjn61x2Zx38e7GN42HBU0q2Lj-EgLZ7AceMFNuSskap-_xR-j9BXEG2Qs94Qs6dLpDa5xWlCcB1vuCkWkXJJep_6U5IX81zl5n0fskSb1oIg1z_JXK4RiuTjtNsnCOiULLZ1hsCGqG1JzB7jrV95QYbT7sUHMqm-2HDcG9JnMOv3Ls8HdvO6g6290C3tzIsD5UYqNpSRZoan0CyKkjhJmELXIoMkVIGPKyyVUak0pYnWPhJWj2U0Sj3-HI6KZZGeAPFiGWjly5hq6fksjCRPlBuHyueZ4iqx4Ky1rVjVIh6iOnwPuTA2FjeIsOAEbS_kd3SxYnbBjACf2atD4mOBVVW-6SEWnIqe0ci34LRFiWicAPZqHKh5kIBZ8KIGzK5xCzsLwj0o7SoY2e_9EgRIJf_dAOLlf7d8C_cHl-ORGH2eDF_BAxwjq3erT-GoXG_T10izSvWmmlR_AFAFIhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYkBAXxvhaxgAfOAyJfNlJnBzLaBh0raaOShMXy3ZiGrGmVZse4E_gr-Y5H107cdolh-TZkvV-fu_5-eX3EHpPNLiBzFM2eKPcDrSQdhwlkR0RlROaw-6qeQuGo-h8Eny7Dq-3Wn3VRftKFk55M3PKYlrXVi5myu3qxNzL4RlYXgAOcxeZdvfQQ9izhHUH9Q3fbtz8fULACAck6Fh9GHUXpVg5PvFoSM29kKEDJowZpqsd37SnxdwwnoL0_6LPu0WUW14pPUA_uvU0xSi_nHUlHfXnDtXjvRb8FD1pY1Xca0QO0YO8fIYOW2uwwqctZfWH5-jvBdgMrAyClitscrtYKFNjnGcYzvMmRoVPuJrj_pd0jItyWsjC9PnBc9BtQwxy8xtPxRIgiT-NeykGYOd4tm4qBVZYritsco1br4oSD8a9q494VD9h4LA_8F-gSdr_fnZut10ebBUwr7J1kETSi2ViQkdfm3jF13GcJVlGJJgYEWVMRiGctKT2hVS-nykVQuAaEO3HeUBfov1yXuZHCAeJiJQMReIrEYSExYJm0kuYDKmWVGYWOu30yxcNmQevL-EZ5UbP_BYVFjoC_XPxE0wtn1wRQ8RncnYQAFnIqoVvZ0g49XnfcOVb6KRDCm-NAcxqDKlpTEAs9KoBzWZwBz0LsR04bQQM_ffuFwBJTQPeguL43iPfoUeXn1N-8XU0eI0ewxJJk7Q-QfvVcp2_gWirkm_rffUPgtYklA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+cancers+with+acquired+resistance+to+EGFR+inhibitors+occasionally+harbor+BRAF+gene+mutations+but+lack+mutations+in+KRAS%2C+NRAS%2C+or+MEK1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ohashi%2C+Kadoaki&rft.au=Sequist%2C+Lecia+V&rft.au=Arcila%2C+Maria+E&rft.au=Moran%2C+Teresa&rft.date=2012-07-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=31&rft.spage=E2127&rft.epage=E2133&rft_id=info:doi/10.1073%2Fpnas.1203530109&rft.externalDocID=US201600129240
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F31.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F31.cover.gif