A novel EEG decoding method for a facial-expression-based BCI system using the combined convolutional neural network and genetic algorithm

Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the classification accuracy of brain–computer interface (BCI) systems, facial-expression-based brain control technologies have been proposed in the form o...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 16; p. 988535
Main Authors Li, Rui, Liu, Di, Li, Zhijun, Liu, Jinli, Zhou, Jincao, Liu, Weiping, Liu, Bo, Fu, Weiping, Alhassan, Ahmad Bala
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 13.09.2022
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the classification accuracy of brain–computer interface (BCI) systems, facial-expression-based brain control technologies have been proposed in the form of novel BCI systems. Unfortunately, existing machine learning algorithms fail to identify the most relevant features of electroencephalogram signals, which further limits the performance of the classifiers. To address this problem, an improved classification method is proposed for facial-expression-based BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined with a genetic algorithm (GA). The CNN was applied to extract features and classify them. The GA was used for hyperparameter selection to extract the most relevant parameters for classification. To validate the superiority of the proposed algorithm used in this study, various experimental performance results were systematically evaluated, and a trained CNN-GA model was constructed to control an intelligent car in real time. The average accuracy across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ± 2.07%. The superior performance of the proposed algorithm was demonstrated through offline and online experiments. The experimental results demonstrate that our improved FE-BCI system outperforms the traditional methods.
AbstractList Multiple types of brain control systems have been applied in the field of rehabilitation. As an alternative scheme to balance the user’s fatigue and the classification accuracy of brain computer interface (BCI) system, facial expression based brain control technology was serves as a novel BCI system has been proposed. Unfortunately, the existing machine learning algorithms fail to meet the most relevant features of EEG signal that further limit the performance of the classifier. To address this problem, an improved classification method was proposed for facial expression based BCI system using a Convolutional Neural Network (CNN) combined Genetic Algorithm (GA) in this study. The CNN was applied to extract features and classify them. The GA was used in the process of hyper-parameters selection to extract the most relevant parameters for classification. To validate the superiority of proposed algorithm used in this study, the performance of various experimental results was systematically evaluated and the trained CNN model was constructed to control an intelligent car in real time. The average accuracy from all subjects was 89.21±3.79% and the highest accuracy was up to 97.71±2.07%, respectively. The superior performance of proposed algorithm was demonstrated by both offline and online experiments. All the experimental results demonstrated that the performance of our improved FE-BCI system outperforms the state-of-art methods in the term of facial expression based BCI system (FE-BCI).
Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the classification accuracy of brain-computer interface (BCI) systems, facial-expression-based brain control technologies have been proposed in the form of novel BCI systems. Unfortunately, existing machine learning algorithms fail to identify the most relevant features of electroencephalogram signals, which further limits the performance of the classifiers. To address this problem, an improved classification method is proposed for facial-expression-based BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined with a genetic algorithm (GA). The CNN was applied to extract features and classify them. The GA was used for hyperparameter selection to extract the most relevant parameters for classification. To validate the superiority of the proposed algorithm used in this study, various experimental performance results were systematically evaluated, and a trained CNN-GA model was constructed to control an intelligent car in real time. The average accuracy across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ± 2.07%. The superior performance of the proposed algorithm was demonstrated through offline and online experiments. The experimental results demonstrate that our improved FE-BCI system outperforms the traditional methods.Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the classification accuracy of brain-computer interface (BCI) systems, facial-expression-based brain control technologies have been proposed in the form of novel BCI systems. Unfortunately, existing machine learning algorithms fail to identify the most relevant features of electroencephalogram signals, which further limits the performance of the classifiers. To address this problem, an improved classification method is proposed for facial-expression-based BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined with a genetic algorithm (GA). The CNN was applied to extract features and classify them. The GA was used for hyperparameter selection to extract the most relevant parameters for classification. To validate the superiority of the proposed algorithm used in this study, various experimental performance results were systematically evaluated, and a trained CNN-GA model was constructed to control an intelligent car in real time. The average accuracy across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ± 2.07%. The superior performance of the proposed algorithm was demonstrated through offline and online experiments. The experimental results demonstrate that our improved FE-BCI system outperforms the traditional methods.
Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the classification accuracy of brain–computer interface (BCI) systems, facial-expression-based brain control technologies have been proposed in the form of novel BCI systems. Unfortunately, existing machine learning algorithms fail to identify the most relevant features of electroencephalogram signals, which further limits the performance of the classifiers. To address this problem, an improved classification method is proposed for facial-expression-based BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined with a genetic algorithm (GA). The CNN was applied to extract features and classify them. The GA was used for hyperparameter selection to extract the most relevant parameters for classification. To validate the superiority of the proposed algorithm used in this study, various experimental performance results were systematically evaluated, and a trained CNN-GA model was constructed to control an intelligent car in real time. The average accuracy across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ± 2.07%. The superior performance of the proposed algorithm was demonstrated through offline and online experiments. The experimental results demonstrate that our improved FE-BCI system outperforms the traditional methods.
Author Li, Zhijun
Zhou, Jincao
Liu, Bo
Liu, Weiping
Li, Rui
Liu, Di
Liu, Jinli
Fu, Weiping
Alhassan, Ahmad Bala
AuthorAffiliation 2 Xi'an People's Hospital , Xi'an , China
3 Department of Electrical and Information Technology, King Mongkut's University of Technology , Bangkok , Thailand
1 School of Mechanical and Instrumental Engineering, Xi'an University of Technology , Xi'an , China
AuthorAffiliation_xml – name: 3 Department of Electrical and Information Technology, King Mongkut's University of Technology , Bangkok , Thailand
– name: 1 School of Mechanical and Instrumental Engineering, Xi'an University of Technology , Xi'an , China
– name: 2 Xi'an People's Hospital , Xi'an , China
Author_xml – sequence: 1
  givenname: Rui
  surname: Li
  fullname: Li, Rui
– sequence: 2
  givenname: Di
  surname: Liu
  fullname: Liu, Di
– sequence: 3
  givenname: Zhijun
  surname: Li
  fullname: Li, Zhijun
– sequence: 4
  givenname: Jinli
  surname: Liu
  fullname: Liu, Jinli
– sequence: 5
  givenname: Jincao
  surname: Zhou
  fullname: Zhou, Jincao
– sequence: 6
  givenname: Weiping
  surname: Liu
  fullname: Liu, Weiping
– sequence: 7
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
– sequence: 8
  givenname: Weiping
  surname: Fu
  fullname: Fu, Weiping
– sequence: 9
  givenname: Ahmad Bala
  surname: Alhassan
  fullname: Alhassan, Ahmad Bala
BookMark eNp1kk1vEzEQhleoSLSFH8DNEhcuG_yxH94LUolCiVSJC0jcrFl7nDjs2sHeDfQv8KtxkiLRSpzG9rzzjMd-r4oLHzwWxWtGF0LI7p31zqcFp5wvOilrUT8rLlnT8LKqxbeLf9YviquUdpQ2XFb8svh9Q3w44EBWq1tiUAfj_IaMOG2DITZEAsSCdjCU-GsfMSUXfNlDQkM-LNck3acJRzKnY9W0RaLD2Dufszr4QxjmKethIB7neArTzxC_E_CGbDDvnCYwbEJ003Z8WTy3MCR89RCvi68fV1-Wn8q7z7fr5c1dqauWTiWaXle6NaAlCE0NbfIgNaWdZcwYJi1rpUXgbV1LDZVtG9Z3rM_J2tK2FuK6WJ-5JsBO7aMbId6rAE6dDkLcKIj5ZgMqaYBSqFBwJioqKqlFg6btJCCC5Tyz3p9Z-7kf0Wj0U57zEfRxxrut2oSD6upMFCwD3j4AYvgxY5rU6JLGYQCPYU6Kt5xWuX1dZembJ9JdmGN-3aOKCVm1zQnYnlU6hpQiWqXdBMdvyP3doBhVR8Ook2HU0TDqbJhcyZ5U_h3j_zV_AEUxygI
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3425636
crossref_primary_10_3389_fnins_2022_921058
crossref_primary_10_3389_fnins_2023_1246940
crossref_primary_10_3389_fnins_2023_1278652
Cites_doi 10.1111/psyp.13569
10.1126/scirobotics.aaw6844
10.3389/fnins.2021.655599
10.1162/106365600568220
10.1080/2326263X.2014.912881
10.1016/j.brainres.2018.05.018
10.1109/TIM.2017.2759398
10.1088/1741-2552/abee51
10.1016/j.eswa.2019.06.052
10.1371/journal.pone.0049688
10.1007/s40846-020-00538-3
10.3390/s20164485
10.3389/fnins.2018.00943
10.1016/j.bspc.2015.06.009
10.1155/2017/1323985
10.1371/journal.pone.0172578
10.1126/science.1127647
10.1109/EMBC.2017.8036999
10.1587/transinf.2015EDP7251
10.3389/fnhum.2021.646915
10.1007/s11042-020-10139-6
10.1155/2020/8882764
10.1088/1741-2552/abe7cf
10.1016/j.ijleo.2016.10.117
10.1007/s40708-017-0069-3
10.3389/fncom.2018.00068
10.1109/TLA.2018.8291481
10.1088/1741-2552/abecc5
10.1016/j.patcog.2020.107390
10.1088/1741-2552/aaf12e
10.1016/0013-4694(91)90200-N
10.1109/ACCESS.2019.2961246
10.1109/TNSRE.2021.3073918
10.1109/ACCESS.2021.3084050
10.1007/s11571-021-09664-3
10.1088/1741-2552/aad567
10.1016/j.neuroimage.2016.03.043
10.1109/TNSRE.2020.3038209
10.1080/08839510802631745
10.1109/TCYB.2020.2983860
10.1016/j.patcog.2021.107918
10.1155/2017/2107451
10.1088/1741-2552/abf397
10.1016/j.bspc.2021.103247
10.1109/ICASSP.2005.1415116
10.1088/1741-2552/abf8cb
10.1016/j.measurement.2019.107049
10.1088/1741-2552/ac0584
10.1109/TCDS.2021.3131253
10.3389/fnhum.2021.621493
10.3758/s13428-013-0421-3
10.1016/j.cortex.2016.01.001
10.3390/en14206500
10.1109/TAFFC.2017.2712143
10.1016/j.bspc.2020.102220
10.1016/j.tics.2015.12.010
10.1109/TCYB.2021.3114031
10.3390/s20216321
10.1016/j.neunet.2019.02.009
10.1088/1741-2552/ab0ab5
ContentType Journal Article
Copyright 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Li, Liu, Li, Liu, Zhou, Liu, Liu, Fu and Alhassan.
Copyright © 2022 Li, Liu, Li, Liu, Zhou, Liu, Liu, Fu and Alhassan. 2022 Li, Liu, Li, Liu, Zhou, Liu, Liu, Fu and Alhassan
Copyright_xml – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Li, Liu, Li, Liu, Zhou, Liu, Liu, Fu and Alhassan.
– notice: Copyright © 2022 Li, Liu, Li, Liu, Zhou, Liu, Liu, Fu and Alhassan. 2022 Li, Liu, Li, Liu, Zhou, Liu, Liu, Fu and Alhassan
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2022.988535
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_8da00a4e321340348c36ed798aeeaf22
PMC9513431
10_3389_fnins_2022_988535
GrantInformation_xml – fundername: ;
GroupedDBID ---
29H
2WC
53G
5GY
5VS
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
88I
8FK
CCPQU
DWQXO
GNUQQ
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c470t-edbc4c7dac8a3c0d068425009f11dd18f178fea27558ca4f761b91b11d5f07533
IEDL.DBID DOA
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:28:45 EDT 2025
Thu Aug 21 18:39:14 EDT 2025
Thu Jul 10 22:30:33 EDT 2025
Mon Jun 30 09:41:57 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Tue Jul 01 01:39:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-edbc4c7dac8a3c0d068425009f11dd18f178fea27558ca4f761b91b11d5f07533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience
Edited by: Min Li, Xi'an Jiaotong University, China
Reviewed by: Jiahui Pan, South China Normal University, China; Yin Liang, Beijing University of Technology, China; Jiahui Yu, Zhejiang University, China
OpenAccessLink https://doaj.org/article/8da00a4e321340348c36ed798aeeaf22
PQID 2713847631
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_8da00a4e321340348c36ed798aeeaf22
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9513431
proquest_miscellaneous_2720432154
proquest_journals_2713847631
crossref_citationtrail_10_3389_fnins_2022_988535
crossref_primary_10_3389_fnins_2022_988535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-13
PublicationDateYYYYMMDD 2022-09-13
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-13
  day: 13
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2022
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Craik (B11) 2020
Shajil (B42) 2020; 40
Zhao (B63) 2021
Rathi (B37) 2021; 15
Zhao (B62) 2019; 14
Holland (B18) 2000; 8
Pinheiro (B36) 2018; 16
Shukla (B43) 2021
Abiri (B1) 2019; 16
Chicco (B10) 2021; 9
D'Mello (B14) 2009; 23
Edelman (B15) 2019
Ross (B39) 2016; 76
Svetla (B46) 2015
Chen (B8) 2021; 28
Cao (B5) 2021
Jin (B22) 2012; 7
Ali (B3) 2019; 137
Stieger (B44) 2021
Delis (B12) 2016; 133
Huang (B19) 2017
Li (B26); 1692
Liu (B29) 2021; 14
Tian (B49) 2018; 12
Kwon (B25) 2021
Yan (B55) 2020; 8
Rui (B40) 2019
Zhang (B60); 20
Zheng (B64) 2019; 10
Tang (B47) 2017; 130
Katoch (B23) 2020; 80
Zhang (B59) 2021; 29
Chen (B7) 2018; 67
Yu (B58)
Thammasan (B48) 2016
Jiang (B21) 2019; 150
Ozerdem (B35) 2017; 4
Xu (B54) 2020
Hinton (B17) 2006; 313
Zhang (B61); 20
Li (B27)
Alchalabi (B2) 2021; 18
Reust (B38) 2018
Allison (B4) 2020; 57
Mishuhina (B31) 2021
Friedman (B16) 1991; 79
Desu (B13) 1990
Cheng (B9) 2017
Olderbak (B34) 2014; 46
Yan (B56) 2021
Yu (B57)
Xiao (B52) 2021
Chang (B6) 2019; 15
Jia (B20) 2021; 71
Xie (B53) 2021
Mühl (B33) 2014; 1
Kwak (B24) 2017; 12
Miao (B30) 2021
Sun (B45) 2020; 50
Li (B28) 2021
Wood (B51) 2016; 20
Toth (B50) 2017; 2017
Mowla (B32) 2015; 22
Schuller (B41) 2005
References_xml – start-page: 15681578
  volume-title: IEEE International Conference on Computer
  year: 2015
  ident: B46
  article-title: “Human-computer interface for communication and automated estimation of basic emotional states,”
– volume: 57
  start-page: e13569
  year: 2020
  ident: B4
  article-title: 30+ years of P300 brain-computer interfaces
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13569
– year: 2019
  ident: B15
  article-title: Noninvasive neuroimaging enhances continuous neural tracking for robotic device control
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaw6844
– volume-title: Front. Neurosci
  year: 2021
  ident: B52
  article-title: Motor imagery EEG signal recognition using deep convolution neural network
  doi: 10.3389/fnins.2021.655599
– volume-title: International Conference on Information and Communication Technology Convergence
  year: 2019
  ident: B40
  article-title: “Introduce introduce a specific process of genetic algorithm through an example,”
– volume: 8
  start-page: 373
  year: 2000
  ident: B18
  article-title: Building blocks, cohort genetic algorithms, and hyperplane-defined functions
  publication-title: Evolut. Comput.
  doi: 10.1162/106365600568220
– volume: 1
  start-page: 66
  year: 2014
  ident: B33
  article-title: A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges
  publication-title: Brain Comp. Interfaces
  doi: 10.1080/2326263X.2014.912881
– volume: 1692
  start-page: 142
  ident: B26
  article-title: An approach for brain-controlled prostheses based on scene graph steady-state visual evoked potentials
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2018.05.018
– volume: 67
  start-page: 359
  year: 2018
  ident: B7
  article-title: The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings
  publication-title: IEEE Trans. Instrum. Meas
  doi: 10.1109/TIM.2017.2759398
– volume: 18
  start-page: 056005
  year: 2021
  ident: B2
  article-title: A multi-modal modified feedback self-paced BCI to control the gait of an avatar
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/abee51
– volume: 137
  start-page: 22
  year: 2019
  ident: B3
  article-title: Early diagnosis of Parkinson's disease from multiple voice recordings by simultaneous sample and feature selection
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2019.06.052
– volume: 7
  start-page: e49688
  year: 2012
  ident: B22
  article-title: The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049688
– volume: 40
  start-page: 663
  year: 2020
  ident: B42
  article-title: Multiclass classification of spatially filtered motor imagery EEG signals using convolutional neural network for BCI based applications
  publication-title: J. Med. Biol. Eng
  doi: 10.1007/s40846-020-00538-3
– volume-title: Sample Size Methodology
  year: 1990
  ident: B13
– volume: 20
  start-page: 4485
  ident: B60
  article-title: Data augmentation for motor imagery signal classification based on a hybrid neural network
  publication-title: Sensors
  doi: 10.3390/s20164485
– ident: B27
  article-title: An approach for brain-controlled prostheses based on a facial expression paradigm
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2018.00943
– volume: 22
  start-page: 111
  year: 2015
  ident: B32
  article-title: Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.06.009
– year: 2017
  ident: B9
  article-title: Comparison of the BCI performance between the semitransparent face pattern and the traditional face pattern
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2017/1323985
– volume: 12
  start-page: e0172578
  year: 2017
  ident: B24
  article-title: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172578
– volume: 313
  start-page: 504
  year: 2006
  ident: B17
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science.
  doi: 10.1126/science.1127647
– volume: 2017
  start-page: 1018
  year: 2017
  ident: B50
  article-title: Facial expression classification using EEG and gyroscope signals
  publication-title: IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/EMBC.2017.8036999
– start-page: 1234
  year: 2016
  ident: B48
  article-title: Continuous music-emotion recognition based on electroencephalogram
  publication-title: IEICE Trans. Inform. Syst.
  doi: 10.1587/transinf.2015EDP7251
– year: 2021
  ident: B25
  article-title: Subject-Independent functional near-infrared spectroscopy-based brain-computer interfaces based on convolutional neural networks
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2021.646915
– volume: 80
  start-page: 8091
  year: 2020
  ident: B23
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tools Appl
  doi: 10.1007/s11042-020-10139-6
– year: 2021
  ident: B30
  article-title: BCI-Based rehabilitation on the stroke in sequela stage
  publication-title: Neural Plast
  doi: 10.1155/2020/8882764
– year: 2021
  ident: B56
  article-title: Enhancing detection of steady-state visual evoked potentials using channel ensemble method
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/abe7cf
– volume: 130
  start-page: 11
  year: 2017
  ident: B47
  article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.117
– volume: 4
  start-page: 241
  year: 2017
  ident: B35
  article-title: Emotion recognition based on EEG features in movie clips with channel selection
  publication-title: Brain Inform.
  doi: 10.1007/s40708-017-0069-3
– volume: 12
  start-page: 68
  year: 2018
  ident: B49
  article-title: Classification for single-trial N170 during responding to facial picture with emotion
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2018.00068
– volume: 16
  start-page: 254
  year: 2018
  ident: B36
  article-title: EEG signals classification_ motor imagery for driving an intelligent wheelchair
  publication-title: IEEE Latin Am. Trans.
  doi: 10.1109/TLA.2018.8291481
– start-page: 118
  volume-title: IEEE International Symposium on Signal Processing and Information Technology
  year: 2018
  ident: B38
  article-title: “Extracting motor imagery features to control two robotic hands”
– year: 2021
  ident: B53
  article-title: Combining generative adversarial networks and multi-output CNN for motor imagery classification
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/abecc5
– year: 2020
  ident: B54
  article-title: Learning EEG topographical representation for classification via convolutional neural network
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2020.107390
– volume: 16
  year: 2019
  ident: B1
  article-title: A comprehensive review of EEG-based brain-computer interface paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– volume: 79
  start-page: 358
  year: 1991
  ident: B16
  article-title: Facial muscle activity and EEG recordings: redundancy analysis
  publication-title: Electroencephalogr. Clin. Neurophysiol
  doi: 10.1016/0013-4694(91)90200-N
– volume: 8
  start-page: 1160
  year: 2020
  ident: B55
  article-title: Quadcopter control system using a hybrid BCI based on off-line optimization and enhanced human-machine interaction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961246
– volume: 29
  start-page: 862
  year: 2021
  ident: B59
  article-title: Weak feature extraction and strong noise suppression for SSVEP-EEG based on chaotic detection technology
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2021.3073918
– volume: 9
  start-page: 78368
  year: 2021
  ident: B10
  article-title: The matthews correlation coefficient (MCC) is more informative than Cohen's Kappa and Brier score in binary classification assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084050
– volume: 15
  start-page: 805
  year: 2021
  ident: B37
  article-title: A novel approach for designing authentication system using a picture based P300 speller
  publication-title: Cogn. Neurodyn
  doi: 10.1007/s11571-021-09664-3
– volume: 15
  start-page: 056020
  year: 2019
  ident: B6
  article-title: Genetic-based feature selection for efficient motion imaging of a brain–computer interface framework
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aad567
– volume: 133
  start-page: 504
  year: 2016
  ident: B12
  article-title: Space-by-time decomposition for single-trial decoding of M/EEG activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.043
– volume: 28
  start-page: 3140
  year: 2021
  ident: B8
  article-title: Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3038209
– volume: 23
  start-page: 123
  year: 2009
  ident: B14
  article-title: Automatic detection of learner's affect from gross body language
  publication-title: Appl. Art. Intell.
  doi: 10.1080/08839510802631745
– volume: 50
  start-page: 3840
  year: 2020
  ident: B45
  article-title: Automatically designing CNN architectures using the genetic algorithm for image classification
  publication-title: IEEE Trans. Cybern
  doi: 10.1109/TCYB.2020.2983860
– year: 2021
  ident: B31
  article-title: Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.107918
– year: 2017
  ident: B19
  article-title: Fusion of facial expressions and EEG for multimodal emotion recognition
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2017/2107451
– year: 2021
  ident: B63
  article-title: A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/abf397
– volume: 71
  start-page: 103247
  year: 2021
  ident: B20
  article-title: Joint spatial and temporal features extraction for multi-classification of motor imagery EEG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103247
– volume-title: IEEE International Conference on Acoustics, Speech, and Signal Processing
  year: 2005
  ident: B41
  article-title: “Meta-classifiers in acoustic and linguistic feature fusion-based affect recognition,”
  doi: 10.1109/ICASSP.2005.1415116
– year: 2021
  ident: B5
  article-title: A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/abf8cb
– volume: 150
  start-page: 107049
  year: 2019
  ident: B21
  article-title: A probability and integrated learning based classification algorithm for high-level human emotion recognition problems
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107049
– year: 2021
  ident: B44
  article-title: Benefits of deep learning classification of continuous noninvasive brain-computer interface control
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/ac0584
– ident: B57
  article-title: Adaptive spatiotemporal representation learning for skeleton-based human action recognition
  publication-title: IEEE Trans
  doi: 10.1109/TCDS.2021.3131253
– year: 2021
  ident: B28
  article-title: MindLink-eumpy: an open-source python toolbox for multimodal emotion recognition
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2021.621493
– volume: 46
  start-page: 992
  year: 2014
  ident: B34
  article-title: Psychometric challenges and proposed solutions when scoring facial emotion expression codes
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-013-0421-3
– volume: 76
  start-page: 28
  year: 2016
  ident: B39
  article-title: Neurophysiology of spontaneous facial expressions: I. Motor control of the upper and lower face is behaviorally independent in adults
  publication-title: Cortex
  doi: 10.1016/j.cortex.2016.01.001
– volume: 14
  start-page: 6500
  year: 2021
  ident: B29
  article-title: A hybrid GA–PSO–CNN model for ultra-short-term wind power forecasting
  publication-title: Energies
  doi: 10.3390/en14206500
– volume: 10
  start-page: 417
  year: 2019
  ident: B64
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comp
  doi: 10.1109/TAFFC.2017.2712143
– year: 2021
  ident: B43
  article-title: Performance improvement of P300-based home appliances control classification using convolution neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102220
– volume: 20
  start-page: 227
  year: 2016
  ident: B51
  article-title: Fashioning the face: sensorimotor simulation contributes to facial expression recognition
  publication-title: Trends Cogn. Sci
  doi: 10.1016/j.tics.2015.12.010
– start-page: 1
  ident: B58
  article-title: “Deep temporal model-based identity-aware hand detection for space human-robot interaction,”
  publication-title: IEEE Transactions On Cybernetics
  doi: 10.1109/TCYB.2021.3114031
– volume: 20
  start-page: 6321
  ident: B61
  article-title: Application of transfer learning in EEG decoding based on brain-computer interfaces: a review
  publication-title: Sensors
  doi: 10.3390/s20216321
– volume: 14
  start-page: 67
  year: 2019
  ident: B62
  article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.02.009
– year: 2020
  ident: B11
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/ab0ab5
SSID ssj0062842
Score 2.3428917
Snippet Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the...
Multiple types of brain control systems have been applied in the field of rehabilitation. As an alternative scheme to balance the user’s fatigue and the...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 988535
SubjectTerms Accuracy
Algorithms
Brain
brain computer interface
Classification
Computer applications
convolutional neural network (CNN)
Deep learning
Discriminant analysis
EEG
Electroencephalography
facial expression
genetic algorithm
Implants
Methods
Neural networks
Neuroscience
Optimization
Rehabilitation
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvXBBQEEECjIS4oBkmsSO7ZzQbrWlcKgQolJvkeOPbaWtU9ptBX-BX82M412RS08rrb1K1jOeeeMZvyHkvSh7TJJIBtjCMSErzUwDAvGyt04qq22f2D5P5PGp-HbWnOUDt5tcVrmxiclQu8HiGflBDdEUWFLJq89Xvxh2jcLsam6h8ZDsggnWEHztzhcn339sbLEE45vynRLvBgE4H_OaEJa1ByFeROTrrutPrQan1Uw8UyLwn6DOac3kf07o6Al5nNEjnY3ifkoe-PiM7M0iRM6Xf-gHmuo500H5Hvk7o3G48yu6WHyhDqJM9FJ07BhNAapSQ4PBA3Pmf-dq2MjQqTk6P_xKR4pninXxSwookcIyQRQNo1ionhUW3gUJMdNHKienJjoKOolXI6lZLWEF1-eXz8np0eLn4THLnReYFapcM-96K6xyxmrDbenKlK0DOBaqyrlKh0rp4E2tmkZbI4KSVd9WPQw2ATAI5y_IThyif0moCTa0pVEeAiPheq9roywPyTFizqcg5WbVO5tpybE7xqqD8AQF1SVBdSiobhRUQT5uf3I1cnLcN3mOotxORDrt9MVwvezy7uy0M2VphOfIb1dyoS2X3qlWG-9NqOuC7G8Uoct7HB6y1ciCvNsOw-7ElIuJfrjFOXj3GGCVKIiaKNDkhaYj8eI88XwD-OWA717d__DX5BH-Xaxhqfg-2Vlf3_o3AJTW_du8G_4BmIwV0A
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal - Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKuXBBQEEsLdUgIQ5IKUnsxN4DqrbVloIEJ1bqzXL8sV1p69Bli9q_wK9mxsmuiFRx4hQpdqTEM5N54xm_YeytyBtKktQZYguXibpQmalQIL5urKulVbZJbJ_f6vOZ-HJRXeywTXurfgF_3hvaUT-p2Wp5dHt9d4wG_5EiTvS3H0JcRGLeLsujsUL3Uz1gD9ExSbLTr2KbVKjxT1x2ic37Hxu4psTgP4Cdw6LJv7zQ2RP2uIePMOnk_ZTt-PiM7U0ihs5Xd_AOUkFn2infY78nENtffgnT6SdwGGaSm4KuZTQgVgUDwdCOeeZv-3LYmJFXc3By-hk6jmegwvg5IEwE1E0Mo3GUKtV7jcV3IUbMdEn15GCiA1RKOhsJZjlvV4v15dVzNjubfj89z_rWC5kVMl9n3jVWWOmMVYbb3OUpXYd4LBSFc4UKhVTBm1JWlbJGBFkXzbhocLAKCEI4f8F2Yxv9SwYm2DDOjfQYGQnXeFUaaXlInpGSPiOWb1Zd256XnNpjLDXGJyQonQSlSVC6E9SIvd8-8qMj5fjX5BMS5XYi8WmnG-1qrnvz1MqZPDfCcyK4y7lQltfeybEy3ptQliN2sFEEvdFRXWKAj8695vgNb7bDaJ6UczHRtzc0hw4fI64SIyYHCjR4oeFIXFwmom9EvxwB3qv_8QX77BEtCpW6FPyA7a5XN_414ql1c5is5A9hIiN8
  priority: 102
  providerName: Scholars Portal
Title A novel EEG decoding method for a facial-expression-based BCI system using the combined convolutional neural network and genetic algorithm
URI https://www.proquest.com/docview/2713847631
https://www.proquest.com/docview/2720432154
https://pubmed.ncbi.nlm.nih.gov/PMC9513431
https://doaj.org/article/8da00a4e321340348c36ed798aeeaf22
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQuXBBQEEsLdUgIQ5IoU7s2M5xt9q2IFEhRKW9RY4_2pW2XlRtEfwFfjUzTnbVXODCxZFiR3E8Y8-bzPiZsbeSdxQkUQViC19IVZrC1iiQoDrnlXbGdZnt80KdX8pPi3px76gvygnr6YH7gTs23nJuZRBEPcaFNE6o4HVjbAg2Vnn1RZu3dab6NVjholv1MUx0wZrjmJaJuLmr6kNj0EDVIyuUyfpHCHOcH3nP4Jw-YY8HpAjTvodP2YOQnrH9aUIv-eYXvIOcu5l_iu-z31NI6x9hBfP5GXj0KMkiQX86NCAsBQvR0s_xIvwcMl9TQQbMw-zkI_R0zkA58FeAiBBQDdFjxlpKSh-UE_tC5Jf5klPHwSYPqH-0DRLs6mp9u9xc3zxnl6fzbyfnxXDKQuGk5psi-M5Jp711xgrHPc-ROYResSy9L00stYnBVrqujbMyalV2TdlhZR0Rbwjxgu2ldQovGdjoYsOtDugESd8FU1ntRMxGkOI7E8a3o966gYKcTsJYteiKkKDaLKiWBNX2gpqw97tHvvf8G39rPCNR7hoSdXa-gQrVDgrV_kuhJuxwqwjtMJ_xJejLox1XAr_hza4aZyKFV2wK6ztqQ_uMEULJCdMjBRp1aFyTlteZ0xuBrkAs9-p_fMEBe0SDQlktpThke5vbu_AaodOmO2IPZ_OLL1-P8mzB8mxRYvlZmj_tvB5w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuCCiIQIFBAg5Ipn6s7fUBoaSkJLRECLVSb2a9j7RSui4lBfoX-DH8RmbWdoQvvfVkybuR7Xw7j29ndoaxlzysKEiSBehb6IBnkQhkioCYrFI6y5VQla_2Oc-mR_zTcXq8wf52Z2EorbLTiV5R61rRHvlOjGwKNWmWRO_PvwfUNYqiq10LjWZZ7JurX0jZfrybfUB8X8Xx3uRwdxq0XQUCxfNwFRhdKa5yLZWQiQp16CNR6GrYKNI6EjbKhTUyztNUKMkt8vyqiCocTC3aV9oARZW_yROkMgO2OZ7Mv3ztdH-Gyt7HVzM6i4RkoImjIg0sdqw7dVQfPI7fFgKNZNqzhL5hQM_L7edo_mf09u6yO623CqNmed1jG8bdZ1sjh0z97Apeg88f9RvzW-zPCFz90yxhMvkIGlktWUVoOlQDusYgwUraoA_M7zb71gVkRDWMd2fQlJQGysNfAHqlgLAga8dRSoxvBQTfhQpw-otPXwfpNKAM0FFMkMsFIrY6OXvAjm4Ek4ds4GpnHjGQVtkilLlBIsZ1ZUQsc5VYb4gpxjRkYfevl6otg07dOJYl0iECqvRAlQRU2QA1ZG_WPzlvaoBcN3lMUK4nUvluf6O-WJStNiiFlmEouUmonl6YcKGSzOi8ENIYaeN4yLa7hVC2OgUfspaAIXuxHkZtQCEe6Ux9SXPorDO6cXzI8t4C6r1Qf8Sdnvi64uhsJ-hPPr7-4c_Zrenh54PyYDbff8Ju06dT_kyUbLPB6uLSPEUnbVU9ayUD2LebFsZ_CoNSuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrYS4IEpBpLRgJOCAFNb5tXNAaLfdpUvRqkJU6i04_tlW2jqlbIG-Ao_E0zHjJCty6a2nSLFXSXY8M9_nGc8Q8iplFQZJ8hCwhQ7TPBKhzEAgJq-UzrkSqvLVPuf54Un66TQ73SB_u7MwmFbZ2URvqHWtcI98GAObAkuaJ9HQtmkRxwfTD5ffQ-wghZHWrp1Gs0SOzM0voG8_3s8OQNav43g6-bp_GLYdBkKVcrYKja5UqriWSshEMc18VApgh40irSNhIy6skTHPMqFkaoHzV0VUwWBmwdfiZiiY_00OrIgNyOZ4Mj_-0vmBHAy_j7XmeC4JiEETUwVKWAytO3dYKzyO3xUCHGbW84q-eUAP8fbzNf9zgNOH5EGLXOmoWWpbZMO4R2R75IC1X9zQN9TnkvpN-m3yZ0Rd_dMs6WTykWpguOghadOtmgJMppJaiZv1ofndZuK6EB2qpuP9GW3KS1PMyV9QQKgURAQMHkYxSb5VFngXLMbpLz6VnUqnKegDHsukcrkAia3OLh6TkzuRyRMycLUzTwmVVtmCSW6AlKW6MiKWXCXWO2WMNwWEdf96qdqS6NiZY1kCNUJBlV5QJQqqbAQVkLfrn1w29UBumzxGUa4nYilvf6O-WpStZSiFlozJ1CRYW48lqVBJbjQvhDRG2jgOyG63EMrWvsBD1toQkJfrYbAMGO6RztTXOAfPPQOkSwPCewuo90L9EXd-5muMA_BOAFvu3P7wF-QeKGH5eTY_ekbu45djKk2U7JLB6ura7AFeW1XPW8Wg5Ntd6-I_mgtW7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+EEG+decoding+method+for+a+facial-expression-based+BCI+system+using+the+combined+convolutional+neural+network+and+genetic+algorithm&rft.jtitle=Frontiers+in+neuroscience&rft.au=Rui+Li&rft.au=Rui+Li&rft.au=Di+Liu&rft.au=Zhijun+Li&rft.date=2022-09-13&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=16&rft_id=info:doi/10.3389%2Ffnins.2022.988535&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8da00a4e321340348c36ed798aeeaf22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon