A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges

Molybdenum disulfide (MoS2) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different...

Full description

Saved in:
Bibliographic Details
Published inCrystals (Basel) Vol. 11; no. 4; p. 355
Main Authors Samy, Omnia, Zeng, Shuwen, Birowosuto, Muhammad Danang, El Moutaouakil, Amine
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.03.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molybdenum disulfide (MoS2) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different applications in electronics especially sensors like optical sensors, biosensors, electrochemical biosensors that play an important role in the detection of various diseases’ like cancer and Alzheimer. It has a wide range of energy applications in batteries, solar cells, microwave, and Terahertz applications. It is a promising material on a nanoscale level, with favorable characteristics in spintronics and magnetoresistance. In this review, we will discuss MoS2 properties, structure and synthesis techniques with a focus on its applications and future challenges.
AbstractList Molybdenum disulfide (MoS2) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different applications in electronics especially sensors like optical sensors, biosensors, electrochemical biosensors that play an important role in the detection of various diseases’ like cancer and Alzheimer. It has a wide range of energy applications in batteries, solar cells, microwave, and Terahertz applications. It is a promising material on a nanoscale level, with favorable characteristics in spintronics and magnetoresistance. In this review, we will discuss MoS2 properties, structure and synthesis techniques with a focus on its applications and future challenges.
Author El Moutaouakil, Amine
Zeng, Shuwen
Birowosuto, Muhammad Danang
Samy, Omnia
Author_xml – sequence: 1
  givenname: Omnia
  orcidid: 0000-0003-0664-5486
  surname: Samy
  fullname: Samy, Omnia
– sequence: 2
  givenname: Shuwen
  orcidid: 0000-0003-2188-7213
  surname: Zeng
  fullname: Zeng, Shuwen
– sequence: 3
  givenname: Muhammad Danang
  orcidid: 0000-0002-9997-6841
  surname: Birowosuto
  fullname: Birowosuto, Muhammad Danang
– sequence: 4
  givenname: Amine
  orcidid: 0000-0002-7407-020X
  surname: El Moutaouakil
  fullname: El Moutaouakil, Amine
BackLink https://hal.science/hal-04294360$$DView record in HAL
BookMark eNptkctLAzEQxoNU8Hn0vuBJcDWP3c3usRRfWFF8nEOaTGrKmqzJttL_3tQqWHEuMwzf_JhvZg8NnHeA0BHBZ4w1-FyFZewJwQVmZbmFdinmLC9YSQe_6h10GOMMp-AV5pzsotth9ggLCx-Zd9mdf6LZQ_AdhN5CPM2elq5_hWhXJbho3TQbdl1rleytdzGTTmejV9m24KYQD9C2kW2Ew--8j14uL55H1_n4_upmNBznquC4z0FTkBU2NZUgDQc9MaaZMAYKWM0ZaG2qtCA0RqpaES0Jx2xCseGU6saUbB_drLnay5nogn2TYSm8tOKr4cNUyGRAtSAqxY2kijaE1kVV1A2wqoS65pWcaOAmsU7WrORiA3U9HItVDxe0KViFFyRpj9faLvj3OcRezPw8uGRV0JIRlrCUJxVbq1TwMQYwQtn-6159kLYVBIvVw8TGw9JU_mfqZ5n_9Z_C95k_
CitedBy_id crossref_primary_10_1021_acsnano_4c12155
crossref_primary_10_3390_nano14080662
crossref_primary_10_1016_j_cej_2023_147963
crossref_primary_10_1016_j_aiepr_2024_04_002
crossref_primary_10_1039_D3NR01719B
crossref_primary_10_1088_1402_4896_adbd83
crossref_primary_10_1016_j_psep_2023_01_014
crossref_primary_10_1039_D4TB02848A
crossref_primary_10_1007_s10853_023_08281_1
crossref_primary_10_3390_en14154586
crossref_primary_10_1021_acs_nanolett_4c02598
crossref_primary_10_1515_ijmr_2024_0039
crossref_primary_10_1039_D4CP00062E
crossref_primary_10_3390_nano13111716
crossref_primary_10_1364_OE_530321
crossref_primary_10_1016_j_molliq_2024_125261
crossref_primary_10_1039_D3RA07984H
crossref_primary_10_31857_S0044457X23601608
crossref_primary_10_4139_sfj_75_620
crossref_primary_10_1016_j_mssp_2023_107616
crossref_primary_10_1088_1361_648X_acfa56
crossref_primary_10_1007_s00339_024_07964_z
crossref_primary_10_1088_1361_6528_ad2571
crossref_primary_10_1088_2752_5724_acc51d
crossref_primary_10_1002_asia_202100979
crossref_primary_10_3390_ijms242015079
crossref_primary_10_1002_slct_202403122
crossref_primary_10_1016_j_ijhydene_2024_05_203
crossref_primary_10_1016_j_mssp_2024_108721
crossref_primary_10_3390_mi14091758
crossref_primary_10_1016_j_micrna_2023_207742
crossref_primary_10_1109_JSEN_2022_3222020
crossref_primary_10_1134_S1061934824701405
crossref_primary_10_3390_bios13040465
crossref_primary_10_1016_j_mtsust_2024_100914
crossref_primary_10_1039_D4TA09078K
crossref_primary_10_1002_aelm_202201348
crossref_primary_10_1051_epjap_2024230092
crossref_primary_10_1364_OME_481687
crossref_primary_10_35848_1882_0786_acb525
crossref_primary_10_1016_j_finel_2023_103919
crossref_primary_10_1088_1742_6596_2974_1_012008
crossref_primary_10_1002_advs_202203527
crossref_primary_10_1039_D5NA00138B
crossref_primary_10_3390_bios13090848
crossref_primary_10_1007_s11356_023_30116_4
crossref_primary_10_1039_D2TB02396B
crossref_primary_10_1007_s11581_023_05136_2
crossref_primary_10_1016_j_apsusc_2022_152971
crossref_primary_10_1039_D4CE00896K
crossref_primary_10_1002_adom_202401122
crossref_primary_10_1088_1402_4896_ad91ec
crossref_primary_10_1088_1361_6528_ad5dc1
crossref_primary_10_3390_catal13091238
crossref_primary_10_1016_j_sse_2021_108063
crossref_primary_10_1039_D3YA00179B
crossref_primary_10_1007_s12034_023_02933_3
crossref_primary_10_1016_j_matdes_2024_113217
crossref_primary_10_1021_acs_inorgchem_4c00543
crossref_primary_10_3390_nano15020111
crossref_primary_10_1109_JSEN_2023_3236068
crossref_primary_10_1021_acsanm_3c05809
crossref_primary_10_1515_ntrev_2022_0563
crossref_primary_10_1039_D4MA00234B
crossref_primary_10_1039_D3NA00741C
crossref_primary_10_1016_j_flatc_2022_100395
crossref_primary_10_1016_j_optmat_2024_116227
crossref_primary_10_1016_j_ijleo_2024_172124
crossref_primary_10_1021_acsabm_2c00981
crossref_primary_10_1016_j_cej_2025_161850
crossref_primary_10_1016_j_physb_2023_414905
crossref_primary_10_1149_2754_2726_ac5ac6
crossref_primary_10_3390_catal11101229
crossref_primary_10_1016_j_jmrt_2024_08_009
crossref_primary_10_1016_j_apsusc_2022_154624
crossref_primary_10_3390_ijms241210284
crossref_primary_10_1016_j_bios_2022_114674
crossref_primary_10_1177_02670836231215136
crossref_primary_10_1039_D3CP04546C
crossref_primary_10_1002_adsu_202400979
crossref_primary_10_1088_1361_6528_acfb12
crossref_primary_10_1002_sstr_202400172
crossref_primary_10_3390_en15228386
crossref_primary_10_1109_TED_2022_3170283
crossref_primary_10_1371_journal_pone_0299272
crossref_primary_10_14815_kjdm_2024_51_3_129
crossref_primary_10_3390_chemengineering8020036
crossref_primary_10_1007_s10934_024_01738_x
crossref_primary_10_1016_j_surfcoat_2023_130303
crossref_primary_10_1002_sstr_202300197
crossref_primary_10_3390_en14227737
crossref_primary_10_1016_j_trac_2022_116637
crossref_primary_10_1007_s10008_023_05618_3
crossref_primary_10_1016_j_flatc_2021_100307
crossref_primary_10_1016_j_flatc_2023_100585
crossref_primary_10_1016_j_inoche_2023_110967
crossref_primary_10_1016_j_matdes_2024_113562
crossref_primary_10_1002_smll_202412467
crossref_primary_10_1088_1402_4896_ad4d29
crossref_primary_10_1007_s00542_024_05636_9
crossref_primary_10_1098_rsta_2022_0246
crossref_primary_10_1039_D3TA04138G
crossref_primary_10_3390_electronics13204008
crossref_primary_10_1016_j_eti_2023_103410
crossref_primary_10_1080_09243046_2025_2450176
crossref_primary_10_1016_j_jcis_2023_10_027
crossref_primary_10_1016_j_physb_2023_415290
crossref_primary_10_1016_j_chemosphere_2024_142033
crossref_primary_10_1016_j_matpr_2022_03_272
crossref_primary_10_1039_D2RA05351A
crossref_primary_10_1103_PhysRevE_107_014120
crossref_primary_10_1109_JSEN_2023_3257188
crossref_primary_10_1016_j_optmat_2024_116449
crossref_primary_10_1016_j_fuel_2023_130433
crossref_primary_10_1021_acsnano_3c00280
crossref_primary_10_3390_cryst11080996
crossref_primary_10_1016_j_chemosphere_2024_143497
crossref_primary_10_1002_adts_202401199
crossref_primary_10_1016_j_sse_2022_108391
crossref_primary_10_3390_bios13010054
crossref_primary_10_1002_slct_202400977
crossref_primary_10_1016_j_ccr_2023_215595
crossref_primary_10_1016_j_apsusc_2023_159195
crossref_primary_10_1007_s42247_024_00656_7
crossref_primary_10_1016_j_jpowsour_2024_235538
crossref_primary_10_1016_j_est_2024_110583
crossref_primary_10_1109_JSEN_2024_3404424
crossref_primary_10_1007_s12648_023_02618_x
crossref_primary_10_1021_acs_jpcc_3c06688
crossref_primary_10_1021_acs_energyfuels_1c02039
crossref_primary_10_3390_ma16124471
crossref_primary_10_1016_j_flatc_2023_100562
crossref_primary_10_1088_1742_6596_2751_1_012015
crossref_primary_10_3390_photochem5010009
crossref_primary_10_3390_photonics10121295
crossref_primary_10_1016_j_est_2023_109336
crossref_primary_10_1016_j_trac_2024_117742
crossref_primary_10_1063_5_0236152
crossref_primary_10_1088_1402_4896_ad80e8
crossref_primary_10_1021_acsomega_2c06794
crossref_primary_10_1134_S003602362360212X
crossref_primary_10_1016_j_matpr_2022_10_202
crossref_primary_10_3390_catal14100689
crossref_primary_10_3390_molecules27175416
crossref_primary_10_1088_2053_1591_acf7ae
crossref_primary_10_1116_6_0003961
crossref_primary_10_1088_1402_4896_adb8a8
crossref_primary_10_3390_polym14051059
crossref_primary_10_1038_s41378_023_00581_5
crossref_primary_10_1149_2162_8777_ac5a6f
crossref_primary_10_1021_acsaom_4c00113
crossref_primary_10_3390_catal13040716
crossref_primary_10_1039_D2NR01366E
crossref_primary_10_1021_acsomega_4c04506
crossref_primary_10_1149_2162_8777_acc20b
crossref_primary_10_1016_j_molstruc_2024_137760
crossref_primary_10_1021_acs_langmuir_1c01954
crossref_primary_10_1063_5_0222802
crossref_primary_10_1021_acsomega_2c03171
crossref_primary_10_1016_j_ecoenv_2024_116221
crossref_primary_10_2139_ssrn_3987694
crossref_primary_10_1021_acsaelm_4c02061
crossref_primary_10_1016_j_mtsust_2023_100319
crossref_primary_10_1038_s41598_025_92188_1
crossref_primary_10_1016_j_ijhydene_2022_09_162
crossref_primary_10_1016_j_fuel_2023_128923
crossref_primary_10_1016_j_microc_2024_110138
crossref_primary_10_1021_acsnano_4c01177
crossref_primary_10_3389_fmats_2023_1139954
crossref_primary_10_1016_j_optcom_2024_131448
crossref_primary_10_1021_acs_jpcc_4c00192
crossref_primary_10_1039_D3AY01374J
crossref_primary_10_1007_s11082_022_03784_8
crossref_primary_10_1016_j_fuel_2024_131159
crossref_primary_10_1016_j_vacuum_2024_113739
crossref_primary_10_1063_5_0234191
crossref_primary_10_3390_nano11113127
crossref_primary_10_1039_D4RA07555B
crossref_primary_10_1016_j_apsusc_2022_155900
Cites_doi 10.1109/MMWaTT.2018.8661233
10.1109/EDTM.2018.8421456
10.1038/s41598-019-41165-6
10.1038/s41928-020-00466-9
10.1039/C7RA09300D
10.1166/jnn.2012.4575
10.1038/s41598-018-36752-y
10.1038/s41586-018-0574-4
10.1016/j.mtadv.2019.100053
10.1088/2053-1583/2/2/024007
10.1038/srep27207
10.1002/adom.201900857
10.1038/s41699-020-0143-1
10.1109/TED.2017.2782667
10.1039/D0RA03183F
10.1016/j.ijhydene.2008.05.047
10.1038/srep07523
10.1038/ncomms8493
10.1038/s41699-020-00173-1
10.1109/IRMMW-THz.2019.8873712
10.1016/j.apcata.2007.05.031
10.1063/1.4789365
10.1088/0256-307X/32/11/117801
10.1016/j.inoche.2020.108200
10.1142/S0129156406003539
10.1002/smll.201803706
10.1038/s41699-017-0034-2
10.1109/NANO.2015.7388825
10.1038/s41467-020-19806-6
10.1038/s41598-020-73029-9
10.1109/DRC.2016.7548483
10.1109/IEDM.2013.6724569
10.1038/srep17578
10.1109/TED.2015.2443039
10.1016/B978-0-08-096532-1.00705-6
10.1117/12.2263239
10.1038/s41598-019-51606-x
10.1038/nature12385
10.1143/JJAP.50.070113
10.1038/s41699-018-0060-8
10.1088/2058-7058/22/08/33
10.1039/D0MA00697A
10.1109/IRSEC.2018.8702954
10.1039/C5NR06121K
10.1002/adma.201606128
10.1039/C8EN01019F
10.1088/1742-6596/193/1/012068
10.3390/cryst7070198
10.1038/am.2017.225
10.1109/ICSE49846.2020.9166878
10.1109/TENSYMP50017.2020.9230894
10.3390/app9040678
10.1007/s00216-014-8267-9
10.1038/s41467-019-12795-1
10.1039/C8CS00314A
10.1038/s41699-020-0150-2
10.1038/s41467-020-20051-0
10.1109/ICIMW.2010.5612598
10.1038/srep22899
10.1109/NANO.2015.7388679
10.1557/jmr.2012.355
10.1149/1945-7111/abb34b
10.1109/JSEN.2018.2829084
10.1016/j.snb.2017.12.094
10.1038/s41598-019-55190-y
10.1016/j.susc.2017.02.005
10.1038/s41598-017-02228-8
10.1016/j.matlet.2018.11.051
10.1002/smll.201800640
10.1186/s11671-019-3126-4
10.1016/j.apsusc.2020.147684
10.1038/srep01549
10.1038/s41467-018-07835-1
10.1109/IFOST.2012.6357544
10.13075/ijomeh.1896.01411
10.1007/978-3-030-18338-7
10.1126/science.aah4698
10.1109/SMELEC.2018.8481317
10.1016/j.spmi.2019.02.005
10.1038/s41598-017-13684-7
10.1038/s42254-020-00259-1
10.1002/adfm.201504202
10.1038/srep41175
10.1038/s41427-018-0078-6
10.1109/DRC.2015.7175638
10.1039/c3nr05993f
10.1038/s41467-018-03752-5
10.1021/acsphotonics.7b00208
10.1109/NEMS.2017.8017136
10.1002/adom.201700176
10.1038/s41467-018-03824-6
10.1038/s41377-020-00421-5
10.1039/C6RA23786J
10.1016/0043-1648(67)90187-1
10.1038/srep05133
10.1109/CEEICT.2016.7873102
10.1038/srep33562
10.1039/C4NR07162J
10.1038/srep24054
10.1038/s41598-020-72990-9
10.1126/science.aad2114
10.1021/acs.est.7b01466
10.1038/nmat4588
10.1002/er.5040
10.1002/pssc.201000569
10.1038/nature10677
10.1021/nn400280c
10.1016/j.mattod.2015.11.003
10.1039/C8RA04350G
10.1021/nn301320r
10.1109/IMWS2.2012.6338209
10.1587/transele.E93.C.1286
10.1109/LED.2015.2478899
10.1016/j.apmt.2016.02.001
10.1109/TED.2020.3009083
10.1038/s41928-020-0460-6
10.1109/JSEN.2021.3054038
10.1016/j.matlet.2019.01.141
10.1038/natrevmats.2017.33
10.1021/acsnano.8b08778
10.1038/srep02961
10.1088/0953-8984/27/10/105401
10.1126/sciadv.aat3672
10.1016/0169-4332(92)90258-Y
10.1038/s41467-020-20547-9
10.1109/WMED.2016.7458281
10.1038/micronano.2017.32
10.1038/s41598-018-34679-y
10.1039/C6CC09952A
10.1021/acsomega.0c04176
10.1016/j.ssc.2012.02.005
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.3390/cryst11040355
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4352
ExternalDocumentID oai_doaj_org_article_6c7fa2c2912846489e365e8876abde7f
oai_HAL_hal_04294360v1
10_3390_cryst11040355
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
EDO
GROUPED_DOAJ
HCIFZ
IAO
IGS
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
TUS
7SR
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
PUEGO
ID FETCH-LOGICAL-c470t-ed2ea60f82aeaf7edbff9b33ece3873eddf6007e9fac8c1da1703b20f722d9f53
IEDL.DBID BENPR
ISSN 2073-4352
IngestDate Wed Aug 27 01:30:42 EDT 2025
Fri May 09 12:15:32 EDT 2025
Fri Jul 25 11:57:56 EDT 2025
Tue Jul 01 03:49:47 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-ed2ea60f82aeaf7edbff9b33ece3873eddf6007e9fac8c1da1703b20f722d9f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9997-6841
0000-0002-7407-020X
0000-0003-0664-5486
0000-0003-2188-7213
OpenAccessLink https://www.proquest.com/docview/2531388727?pq-origsite=%requestingapplication%
PQID 2531388727
PQPubID 2032412
ParticipantIDs doaj_primary_oai_doaj_org_article_6c7fa2c2912846489e365e8876abde7f
hal_primary_oai_HAL_hal_04294360v1
proquest_journals_2531388727
crossref_citationtrail_10_3390_cryst11040355
crossref_primary_10_3390_cryst11040355
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-29
PublicationDateYYYYMMDD 2021-03-29
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-29
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Crystals (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_26) 2016; 6
Tan (ref_61) 2019; 14
ref_94
ref_93
Weng (ref_20) 2018; 18
Sanjay (ref_75) 2020; 67
Gupta (ref_27) 2020; 121
Liu (ref_22) 2017; 7
ref_12
Yoo (ref_11) 2015; 36
ref_99
ref_98
ref_96
ref_95
ref_134
Li (ref_57) 2016; 19
Cheng (ref_47) 2015; 32
Liang (ref_54) 2019; 8
ref_19
ref_18
ref_17
ref_16
Santosh (ref_82) 2016; 6
ref_15
Toh (ref_33) 2017; 53
Kinnamon (ref_104) 2017; 7
Xu (ref_126) 2019; 238
Sobanska (ref_24) 2020; 33
ref_125
Kramer (ref_130) 2020; 4
Moutaouakil (ref_109) 2010; E93.C
Dai (ref_37) 2017; 660
ref_123
Jiao (ref_32) 2018; 14
Wang (ref_121) 2017; 51
Saji (ref_39) 2016; 26
Seivane (ref_40) 2013; 28
Guguchia (ref_53) 2018; 4
Peng (ref_138) 2020; 9
Novoselov (ref_9) 2009; 22
Chodankar (ref_30) 2020; 6
Saleem (ref_42) 2017; 5
Polyushkin (ref_71) 2020; 3
Singh (ref_89) 2018; 259
ref_70
Saha (ref_120) 2020; 167
Yu (ref_135) 2017; 29
Butler (ref_7) 2013; 7
Zhang (ref_92) 2015; 7
ref_78
Terrones (ref_80) 2013; 3
Camacho (ref_41) 2007; 328
ref_77
Winer (ref_31) 1967; 10
Cao (ref_115) 2016; 6
Briones (ref_21) 2020; 10
Balat (ref_118) 2008; 33
Hiraki (ref_13) 1992; 56–58
Kumar (ref_140) 2020; 4
Pham (ref_103) 2019; 13
Moutaouakil (ref_113) 2009; 193
Mukherjee (ref_101) 2017; 7
Cao (ref_132) 2015; 62
Lin (ref_69) 2018; 562
Tan (ref_100) 2015; 4
ref_85
Nalwa (ref_46) 2020; 10
Choi (ref_65) 2017; 7
Huang (ref_128) 2019; 243
Li (ref_28) 2015; 1
(ref_4) 2011; 479
Moutaouakil (ref_10) 2011; 50
Krishnan (ref_34) 2019; 128
Vignesh (ref_59) 2020; 21
Kaur (ref_141) 2018; 8
Heiranian (ref_90) 2018; 2
Kim (ref_68) 2021; 535
Kong (ref_23) 2015; 407
Johari (ref_50) 2012; 6
ref_56
Choi (ref_84) 2020; 11
Suemitsu (ref_114) 2011; 8
He (ref_1) 2016; 3
Liang (ref_127) 2020; 4
Desai (ref_14) 2016; 354
Hua (ref_76) 2020; 11
Han (ref_60) 2015; 4
Vishwanath (ref_62) 2015; 2
Lee (ref_67) 2014; 6
Basyooni (ref_73) 2020; 10
Zheng (ref_86) 2019; 9
Wu (ref_142) 2019; 6
ref_64
Jayachandran (ref_74) 2020; 3
ref_63
Tran (ref_117) 2016; 15
Crane (ref_58) 2017; 3
Gupta (ref_81) 2019; 9
Shree (ref_137) 2021; 3
Cao (ref_36) 2020; 5
Chen (ref_136) 2018; 10
Manzeli (ref_131) 2017; 2
Fan (ref_139) 2015; 27
ref_116
Hou (ref_44) 2019; 7
Ding (ref_87) 2019; 10
ref_110
Tahersima (ref_43) 2017; 4
Cui (ref_83) 2018; 9
ref_112
Salahuddin (ref_72) 2013; 3
Yadav (ref_29) 2019; 15
Faramarzi (ref_88) 2019; 9
Tsai (ref_52) 2018; 65
Coogan (ref_55) 2021; 2
Zibouche (ref_49) 2013; 3
Gao (ref_122) 2016; 6
Manzeli (ref_35) 2019; 10
Kim (ref_66) 2016; 6
Moutaouakil (ref_111) 2012; 12
Geim (ref_5) 2013; 499
ref_106
ref_105
ref_108
ref_107
Wei (ref_79) 2015; 5
ref_45
Huang (ref_97) 2015; 7
ref_102
Bao (ref_129) 2013; 102
ref_3
Kadantsev (ref_51) 2012; 152
ref_2
Wang (ref_133) 2018; 47
Amani (ref_48) 2015; 350
Shi (ref_91) 2021; 12
Siao (ref_38) 2018; 9
Iqbal (ref_124) 2020; 44
ref_8
Hossain (ref_25) 2017; 1
Gao (ref_119) 2015; 6
ref_6
References_xml – ident: ref_107
  doi: 10.1109/MMWaTT.2018.8661233
– ident: ref_12
  doi: 10.1109/EDTM.2018.8421456
– volume: 9
  start-page: 6230
  year: 2019
  ident: ref_88
  article-title: A Potential Sensing Mechanism for DNA Nucleobases by Optical Properties of GO and MoS2 Nanopores
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41165-6
– volume: 3
  start-page: 646
  year: 2020
  ident: ref_74
  article-title: A Low-Power Biomimetic Collision Detector Based on an in-Memory Molybdenum Disulfide Photodetector
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00466-9
– volume: 7
  start-page: 54638
  year: 2017
  ident: ref_22
  article-title: MoS2 quantum dots featured fluorescent biosensor for multiple detection of cancer
  publication-title: RSC Adv.
  doi: 10.1039/C7RA09300D
– volume: 12
  start-page: 6737
  year: 2012
  ident: ref_111
  article-title: Nonresonant Detection of Terahertz Radiation in High-Electron-Mobility Transistor Structure Using InAlAs/InGaAs/InP Material Systems at Room Temperature
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2012.4575
– volume: 9
  start-page: 759
  year: 2019
  ident: ref_86
  article-title: Sensitive Molybdenum Disulfide Based Field Effect Transistor Sensor for Real-Time Monitoring of Hydrogen Peroxide
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36752-y
– volume: 562
  start-page: 254
  year: 2018
  ident: ref_69
  article-title: Solution-Processable 2D Semiconductors for High-Performance Large-Area Electronics
  publication-title: Nature
  doi: 10.1038/s41586-018-0574-4
– volume: 6
  start-page: 100053
  year: 2020
  ident: ref_30
  article-title: Graphene and Molybdenum Disulphide Hybrids for Energy Applications: An Update
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2019.100053
– volume: 2
  start-page: 024007
  year: 2015
  ident: ref_62
  article-title: Comprehensive Structural and Optical Characterization of MBE Grown MoSe2 on Graphite, CaF 2 and Graphene
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/2/024007
– ident: ref_16
– volume: 6
  start-page: 27207
  year: 2016
  ident: ref_122
  article-title: Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation
  publication-title: Sci. Rep.
  doi: 10.1038/srep27207
– volume: 7
  start-page: 1900857
  year: 2019
  ident: ref_44
  article-title: Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS2 Monolayer Coupled with Plasmonic Nanocavities
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900857
– volume: 4
  start-page: 10
  year: 2020
  ident: ref_130
  article-title: Tellurium as a Successor of Silicon for Extremely Scaled Nanowires: A First-Principles Study
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-020-0143-1
– volume: 65
  start-page: 733
  year: 2018
  ident: ref_52
  article-title: Impact of Doping Concentration on Electronic Properties of Transition Metal-Doped Monolayer Molybdenum Disulfide
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2782667
– ident: ref_94
– volume: 10
  start-page: 30529
  year: 2020
  ident: ref_46
  article-title: A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03183F
– volume: 33
  start-page: 4013
  year: 2008
  ident: ref_118
  article-title: Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.05.047
– ident: ref_77
– volume: 4
  start-page: 7523
  year: 2015
  ident: ref_100
  article-title: Polarization-Dependent Optical Absorption of MoS2 for Refractive Index Sensing
  publication-title: Sci Rep
  doi: 10.1038/srep07523
– volume: 6
  start-page: 7493
  year: 2015
  ident: ref_119
  article-title: Edge-Terminated Molybdenum Disulfide with a 9.4-Å Interlayer Spacing for Electrochemical Hydrogen Production
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8493
– volume: 4
  start-page: 40
  year: 2020
  ident: ref_127
  article-title: Improving Stability of Organometallic-Halide Perovskite Solar Cells Using Exfoliation Two-Dimensional Molybdenum Chalcogenides
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-020-00173-1
– ident: ref_108
  doi: 10.1109/IRMMW-THz.2019.8873712
– volume: 328
  start-page: 88
  year: 2007
  ident: ref_41
  article-title: Structure and Catalytic Properties of Molybdenum Sulfide Nanoplatelets
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2007.05.031
– volume: 102
  start-page: 042104
  year: 2013
  ident: ref_129
  article-title: High Mobility Ambipolar MoS2 Field-Effect Transistors: Substrate and Dielectric Effects
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4789365
– volume: 32
  start-page: 117801
  year: 2015
  ident: ref_47
  article-title: Tuning Photoluminescence Performance of Monolayer MoS2 via H2O2 Aqueous Solution
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/32/11/117801
– volume: 121
  start-page: 108200
  year: 2020
  ident: ref_27
  article-title: A Comprehensive Review on Synthesis and Applications of Molybdenum Disulfide (MoS2) Material: Past and Recent Developments
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2020.108200
– ident: ref_17
  doi: 10.1142/S0129156406003539
– volume: 15
  start-page: 1803706
  year: 2019
  ident: ref_29
  article-title: 2D MoS2-Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications
  publication-title: Small
  doi: 10.1002/smll.201803706
– volume: 1
  start-page: 28
  year: 2017
  ident: ref_25
  article-title: Biocompatible, Large-Format, Inkjet Printed Heterostructure MoS2-Graphene Photodetectors on Conformable Substrates
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-017-0034-2
– ident: ref_125
  doi: 10.1109/NANO.2015.7388825
– volume: 11
  start-page: 5934
  year: 2020
  ident: ref_84
  article-title: Curved Neuromorphic Image Sensor Array Using a MoS2-Organic Heterostructure Inspired by the Human Visual Recognition System
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19806-6
– volume: 10
  start-page: 16039
  year: 2020
  ident: ref_21
  article-title: Breast Cancer Biomarker Detection through the Photoluminescence of Epitaxial Monolayer MoS2 Flakes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73029-9
– ident: ref_78
  doi: 10.1109/DRC.2016.7548483
– ident: ref_70
  doi: 10.1109/IEDM.2013.6724569
– volume: 5
  start-page: 17578
  year: 2015
  ident: ref_79
  article-title: Controlling the Electronic Structures and Properties of In-Plane Transition-Metal Dichalcogenides Quantum Wells
  publication-title: Sci. Rep.
  doi: 10.1038/srep17578
– volume: 62
  start-page: 3459
  year: 2015
  ident: ref_132
  article-title: 2D Semiconductor FETs—Projections and Design for Sub-10 Nm VLSI
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2015.2443039
– ident: ref_63
  doi: 10.1016/B978-0-08-096532-1.00705-6
– ident: ref_106
  doi: 10.1117/12.2263239
– volume: 9
  start-page: 15604
  year: 2019
  ident: ref_81
  article-title: Low Power, CMOS-MoS2 Memtransistor Based Neuromorphic Hybrid Architecture for Wake-Up Systems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51606-x
– volume: 499
  start-page: 419
  year: 2013
  ident: ref_5
  article-title: Van Der Waals Heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 50
  start-page: 070113
  year: 2011
  ident: ref_10
  article-title: Room Temperature Logic Inverter on Epitaxial Graphene-on-Silicon Device
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.50.070113
– volume: 2
  start-page: 14
  year: 2018
  ident: ref_90
  article-title: Identification of Amino Acids with Sensitive Nanoporous MoS2: Towards Machine Learning-Based Prediction
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-018-0060-8
– volume: 22
  start-page: 27
  year: 2009
  ident: ref_9
  article-title: Beyond the Wonder Material
  publication-title: Phys. World
  doi: 10.1088/2058-7058/22/08/33
– volume: 2
  start-page: 146
  year: 2021
  ident: ref_55
  article-title: Solution-Based “Bottom-up” Synthesis of Group VI Transition Metal Dichalcogenides and Their Applications
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00697A
– ident: ref_110
  doi: 10.1109/IRSEC.2018.8702954
– volume: 7
  start-page: 18364
  year: 2015
  ident: ref_92
  article-title: Synthesis and Sensor Applications of MoS2 -Based Nanocomposites
  publication-title: Nanoscale
  doi: 10.1039/C5NR06121K
– volume: 29
  start-page: 1606128
  year: 2017
  ident: ref_135
  article-title: 2D Materials for Optical Modulation: Challenges and Opportunities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606128
– volume: 6
  start-page: 1594
  year: 2019
  ident: ref_142
  article-title: Differential Influence of Molybdenum Disulfide at the Nanometer and Micron Scales in the Intestinal Metabolome and Microbiome of Mice
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C8EN01019F
– volume: 193
  start-page: 012068
  year: 2009
  ident: ref_113
  article-title: Spectral Narrowing of Terahertz Emission from Super-Grating Dual-Gate Plasmon-Resonant High-Electron Mobility Transistors
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/193/1/012068
– ident: ref_56
  doi: 10.3390/cryst7070198
– ident: ref_85
  doi: 10.1038/am.2017.225
– ident: ref_45
  doi: 10.1109/ICSE49846.2020.9166878
– ident: ref_99
  doi: 10.1109/TENSYMP50017.2020.9230894
– ident: ref_3
  doi: 10.3390/app9040678
– volume: 407
  start-page: 369
  year: 2015
  ident: ref_23
  article-title: A Novel Aptamer-Functionalized MoS2 Nanosheet Fluorescent Biosensor for Sensitive Detection of Prostate Specific Antigen
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-014-8267-9
– volume: 10
  start-page: 4831
  year: 2019
  ident: ref_35
  article-title: Self-Sensing, Tunable Monolayer MoS2 Nanoelectromechanical Resonators
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12795-1
– volume: 47
  start-page: 6101
  year: 2018
  ident: ref_133
  article-title: Synthesis, Properties, and Optoelectronic Applications of Two-Dimensional MoS2 and MoS2-Based Heterostructures
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00314A
– volume: 4
  start-page: 16
  year: 2020
  ident: ref_140
  article-title: Direct Visualization of Out-of-Equilibrium Structural Transformations in Atomically Thin Chalcogenides
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-020-0150-2
– volume: 11
  start-page: 6207
  year: 2020
  ident: ref_76
  article-title: Atomic Threshold-Switching Enabled MoS2 Transistors towards Ultralow-Power Electronics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20051-0
– ident: ref_112
  doi: 10.1109/ICIMW.2010.5612598
– volume: 6
  start-page: 22899
  year: 2016
  ident: ref_115
  article-title: Optically Tuned Terahertz Modulator Based on Annealed Multilayer MoS2
  publication-title: Sci. Rep.
  doi: 10.1038/srep22899
– ident: ref_134
  doi: 10.1109/NANO.2015.7388679
– volume: 28
  start-page: 240
  year: 2013
  ident: ref_40
  article-title: Atomic and Electronic Properties of Quasi-One-Dimensional MoS2 Nanowires
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2012.355
– volume: 167
  start-page: 126517
  year: 2020
  ident: ref_120
  article-title: Editors’ Choice—Review—Conductive Forms of MoS2 and Their Applications in Energy Storage and Conversion
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abb34b
– volume: 18
  start-page: 4358
  year: 2018
  ident: ref_20
  article-title: Immunosensor Based on Antibody-Functionalized MoS2 for Rapid Detection of Avian Coronavirus on Cotton Thread
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2829084
– volume: 259
  start-page: 1090
  year: 2018
  ident: ref_89
  article-title: Functionalized MoS2 Nanosheets Assembled Microfluidic Immunosensor for Highly Sensitive Detection of Food Pathogen
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.12.094
– ident: ref_95
– ident: ref_102
  doi: 10.1038/s41598-019-55190-y
– volume: 660
  start-page: 16
  year: 2017
  ident: ref_37
  article-title: Surface Structure of Bulk 2H-MoS2(0001) and Exfoliated Suspended Monolayer MoS2: A Selected Area Low Energy Electron Diffraction Study
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2017.02.005
– volume: 7
  start-page: 1983
  year: 2017
  ident: ref_65
  article-title: Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02228-8
– volume: 238
  start-page: 13
  year: 2019
  ident: ref_126
  article-title: Large Area MoS2/Si Heterojunction-Based Solar Cell through Sol-Gel Method
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.11.051
– volume: 14
  start-page: 1800640
  year: 2018
  ident: ref_32
  article-title: Metallic MoS2 for High Performance Energy Storage and Energy Conversion
  publication-title: Small
  doi: 10.1002/smll.201800640
– volume: 14
  start-page: 317
  year: 2019
  ident: ref_61
  article-title: Synergistic Exfoliation of MoS2 by Ultrasound Sonication in a Supercritical Fluid Based Complex Solvent
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3126-4
– volume: 535
  start-page: 147684
  year: 2021
  ident: ref_68
  article-title: Sulfidation Characteristics of Amorphous Nonstoichiometric Mo-Oxides for MoS2 Synthesis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147684
– volume: 3
  start-page: 1549
  year: 2013
  ident: ref_80
  article-title: Novel Hetero-Layered Materials with Tunable Direct Band Gaps by Sandwiching Different Metal Disulfides and Diselenides
  publication-title: Sci. Rep.
  doi: 10.1038/srep01549
– volume: 10
  start-page: 41
  year: 2019
  ident: ref_87
  article-title: Defect Engineered Bioactive Transition Metals Dichalcogenides Quantum Dots
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07835-1
– ident: ref_18
  doi: 10.1109/IFOST.2012.6357544
– volume: 33
  start-page: 1
  year: 2020
  ident: ref_24
  article-title: Biological Effects of Molybdenum Compounds in Nanosized Forms under in Vitro and in Vivo Conditions
  publication-title: Int. J. Occup. Med. Environ. Health
  doi: 10.13075/ijomeh.1896.01411
– ident: ref_15
  doi: 10.1007/978-3-030-18338-7
– volume: 354
  start-page: 99
  year: 2016
  ident: ref_14
  article-title: MoS2 Transistors with 1-Nanometer Gate Lengths
  publication-title: Science
  doi: 10.1126/science.aah4698
– ident: ref_8
  doi: 10.1109/SMELEC.2018.8481317
– volume: 128
  start-page: 274
  year: 2019
  ident: ref_34
  article-title: A Synoptic Review of MoS2: Synthesis to Applications
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2019.02.005
– volume: 7
  start-page: 13312
  year: 2017
  ident: ref_104
  article-title: Portable Biosensor for Monitoring Cortisol in Low-Volume Perspired Human Sweat
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13684-7
– ident: ref_98
– volume: 3
  start-page: 39
  year: 2021
  ident: ref_137
  article-title: Guide to Optical Spectroscopy of Layered Semiconductors
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-00259-1
– volume: 26
  start-page: 2046
  year: 2016
  ident: ref_39
  article-title: Atomically Thin MoS2: A Versatile Nongraphene 2D Material
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504202
– volume: 7
  start-page: 41175
  year: 2017
  ident: ref_101
  article-title: Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling
  publication-title: Sci. Rep.
  doi: 10.1038/srep41175
– volume: 10
  start-page: 810
  year: 2018
  ident: ref_136
  article-title: Degradation Behaviors and Mechanisms of MoS2 Crystals Relevant to Bioabsorbable Electronics
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0078-6
– ident: ref_2
  doi: 10.1109/DRC.2015.7175638
– volume: 6
  start-page: 2821
  year: 2014
  ident: ref_67
  article-title: Synthesis of Wafer-Scale Uniform Molybdenum Disulfide Films with Control over the Layer Number Using a Gas Phase Sulfur Precursor
  publication-title: Nanoscale
  doi: 10.1039/c3nr05993f
– volume: 9
  start-page: 1301
  year: 2018
  ident: ref_83
  article-title: Rolling up Transition Metal Dichalcogenide Nanoscrolls via One Drop of Ethanol
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03752-5
– volume: 8
  start-page: 9
  year: 2019
  ident: ref_54
  article-title: Electrical Spin Injection and Detection in Molybdenum Disulfide Multilayer Channel
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1713
  year: 2017
  ident: ref_43
  article-title: Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00208
– ident: ref_19
  doi: 10.1109/NEMS.2017.8017136
– volume: 1
  start-page: 33
  year: 2015
  ident: ref_28
  article-title: Two-Dimensional MoS2: Properties, Preparation, and Applications
  publication-title: J. Mater.
– volume: 5
  start-page: 1700176
  year: 2017
  ident: ref_42
  article-title: Surface Plasmon Enhanced Nitrogen-Doped Graphene Quantum Dot Emission by Single Bismuth Telluride Nanoplates
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700176
– volume: 9
  start-page: 1442
  year: 2018
  ident: ref_38
  article-title: Two-Dimensional Electronic Transport and Surface Electron Accumulation in MoS2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03824-6
– volume: 9
  start-page: 190
  year: 2020
  ident: ref_138
  article-title: Strain Engineering of 2D Semiconductors and Graphene: From Strain Fields to Band-Structure Tuning and Photonic Applications
  publication-title: Light. Sci. Appl.
  doi: 10.1038/s41377-020-00421-5
– volume: 6
  start-page: 113315
  year: 2016
  ident: ref_26
  article-title: Protein-Induced Ultrathin Molybdenum Disulfide (MoS2) Flakes for a Water-Based Lubricating System
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23786J
– volume: 10
  start-page: 422
  year: 1967
  ident: ref_31
  article-title: Molybdenum Disulfide as a Lubricant: A Review of the Fundamental Knowledge
  publication-title: Wear
  doi: 10.1016/0043-1648(67)90187-1
– volume: 4
  start-page: 5133
  year: 2015
  ident: ref_60
  article-title: Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation
  publication-title: Sci. Rep.
  doi: 10.1038/srep05133
– ident: ref_123
  doi: 10.1109/CEEICT.2016.7873102
– volume: 6
  start-page: 33562
  year: 2016
  ident: ref_82
  article-title: Electronic Properties of MoS2/MoOx Interfaces: Implications in Tunnel Field Effect Transistors and Hole Contacts
  publication-title: Sci. Rep.
  doi: 10.1038/srep33562
– volume: 7
  start-page: 2245
  year: 2015
  ident: ref_97
  article-title: A Novel Single-Layered MoS2 Nanosheet Based Microfluidic Biosensor for Ultrasensitive Detection of DNA
  publication-title: Nanoscale
  doi: 10.1039/C4NR07162J
– volume: 6
  start-page: 24054
  year: 2016
  ident: ref_66
  article-title: Large-Scale Growth and Simultaneous Doping of Molybdenum Disulfide Nanosheets
  publication-title: Sci. Rep.
  doi: 10.1038/srep24054
– ident: ref_93
– volume: 10
  start-page: 15926
  year: 2020
  ident: ref_73
  article-title: Efficient MoWO3/VO2/MoS2/Si UV Schottky Photodetectors; MoS2 Optimization and Monoclinic VO2 Surface Modifications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72990-9
– volume: 350
  start-page: 1065
  year: 2015
  ident: ref_48
  article-title: Near-Unity Photoluminescence Quantum Yield in MoS2
  publication-title: Science
  doi: 10.1126/science.aad2114
– volume: 51
  start-page: 8229
  year: 2017
  ident: ref_121
  article-title: Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01466
– volume: 15
  start-page: 640
  year: 2016
  ident: ref_117
  article-title: Coordination Polymer Structure and Revisited Hydrogen Evolution Catalytic Mechanism for Amorphous Molybdenum Sulfide
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4588
– volume: 44
  start-page: 1464
  year: 2020
  ident: ref_124
  article-title: Role of Graphene and Transition Metal Dichalcogenides as Hole Transport Layer and Counter Electrode in Solar Cells
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5040
– volume: 8
  start-page: 346
  year: 2011
  ident: ref_114
  article-title: Device Loading Effect on Nonresonant Detection of Terahertz Radiation in Dual Grating Gate Plasmon-Resonant Structure Using InGaP/InGaAs/GaAs Material Systems
  publication-title: Phys. Status Solidi (C)
  doi: 10.1002/pssc.201000569
– volume: 479
  start-page: 317
  year: 2011
  ident: ref_4
  article-title: Nanometre-Scale Electronics with III-V Compound Semiconductors
  publication-title: Nature
  doi: 10.1038/nature10677
– volume: 7
  start-page: 2898
  year: 2013
  ident: ref_7
  article-title: Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
  publication-title: ACS Nano
  doi: 10.1021/nn400280c
– volume: 19
  start-page: 322
  year: 2016
  ident: ref_57
  article-title: Heterostructures Based on Two-Dimensional Layered Materials and Their Potential Applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.003
– ident: ref_64
  doi: 10.1039/C8RA04350G
– volume: 6
  start-page: 5449
  year: 2012
  ident: ref_50
  article-title: Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains
  publication-title: ACS Nano
  doi: 10.1021/nn301320r
– ident: ref_105
  doi: 10.1109/IMWS2.2012.6338209
– volume: E93.C
  start-page: 1286
  year: 2010
  ident: ref_109
  article-title: Room Temperature Intense Terahertz Emission from a Dual Grating Gate Plasmon-Resonant Emitter Using InAlAs/InGaAs/InP Material Systems
  publication-title: IEICE Trans. Electron.
  doi: 10.1587/transele.E93.C.1286
– volume: 3
  start-page: 6
  year: 2013
  ident: ref_72
  article-title: High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector
  publication-title: Sci. Rep.
– volume: 36
  start-page: 1215
  year: 2015
  ident: ref_11
  article-title: Electrical Contact Analysis of Multilayer MoS2 Transistor With Molybdenum Source/Drain Electrodes
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2478899
– ident: ref_96
– volume: 3
  start-page: 23
  year: 2016
  ident: ref_1
  article-title: Molybdenum Disulfide Nanomaterials: Structures, Properties, Synthesis and Recent Progress on Hydrogen Evolution Reaction
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2016.02.001
– volume: 67
  start-page: 3711
  year: 2020
  ident: ref_75
  article-title: Alcohol-Based Sulfur Treatment for Improved Performance and Yield in Local Back-Gated and Channel-Length-Scaled MoS₂ FETs
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.3009083
– volume: 3
  start-page: 486
  year: 2020
  ident: ref_71
  article-title: Analogue Two-Dimensional Semiconductor Electronics
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0460-6
– volume: 21
  start-page: 1969
  year: 2020
  ident: ref_59
  article-title: Study of Sonication Assisted Synthesis of Molybdenum Disulfide (MoS2) Nanosheets
  publication-title: Mater. Today: Proc.
– ident: ref_116
  doi: 10.1109/JSEN.2021.3054038
– volume: 243
  start-page: 84
  year: 2019
  ident: ref_128
  article-title: N-Doped Carbon@nanoplate-Assembled MoS2 Hierarchical Microspheres as Anode Material for Lithium-Ion Batteries
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.01.141
– volume: 2
  start-page: 17033
  year: 2017
  ident: ref_131
  article-title: 2D Transition Metal Dichalcogenides
  publication-title: Nat. Rev. Mater
  doi: 10.1038/natrevmats.2017.33
– volume: 13
  start-page: 3196
  year: 2019
  ident: ref_103
  article-title: MoS2-Based Optoelectronic Gas Sensor with Sub-Parts-per-Billion Limit of NO2 Gas Detection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08778
– volume: 3
  start-page: 2961
  year: 2013
  ident: ref_49
  article-title: Electromechanics in MoS2 and WS2: Nanotubes vs. Monolayers
  publication-title: Sci. Rep.
  doi: 10.1038/srep02961
– volume: 27
  start-page: 105401
  year: 2015
  ident: ref_139
  article-title: Structural Stability of Single-Layer MoS2 under Large Strain
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/27/10/105401
– volume: 4
  start-page: eaat3672
  year: 2018
  ident: ref_53
  article-title: Magnetism in Semiconducting Molybdenum Dichalcogenides
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat3672
– volume: 56–58
  start-page: 370
  year: 1992
  ident: ref_13
  article-title: Recent Developments on Metal-Silicon Interfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(92)90258-Y
– volume: 12
  start-page: 493
  year: 2021
  ident: ref_91
  article-title: Nanohole-Boosted Electron Transport between Nanomaterials and Bacteria as a Concept for Nano–Bio Interactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20547-9
– ident: ref_6
  doi: 10.1109/WMED.2016.7458281
– volume: 3
  start-page: 17032
  year: 2017
  ident: ref_58
  article-title: Rapid Synthesis of Transition Metal Dichalcogenide–Carbon Aerogel Composites for Supercapacitor Electrodes
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2017.32
– volume: 8
  start-page: 16386
  year: 2018
  ident: ref_141
  article-title: Biological Interactions of Biocompatible and Water-Dispersed MoS2 Nanosheets with Bacteria and Human Cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34679-y
– volume: 53
  start-page: 3054
  year: 2017
  ident: ref_33
  article-title: 3R Phase of MoS2 and WS2 Outperforms the Corresponding 2H Phase for Hydrogen Evolution
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09952A
– volume: 5
  start-page: 28823
  year: 2020
  ident: ref_36
  article-title: Effects of Phase Selection on Gas-Sensing Performance of MoS2 and WS2 Substrates
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c04176
– volume: 152
  start-page: 909
  year: 2012
  ident: ref_51
  article-title: Electronic Structure of a Single MoS2 Monolayer
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2012.02.005
SSID ssj0000760771
Score 2.583188
Snippet Molybdenum disulfide (MoS2) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 355
SubjectTerms Alzheimer's disease
Biosensors
Chemical sensors
Engineering Sciences
Graphene
Hydrogen
Lubricants & lubrication
Magnetic properties
Magnetoresistance
Magnetoresistivity
Materials substitution
Molybdenum
Molybdenum disulfide
Molybdenum disulfide (MoS2)
Molybdenum disulfide applications
Molybdenum disulfide properties
Molybdenum disulfide synthesis
Nanowires
Optical measuring instruments
Optical properties
Photovoltaic cells
Quantum dots
Semiconductor devices
Semiconductors
Silicon
Solar cells
Spintronics
Sulfur
Synthesis
Transistors
transition metal dichalcogenides (TMDs)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSyMxEA6HT3cP4p0n1qsS5LinLu4m2aR5rMVSvB8cVMG3JZtMVJCttL2D_vfO7G7LKogvvi1hCGFmZ75MMvmGse8-VxgYXUzSmIVERasTlxuZWOECBGfpJo6qLf7o6bW6vMlvOq2-qCasoQduFHemvYlOeGEpkGo1tCB1Duga2pUBTKToi5jXSabqGGx0akzWkGpKzOvP_GK9XCHWqVTSs74OCNVc_Qgtd1QJ-SIg1ygz2WO77faQj5plfWYfoPrCPnVIA_fZzxFvDvT5vOK_5zPB_9KB-oKYUQd8tq5wS7e8p0-qTa9u-ahzR81dFfh400Bl-ZVdTy6uxtOkbYmQeGXSVQJBgNNpHAoHLhoIZYy2lBI8yKGREEIkwnmw0fmhz4LL0KNLkUYjRLAxlwdsp5pXcMh4BCPKMljMPwKiunMoZGQE5UuViUz32GCjo8K3fOHUtuKhwLyBVFo8U2mP_diKPzZEGa8JnpPCt0LEb10PoNWL1urFW1bvsVNU1bM5pqNfBY0Rwiqp0_9Zj_U31ixaz1wWAoOOxImEOXqPhXxjHwVVuaTUEa_PdlaLf3CM25RVeVL_kU85jOVp
  priority: 102
  providerName: Directory of Open Access Journals
Title A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges
URI https://www.proquest.com/docview/2531388727
https://hal.science/hal-04294360
https://doaj.org/article/6c7fa2c2912846489e365e8876abde7f
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-N9mV7QPvUylhlTdOeiEhsx46fpsDoqg0QWofEW-T4A5BQwppuEv_9fKlbCtL2FjmnPJzv-y6_A_hoch4Mo_ZJ6jObcK9EonPJEkW1dVYr7MThtMWpmJ7zbxf5RSy4dXGscmUTe0NtW4M18n0ahIUFjaDy8-2vBLdGYXc1rtDYgmEwwUUxgOHB0enZj3WVBftOUmZLcE0W8vt9M7_rFsHn8ZTh730bzqjH7A8u5gonIh8Z5t7bTJ7DdgwTSbm81xfwxDUv4dkGeOAr-F6SZWGftA05aWeUnGFhfY4IqXtkdteE0K67xkecUW8uSbnRqya6seRwtUilew3nk6Ofh9MkrkZIDJfpInGWOi1SX1DttJfO1t6rmjFnHCskc9Z6BJ53ymtTmMzqLGh2TVMvKbXK5-wNDJq2cW-BeCdpXVsV8hAbvLvWgUgy77ipeUYzMYK9FY8qE3HDcX3FTRXyB2Rp9YClI_i0Jr9dAmb8i_AAGb4mQpzr_qCdX1ZRbSphpNfUUIVuVPBCOSZyF8RA6No66UfwIbDqwTem5XGFZ-hpORPpn2wEu6vbrKKGdtW9PO38__U7eEpxjiXFnXe7MFjMf7v3IRBZ1GPYKiZfxzAsv5wcz8ZR9sZ9Wv8X0K_h1A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAcUMtDhJZiIeDUVXdtx44PCIVCSElaIbWVejNeP1oktNtmAyh_it_IzD5CigS33lb2aA_j8Xxjz3g-Ql66vgDHaGOSxswnImqZ2L7iiWbWB281ZuKw2uJYjs_Ep_P--Rr51b2FwbLKzifWjtqXDu_I9xkYC4cdwdTbq-sEWaMwu9pRaDRmMQmLn3Bkq94cvof1fcXY6MPpwThpWQUSJ1Q6T4Jnwco0DpgNNqrg8xh1znlwgQ8UD95H7NkedLRu4DJvM9gUOUujYszriCwR4PI3BAckx5fpo4_LOx3McimVNa08YT7dd7NFNQeEFSnHx4Qr0FczBACgXWL95V8wUGPbaJPcb4NSOmysaIusheIBubfSqvAhmQxpk0agZUGPyhNGP-M1_gz7se7Rk0UBgWT1FT-xIr64oMOVzDi1hacHHW1L9Yic3YrKHpP1oizCE0JjUCzPvYZTj4dYwloQUjwG4XKRsUz2yF6nI-PaLuVIlvHNwGkFVWpuqLRHXi_Fr5r2HP8SfIcKXwphV-16oJxdmHaTGulUtMwxjaAtxUAHLvsBjE7a3AcVe-QFqOrGP8bDqcExxHXBZfoj65GdbjVN6w8q88d6n_5_-jm5Mz49mprp4fFkm9xlWEGTItveDlmfz76HZxACzfPd2u4o-XLbhv4bIoAdGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYTggHiKQAsrBJxq1d51vNkDqtJHlJISRZRKvS3rfRQkZJc4gPLX-us6E9shRYJbb9Z65MP423nszM4H8Mb2UjSMJkRxSFyUBpVFpidFpLhx3hlFlTjqtphko7P0w3nvfAOu2rsw1FbZ2sSloXalpTPyXY5gEbgjMFUPTVvE9HC4d_kjIgYpqrS2dBo1RMZ-8RvTt-r98SH-67ecD48-H4yihmEgsqmM55F33JssDn1uvAnSuzwElQvhrRd9Kbxzgea3exWM7dvEmQQ3SM7jIDl3KhBjBJr_TUlZUQc2948m00-rEx6qeUmZ1IM9hVDxrp0tqjn62zQWdLVwzREu-QLQvX2lbsy_nMLS0w0fwP0mRGWDGlMPYcMXj-De2uDCxzAesLqowMqCfSxPOZvSof6MprPusNNFgWFl9Y0eqT--uGCDtTo5M4VjBy2JS_UEzm5FaU-hU5SFfwYseMnz3CnMgRxGFsagkBTBpzZPE55kXdhpdaRtM7OcqDO-a8xdSKX6hkq78G4lflkP6_iX4D4pfCVEM7aXC-XsQjdbVmdWBsMtV-TCs7SvvMh6HiGYmdx5GbrwGlV14xujwYmmNfLyqcjiX0kXttq_qRvrUOk_WH7-_9ev4A6CXJ8cT8Yv4C6ndpqYqPe2oDOf_fTbGA_N85cN8Bh8uW2sXwPNOiKs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+MoS2+Properties%2C+Synthesis%2C+Sensing+Applications+and+Challenges&rft.jtitle=Crystals+%28Basel%29&rft.au=Samy%2C+Omnia&rft.au=Zeng%2C+Shuwen&rft.au=Muhammad+Danang+Birowosuto&rft.au=Amine+El+Moutaouakil&rft.date=2021-03-29&rft.pub=MDPI+AG&rft.eissn=2073-4352&rft.volume=11&rft.issue=4&rft.spage=355&rft_id=info:doi/10.3390%2Fcryst11040355&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon